Design Note: Kernel Interrupt and Concurrency Management

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

March 18, 2006

Abstract e The longest kernel path is very short (units of mi-
croseconds).

While Coyotos is an atomic system call design, even the .))

uniprocessor needs to deal with a limited form of con- ® We can therefore defer doing anything about inter-

currency: interrupts. The cleaner, while not concurrent, "UPts until we are just about to exit the kernel, when

might also alter the state of objects that have been checked Kernel state is not “in flight.”

earlier in a given system call path. On SMP machines,

there is explicit concurrency to consider as well. This note

describes how the kernel implementation deals with these

Since we are going to defer interrupt handling to
the scheduler, the kernel does not need to deal with
nested interrupts.

issues.

e It is preferable, and not much unduly expensive, to
prioritize interrupt handlers using the kernel sched-
uler rather than hardware priorities.

1 Introduction e If it were not for the need to deal with the interval

timer interrupt and IPI issues, we could hypotheti-
cally run with interrupts entirely disabled in the ker-

There are several sources of concurrency or concurrency- |
nel.

like issues in the Coyotos kernel. On the uniprocessor
kernel there are interrupts and cleaning to deal with. On _ _ _ _
SMP systems, there is true, in-kernel concurrency. TH@noring the interval timer and the interprocessor inter-

note describes how we plan to deal with each of them. rupt, the primary action taken by the kernel in response
0 an interrupt is to wake up the relevant driver process

. . . {
for SMP reatdersa note thathth|s ctirc])cument 1S or}ly lnt?tr)d moving it from a per-interrupt stall queue to the ready
O Cover system designs where there IS a single Mullibigse 1o - A preemption occurs only if the awakened pro-

cessor "node.” On larger scale (NUMA) machines, mot ss is higher priority than the currently executing pro-

-) ; . - C
sophisticated techniques are required and it seems lik _
that a different kernel design is called for. Sgyss. On hardware platforms where a prompt hardware

level acknowledge is required to avoid interrupt controlle
lockup, the interrupt handler takes care of this as well.

To interrupt or not to interrupt (the kernel), that is the
guestion. Come to that, it probabtiid sound better in
the original Klingon.

With the exception of the interval timer interrupt and (on

SMP systems) the interprocessor interrupt, Coyotos does .

not handle interrupts directly. Also, the kernel does nét1l The EROS Design

support interrupt nesting. Our working assumptions are: =) . ,
Historically, EROS took interrupts in supervisor mode be-

t Copyright(®) 2006, Jonathan S. Shapiro. Verbatim copies of this do6ause of some legacy hardware issues: certain ISA hard-
ument may be duplicated or distributed in print or electediorm for - ware would get upset if it did not see a prompt interrupt
non-commercial purposes. acknowledge cycle from the CPU. There was no need to

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT run the actual handler before exiting the kernel. The issue

ANY WARRANTIES, INCLUDING ANY WARRANTY OF MER- - :
CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY here was sloppy FPGA designs that would lock up if they

PARTICULAR PURPOSE, OR ANY WARRANTY OTHERwWISE didn’tget an acknowledge cycle fast enough. I'm not sure
ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. if this is still an issue, though it's a sure bet that the week

2 Interrupt Handling

after | change this behavior somebody will walk up wit2.3 Plan for Coyotos
an embedded card that has this type of bug.
Plan for Coyotos I’'m going to keep the basic EROS de-

So the EROS strat , in effect latea k [. :
0 mne strategy was, in effectsiaulatea kerne ign, butin simplified form. Oninterrupt, the handler will:

that ran with interrupts disabled. All interrupt handlers
proceeded by performing the acknowledge protocol at the

interrupt controller level, making a note that the intetrup ® Perform the hardware-level acknowledge cycle, if
had arrived, moving processes on the corresponding stall needed.

queue to t_he ready queus, and making a note t_hat apreg Update a bit corresponding to the interrupt number
emptionmight be required because the scheduling envi- in a CPU-locapendi ngl RQs bitmask

ronment had changed. Late on the kernel exit path, the ‘

kernel would check whether a possible preemptionneedeq callsched.r esched() (a non-local return) if we

to be considered, and would then re-run the scheduler pro- gre returning to user mode, else set the CPU-local
cess selection logic in order to decide whether to preempt. needResched variable to true.

The EROS interrupt handler does not re-enable interrupts

prior to return. If it has interrupted the kernel, it simplNote that theonly points of shared contact between
returns, relying on the kernel to check on the way out. tiie interrupt handler and the kernel proper are the
it has interrupted user mode, it re-runs the scheduler pandi ngl RQs andneedResched words. So we have
the way out. The reason it was possible to interrupt tiiteree new requirements on the implementation:

kernel was that we voluntarily enabled interrupts by hand

early on the system call entry path. The net effectis thag 1 is the responsibility of the kernel to check the
there can be at most one interrupt-related trap frame on aedResched word late in the path before exiting

the kernel stack at a time. It could be interrupting either 6 kernel and dispatch gched.r esched() if it
user mode or kernel mode, but there was only one. is set.

2. If needResched is notset at the time of check, in-
2.2 Problems with the EROS Design terrupts must remain disabled until we are back in
user land so that we do not delay an interrupt requir-
Problems Conceptually, the EROS design worked pretty ing a reschedule for a full quanta.

well. In hindsight, there were two things wrong with it: _ o
3. It is the responsibility of theched_r esched()

path to wake up drivers as appropriate.
1. The handler should not touch stall queues.

Given that we are going to check for interrupts oNote that because we invokehed_r esched() in re-

the way out anyway, it is possible to update the stalponse to interrupts, there is no need to do anything spe-
queues there. This as the advantage that stall queis concerning the interval timer.

manipulations no longer need to be guarded from in-

terrupt interactions, elminating a possible source of

mistakes. In fact, Charlie Landau recently found3 |nteractions with the Cleaner

bug in the EROS stall queue manipulation code that

was caused by exactly this type of interaction. The EROS kernel, and presumably the Coyotos kernel

as well, performs demand-driven ageing. The cleaning
logicis invoked in response to not having the resource you
The EROS handler path explicitly called the reschedeed. It runs around looking for things that it can free up
uler code if it had interrupted user code. In hindand either returns to the caller or performs a non-local re-
sight this was pointless, because we need to consitlen. Note that all calls to the cleaner occur in the prepare
a preemption. The smart thing to do in this cagshase, before the commit point on the path.

wou_ld have be_en to do a non-local return into thﬁne thing that we need to avoid is the situation where
re-dispatch logic. the cleaner removes something that has previously been
checked by the current kernel path. To prevent this, the
There was a third design issue as well: interrupt disaliROS kernel used something calledransient pin. A
should not be used for mutual exclusion. This is a corransient pin pins a resource in memory only for the du-
mon error in uniprocessor kernels. | had always intendeation of the current system call. That is, it renders the
to remove it, but never got around to doing so. resource temporarily exempt from ageing.

2. The handler should perform a non-local return.

For uniprocessors, the mechanism is simple: on every ene Managing concurrency on the slow path through ap-
try to the kernel, a global variabl€ur Tr ansact i on propriate locking and mutual exclusion disciplines.
is be incremented. Every object has a field

| ast TransActi on. To transient pin the object, the
code simply writes the value @@ur Tr ansact i on to
the object’sl ast Tr ansact i on field. If these match,
the object is exempt from cleaning. A particular beauty of

this design is that nothing ever needs to be undone. Whgn Things We DoNot Need to Guard
the kernel is next entered, ti@ir Tr ansact i on field

will be incremented, which releases all transient pins frofjs noteworthy that there are things we dot need to
the previous entry. protect from cross-CPU interactions. The most obvious
This design does not work well for multiprocessors. ane is CPU-local data. There isn’t a whole lot of that:
have been unable to come up with a comparable design

that avoids the need to undo the transient pins, and the Thecurr ent pointeris CPU-local.

pins have to be done on a per-CPU basis (or possibly with , ,
a counting semaphore) or races may occur. e TheneedResched andpendi ngl RQs fields are
CPU-local.

e Preserving safety on the fast path, which (on its face)
doesn’t have access to a lot of the key data structures
that might need to be locked.

One possibility would be to make ageing occur in batches,
and consider it a reason to restart the current system calle The transient mapping space is per-CPU and CPU-
The ageing code is then exactly as concurrent as any other local.

path, and can be build on whatever locking discipline we
require. If the paths are short enough, this might turn out

to be the right thing to do, because it is a simpler solution)
for multiprocessor systems. There are also some things that we don't need go guard

. . . because their coherency isn’t the kernel's responsibility
| am undecided on all this until I have a better handle g harticular, if a user manages to set up two receive data
the multiprocessor locking problem. areas that overlap, it is perfectly okay for them to get un-

defined results. The issues that we are concerned with
have to do with management of kernel objects (and their

4 Issues for Concurrency caches) only.
Page Directories A digression about page directories
Implementing concurrency in a microkernel is surpri@nd the transient mapping region is in order.

ingly hard. Well, perhaps only if you want to do it wellin order to simplify CPU-local mappings, page directo-
The “grand kernel lock” approach is probably find for twejes in Coyotos are private to each CPU. There isn’t go-
CPUs. ing to be any TLB sharing across different CPUs anyway,

It is tempting to think that since a microkernel is smafind there are advantages in the kernel if we can do per-
and paths are short, the grand kernel lock approach mi§tU mappings for certain kernel data structurés. or-
work better than it did in, say, the Linux kernel. Thafler to support CPU-private mappings (notably the tran-
might be right, but | rather suspect not. We don’t hav@ent mappings), we decided to go ahead and make ad-
any good data from EROS for how much time is goin@ress spaces per-CPU. This applies solely to the top level
to be Spent in kernel mode on a mumprocessor’ but f@f‘the translation data structure hierarChy. On |A'32/PSE,
KeyKOS on auniprocessotthe number was somewherdor example, the page directory is CPU-local, but page ta-
close to 50%. And if that's right, then a grand kernel locRles are not.

just isn’t going to fly beyond two CPUs, and it's not &owever, an action on one CPU may trigger dependency
great solution even for just two CPUs. management logic, and that in turaninvalidate an entry

Its also worth noting that there is going to be a lot dft @ page directory thatis local to a second CPU. The page
read sharing: one real benefit of multiprocessing is beiflifectories are “local” in the sense that the mappings they
able to simultaneously run multiple processes that Shar%r at least, this was the conclusion that Eric Northup andcathed

an address space on distinct CPUs. when we discussed this, and it seems to work reasonably woell f
SD, but as | write this note | am wondering if this remainsetr

e Page directories are per-CPU, Imat CPU-local.

A comprehenswe deSIQn needs to deal with two classes n hyperthreaded machines. How do their TLBs do when theanast
ISSU€E: address space pointer is switched? Can we reasonably rhedefor
scheduling purposes as another CPU?
1 Small detail: to simplify initialization, all transactiovalues are odd Sigh. Probably not, but this is a bridge we need to burn when we
and the increment is performed by two. get there. It doesn’t look to change the locking requirerseat least.

describe are per-CPU. They ametlocal for purposes of capability, we zero the hazard bit anyway, which means
concurrency management. that “upgrading” the hazard bit value under a read lock is

Transient Mappings The transient mapping region jsokay.

intended to allow a CPU to temporarily map user pagBte, however, that this relaxationasly safe on systems
into the kernel virtual address space. It is the respongiat guarantee data cache coherency. If we don't get that
bility of the CPU constructing such a mapping to acquiguarantee, we need to manage the issue in software!

the appropriate lock(s) beforehand, and to ensure that ”I’@%pare Coherency The rule in the Coyotos kernel is:
are not referenced after unlockifigin consequence, the“always prepare the capability before you do anything
transient mapping region is treated as a CPU-local dgi@h, it» oOnce prepared, a capability can only become
structure. deprepared as a consequence of object destruction or pa-
geout. This fact can be exploited, because it leads to the

4.2 Reader/Writer Locks and “Upgrades” ~ following pair of observations:

Because of the “prepare before use” rule, the fact that
a capability isnot prepared is a sufficient proof that
no currently active path depends on it.

Many kernels benefit from locking designs that supportl‘
multiple simultaneous readers. In the database world,
these are sometimes called MROW (multiple reader, one
writer) locks. In the linux kernel, this is thew ock_t. 2. A prepared capability cannot be further “upgraded”
There are many places where Coyotos can usefully ex- once it is prepared.

ploit this type of lock, but there is a complication: prepar-

ing capabilities. The act of preparing a capability is notEaken together, these satisfy the “no mutate after read”
logical mutation of the containing data structure. Unforestriction; we simply need to wrap a temporary mutual
tunately, itis a physicalmutation, and we therefore nee@Xxclusion around the prepare operation itself. | am cur-
to consider concurrency issues a bit carefully. What wently thinking that wenaybe able to do this under a spin
are looking for is a rationale (or at least, a rationalizajiolock if the relevant code is written carefully enough.

for preparing capabilities within a structure that is onlpestroy/Pageout Regrettably, the capability prepare
“grabbed” for reading. If this is important at all, it will bestory only hangs together if we can guarantee that the
most impor_tant in the PATT structures because of addr@é&;etobject will not be destroyed or paged out while a
space sharing. prepared capability remains live in an active kernel path.

What we need here is to relax the definition of a “readPhis means that the act of preparing an object capability
lock very carefully, and to justify this we need to step badquires taking a (potentially upgradeabiepd lock on
and look at what a read lock is actually trying to guaraihe target object. For the majority of objects this is no
tee. Aread lock does not mean that we care if writes ocd@l difficulty, but taking locks during process operations
to the object. The actual requirements we care about &&oderately tricky.

the following: Summary My sense is that we want to use MROW locks
heavily in the Coyotos kernel, primarily driven by the ca-

1. If a CPU holds a read lock on an object, no “checlgability prepare logic. The main irritation here is that we
performed on data in that object will be invalidatedeed toundoall of these locks when performing a non-

while the read lock remains held. local return. At the moment, | see no good way to avoid

. keeping a list of taken locks to support this.
2. If a CPU holds a read lock on an object, no data that)) o
is read from that object will be mutated while theOne good thing about lock release is that it is all or noth-

read lock remains held. ing: either we are abandoning a path and releasing all
locks, or we are finishing a path and releasing all locks.

Hazard Bits We can (and must) relax the second rule O-Ehl.s largely eliminates concerns about lock release or-
dering for the reader/writer locks. As long as the read-

a special case basis for the capability hazard bit. We Wan} > .
e{g)wnter locks are re-entrant, we can also stop worrying

to relax it in this case because (a) we need to be able .
(@) out lock grab order foread locks. We still want to

build mappings off of a read-only PATT, (b) we need 80 : . .)
set the hazard bit in that case anyway, and (c) the hazard id taking multiple write locks on the same object.

bit is an attribute of the capabilitglot, not the capabil-
ity value The last point is critical: whenever we copy &,3 Process Locking

3 The careful wording here reflects the fact that the trangieapping . .
region is batch-unmapped, so transient mappings may hieedttor AS We Will see below, the general rules in the Coyotos

performance reasons after the mapping itself is logicallgased. kernel are (a) only one write lock may be held on a given

path, and (b) no locks are held past kernel exit. Prb:1 Single Object Operations

cesses need to violate both rules, because we cannot sim-

ply reach over and modify the kernel state of a process tih4@ny Coyotos operations involve only a single capabil-
is presently executing. However, we also need to be alile This object is ultimately named by a single capability.
to promptly obtain a lock on a process that is currentljhe kernel invocation as a whole can be divided into two
running on some other processor. This requires some splases:

cial handling.
1. Looking up the capability to the object that we are
going to manipulate (marshalling).
4.4 Stubborn R/W Locks 2. Invoking that target capability and doing the actual

operation.
In conventional kernels, the consequence of requesting an
R/W lock and not getting it is that you “sleep” — the reThis class conceptually includes most process operations.
questing kernel thread of control is paused, retaining awghile a process has multiple constituents, these con-
locks that it currently holds, and resumes when the desigiluents are managed for locking purposes as a single
lock is released. unit.

In an atomic kernel, this approach doesn’t work, becauser single-object operations, the marshalling phase is
it will lead to cascaded blocking. We cannot permit a kessed to perform the capability address space traversal to
nel path to sleep within the kernel, so we must release @lfitain the capability to the target objects. A local copy
of the locks that are currently held. Later, when the logK this target capability is made and the marshalling phase
we wanted becomes available, we will need to re-acquigeks are now dropped. Next, the per-capability operation
those locks. Unfortunately, the attempts to re-acquire magndler is entered and the appropriate lock on the target
fail, and this can lead to cascading rollback. object is acquired.

Ignoring one corner case involving one process manip-

ulating another, the Coyotos implementation doeé 52 Capability Arguments

abandon an existing kernel path when it is unable to ob-

tain a lock. Instead, the requesting CPU spins until tkejarger list of operations involve multiple capabilities,
holding CPU releases the lock. but only one object. For example, storing a capability into
a PATT slot requires that we fetch both the PATT capabil-
ity and the capability to be stored, but it does not require
that wedereferencehe capability being stored.

5 A Broken Locking Discipline

These operations can be treated exactly like single capa-

The bi lin Covotos is t id tuati h bility operations. The purpose of the marshalling phase
€ big goa’ In LOoyotos 1S 10 avold any stuation Whete gather all of the argument capabilities (including
we may get into a cyclic dependency. | initially thoug

hlhe one being invoked). The operation phase then grabs

that this could be done. It can t_, but the |de§1 is seducti necessary lock on the target object (in this case, the
enough to be worth documenting. Some ideas are T)

enough to justify putting stakes through their hearts. Here
was the idea:

Coyotos operations are currently divided into two phasex:3 Multi-Object Operations
the prepare phase and the operation phase. These are di-

vided by the commit point. What we do is further sulﬁ small number of Coyotos operations involve two ob-

divide the prepare phase into a marshalling phase and$fS (Never more). An obvious example is the “copy ca-
operation prepare phase. The operation prepare phade?flity page” operation, which overwrites one capabil-

the last phase before stepping across the commit pdiMtPage with a copy of the contents of a second. These
line. During the marshalling phase, only read locks c&#S€S require that we hold more than one lock during
be taken, but they may be taken in any order that the operation pha;e, and they mvarlab_ly involve mutating
convenient. At the transition into the operation prepaf#!® Object. This is the case that motivates dropping the
phase, all locks taken during the marshalling phase mirshalling phase locks just before entering the operation

be dropped, and any subsequent locks must be taken inPb2Se:

der of ascending address. Ignoring the process self-lotk, avoid deadlock, the operation phase locks must be
at most one write lock may be taken, and at most two locgabbed in a canonical order. Because acquisition dur-
in total may be taken. ing the marshalling phase is dictated by PATT traversal

order, there is no convenient way to order the lock aitterprocessor interrupt to the CPU of the target process
quisition during the marshalling phase, so if we don’t dio order to get the target process temporarily descheduled.

something unusual we can getinto deadlock conditions o nately, this can lead to cyclic interactions. Con-
holding these locks. Coyotos resolves this by combiniQgyer the case where two processes A and B are executing
three rules: simultaneously on different CPUs and each is attempting
to halt the other. Each holds a lock on itself, and each must
acquire a lock on the other. Some serial ordering on these
0ogerations is required, and one process is going to have to
back up in order for either to make progress. Worse, this
could all occur over an arbitrary sized ring of processes.

3. The operation phase may grab a maximum of twy sense is that these cases are very rare. They occur
locks, only one of which may be a write lock. It musprimarily in debugging situations. Given this, the solatio
must grab them in address order. I am inclined to try is the following:

1. Marshalling phase locks must be read-only.

2. All marshalling phase locks must be dropped bef
the operation phase.

Let's go through the consequences of these rules:))
1. Introduce a new operationry wri t e_| ock, that

attemptsto lock the target for writing and returns
success or failure. This operation daest block if

the attempt fails. If this operation succeeds, proceed
forward.

e Locks grabbed by two different CPUs during their re-
spective operation phases cannot involve cycles, be-
cause they are acquired in order.

e No attempt during the operation phase to grab a read

lock can interfere with any marshalling phase lock-
ing, because multiple readers are permitted.

Once an operation phase has obtained its write lock,

it is guaranteed to be able to proceed eventually. 122,

the write lock is the second lock obtained (of two),
then the progress is immediate. If the write lock is
the first lock obtained, then the only remaining possi-
bility of interference is when the second lock (which
must be a read lock) is already locked for writing by
some other CPU. But in that case contention will be
resolved will be guaranteed by the address order con-
straint. There may be a chain of CPUs involved, but
there will besomeCPU grabbing a lock at the max-

This approach should actually handle the most com-
mon cases, because in most situations of cross-
process interaction, the target isn’t running.

Otherwise, the target process is actually executing.
Grab a global lock that exists to support this oper-
ation. Check if you yourself are already the target
of a requested stop. If so, release the lock and back
out. Otherwise, see if the target process is already
grabbed. If so, block on a queue associated with
the target. If neither impediment holds, mark a field
in the target indicating that you have requested it to
stop, issue an interprocessor interrupt to the target
CPU. Now request a write lock on the target in the

imal address (w.r.t. other members of the chain) and
this CPU is guaranteed to make progress.

normal (i.e. blocking) way.

Note that the global lock prevents cycles in this op-

So if we can deal with the special handling required for eration.

processes, thishouldwork.

Unfortunately, this trick will not work if more than onel’m confident that there is something basic here that | am

write lock is required, or if more than two locks total argnissing, but this feels like it ought to work. One issue that

required, because it can get into iterative conflicts witthave not yet thought through is the scenario of multiple

marshalling phases that are executing on other processpasential writers ganging up on the write lock. We need
to ensure that none of them starve.

Eric Northup offers the interesting thought that all of this
works for the capability registers page as well, because

The Coyotos kernel API ensures that no operation can fY.€nts are self-delivered. In order to read from its own
volve more than two processes: the invoker and the pftPability registers page, a process must grab a read lock
cess named by the invoked process capability. The targBfhat page on the way into the kernel.

process may be running on a second CPU, and in this ciissems clear that the process coordination case is going
the invoking CPU must arrange to temporarily halt the taie be the most difficult one, and that we will need to refine
get process. The solution to this is generally to send is.

5.4 Operations on Processes

5.5 The Catch: Return Values more drastic action is required. The more drastic action is
_ _ _ to use a global kernel lock.
Unfortunately, there is a catch in all this: return value e global kernel lock effectively controls the overall

Kernel operations return register-basgd data values ar_w] I(:king strategy. On every entry into the kernel, this lock
some case.T) Cl?pdaf'“t'ei: Bo\t/:]/hreql#]re that_the rece'\/'igginitially acquired in shared mode. A shared acquire in-
brocess be locked forwriting. When Ihe reCeving ProCegg. a5 that the current kernel thread of control is engaged

|sth(_a |_nvok|ng process, t_here is no difficulty, but Whe””]ﬁ optimistic locking, and will restart the system call if
receiving process is a third party we may have a proble y attempt to lock fails

It would be pleasant if we could work this out, but at the)))))
moment | do not see how. Execution now proceeds as described in Section 5, with

First h te that no k | i i the modification that the operation phase can grab an ar-
IrSt, NOWEVET, Note that no kerne' operation returns m ﬁrary number of locks for either read or write.

than one capability, and no kernel operation returns more -))
than two data values. If we add a capability slot into tHeany lock attempt fails, it necessarily fails before the

FCRB structure, we can get away with only needing &®mMmit point. In this case, the process makes a note that
lock the outgoing FCRB. We may be able to somehdivis failing to acquire and re-starts the system call from
reason past the lock ordering constraints in that case, Bgfatch. This time, it will acquire the global kernel lock
atthe moment | do not see how. Perhaps more to the poficlusively, and can proceed as if it were running on a
I’'m unable to make myself reason through it at the m&nIProcessor.
ment, and as Charlie Landau pointed out, this whole thi&@alability This approach, bluntly, sucks. Even if
seems likely to be fragile in the face of naive maintainetge global lock is never acquired exclusively, it must be
touched by every path through the kernel. This means
that it has high concurrency even if it has low contention,
6 The Coyotos Locking Discipline and will eventually become a scalability limitation. There
are some things that we can do about this:

On to a mechanism that will actually work. This is the

one that (for the present) | plan to actually use. e Break the global lock into per-cluster locks (1 lock
perk CPUSs), and require the contentious case to grab

all of these in address order. This reduces normal-
case contention.

There are several good points about the mechanism de-
scribed in Section 5:

e Releasing locks after the marshalling phase signifi-e Introduce an intermediate strategy wherein the pro-
cantly reduces the total number of locks involved in cess that failed to lock tries to acquire progressively
any possible contention. This tends to reduce lock greater lockout of other CPUs, but not all at once.
contention overall, and it doesn’t have any marginal ~ This might help if we can diagnose the cause of con-
cost worth mentioning, so it seems worth doing. tention at the time it is detected.

e At the point where the design grabs operationg|
locks, we have complete knowledge of all remainin%

locks that will be needed for the rest of the operatio
This is also good. Note that the global lock isn't needed unless we must

_ uarantee individual progress. If statistical guaranéees
e In between these two phases might be a reasonalgicient no global lock is needed.

place to “pause” when there is contention, provided

we can guarantee residency of the target objects or o _

otherwise do something sensible when that residerfzy2 ~ Rethinking the Operational Locks
fails.

verall, | do not like this solution because all of the tricks
can come up with for making it scale will ultimately fail.

o _ It is not clear that we need to restart the system call from
e Collision on operation-phase locks should be exgraich if the operational phase locks cannot be acquired.

tremely rare. We have, at this point, successfully completed the mar-
shalling unit of operation, and there may not be any reason
6.1 A Simple Solution to give up that work. Suppose we simply spin (perhaps

with contention resolution) until we successfully grab all

Given the points above, my initial thought was to keep tifd the operational locks that we require?

marshalling vs. operation phase distinction, but to viewlitis possible in this case that other operational phasés wil
as anoptimisticlocking strategy. When this strategy failsproceed first, but this is usually okay. The risk is that one

of these other operational phases may have the effecfldf NOT USED J. S. Shapiro, Eric Northup, M.
destroying or paging out one of the objects that we are Scott Doerrie, and Swaroop Sridhaoyotos Mi-
relying on for our own operation. crokernel Specificatign2006, available online at

Note, however, that we can test for this by re-preparing WWW-Coyotos.org.

the marshalled capabilities after acquiring these locks. |
any of the involved capabilities fails to re-prepare beeaus
a page-in is required, we initiate the page-in and restart
the operation. All other re-prepare failures must be the
result of object destruction. If the current process hasibee
destroyed, we abandon the path. If an argument capability
now points to a destroyed object, we proceed as if it had
been the Null capability in the first place. If the reply
FCRB capability fails to re-prepare, then there is no place
to reply to and the reply is dropped, which which is fine.
If the capability that we are now operating on becomes
Null due to destory, we simply divert to the Null handler
(which always works).

My provisionalbelief is that this logic works correctly. It
doesn’t solve the lock contention problgmr se but it

at least lets us avoid re-executing the marshalling phase.
I’'m not sure how expensive the marshalling phase is in
practice, but this seems like a good option to document.

6.3 A Refinement

The following conditions hold for the operational lock
taking phase:

e Operational locks can be dropped and re-acquired

e The total lock set required for operation completion
is known at operation time,

e Operational lock taking does not “hold and wait”,

Given these three conditions, it may make sense to avoid
the global lock and introduce a serialization lock that is
used only for those operations that actually contend. This
would not guarantee progress absolutely, but it would en-
sure progress in practical terms.

Finally, it may be possible to mark tledbjectsthat are in-
volved in contention such that the processes attempting to
lock them “voluntarily” divert to the contented operation
path. | need to look into that possibility further.

7 Acknowledgements

Eric Northup consulted on several points in this note.

References

