
Design Note: Kernel Virtual Map Management†

Jonathan Shapiro, Ph.D. Eric Northup, M.S.
Systems Research Laboratory
Dept. of Computer Science
Johns Hopkins University

December 17, 2005

Abstract

The EROS kernel made many assumptions in its handling
of the kernel virtual map. Several of these were problem-
atic, either because they were incompatible with multipro-
cessor implementations or because they presented prob-
lems for systems with large physical memories (e.g. Pen-
tium with 64G physical memory).

This note describes how the kernel virtual map is han-
dled in Coyotos, and the particular differences related to
large memories and multiprocessing in the single proces-
sor and symmetric multiprocessor kernel. A more radical
approach is called for on large-scale NUMA machines.

1 Overview

Any microkernel must deal with several broad classes of
mappings:

1. Mappings for objects that are permanently mapped
in the kernel virtual address space, but are not sub-
ject to DMA.

This category includes kernel code, data, BSS, and
the kernel heap.

Objects in this category have the property that there
is no direct correspondence between the underlying
physical page addresses and their associated kernel
virtual addresses.

2. Mappings of user data and I/O buffers, which is
sometimes subject to DMA.

These pages are manipulated by the kernel, but this
manipulation is transient in nature. For example, the
kernel may zero such a page during allocation.

These pages have no permanent kernel virtual map-
ping. The content of these frames may be “pinned”

† Copyright c© 2005, Jonathan S. Shapiro.

for DMA independent of whether they are currently
mapped.

3. Mapping frames for user mappings.

Depending on the hardware mapping design, the
available kernel virtual space and the strategy
adopted for mapping frame allocation, mapping
frames may or may not have permanent kernel vir-
tual mappings.

4. Per-page overhead structures.

These are structures that would have permanent ker-
nel mappings in any sane implementation, but for
which permanent mappings may be infeasible in cer-
tain large physical memory configurations.

5. Transient IPC mapping windows.

During a fast-path IPC involving a cross-space string
copy, a temporary mapping must be established for
the target space. This is generally handled as a very
special case.

This note attempts to capture how all of this is handled,
in an attempt (probably vain) to implement all of this just
once. At present, this note considers only the uniprocessor
design.

2 The Kernel Virtual Map

The Coyotos kernel virtual map is organized into several
regions.

Code, Data, and Heap This region starts at the begin-
ning of the code region and continues upwards. The ker-
nel heap appears at the end of this region and grows up-
wards (toward higher virtual addresses). This mapping is
shared across all CPUs.

Because they are required very early in the bootstrap pro-
cess, and need to be present before the arrangement of

1



physical memory can be discovered, the master kernel
page directory and the CPU0 kernel stack are found within
this part of the virtual address space, but are placed there
as a special case.

Top-Level Page Tables Because the Coyotos IPC design
requires the ability to efficiently copy top-level page table
entries, the (non-vestigial) top-level page tables are per-
manently mapped. This mapping region is shared across
all CPUs. Its size is dynamically determined at system
startup.

For this purpose, we consider the IA-32 PDPT in PAE
mode to be vesitigial, and keep the page directories per-
manently mapped. We need to be able to quickly copy
portions of the map during IPC, and the source mapping
tables for these need to be mapped at all times. The entries
in the PDPT have too large a span to be able to effectively
reserve a kernel virtual window for them.

IPC Mapping Window This region is never smaller than
the size of a (possibly misaligned) maximal IPC string.
Since the Coyotos string transfer limit is 64 kilobytes,
this means that the minimum IPC window is ((64K/page-
size)+1). The size of this window is statically known on
a per-architecture basis.

On hierarchically mapped machines, there is always some
non-vestigial upper level page table.1 On such systems,
the size of the transient IPC mapping window is whatever
size is spanned bytwo entries in this structure. The ba-
sic idea is that we are going to construct the temporary
mapping by copying two top-level page table entries from
the top-level receiver page table into the reserved mapping
window of the sender’s top-level page table.

A key requirement of the IPC mapping window is that any
TLB entries derived from it do not survive past the current
kernel unit of operation. If necessary, the IPC code must
arrange for these entries to be explicitly flushed.

Transient Mapping Window The transient mapping
window is a region of virtual page addresses that can be
used by the kernel to construct temporary page mappings.
The size of this region is some multiple of the leafmost
page table size on the hardware. The size of this window
is statically known at compile time on a per-architecture
basis.

3 Multiprocessing Considerations

Two complications arise in simple multiprocessors: han-
dling of IPC windows and handling of transient mappings.

1 For Pentium PAE, the top-most four entry page table is vestigial.

3.1 IPC Windows

Hardware multiprocessing exposes the difference be-
tween simulated and real concurrency. On a uniproces-
sor, handling of IPC strings is straightforward: the kernel
simply constructs a temporary mapping and uses it to per-
form the string copy. Because there is no concurrent mul-
tithreading, the kernel can safely make two assumptions:

1. No other thread in the same sending address space is
concurrently using the IPC mapping window.

2. No other thread in the kernel can possibly invalidate
any mappings while the current IPC is in progress.

In the uniprocessor case, both invariants can be ensured
by invalidating the TLB on the way out of the kernel. On
most hardware this is going to happen anyway when the
address space is switched, and special provisions are only
required for same-space IPC.

Unless special measures are taken, neither of these as-
sumptions holds on a true multiprocessor.

3.1.1 IPC Window Concurrency

In Coyotos, we resolve the two issues in essentially the
same way: we make the uppermost non-vestigial page ta-
bles (i.e. the ones used for IPC mappings) per-CPU. This
decision has several properties:

• It slightly increases pressure on the depend table, but
not to any greater degree than we needed to handle
in any case.

• It slightly increases the number of page faults as-
sociated with migrating a thread to a new CPU for
the first time, because a new directory must be con-
structed. Note that each of these page faults is very
high in the mapping tree hierarchy and rebuilds a
mapping to an existing page table. Each is therefore
amortized well. Further, the per-CPU page directory
is reclaimed by an LRU policy, and will probably
remain valid as long as the thread continues to get
scheduled to the target processor.

• It guarantees that if two threads that share a common
address space are running on different CPUs, they
do not share an IPC mapping window and can per-
form independent IPC operations without contention
or inconsistency.

• It does not increase the total number of top level
mapping tables required, because we potentially
needed one for every running thread in any case
when no address space sharing was happening.

2



• It gives us a place to stand to build other per-CPU
mappings that will prove to be helpful.

3.1.2 Respecting Atomicity During Invalidation

The other issue is avoiding invalidation races. The gen-
eral form of this problem arises when processor A seeks
to invalidate a mapping that is simultaneously in use by
processor B. In general, this will occur only when a PATT
slot has been cached in a mapping table, referenced on
more than one processor, and is subsequently invalidated.
There are really two independent problems here:

1. Lower-level mapping tables may be shared, and we
would like to avoid unnecessary interprocessor ren-
dezvous in this situation.

2. The transient mappings created by the IPC logic
technically violate the dependency tracking invari-
ants, because they are not reflected in the depend ta-
ble.

The first problem can be partially solved by associating a
bitmap with each page table describing which CPUs have
loaded entries from it. The second problem is resolved by
a combination of locking and coordination.

During the IPC fast path, the sending CPU will copy two
top-level entries from the receiving process’s uppermost
page table. Each of these entries names a lower level page
table. In order to ensure notification of invalidation, the
sending CPU must first add itself to the ”I have loaded”
list on thecontaining (i.e. the uppermost) page table.

When an unrelated CPU goes to invalidate entries in this
table, it will notice that the IPC CPU has registered inter-
est. Since this notice of interest exists, it will demand a
rendezvous with the IPC CPU to obtain exclusive access
over the containing page table. This entails an interpro-
cessor interrupt (IPI).

During the fast path IPC action, the processor makes note
that an IPI has been received, but does not respond to the
request for coordination until the string transfer has com-
pleted. This ensures that there will be no race between
string transfer and page table entry invalidation.

3.2 Transient Mappings

Transient mappings occur with high frequency, but rarely
involve contention on the objects mapped. We would like
to ensure that they also avoid contention on the mapping
table entries used to hold them.

The decision to use per-CPU page directories makes this
very straightforward, because it allows us to allocate a

per-CPU page table that is used for transient mappings
on a per-CPU basis. This allows each CPU to perform
transient mapping invalidations locally, and in many cases
allows them to be completely avoided because the TLB is
flushed by IPC operations in any case.

4 Kernel Page Faults

One unfortunate consequence of going to a kernel heap
design is that new page tables may need to be added to
the kernel mapping table as the heap is extended. These
entries may be addedafter top-level user page tables have
been fabricated. As a result, the kernel may page fault
while trying to access these addresses. This issue is why
we have referred to the statically preloaded mapping di-
rectory as themaster mapping directory rather than the
CPU0 mapping directory even though it isused for CPU0.
There are two ways to handle this:

• Invalidate all directories whenever the heap is ex-
tended.

• Recognize and deal with this case specially in the
machine-specific page fault handler.

Coyotos adopts the latter approach. The rule is that the
master mapping directory is always definitive, and the up-
per defined heap virtual address is always stored in a glob-
ally accessable variable. If a page fault occurs within the
nominally defined region, the cause is that the active page
directory is missing a directory entry update within the
kernel region.

5 IA32 Implementation

The IA32 is a 32-bit processor having 4 kilobyte pages.
The lowest-level mapping tables map 4 megabyte chunks
of virtual space in legacy translation mode, or 2 megabyte
chunks in PAE mode. For convenience of implementata-
tion, we allow 4 megabyte regions for the windows even
when the second level page table spans only a 2Mbyte
region. The kernel virtual map on this processor is orga-
nized as follows:

3



Address Description
0xC100000–?? Start of kernel code
next page boundary Master mapping directory (r/w)
next page boundary Transient mapping region (r/w)
next stack boundary CPU0 stack (dynamic)
next page boundary Start of heap (dynamic)
...
(sized at startup) UPCB mapping region (dynamic)
(sized at startup) Top-level page tables (dynamic)
0xFF400000 ... top Transient mapping window (use)
0xFF800000 ... top IPC Mapping Window

The number of process table entries in this implemen-
tation is dynamically selectable. The design allocates
enough top-level page tables to have a full upper-level
structure for each process. In legacy mode this is NPROC,
while in PAE mode it is 4*NPROC.

6 Large Physical Memories

Large physical memories present a significant problem.
Our goal is to keep the Coyotos virtual map as small as
we possibly can. The problem is that we need a per-frame
descriptor structure, and this structure doesn’t have to be
very big to take up a very large part of the kernel virtual
address space.

Consider, as an example, a design in which the per-frame
structure is 64 bytes (26) and 64 gigabytes of physical
memory are populated (224 pages). This design would
need tyo use 230 bytes (1 Gigabyte) simply for book-
keeping structures, which is clearly not a viable design.
Ideally, we would like to keep the entire kernel virtual re-
gion on the IA32 below 0.5 Gigabytes, so we need to do
better than this. The overhead structure can probably be
shrunk to 32 bytes, but it isn’t going to get much smaller
than that. Worse, each of these pages needs to be named
by at least one in-memory capability in order to be useful.

Our conclusion is that this situation isn’t really recover-
able. We either need to significantly expand the portion
of the virtual address space allocated to the kernel, or we
need to arrange to run the kernel in an entirely separate
virtual address space from the application. After some
back and forth, we concluded that the separate space ap-
proach is the right one to use. Alternatively, we could use
the area as an exceedingly large cache, but it isn’t all that
clear what todo with that much cache. The current prac-
tical limit on configured memory without switching to a
separate kernel space appears to be around 16 gigabytes of
physical memory. We have no intention of actually testing
this configuration any time soon.

4


