
Design Note: Target Considerations for Coldfire†

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

Dec 1, 2007

Abstract

Documentation of gross issues and considerations in port-
ing to the ColdFire V4e platform.

1 Introduction

This document addresses design considerations in porting
the Coyotos kernel [1] to the ColdFire V4e processor fam-
ily. This note specifically considers issues in porting to
the MCF5485, but most of the issues raised and their so-
lutions should be common to other members of the family.

The ColdFire V4e family generically meets the functional
requirements to run Coyotos. It implements a paged mem-
ory management unit and suitable user vs. supervisor pro-
tection isolation. Privileged registers can be configured
for supervisor-only access. Handling of sensitive regis-
ters is less careful, but these registers primarily disclose
boot-time configuration information; there do not appear
to be any substantive disclosures of interest to applications
through these registers.

With these issues addressed, the following issues remain
to be considered:

1. Feasibility of family compatibility with a single ker-
nel.

2. Selection of Coyotos kernel-defined page size for
this processor family.

3. Memory management subsystem and possible im-
plementations of the Coyotos shadow translation
mechanism for this architecture.

† Copyright c© 2007, Jonathan S. Shapiro. Verbatim copies of this doc-
ument may be duplicated or distributed in print or electronic form for
non-commercial purposes.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT
ANY WARRANTIES, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

4. Design of processor cache(s), interactions with the
memory management mechanism, and any required
special handling for these.

5. Interrupt and trap frame formation, system call en-
try/exit mechanism(s).

2 Family Compatibility

Different members of the V4e family place certain
key configuration registers at incompatible memory ad-
dresses. This has been an abiding problem for the GNU
binutils maintainers, the problem has been explored fairly
carefully. The current assemblers can be used to generate
implementation-specific code where required, but there is
no reason to believe that the Freescale team views forward
supervisor-mode compatibility as a design objective.

Open Issue There is no published algorithm for perform-
ing CPU model identification within the V4e family. It is
likely that something can be worked out, but since it isn’t
a pressing issue for any current users of this family, there
are no immediate plans to investigate this further.

3 Page Size Selection

The ColdFire architecture supports a range of page sizes.
The Coyotos kernel architecture is designed in terms of
a single least page size that forms the atomic unit of ad-
dress space construction. On the ColdFire, the hardware-
supported page size choices are 1K, 4K, or 8K.

Our original plan was to push hard for a 4K page size in
order to minimize deviation from the i386 implementation
and to improve page utilization. The problem with this
choice is that (1) the cache set size is 8K, (2) the cache is
virtually indexed by the least 13 bits of the issued address,
and therefore (3) if the page size chosen is smaller than
the set size cache inconsistency results. The original plan
called for a coloring strategy. Discussion of the coloring
issues is retained in this document for the sake of later

1

review, but that discussion does not apply to the current
implementation.

Because of the cache consistency issues, an 8K page size
was adopted for this implementation. Linux has also
adopted an 8K page size for this architecture.

Notwithstanding the general page size decision, it may be
advantageous to use 1M mappings to describe the kernel
region in order to reduce kernel TLB overhead.

4 Memory Management Subsystem

The V4e family implements separate soft-loaded TLBs
for code and data references. Each TLB has 32 entries and
is fully associative. Entries can be individually pinned in
the TLB, but there are no plans to exploit this in the ini-
tial port except as may be required to support the software
translation architecture. Future implementations may ex-
ploit this feature more aggressively.

The use of a split I/D TLB architecture lets us enforce the
Coyotos NX permission bit in software.

The soft-loaded architecture implies that most kernel vir-
tual addresses can be reloaded without any lookup. Aside
from the transient mapping region, the kernel portion
of map can be configured as Virtual=Physical+constant.
This permits very fast reload of supervisor-mode ad-
dresses following a simple bounds check.

The soft-loaded architecture also gives us an efficient way
to unmaptemporary mappings. The main challenge we
will face with temporary mappings is the need to honor
map colorings within the fast path.

Initial Translation Strategy As an initial implemen-
tation strategy, we are going to try to operate with no
software-managed second-layer TLB. We will instead im-
plement a TLB software miss handler that knows how to
reload kernel virtual addresses through an internally main-
tained table, and which handles user-mode address faults
by traversing the GPT structures. No DependTable is re-
quired; the TLB is simply flushed whenever a GPT store
is performed, which wipes out all mappings. Similarly, no
RevMap is required.

This strategy will get us running, but it obviously won’t
be suitable in production. Note that this design puts enor-
mous pressure on the TLB. Our target has 128M of mem-
ory, the kernel heap is approximagely 1/120th of this, and
assuming that 1M mappings can be used for the kernel
heap they may well occupy 13 of the 32 available TLB
entries.

Improved Approach for production use, the current
plan is to back the hardware TLB by a second-layer TLB
implemented in software. This lowers GPT walk pressure

directly, which in turn lowers kernel-induced TLB pres-
sure. The challenge will be to index the second-level TLB
so that it can be searched using either a virtual or a physi-
cal address. A multi-set approach may work here.

In order to support this, the RevMap must be re-
introduced, and a DependTable is once again necessary.
DependTable pressure in this design will be high, be-
cause we cannot exploit run-length encoding in the de-
pend structure. One way to reduce this is to simulate
bottom-level page tables, but it is not clear that this would
reduce dynamic DependTable pressure significantly.

Another alternative is to come up with a way to cache par-
tial GPT traversals. We might build a cache of translations
from translation roots up to but not including the leaf-
most GPT. At page fault time, we can consult this cache
to quickly find the leaf GPT and then search that GPT to
find the desired target of the mapping.

The idea of a traversal cache may be less pressing in Coy-
otos than in EROS, and the first thing to do is certainly to
implement a fast soft traversal of GPTs directly.

5 Cache Consistency Issues

Note

This section is now obsolete. It is retained for
historical reference.

The V4e family cache is virtually indexed and physically
tagged. On the MCF5485 the set size is 8K. Given a 4K
page size, this creates some messy coherency issues if vir-
tual and physical addresses do not match in the least 13
bits.

The current proposal is to keep track of the active mapping
colors for each physical frame. As long as all mappings
are read-only, simply ignore the incoherency. The instant
that a writable mapping exists, invalidate all mappings of
non-matching color and hand-flush the relevant parts of
the cache.

The implementation is a nuisance, but the practical per-
formance implications of this are expected to be small:

• Shared code pages are never observed to be written
in the wild.

• Purely read-only pages are not impacted.

• Private writable pages are impacted only if there are
simultaneous non-congruent mappings. This is not
observed in the wild.

• Shared pages are almost always mapped with com-
patibly congruent virtual addresses in order to gain

2

the benefit of mapping metadata sharing. The practi-
cal consequence of this is that sharedwritable pages
almost always turn out to have a single color in prac-
tice, and in this case the cache flush can be avoided.

If we observe that the coloring logic is actually getting
triggered in practice, we may want to configure the cache
in write-through mode.

When you are done wretching over this, consider that it
could be worse: on the ARM it is necessary to guarantee
that a writable page has exactly one mapping at a time,
and further necessary to flush the entire cache when that
mapping must be changed. On ColdFire we only need to
flushhalf the cache. Oh frabjous day.1

Open Issue Section 5.2.3.5 of the MCF5485 reference
manual [2] states that the cache uses the virtual address
for indexing but the physical address for allocation, and
notes that multiple mappings may lead to incoherency in
the cache. However it appears that the incoherency can
only arise in non-interacting cache sets, so this may be
acceptable if no writes are possible.

However, it is possible that this statement is entirely lit-
eral. In that case, we will really need to guarantee that bit
12 must really match in the virtual and physical addresses
at all times. If so, then attempts to map at a miscolored
virtual address may require that we “bounce” the physical
page to a compatible physical frame. This would be in-
convenient, but it’s doable. For the reasons given above it
is unlikely to arise in practice, but it would be a shame if
it actually proves to be necessary.

6 Interrupt and Trap Frames, Sys-
tem Calls

The V4e family implements a common exception frame
for all interrupts, traps, and system calls. In contrast to
IA-32, Interrupt and trap vectors do not overlap in the
vector table. There is no specializedSYSCALL instruc-
tion. System calls are accomplished using the volitional
TRAP instruction, which can dispatch to any of 16 trap
vectors. All of these cause transition to supervisor mode
and switch to a supervisor stack pointer. The regularity of
the trap interface means that no system call entry or exit
trampoline is required for this architecture.

One misfortune is that theTRAP instruction doesnot dis-
able interrupts. This may preclude a fast register save de-
sign within the kernel as was done in the IA-32 imple-
mentation. The intention is that software should do this
1 ReadThrough the Looking Glass. Do not pass go. Do not pause

to admire yourself in the mirror. If you happen to run into an odd,
heavyset, self-absorbed hare, say hello for me.

by immediately executing something like:

mov %sr,$disable
... proceed with save ...

Interrupts are suppressed until this first instruction is run,
so nested interrupts can be controlled.

Earlier versions of this document expressed concern that
interrupts in the register save path would preclude the fast-
save design. They do not, but another consideration does:
the TLB miss fault.

Because this is a soft-translated architecture, a TLB miss
fault generates an exception. The exception frame is
pushed to the stack. If no kernel stack is available to
receive this exception state, the processor becomes very
unhappy. Unfortunately for us, it is not practical to pin
the mappings for the Process vector. This means that we
cannot save directly to the Process structure, and we will
therefore be unable to use an IA32-style fast save strategy.

The good news is that the hardware has separate user and
kernel stack pointers, so we can probably get away with
testing the origin of the fault (user vs. kernel) and in the
user case save only one or two registers, load the current
process pointer, save the remainder to the process state
and then migrate the registers and the trap information.

On this architecture, the only privileged state in the inte-
ger save area is theSR register state, which needs to be
handled specially during reload in any case.

7 Platform Memory Map

This section addresses the configuration of the device
memory map for the target.

7.1 Memory Organization

Virtual Addresses In the virtual map, the Coyotos
implementation will reserve the [0x0,0xBFFFFFFF]
range for user-mode addresses. The range
[0xC0000000,0xFFFFFFFF] is reserved for kernel
use. This is also the Linux convention. Unfortunately, the
distinction between virtual and physical addresses on this
processor is not entirely clean.

Physical Map The Coldfire is an integrated single-chip
controller, and it implements chip select for memory de-
vices on the processor. Internally, post-translation ad-
dresses are delivered to the XL bus. The XL bus in turn
has an SDRAM controller, a ”flexbus” controller, two
small (4k) SRAM devices, and various other items. Ex-
ternal RAM memories are connected to the SDRAM con-
troller. External ROM/FLASH memories are connected

3

to the flexbus. The processor implements chip select pins
that can be more or less directly wired to these outboard
devices. For each device, including those implemented
internally, there is a base address register and an address
mask register that determine when the corresponding chip
select goes active. This means that the locations of de-
vices can be revised in software.

It is possible, but not advisable, to contrive for the chip
select addresses of devices to overlap. Don’t do this! If
the memory chip designs aren’t right, a short can be in-
duced on the data bus as one chip drives D1 high and the
next drives it low. I have not investigated whether the pro-
cessor may implement a priority scheme in the chip select
logic to preclude this problem.

MMU Placement The MMU on the Coldfire was a bolt-
on, and the resulting bussing structure is peculiar. In par-
ticular, there are two on-board SRAM devices (controlled
by RAMBAR[0:1]), two on-board ROM devices (con-
trolled by ROMBAR[0:1]) and two access control regis-
ters ACR[0:3] that define address regions. Each of these
registers describes an arbitrary region of the address space
that is some power of two in size. Any address matched
by these registers is passed to the post-translate bus with-
out modification. There is a translation priority scheme,
and the TLB sitslower thanany of these in that scheme.

There is also an MBAR register that specifies the register
base address of the ”System Integration Unit”. While no
translation priority is specified for MBAR, the discussion
of the ACR registers indicates that one of these should be
used to make the SIU registers non-cacheable.

The net effect of this is that regions defined by RAMBAR,
ROMBAR, or ACR are ”in front of” the mapping struc-
ture. In the context of our implementation this means that
all such addresses must beabove0xC0000000.

SRAM Considerations The two small SRAM devices
controlled by RAMBAR[0:1] are on a local bus. The
MC5485 manual is explicit that a hit in RAMBAR[0:1]
causes chip select to be asserted to these small SRAMs. It
is not clear whether these devices can also be addressed
via the MMU. There is a diagram of address pipeline
flow in the MMU chapter which suggests that the post-
TLB addresses and the post-RAMBAR addresses both
end up on the XL bus. It is not clear if SRAM chip se-
lect is then done from the XL bus or if it is done from the
RAMBAR address matching logic. I suspect the latter,
in which cases the devices controlled by RAMBAR[0:1],
ROMBAR[0:1], and ACR[0:3] cannot be mapped via the
MMU. This is particularly unfortunate for ACR[0:3], be-
cause it means that device registers cannot be mapped
for application access, and we will need to implement a
”load/store I/O register” sysem call.

7.2 Power-on Conditions

At power-on, the external device attached to FlexBus chip
select zero (CS0) is the only device enabled. It is con-
figured at a base address of zero with an address mask of
zero. It therefore covers the range [0,0xFFFFFFFF]. The
bus width and latency of the corresponding device is de-
termined by pin-strap. For the ASD board, the boot flash
latency is 70ns and the code flash latency is 85ns.

All other device are initially disabled. It is the responsi-
bility of the bootstrap software to establish base addresses
for all other memory devices and appropriately enable
their supporting chip select logic.

The documentation of the reset exception indicates that
initial supervisor PC and SP are loaded from addresses 0
and 4 respectively. The documentation of the exception
vector reserves positions for these. This seems to imply
that the exception vector used by the bootstrap code wants
to be the first thing in the boot flash. After reset, there is
no obvious relationship between the exception vector and
the PC/SP, but the exception vector is required to appear
at a 1M boundary in memory.

7.3 Hardware Constraints on Memory Map

When the TLB is disabled, there is no particularly unusual
complexity inconfiguring this processor.

TLB Interactions When the processor is running with
translation enabled, matters are more complicated. A
TLB miss is handled as an exception. The processor han-
dles exceptions, including TLB exceptions, by pushing
an exception frame to the supervisor stack and proceed-
ing through the exception table (which must be 1Mbyte
aligned). This means that the kernel stack, exception vec-
tor region, miss handler code, and any data structures used
by the soft-load fast path must either be pinned in the TLB
or must be stored in non-mapped memory. It is not clear
from the documentation whether the interrupt vector fetch
is performed as an I-reference or a D-reference. We will
need to experiment.

One approach would be to place the kernel stack in RAM-
BAR0, put the kernel exception vector and the fast path
TLB data structures in RAMBAR1, and then pin an entry
for the TLB miss handler code in the I-TLB. Alternatively,
if the exception vector references are I-references the vec-
tor table can be placed at the front of code space.

The TLB miss processing issue, and its associated po-
tential for double faults suggests that the bootstrap code
should run without the TLB enabled. There is no obvious
reason to enable the TLB for that code, and avoiding the
need for any software miss handler seems worthwhile.

4

7.4 Software Constraints on Memory Map

Because they must not appear within the user portion of
the address space, the MBAR and RAMBAR[0:1] regis-
ters must be configured at addresses above 0xC0000000.
While the system integration unit (base address controlled
by MBAR) is not prioritized relative to the TLB, the man-
ual indicates that one of the ACR registers should be pro-
grammed to preclude caching to those addresses. It is not
clear if that statement in the manual is a legacy statement
predating the introduction of the MMU.

Coyotos kernel memory starts at 0xC000000. It is hypo-
thetically possible to configure the SDRAM base address
at 0xC0000000 and then program the ACR[0] (data) and
ACR[2] (code) to treat the range starting at 0xC0000000
as a pass-through supervisor-only range. Doing so ought
to have the effect of significantly reducing kernel TLB
overhead – especially so if the kernel heap directly fol-
lows kernel data.

Note that doing this does not preclude pointing portions of
the user range into the SDRAM via the TLB. What itdoes
do is allow us to offload any power of two kernel mapping
that can be described by ava=pa+const relationship.
Since weought to be able to cover most of kernel data
and heap this way, this seems likely to significantly reduce
kernel TLB pressures.

8 Boot Flash and Program

Our current board design calls for two flash devices. Pro-
vided the flash can be programmed pagewise, a single
flash device might suffice in future variants. Note that the
boot flash uses SRAM0 and SRAM1 as working storage.
It cannot use the lower parts of SDRAM because it will
be overwriting them.

Responsibilities of the bootstrap program are:

1. Quiesce the hardware, as needed.

2. Configure the SDRAM, code flash, a hole for boot
flash, the CPLD device, and LCD device in sequence
starting at 0xC0000000. Use ACR registers to set up
a large region that spans the SDRAM. Wemayre-set
the boot flash base address early, or it may be more
convenient to let the kernel do it later when we are
no longer running from it.

3. Initialize the CPLD device, notably including the
out-board logic that disables CS0 if the boot image
fails signature check.

4. Configure SRAM0 for working data storage.

5. Perform a cryptographic signature check on the ker-
nel image. Separately perform a cryptographic sig-
nature check on the initial system image. If either
check fails, make note of this for later use.

6. Copy the code flash kernel image to SDRAM. Note
that at this point we can no longer use lower SDRAM
for working storage.

7. Configure SRAM1 for data references. Copy tram-
poline code to SRAM1. Trampoline code may later
alter the CPLD state depending on the preceding
cryptographic check result.

8. Re-configure SRAM1 for instruction references.
Disable interrupts and branch to trampoline.

9. Conditionally disable chip select for boot flash using
CPLD and branch to Coyotos kernel start address.

Issue The boot flash will refuse to boot an unsigned ker-
nel. If the code flash becomes corrupted, should we fall
back to PXE boot for re-install?

Issue When ASD’s signature key becomes stale it will
necessary to do an update dance on the boot flash. There is
an interim state where two signature validation keys must
be present and either is okay. What happens if a customer
does not stay up to date?

Issue The upgrade agent on the code flash should prob-
ably refuse to install any upgrade that the boot flash will
not pass.

Issue We probably need a two-key protocol, where the
second key is usedonly to sign key updates.

9 Code Flash and Kernel

The kernel will begin executing having already been
loaded into SDRAM. At control transfer interrupts will be
disabled. The first few instructions of the kernel will make
any required changes to the device memory address con-
figuration, notably including setting up appropriate map-
pings for kernel use of SRAM0 and SRAM1.

In fact, it is probably a good idea for the kernel to as-
sume that any configuration provided by the boot flash is
completely broken. The main reason for this is that the
environment bequeathed by the boot flash will not match
the environment bequeathed by the prototype board, and it
would be good to have a kernel than can be run for testing
after directly loading it to memory.

5

References

[1] J. S. Shapiro, Eric Northup, M. Scott Doerrie, and
Swaroop Sridhar.Coyotos Microkernel Specification,
2006, available online at www.coyotos.org.

[2] Freescale, Inc.MCF548x Reference Manual, Jan
2006, Document Number MCF5485RM, Revision 3.

6

