
Design Note: Kernel Interrupt and Concurrency Management†

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

March 18, 2006

Abstract

While Coyotos is an atomic system call design, even the
uniprocessor needs to deal with a limited form of con-
currency: interrupts. The cleaner, while not concurrent,
might also alter the state of objects that have been checked
earlier in a given system call path. On SMP machines,
there is explicit concurrency to consider as well. This note
describes how the kernel implementation deals with these
issues.

1 Introduction

There are several sources of concurrency or concurrency-
like issues in the Coyotos kernel. On the uniprocessor
kernel there are interrupts and cleaning to deal with. On
SMP systems, there is true, in-kernel concurrency. This
note describes how we plan to deal with each of them.

For SMP readers: note that this document is only intended
to cover system designs where there is a single multipro-
cessor “node.” On larger scale (NUMA) machines, more
sophisticated techniques are required and it seems likely
that a different kernel design is called for.

2 Interrupt Handling

With the exception of the interval timer interrupt and (on
SMP systems) the interprocessor interrupt, Coyotos does
not handle interrupts directly. Also, the kernel does not
support interrupt nesting. Our working assumptions are:

† Copyright c© 2006, Jonathan S. Shapiro. Verbatim copies of this doc-
ument may be duplicated or distributed in print or electronic form for
non-commercial purposes.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT
ANY WARRANTIES, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

• The longest kernel path is very short (units of mi-
croseconds).

• We can therefore defer doing anything about inter-
rupts until we are just about to exit the kernel, when
kernel state is not “in flight.”

• Since we are going to defer interrupt handling to
the scheduler, the kernel does not need to deal with
nested interrupts.

• It is preferable, and not much unduly expensive, to
prioritize interrupt handlers using the kernel sched-
uler rather than hardware priorities.

• If it were not for the need to deal with the interval
timer interrupt and IPI issues, we could hypotheti-
cally run with interrupts entirely disabled in the ker-
nel.

Ignoring the interval timer and the interprocessor inter-
rupt, the primary action taken by the kernel in response
to an interrupt is to wake up the relevant driver process
by moving it from a per-interrupt stall queue to the ready
queue. A preemption occurs only if the awakened pro-
cess is higher priority than the currently executing pro-
cess. On hardware platforms where a prompt hardware-
level acknowledge is required to avoid interrupt controller
lockup, the interrupt handler takes care of this as well.

To interrupt or not to interrupt (the kernel), that is the
question. Come to that, it probablydid sound better in
the original Klingon.

2.1 The EROS Design

Historically, EROS took interrupts in supervisor mode be-
cause of some legacy hardware issues: certain ISA hard-
ware would get upset if it did not see a prompt interrupt
acknowledge cycle from the CPU. There was no need to
run the actual handler before exiting the kernel. The issue
here was sloppy FPGA designs that would lock up if they
didn’t get an acknowledge cycle fast enough. I’m not sure
if this is still an issue, though it’s a sure bet that the week

1



after I change this behavior somebody will walk up with
an embedded card that has this type of bug.

So the EROS strategy was, in effect, tosimulatea kernel
that ran with interrupts disabled. All interrupt handlers
proceeded by performing the acknowledge protocol at the
interrupt controller level, making a note that the interrupt
had arrived, moving processes on the corresponding stall
queue to the ready queue, and making a note that a pre-
emptionmight be required because the scheduling envi-
ronment had changed. Late on the kernel exit path, the
kernel would check whether a possible preemption needed
to be considered, and would then re-run the scheduler pro-
cess selection logic in order to decide whether to preempt.

The EROS interrupt handler does not re-enable interrupts
prior to return. If it has interrupted the kernel, it simply
returns, relying on the kernel to check on the way out. If
it has interrupted user mode, it re-runs the scheduler on
the way out. The reason it was possible to interrupt the
kernel was that we voluntarily enabled interrupts by hand
early on the system call entry path. The net effect is that
there can be at most one interrupt-related trap frame on
the kernel stack at a time. It could be interrupting either
user mode or kernel mode, but there was only one.

2.2 Problems with the EROS Design

Problems Conceptually, the EROS design worked pretty
well. In hindsight, there were two things wrong with it:

1. The handler should not touch stall queues.

Given that we are going to check for interrupts on
the way out anyway, it is possible to update the stall
queues there. This as the advantage that stall queue
manipulations no longer need to be guarded from in-
terrupt interactions, elminating a possible source of
mistakes. In fact, Charlie Landau recently found a
bug in the EROS stall queue manipulation code that
was caused by exactly this type of interaction.

2. The handler should perform a non-local return.

The EROS handler path explicitly called the resched-
uler code if it had interrupted user code. In hind-
sight this was pointless, because we need to consider
a preemption. The smart thing to do in this case
would have been to do a non-local return into the
re-dispatch logic.

There was a third design issue as well: interrupt disable
should not be used for mutual exclusion. This is a com-
mon error in uniprocessor kernels. I had always intended
to remove it, but never got around to doing so.

2.3 Plan for Coyotos

Plan for Coyotos I’m going to keep the basic EROS de-
sign, but in simplified form. On interrupt, the handler will:

• Perform the hardware-level acknowledge cycle, if
needed.

• Update a bit corresponding to the interrupt number
in a CPU-localpendingIRQs bitmask.

• Call sched resched() (a non-local return) if we
are returning to user mode, else set the CPU-local
needResched variable to true.

Note that theonly points of shared contact between
the interrupt handler and the kernel proper are the
pendingIRQs andneedResched words. So we have
three new requirements on the implementation:

1. It is the responsibility of the kernel to check the
needResched word late in the path before exiting
the kernel and dispatch tosched resched() if it
is set.

2. If needResched is notset at the time of check, in-
terrupts must remain disabled until we are back in
user land so that we do not delay an interrupt requir-
ing a reschedule for a full quanta.

3. It is the responsibility of thesched resched()
path to wake up drivers as appropriate.

Note that because we invokesched resched() in re-
sponse to interrupts, there is no need to do anything spe-
cial concerning the interval timer.

3 Interactions with the Cleaner

The EROS kernel, and presumably the Coyotos kernel
as well, performs demand-driven ageing. The cleaning
logic is invoked in response to not having the resource you
need. It runs around looking for things that it can free up
and either returns to the caller or performs a non-local re-
turn. Note that all calls to the cleaner occur in the prepare
phase, before the commit point on the path.

One thing that we need to avoid is the situation where
the cleaner removes something that has previously been
checked by the current kernel path. To prevent this, the
EROS kernel used something called atransient pin. A
transient pin pins a resource in memory only for the du-
ration of the current system call. That is, it renders the
resource temporarily exempt from ageing.

2



For uniprocessors, the mechanism is simple: on every en-
try to the kernel, a global variableCurTransaction
is be incremented.1 Every object has a field
lastTransAction. To transient pin the object, the
code simply writes the value ofCurTransaction to
the object’slastTransaction field. If these match,
the object is exempt from cleaning. A particular beauty of
this design is that nothing ever needs to be undone. When
the kernel is next entered, theCurTransaction field
will be incremented, which releases all transient pins from
the previous entry.

This design does not work well for multiprocessors. I
have been unable to come up with a comparable design
that avoids the need to undo the transient pins, and the
pins have to be done on a per-CPU basis (or possibly with
a counting semaphore) or races may occur.

One possibility would be to make ageing occur in batches,
and consider it a reason to restart the current system call.
The ageing code is then exactly as concurrent as any other
path, and can be build on whatever locking discipline we
require. If the paths are short enough, this might turn out
to be the right thing to do, because it is a simpler solution
for multiprocessor systems.

I am undecided on all this until I have a better handle on
the multiprocessor locking problem.

4 Issues for Concurrency

Implementing concurrency in a microkernel is surpris-
ingly hard. Well, perhaps only if you want to do it well.
The “grand kernel lock” approach is probably find for two
CPUs.

It is tempting to think that since a microkernel is small
and paths are short, the grand kernel lock approach might
work better than it did in, say, the Linux kernel. That
might be right, but I rather suspect not. We don’t have
any good data from EROS for how much time is going
to be spent in kernel mode on a multiprocessor, but for
KeyKOS on auniprocessorthe number was somewhere
close to 50%. And if that’s right, then a grand kernel lock
just isn’t going to fly beyond two CPUs, and it’s not a
great solution even for just two CPUs.

It’s also worth noting that there is going to be a lot of
read sharing: one real benefit of multiprocessing is being
able to simultaneously run multiple processes that share
an address space on distinct CPUs.

A comprehensive design needs to deal with two classes of
issue:

1 Small detail: to simplify initialization, all transactionvalues are odd
and the increment is performed by two.

• Managing concurrency on the slow path through ap-
propriate locking and mutual exclusion disciplines.

• Preserving safety on the fast path, which (on its face)
doesn’t have access to a lot of the key data structures
that might need to be locked.

4.1 Things We DoNot Need to Guard

It is noteworthy that there are things we donot need to
protect from cross-CPU interactions. The most obvious
one is CPU-local data. There isn’t a whole lot of that:

• Thecurrent pointer is CPU-local.

• TheneedResched andpendingIRQs fields are
CPU-local.

• The transient mapping space is per-CPU and CPU-
local.

• Page directories are per-CPU, butnot CPU-local.

There are also some things that we don’t need go guard
because their coherency isn’t the kernel’s responsibility.
In particular, if a user manages to set up two receive data
areas that overlap, it is perfectly okay for them to get un-
defined results. The issues that we are concerned with
have to do with management of kernel objects (and their
caches) only.

Page Directories A digression about page directories
and the transient mapping region is in order.

In order to simplify CPU-local mappings, page directo-
ries in Coyotos are private to each CPU. There isn’t go-
ing to be any TLB sharing across different CPUs anyway,
and there are advantages in the kernel if we can do per-
CPU mappings for certain kernel data structures.2 In or-
der to support CPU-private mappings (notably the tran-
sient mappings), we decided to go ahead and make ad-
dress spaces per-CPU. This applies solely to the top level
of the translation data structure hierarchy. On IA-32/PSE,
for example, the page directory is CPU-local, but page ta-
bles are not.

However, an action on one CPU may trigger dependency
management logic, and that in turncaninvalidate an entry
in a page directory that is local to a second CPU. The page
directories are “local” in the sense that the mappings they

2 Or at least, this was the conclusion that Eric Northup and I reached
when we discussed this, and it seems to work reasonably well for
xBSD, but as I write this note I am wondering if this remains true
on hyperthreaded machines. How do their TLBs do when the master
address space pointer is switched? Can we reasonably model them for
scheduling purposes as another CPU?

Sigh. Probably not, but this is a bridge we need to burn when we
get there. It doesn’t look to change the locking requirements, at least.

3



describe are per-CPU. They arenot local for purposes of
concurrency management.

Transient Mappings The transient mapping region is
intended to allow a CPU to temporarily map user pages
into the kernel virtual address space. It is the responsi-
bility of the CPU constructing such a mapping to acquire
the appropriate lock(s) beforehand, and to ensure that they
are not referenced after unlocking.3 In consequence, the
transient mapping region is treated as a CPU-local data
structure.

4.2 Reader/Writer Locks and “Upgrades”

Many kernels benefit from locking designs that support
multiple simultaneous readers. In the database world,
these are sometimes called MROW (multiple reader, one
writer) locks. In the linux kernel, this is therwlock t.
There are many places where Coyotos can usefully ex-
ploit this type of lock, but there is a complication: prepar-
ing capabilities. The act of preparing a capability is not a
logical mutation of the containing data structure. Unfor-
tunately, itis a physicalmutation, and we therefore need
to consider concurrency issues a bit carefully. What we
are looking for is a rationale (or at least, a rationalization)
for preparing capabilities within a structure that is only
“grabbed” for reading. If this is important at all, it will be
most important in the PATT structures because of address
space sharing.

What we need here is to relax the definition of a “read”
lock very carefully, and to justify this we need to step back
and look at what a read lock is actually trying to guaran-
tee. A read lock does not mean that we care if writes occur
to the object. The actual requirements we care about are
the following:

1. If a CPU holds a read lock on an object, no “check”
performed on data in that object will be invalidated
while the read lock remains held.

2. If a CPU holds a read lock on an object, no data that
is read from that object will be mutated while the
read lock remains held.

Hazard Bits We can (and must) relax the second rule on
a special case basis for the capability hazard bit. We want
to relax it in this case because (a) we need to be able to
build mappings off of a read-only PATT, (b) we need to
set the hazard bit in that case anyway, and (c) the hazard
bit is an attribute of the capabilityslot, not the capabil-
ity value. The last point is critical: whenever we copy a

3 The careful wording here reflects the fact that the transientmapping
region is batch-unmapped, so transient mappings may be retained for
performance reasons after the mapping itself is logically released.

capability, we zero the hazard bit anyway, which means
that “upgrading” the hazard bit value under a read lock is
okay.

Note, however, that this relaxation isonlysafe on systems
that guarantee data cache coherency. If we don’t get that
guarantee, we need to manage the issue in software!

Prepare Coherency The rule in the Coyotos kernel is:
“always prepare the capability before you do anything
with it.” Once prepared, a capability can only become
deprepared as a consequence of object destruction or pa-
geout. This fact can be exploited, because it leads to the
following pair of observations:

1. Because of the “prepare before use” rule, the fact that
a capability isnot prepared is a sufficient proof that
no currently active path depends on it.

2. A prepared capability cannot be further “upgraded”
once it is prepared.

Taken together, these satisfy the “no mutate after read”
restriction; we simply need to wrap a temporary mutual
exclusion around the prepare operation itself. I am cur-
rently thinking that wemaybe able to do this under a spin
lock if the relevant code is written carefully enough.

Destroy/Pageout Regrettably, the capability prepare
story only hangs together if we can guarantee that the
target object will not be destroyed or paged out while a
prepared capability remains live in an active kernel path.
This means that the act of preparing an object capability
requires taking a (potentially upgradeable)read lock on
the target object. For the majority of objects this is no
real difficulty, but taking locks during process operations
is moderately tricky.

Summary My sense is that we want to use MROW locks
heavily in the Coyotos kernel, primarily driven by the ca-
pability prepare logic. The main irritation here is that we
need toundoall of these locks when performing a non-
local return. At the moment, I see no good way to avoid
keeping a list of taken locks to support this.

One good thing about lock release is that it is all or noth-
ing: either we are abandoning a path and releasing all
locks, or we are finishing a path and releasing all locks.
This largely eliminates concerns about lock release or-
dering for the reader/writer locks. As long as the read-
er/writer locks are re-entrant, we can also stop worrying
about lock grab order forread locks. We still want to
avoid taking multiple write locks on the same object.

4.3 Process Locking

As we will see below, the general rules in the Coyotos
kernel are (a) only one write lock may be held on a given

4



path, and (b) no locks are held past kernel exit. Pro-
cesses need to violate both rules, because we cannot sim-
ply reach over and modify the kernel state of a process that
is presently executing. However, we also need to be able
to promptly obtain a lock on a process that is currently
running on some other processor. This requires some spe-
cial handling.

4.4 Stubborn R/W Locks

In conventional kernels, the consequence of requesting an
R/W lock and not getting it is that you “sleep” — the re-
questing kernel thread of control is paused, retaining any
locks that it currently holds, and resumes when the desired
lock is released.

In an atomic kernel, this approach doesn’t work, because
it will lead to cascaded blocking. We cannot permit a ker-
nel path to sleep within the kernel, so we must release all
of the locks that are currently held. Later, when the lock
we wanted becomes available, we will need to re-acquire
those locks. Unfortunately, the attempts to re-acquire may
fail, and this can lead to cascading rollback.

Ignoring one corner case involving one process manip-
ulating another, the Coyotos implementation doesnot
abandon an existing kernel path when it is unable to ob-
tain a lock. Instead, the requesting CPU spins until the
holding CPU releases the lock.

5 A Broken Locking Discipline

The big goal in Coyotos is to avoid any situation where
we may get into a cyclic dependency. I initially thought
that this could be done. It can’t, but the idea is seductive
enough to be worth documenting. Some ideas are bad
enough to justify putting stakes through their hearts. Here
was the idea:

Coyotos operations are currently divided into two phases:
the prepare phase and the operation phase. These are di-
vided by the commit point. What we do is further sub-
divide the prepare phase into a marshalling phase and an
operation prepare phase. The operation prepare phase is
the last phase before stepping across the commit point
line. During the marshalling phase, only read locks can
be taken, but they may be taken in any order that is
convenient. At the transition into the operation prepare
phase, all locks taken during the marshalling phase must
be dropped, and any subsequent locks must be taken in or-
der of ascending address. Ignoring the process self-lock,
at most one write lock may be taken, and at most two locks
in total may be taken.

5.1 Single Object Operations

Many Coyotos operations involve only a single capabil-
ity. This object is ultimately named by a single capability.
The kernel invocation as a whole can be divided into two
phases:

1. Looking up the capability to the object that we are
going to manipulate (marshalling).

2. Invoking that target capability and doing the actual
operation.

This class conceptually includes most process operations.
While a process has multiple constituents, these con-
stituents are managed for locking purposes as a single
unit.

For single-object operations, the marshalling phase is
used to perform the capability address space traversal to
obtain the capability to the target objects. A local copy
of this target capability is made and the marshalling phase
locks are now dropped. Next, the per-capability operation
handler is entered and the appropriate lock on the target
object is acquired.

5.2 Capability Arguments

A larger list of operations involve multiple capabilities,
but only one object. For example, storing a capability into
a PATT slot requires that we fetch both the PATT capabil-
ity and the capability to be stored, but it does not require
that wedereferencethe capability being stored.

These operations can be treated exactly like single capa-
bility operations. The purpose of the marshalling phase
is to gather all of the argument capabilities (including
the one being invoked). The operation phase then grabs
the necessary lock on the target object (in this case, the
PATT).

5.3 Multi-Object Operations

A small number of Coyotos operations involve two ob-
jects (never more). An obvious example is the “copy ca-
pability page” operation, which overwrites one capabil-
ity page with a copy of the contents of a second. These
cases require that we hold more than one lock during
the operation phase, and they invariably involve mutating
one object. This is the case that motivates dropping the
marshalling phase locks just before entering the operation
phase.

To avoid deadlock, the operation phase locks must be
grabbed in a canonical order. Because acquisition dur-
ing the marshalling phase is dictated by PATT traversal

5



order, there is no convenient way to order the lock ac-
quisition during the marshalling phase, so if we don’t do
something unusual we can get into deadlock conditions by
holding these locks. Coyotos resolves this by combining
three rules:

1. Marshalling phase locks must be read-only.

2. All marshalling phase locks must be dropped before
the operation phase.

3. The operation phase may grab a maximum of two
locks, only one of which may be a write lock. It must
must grab them in address order.

Let’s go through the consequences of these rules:

• Locks grabbed by two different CPUs during their re-
spective operation phases cannot involve cycles, be-
cause they are acquired in order.

• No attempt during the operation phase to grab a read
lock can interfere with any marshalling phase lock-
ing, because multiple readers are permitted.

• Once an operation phase has obtained its write lock,
it is guaranteed to be able to proceed eventually. If
the write lock is the second lock obtained (of two),
then the progress is immediate. If the write lock is
the first lock obtained, then the only remaining possi-
bility of interference is when the second lock (which
must be a read lock) is already locked for writing by
some other CPU. But in that case contention will be
resolved will be guaranteed by the address order con-
straint. There may be a chain of CPUs involved, but
there will besomeCPU grabbing a lock at the max-
imal address (w.r.t. other members of the chain) and
this CPU is guaranteed to make progress.

So if we can deal with the special handling required for
processes, thisshouldwork.

Unfortunately, this trick will not work if more than one
write lock is required, or if more than two locks total are
required, because it can get into iterative conflicts with
marshalling phases that are executing on other processors.

5.4 Operations on Processes

The Coyotos kernel API ensures that no operation can in-
volve more than two processes: the invoker and the pro-
cess named by the invoked process capability. The target
process may be running on a second CPU, and in this case
the invoking CPU must arrange to temporarily halt the tar-
get process. The solution to this is generally to send an

interprocessor interrupt to the CPU of the target process
in order to get the target process temporarily descheduled.

Unfortunately, this can lead to cyclic interactions. Con-
sider the case where two processes A and B are executing
simultaneously on different CPUs and each is attempting
to halt the other. Each holds a lock on itself, and each must
acquire a lock on the other. Some serial ordering on these
operations is required, and one process is going to have to
back up in order for either to make progress. Worse, this
could all occur over an arbitrary sized ring of processes.

My sense is that these cases are very rare. They occur
primarily in debugging situations. Given this, the solution
I am inclined to try is the following:

1. Introduce a new operation,try write lock, that
attemptsto lock the target for writing and returns
success or failure. This operation doesnot block if
the attempt fails. If this operation succeeds, proceed
forward.

This approach should actually handle the most com-
mon cases, because in most situations of cross-
process interaction, the target isn’t running.

2. Otherwise, the target process is actually executing.
Grab a global lock that exists to support this oper-
ation. Check if you yourself are already the target
of a requested stop. If so, release the lock and back
out. Otherwise, see if the target process is already
grabbed. If so, block on a queue associated with
the target. If neither impediment holds, mark a field
in the target indicating that you have requested it to
stop, issue an interprocessor interrupt to the target
CPU. Now request a write lock on the target in the
normal (i.e. blocking) way.

Note that the global lock prevents cycles in this op-
eration.

I’m confident that there is something basic here that I am
missing, but this feels like it ought to work. One issue that
I have not yet thought through is the scenario of multiple
potential writers ganging up on the write lock. We need
to ensure that none of them starve.

Eric Northup offers the interesting thought that all of this
works for the capability registers page as well, because
events are self-delivered. In order to read from its own
capability registers page, a process must grab a read lock
on that page on the way into the kernel.

It seems clear that the process coordination case is going
to be the most difficult one, and that we will need to refine
this.

6



5.5 The Catch: Return Values

Unfortunately, there is a catch in all this: return values.
Kernel operations return register-based data values and (in
some cases) capabilities. Both require that the receiving
process be locked for writing. When the receiving process
is the invoking process, there is no difficulty, but when the
receiving process is a third party we may have a problem.
It would be pleasant if we could work this out, but at the
moment I do not see how.

First, however, note that no kernel operation returns more
than one capability, and no kernel operation returns more
than two data values. If we add a capability slot into the
FCRB structure, we can get away with only needing to
lock the outgoing FCRB. We may be able to somehow
reason past the lock ordering constraints in that case, but
at the moment I do not see how. Perhaps more to the point,
I’m unable to make myself reason through it at the mo-
ment, and as Charlie Landau pointed out, this whole thing
seems likely to be fragile in the face of naı̈ve maintainers.

6 The Coyotos Locking Discipline

On to a mechanism that will actually work. This is the
one that (for the present) I plan to actually use.

There are several good points about the mechanism de-
scribed in Section 5:

• Releasing locks after the marshalling phase signifi-
cantly reduces the total number of locks involved in
any possible contention. This tends to reduce lock
contention overall, and it doesn’t have any marginal
cost worth mentioning, so it seems worth doing.

• At the point where the design grabs operational
locks, we have complete knowledge of all remaining
locks that will be needed for the rest of the operation.
This is also good.

• In between these two phases might be a reasonable
place to “pause” when there is contention, provided
we can guarantee residency of the target objects or
otherwise do something sensible when that residency
fails.

• Collision on operation-phase locks should be ex-
tremely rare.

6.1 A Simple Solution

Given the points above, my initial thought was to keep the
marshalling vs. operation phase distinction, but to view it
as anoptimisticlocking strategy. When this strategy fails,

more drastic action is required. The more drastic action is
to use a global kernel lock.

The global kernel lock effectively controls the overall
locking strategy. On every entry into the kernel, this lock
is initially acquired in shared mode. A shared acquire in-
dicates that the current kernel thread of control is engaged
in optimistic locking, and will restart the system call if
any attempt to lock fails.

Execution now proceeds as described in Section 5, with
the modification that the operation phase can grab an ar-
bitrary number of locks for either read or write.

If any lock attempt fails, it necessarily fails before the
commit point. In this case, the process makes a note that
it is failing to acquire and re-starts the system call from
scratch. This time, it will acquire the global kernel lock
exclusively, and can proceed as if it were running on a
uniprocessor.

Scalability This approach, bluntly, sucks. Even if
the global lock is never acquired exclusively, it must be
touched by every path through the kernel. This means
that it has high concurrency even if it has low contention,
and will eventually become a scalability limitation. There
are some things that we can do about this:

• Break the global lock into per-cluster locks (1 lock
perk CPUs), and require the contentious case to grab
all of these in address order. This reduces normal-
case contention.

• Introduce an intermediate strategy wherein the pro-
cess that failed to lock tries to acquire progressively
greater lockout of other CPUs, but not all at once.
This might help if we can diagnose the cause of con-
tention at the time it is detected.

Overall, I do not like this solution because all of the tricks
I can come up with for making it scale will ultimately fail.

Note that the global lock isn’t needed unless we must
guarantee individual progress. If statistical guaranteesare
sufficient, no global lock is needed.

6.2 Rethinking the Operational Locks

It is not clear that we need to restart the system call from
scratch if the operational phase locks cannot be acquired.
We have, at this point, successfully completed the mar-
shalling unit of operation, and there may not be any reason
to give up that work. Suppose we simply spin (perhaps
with contention resolution) until we successfully grab all
of the operational locks that we require?

It is possible in this case that other operational phases will
proceed first, but this is usually okay. The risk is that one

7



of these other operational phases may have the effect of
destroying or paging out one of the objects that we are
relying on for our own operation.

Note, however, that we can test for this by re-preparing
the marshalled capabilities after acquiring these locks. If
any of the involved capabilities fails to re-prepare because
a page-in is required, we initiate the page-in and restart
the operation. All other re-prepare failures must be the
result of object destruction. If the current process has been
destroyed, we abandon the path. If an argument capability
now points to a destroyed object, we proceed as if it had
been the Null capability in the first place. If the reply
FCRB capability fails to re-prepare, then there is no place
to reply to and the reply is dropped, which which is fine.
If the capability that we are now operating on becomes
Null due to destory, we simply divert to the Null handler
(which always works).

My provisionalbelief is that this logic works correctly. It
doesn’t solve the lock contention problemper se, but it
at least lets us avoid re-executing the marshalling phase.
I’m not sure how expensive the marshalling phase is in
practice, but this seems like a good option to document.

6.3 A Refinement

The following conditions hold for the operational lock
taking phase:

• Operational locks can be dropped and re-acquired

• The total lock set required for operation completion
is known at operation time,

• Operational lock taking does not “hold and wait”,

Given these three conditions, it may make sense to avoid
the global lock and introduce a serialization lock that is
used only for those operations that actually contend. This
would not guarantee progress absolutely, but it would en-
sure progress in practical terms.

Finally, it may be possible to mark theobjectsthat are in-
volved in contention such that the processes attempting to
lock them “voluntarily” divert to the contented operation
path. I need to look into that possibility further.

7 Acknowledgements

Eric Northup consulted on several points in this note.

References

[1] NOT USED J. S. Shapiro, Eric Northup, M.
Scott Doerrie, and Swaroop Sridhar.Coyotos Mi-
crokernel Specification, 2006, available online at
www.coyotos.org.

8


