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Preface

Coyotos is a security microkernel. It is a microkernel in #emse that it is a minimal protected platform on which a
complete operating system can be constructed. It is a $gcnigrokernel in the sense that it is a minimal protected
platform on which higher level security policies can be dansged.

The Original Plan

As originally conceived, Coyotos was intended to be a nedfitiminor departure from its predecessor, EROS [6].
EROS [4] was a small, robust microkernel whose central deisigas were pervasive use of capabilities [11] as the
fundamental access model, an atomic, blocking capahiltydation (therefore atomic and blocking IPC) model , and
a persistent single-level store [5]. All of these featureseninherited with some revision from the KeyKOS system.
[2] Early application-level work on EROS, notably the defiate network system [10] and the secure window system
[8] revealed areas where the EROS architecture would gidmmefit from refinement, but did not initially suggest
fundamental shortcomings in the architecture. Coyotostavdsve been that minor refinement, incorporating a new
IPC primitive called “endpoints” and a revised memory maygpentity called a PATT. Our main goals were cleanup,
consistency, and formalization.

For algorithmic reasons, the PATT idea did not survive il®c¢urrent specification, and has been replaced by guarded
page tables [3, 1]. Though they were independently invemfedrded page tables may be seen as a generalization of
the level skipping techniques of the KeyKOS translation ma@ism or the Motorola MC68851 memory management
unit [20]. The variant of guarded page tables incorporateit fare modified to incorporate the fault handler and
background space mechanisms of KeyKOS and EROS.

In January 2004, a summit meeting of sorts occurred betweesdveral research groups working on L4 derivatives
and Shapiro. The L4 Dresden group, in particular, wantedetoagbetter understanding of capability-based design
and kernel mechanisms, with the intent that these would laptad into the L4 architecture [9]. The new kernel
architecture would come to be known as “L4.sec”. There wanmesdiscussion of merging the two kernels, but
no agreement could be reached on the future of & and unmap operation. While the failure to merge the
architectures was a disappointment, the idea that therddwmai a controlled experiment that would allow us to
directly evaluate thenap/unmap approach against the ER@8de approach was a promising result in its own right.

Overrun by the Hurd

Events intervened in the form of Neal Walfield and Marcus Bmann, the current architects of the GNU Hurd
system. The Hurd is a protected, object-based operatirtgraythat was initially constructed on top of the Mach
microkernel. Mach has a variety of problems that have beerotighly documented in the research literature. Of
particular importance to Hurd are a lack of resource acangnhechanisms and poor performance. As a result of
these issues, the Hurd project had provisionally decideddee to L4.

Unfortunately, modeling copyable, protected object reffiees using L4'snap/grant  operations proved unexpect-
edly challenging. This left the Hurd project temporarilysdipted, leading Brinkmann and Walfield to seek more
information about capability-based design. An extendsduision between Shapiro, Walfield, and Brinkmann at the
2005 Libre Software Meetingbout capability systems in general and the plans for Ceyatsued. As more informa-

Vii
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tion about the L4.sec design emerged [19], it became cleactpyable protected references might be problematic on
the L4.sec interface as well. Walfield and Brinkmann tragdéteBaltimore for a month-long set of design discussions
in January 2006, leading to the current design for Coyotos.

In response to those discussions, we flirted for a while wittroducing scheduler activations and a new IPC model. It
didn’t pan out. Initially, we thought that activations midbe lighter weight than synchronous IPC. They aren'’t, and
they introduce a lot of complexity in the exception handlimgdel. Through editing errors, you may still find traces
of that effort remaining in this document. If so, they areoesr and we would appreciate it if you might bring them to
our attention.

Coyotos Today

The version of Coyotos described here has come full circid,raturns to the basic model of the EROS system. The
primary differences are the introduction of endpoints, stfidass process object, and GPTs. It also reflects the danua
2006 discussions between Walfield, Brinkmann, and Shapgisa result of those discussions, the architecture has
been challenged a bit harder than it had been. Coyotos setagnatomicity and pure capability-based design of the
EROS system.

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC
August, 2007



Chapter 1

Overview

This document describes the abstractions, objects, aadane specifications (capability types) implemented ley th
Coyotos microkernel. At some points it includes discussibthe intended model of usage by way of motivating or
explaining what has been incorporated. Such discussi@nsar-normative.

All kernel-implemented objects are named and manipulayetiéans of capabilities, which grant varying degrees of
authority according to the capability type. Developers eatend the system with new objects by deploying processes
that implement the associated interfaces. Several sudicafpn-implemented objects are part of the core Coyotos
system.

1.1 Microkernel Objects

The Coyotos kernel provides processes, GPTs (mappingtstes, schedules, receive queues, pages, and a small
number of other kernel objects.

Processes Processes are the unit of execution, scheduling, and esbinding. A process names its address space,
its schedule (which governs their execution timing) andrtfaelt handler (which receives notice of exceptions).

Schedules Schedules are an abstraction of computational resouncesder to execute instructions, a process must
name (via a capability) the schedule under which it runs. §dieedule, in turn, must convey authority to use one or
more processors under a defined scheduling contract.

GPTs GPTs are the unit of address mapping composition. An addnegxping is defined as a mapping from
addresses to capability slots, and is represented by aeliréootentially cyclic) graph of GPTs whose leaf capapilit
slots name atomic storage units (pages or capability padeg)tual address is divided intoartual page address
and apage offset Valid virtual page addresses describe paths to leaf dhatiscontain data page or capability page
capabilities.

Endpoints An endpoint is a named rendezvous point between a messadersaml a message receiver. Each

endpoint carries a receiver-interpreted endpoint idetifin addition, each endpoint provides means for ensuhag t
its capabilities can be used exactly once.

Receive Queues Receive queues provide a means for several processes teerémen a single endpoint. The
receive queue acts as a rendezvous point for the receivimgepses. When a message is sent via the endpoint, the
kernel will select a waiting process from the receive quettdeliver the message to that receiver. This permits kernel
demultiplexing of receive processes, which enhances préoce on multiprocessors.

Receive queues remain an experimental idea, and are nagnmepited by the current kernel.

Pages Pages are the atomic unit of data and capability storageaditm. An address space consists of a lattice of
GPTs whose leaves are pages. Pages are typed: a page may eith& data or capabilities, but not both. The size
of a page is determined by the underlying hardware architect

There are a small number of other kernel-implemented céipaebi These primarily provide protected transformation
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operations on capabilities.

1.2 Entry Capabilities and Extensibility

Endpoint objects have “entry capabilities”. An entry caiipbdoes not implement operations on the endpoint. In-
stead, it provides the means by which an application inttedunew services. Any invocation of an entry capability is
delivered to the providing object server.

1.3 Checkpointing and Persistence

Coyotos is a persistent object system. Main memory is tdea$eacacheof a larger backing store. Objects are loaded
from backing store on demand and are rewritten to the badtorg as a consequence of age or checkpoint. Following
a system restart, persistent objects retain their statéthg ¢tast checkpoint. A checkpoint saves a “consistent ofit”
the system. In consequence, processes are recovered ia saghthat ongoing communications on the local machine
may be resumed without recovery effort.

Secure Restart On restart, any connection to the outside worlseseredf continued communication on that connec-
tion might (conservatively) require re-authenticatiomplarticular, network and terminal connections are terteida

Lost Objects One risk in this class of design is that objects may be permn®st as a consequence of low-
level storage failures (e.g. sector errors). When backingesis not already duplexed, the Coyotos object store
implementation uses software duplexing of critical syssmctures. Applications may also use this mechanism if
desired.

The checkpoint management interfaces used in a driverlsekare still being refined, and are not yet included in
this specification.

1.4 Process States and Exceptions

From the kernel perspective, a process has five run stalesked, faulted, receiving, ready, andrunning. A blocked
process is waiting for a kernel resource. A ready processaating to execute instructions and is waiting for a CPU.
A running process is currently executing. A faulted prodes®ot attempting to initiate instructions.

When a process incurs an exception, the Coyotos kernel agizts a message on behalf of the faulted process to
a fault handler. It is the responsibility of the fault handie decide what to do. The kernel does not define a fault
handling policy.

1.5 Messages

From the sender perspective, message transmission isy(re@mic. From the receiver perspective, message transfe
occurs asynchronously. Arrival is signalled by a messageptetion event delivered to the receiver’s activation
handler.

Relaxed Data Atomicity Coyotos permits relaxed data atomicity for stateful messagVhile a stateful receive is
pending, the data bytes of the receive area are considedsfinad and may be modified by the kernel to arbitrary
values. When receipt has completed, the receive area isedefip to the kernel-provided length of the received
message. The relaxed atomicity rule allows the kernel ngessand implementation to avoid a pre-probe pass on the
received data area, which significantly improves perforogaiNote that the "undefined” rule explicitly doestapply

to received capabilities. The complete set of capabil{ffesy) transferred by a message are required to be tranesfer

to receiver-controlled storage atomically. This requiegrnensures that the inductive state transition requirésran

the formal capability protection model are satisfied.
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Blocking Send A blocking send guarantees eventual delivery provided flegation completes and the receiver is not
destroyed before delivery. Page faults at the receivesgyt@ted receive location(s) will be delivered to the reeei
designated fault handlers as required. When fault handiagycompleted, the sender will retry the send operation
from the beginning. Senders may implement watchdog timeouts on send operditjoasanging to post exceptions
to themselves after a timed delay.

Non-blocking Send A non-blocking send will be silently discarded if any comalitarises that would cause a blocking
send to block. It will be truncated if a receiver page faulturs during transmission. If truncation occurs, the reeeiv
is notified of the partial delivery.

1.6 Naming and Invocation

Coyotos objects are named by capabilities. A capabilitykisrael-protected value that names a resource and identifies
some interface (equivalently: facet or object) of that tese. The interface in turn defines methods that the invoker
can invoke by sending a message specifying the correspgmna&thod code point. Thus, every invocation consists
of a message send to a particular method of a particulafateiof a particular resource, performed by invoking a
capability. This is true both for server-implemented ifdees and kernel-implemented interfaces.

The Coyotos invocation mechanism is derived in part fromEROS design. The invocation payload has been en-
riched, but the invocation state model has been simplified.in&ocation consists of a send phase followed by an
optional asynchronous receive phase. The send phase meifydplecking or non-blocking behavior. If a non-
blocking send is unable to make immediate progress, itsagessayload is truncated or dropped. The receive phase,
if present, blocks until an incoming message arrives, ancbgaionally require that the incoming message arrive on a
particular endpoint identifier.

The Coyotos kernel implements only one major system t@lokeCap . A small number of additional system calls
exist to implement pseudo-instructions such as capali@gt and store.

Entry capabilities contain a 32-bit protected payload fi€léhe endpoints that they name contain a 64-bit endpoint
identifier. Both values are delivered to the recipient as pan incoming message. Neither is readable or modifiable
by the capability’s invoker. Servers may use these valuestinguish interfaces, object identities, permissians,
other desired characteristic.

1.7 Exception and Interrupt Handling

For reasons of performance, the Coyotos kernel handlesiathg-related interrupts directly. It does not specify

or implement a policy for other interrupt handling. The kelrmaintains a capability-named interface for interrupt
handler registry. With the exception of low-level schedglipreemption, all policy and processing associated with
interrupts is handled by application-level code.

The Coyotos kernel also pushes responsibility for excepliandling policy to application level. When runtime
application exceptions occur, the kernel delivers theestasociated with the exception to an external fault handler
designated by an endpoint.

1.8 Protection Model

An essential part of the security microkernel concept ig segurity policy — including mandatory security policy
— should be implemented by application code. The code tHatess system-wide policy needs to be protected and
must not be evaded, but it does not necessarily need to rupengsor mode.

In keeping with this philosophy, the Coyotos kernel doesimmiement a security policy. Coyotos provides primitive
protection support in the form of protected capabilitiepphications can invoke services only by invoking capaieiit

1 The need to retry from the beginning is onerous, and the patibn will eventually be refined to allow optimization inis case.
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Capabilities are kernel protected, and can be obtainedynisansfer over capability-authorized channels. It hasbe
shown formally that this restriction is sufficient to supp@wvert) confinement of subsystems [7], and that given
overt confinement, a higher-level security policy can belemgnted either by construction or by an application-level
reference monitor [18].

A useful property of capability systems is that they dirgetkpress the “relies-on” relationships between compaent
If an object or subsyster depends directly on a second object or subsyBtfaor its operation, the\ necessarily
holds a capability t®. In the absence of such a capabil&cannot invokeB at all (or even know if the existence Bj.

A key point here is tha® may rely onB only in a qualified way, and (in some cases) may be able to tassues to
guard against failures or hostility froB. This allows applications to take direct responsibility fioeir dependencies,
and also to impose context-sensitive access restrictiotisair providers.

For this reason, we try to avoid the term “trust” in our desigpreferring instead to use “relies on.”
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Chapter 2

Capabilities

The Coyotos kernel implements a number of object types, ebafhich has a corresponding capability type:

Encoding Type

0 Null

1 Window

2 Background
3 KeyBits

4 Discrim

5 Range

6 Sleep

7 IRQ Control
8 Schedule Control
9 Checkpoint
10 ObStore

11 Pin Control
12 Schedule
13 SysCitl

14 KernLog

15 IOPriv

16 IrgWait
17-31 Reserved
32 Endpoint
33 Page

34 CapPage
35 GPT

36 Process

37 AppNotice
38-62 Reserved
63 Entry

Description Restrictions

Universal, invalid capability.

A local mapping window (Chapter 4). RO,NX,WK
A background mapping window (Chapter 4). RQWNK

Discloses the bit representation of capabilities
Classifies capabilities.
Fabricates object capabilities.
Interface to the kernel interval timer.
Interrupt request line control interface.
Interface to the kernel master schegltdible.
Control capability for the kernel checkpoirgahanism.
Interface between kernel and object store manage
Permission to pin objects in memory.
Permission to execute under a particular shedu
Start, stop system, enter sleep states.
Append text to kernel log.
Authority to read/write 1O ports.
Authority to wait for an arriving interrupt.
Encodings reserved for future use.
Control capability for an endpoint.
Data page. In general, the size of a page is deterimynedRO,NX,WK
the underlying hardware page size. Device pages may be any
power of two larger than this.
Capability page. The size of a capability pagetesdined RO,NX,WK
by the page size of the underlying hardware page size.
Guarded Page Table. Used to compose larger address sga0,NX,WK,OP
from pages.
Capability that manipulates the kernel prodestsaation.
Capability that permits posting of non-bloaki application-
defined software notices.
Encodings reserved for future use.
Authority to send to the process designated by amp&indl

TheRO, NX, WK, andOP restrictions respectively indicate, read-only, non-exable, weak, and opaque permission
restrictions. These are described in detail in the chapteduress spaces.
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2.1 Representation

A capability is 16 bytes, and uses the same representatitoitn32-bit and 64-bit platforms. The capability struc-
ture is a “tagged union” whose details depend on the capabjipe field. The kernel is entitled to use optimized
representations internally. The representation giveowés the representation disclosed by KeyBits, which is the
representation typically used on disk.

Except where otherwise indicated, reserved fields must lefidked. TheP (prepared) bit and thiez (hazard) bit are
kernel internal, and are always zeroedkeybits  when the capability representation is returned.

2.1.1 Capabilities to Memory Objects

Memory capabilities include page, cappage, GPT, local aindapabilities, and background window capabilities. All
of these are used to describe portions of the address spaedoimat of page, cappage, and GPT capabilities is:

AllocCount g | restrs P | type)
guard o4 | 0 1297

Figure 2.1: Memory object capability

The format of a window capability is:

reserved rootSlot restrs P | type
guard(24) I 0 |Zg(7)
Oﬁset(64)

Figure 2.2: Mapping window capability

TherootSlotfield of the window capability is used only for local windowpailities, this field is reserved in back-
ground window capabilities.

Invariant: 12g < 64
Invariant: (I2g == 64) = (guard == 0) !

Invariant: ((Quard << 12g) >> 12g) == guard 2
Invariant: 12g > log2( page size)
Invariant: (offset mod 2 129 ) == 0

These invariants are ensured by the operations that faética respective capabilities. The balance of the system is
entitled to assume that they hold.

When traversing a memory capability, the virtual addresss defined as the bitwise concatenation of three fields
g+u+v, whereg is a variable length, possibly empty bit string that will b&ed as a guard value, is a variable
length, possibly empty bit string that will be used to indetoithe slots of the named GPT (if any), ands the virtual
address that will remain to be translated at the next steanff). The lengthv| is determined by thé&v field of

the named Page, CapPage, or GPT. The capabilitylfgldcontains length of the bit stringi+v|. The value of the
effective guard is a multiple 129 . For page and capability page capabilities, the viflge also specifies the target
page size. This is possible because neither pages nor tigppéges have slots to be indexed.

1 This invariant ensures that no bounds check is requiredrégferforming C shift operations whose size equals the machbrd size. On most
architectures such shift operations truncate the shiftuafydout if the value being shifted is zero any shift (inchglinone at all) will produce
the right answer during address space traversal.

2 This invariant ensures that any bits of the guard value tratldvappear (after the normalizing shift) above the higlvedit bit position in an
address must be zero.
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2.1.2 Message-Related Capabilities

Endpoint capabilities currently do not carry permissiois dbut are otherwise similar in layout to memory capaleiiti
The protected payload field is reserved in the respectivaalorapabilities, and should be zero.

AllocCount, | 00004 | 0 | P | type
ProtectedPayload sy
OIDs4)

Figure 2.3: Endpoint capability
Invocations of an endpoint capability ignore the protegtegtload and provide access to the kernel-implemented

object. Invocations of an Entry capability are deliverectoimplementing process designated by the endpoint. The
protected payload field of the endpoint capability is predds an additional output of the invocation.

2.1.3 Capabilities to Processes

The format of a process capability is:

AllocCount, 000005 | P | type
reserved sy
OIDs4)

Figure 2.4: Process capability

2.1.4 Miscellaneous Capabilities

The format of a miscellaneous capability is:

reservedzq) | 000005 [P|  typeg
reserved gs)

Figure 2.5: Miscellaneous capability

2.2 Valid Capabilities

Wherever this specification refers to a capability of a sjetipe, it should be taken to mearvalid capability of the
stated type. The meaning of an invocation of a valid capgbdidetermined by its implementation provider (kernel
or server).

A non-object capability is any capability whose externgresentation does not include an allocation count. A non-
object capability is always valid. Non-object capabibtere not revocable.

All other capabilities are object capabilities. An objeapability is valid if and only if all of the following conditins
are met:

e There exists some object with a matching object identifidDjQvhose type is compatible with the type of the
capability?
This condition may be violated if backing store is lost orra@ted, or through a bug in the object manager.

3 This specification intentionally does not take a positioniether OIDs are globally unique or only unique with respeaibjects of compatible
representation type. This choice is left to the implemémat However, the specification reserves the OID range (@F0000000000ull,
Oxfffffffffffffffull] to refer to device memory page frames. See Part | and the specification of the Range capabifityigoussion of this.
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e The allocation count in the capability matches the allaratiount in the object.
This condition ceases to be true when an object is revokedt(setos.range.rescind ).

¢ In the case of an endpoint capability whddbit is set, the protected payload field of the endpoint cdjppbi
matches the protected payload field of the endpoint objetttinames.

All other object capabilities are invalid. An invalid capltly behaves in all observable respects as if it were thd Nul
capability. This applies both to invocation of an invalidedility and to operations that act on invalid capabilities
(notably KeyBits, which has implications for debuggingatid capabilities). The kernel is free to overwrite any
capability location with a Null capability when it deterneimthat the capability contained in that location is invalid

2.3 Capability Prepare

Coyotos is an object paging system. Both object load andcbbjdoad are driven by the use of capabilities. Ignoring
latency, this paging behavior is normally invisible to @pations. The exception is that object page-in may reveal
low-level storage failures that make an object unrecoverab

Whenever a capability is used, the kernel internally pen®aprepareoperation on the capability. Conceptually, this
prepare step is being done by the process that is performegurrent system call. The prepare operation may have
several outcomes:

o If the capability is a non-object capability, the prepareigion succeeds (by definition).
¢ If the capability names an object, but@ocCount  does not match thallocCount  of the corresponding
object, the capability is re-written (in place) to the Nudlpability.

The containing object is not marked modified. If other operat cause the containing object to be modified,
the Null capability will be written to disk. Otherwise, swdzpient reloads of the object will re-obtain the stale
capability and this check will be performed again with thensaesult.

Several optimizations and mechanisms are used to ensuth¢hdisk allocation count does not overflow.

e If the object named by the capability is not in memory, stegestaken to load it. The preparing process is
enqueued to wait for the completion of this request, anda#gssits operation when the object has been loaded.
In rare cases, this step may result in@jectContentLost exception if the backing store has experienced
an unrecoverable storage error.

¢ If the object named by the capability is in memory, it is lodKer the duration of the current system call unless
they are unlocked explicitly.

A capability is “used” if:

e The capability is invoked by the current system call.
e The capability designates the invokee of the current sys@in

e Fetching a capability argument or storing a capability temquires memory traversal, in which case all capa-
bilities in the traversed slots are used.

e The operation requested by the current system call accessastates the target object of the capability.

Coyotos implementations are required to be atomic. Thidigaghat all resource acquisitions (and therefore all
capability prepares) must be acquired before any obsexgdhe-effect of a system call occurs.



2.4. EXTENSIBILITY 11

2.4 Extensibility

Coyotos is an extensible object system in the sense of Hyldifa New objects may be introduced by designing a
process that implements the desired object. Capabilibi¢isese objects are implemented as Entry capabilities. The
kernel checks these capabilities for validity, and optltyrfar a protected payload match (see Chapter 5), but does no
otherwise define semantics for these capabilities.

Because the kernel does not know the semantics of thesesexisnentry capabilities are not considered “safe” by
thecoyotos.discrim.classify operation.
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Chapter 3

Processes

A Coyotos process provides an abstraction of the user-meaiiEion engine presented by the underlying micropro-
cessor. From the kernel perspective, a process is the @tiistdispatched by the kernel for execution.

Coyotos does not distinguish between processes and thréapiocess encapsulates a single kernel thread of exe-
cution. Coyotos address spaces are first-class objects.(d@wnore) processes may be constructed that designate
the same address space. This achieves concurrent exeotitiwntiple kernel threads of control within a common
addressing environment and resource pool.

Coyotos implements the system calls described in Chaptdfdst of these should be viewed as software-defined
instructions. The exception is tHevokeCap system call, which performs capability invocation (see (@Ba5).
The majority of the kernel’s function is provided in the fowhkernel-implemented objects (equivalently: services)
that are named by capabilities. These services are invokiégiusual way by invoking their capabilities.

3.1 State of a Process

The state of a process may be divided conceptually into képnigileged or sensitive) state and user (non-privileged
state. User stateis that state which a process may modify directly withoutnietrintervention. This includes
architecture-defined non-privileged register state. dbahcludes additional “pseudo registers” defined by Coyoto
that support the capability invocation mechanism.

Kernel state is that state which records or discloses protection infaimnaor for which the kernel must guarantee
invariants for reasons of security, robustness, or opamaticonsistency. The representation of capabilitiesekam-

ple, is kernel state. The Coyotos process structure catgace to save both the kernel state and the user state of a
process.

On some hardware architectures, the separation betwepallstate and user state is not cleanly accomplished by the
architecture. The most common examples of this involvegiesiilures in the architected processor status word. The
IA-32 EFLAGSTregister, for example, includes state such as the supemigde bit and the current “|O privilege level.”
Such fields present a problem because the balance afthes sregister must be modifiable by untrusted code. When
an unprivileged application runs normal instructions, hlaedware generally protects these bits from modificatiom. O
such architectures, Coyotos must ensure that any regiatadied by get/set registers and similar operations pigper
protect these fields. The architecture-specific annex foin @achitecture identifies any such registers and their i@pda
constraints.

3.1.1 Per-process State

Each process has the following state:

e The process run state. This field indicates whether the psisaunning (0), receiving (1), or faulted (2).

13
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flags(ie) O | runState g
notices sy
faultCode s
faultinfogs
scheduleeap ¢
addrSpace ., 1
brandap ¢
cohorticap 1)
ioSpaceap 1
handler(cy ¢
capReg|0..31]cap 1)
(fixed point registers)sz/eav)
(floating point registers) e+
(soft registers)saea+)

Figure 3.1: Per-Process kernel state

] reserved,g) pcfes|tr [tc [sn]sx km

Figure 3.2: Process flags word

e The process flags word. This word contains the process rtm atal several bits that control fault-related and
debugging-related behavior.

e A software-defined notices bitfielahotices indicating (by bit position) the software-defined noti¢bat are
pending for this process.

e 32 capability “registers” that are implemented in softwhyghe Coyotos kernel.
e Capability slots that support process recognition andtitieation: brand and thecohort.
e Capability slots that identify resources on which the pescgepends: the address space, the schedule, and the

external fault handler.

Coyotos address spaces are “first class”. An address spacexish without having any associated process.
Multiple processes may name the same address space bygotheirsame address space capability in their
respective address space slots. Schedules are similadi/cfass.”

e Slots related to exception handling.

ThefaultCode andfaultinfo are conceptually similar to the underlying hardware preo€s exception regis-
ters. A process-incurred exception causes these registbesupdated with the information necessary for error
diagnosis and possible resolution. The exception faulecgghce unifies both hardware-defined and kernel-
defined exceptions into a single code point space.

Thehandler capability slot contains an entry capability to the extéfaalt handler (if any). This is an external
process that should be notified whenever this process icianslt.

e Storage for the architecture-defined non-privileged ttegiset. Access to these registers is by means of invoca-
tions on the architecture-specific process capability.

The per-process capability state, fault code, and fautirmftion can be accessed and manipulated only through
invocations of the process capability.

The process flags are shown in Figure 3.2. The fields have Hog/fog meanings:
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Field Meaning

Xm Execution Model indicates whether this process uses a 32-bit (0) or 64-bigxgcution model.
This bit is significant mainly on architectures having nplkiexecution models, such amd64. It
controls certain aspects of cross-model invocations.

SX Slice Expired This bit is set by the kernel when the process’s real-tinmeglias expired. The slice
expired event is considered an application-defined inperidse and delivery of thex notification
is discussed in Chapter 7.

sn Soft Notice This bitis set by the kernel whenever a new bit is set in thelpanapplication-defined
notices field.

tc Trap On Call indicates that the process should incur a “trap on syscadtxon when it attempts
to perform a system call. This trap will occafter registers have been saved to the process structure,
but beforearguments have been examined by the kernel. In partichkusystem call number will
not yet have been examined by the kernel.

tr Trap On Return indicates that the process should incur a “trap on systehretalrn exception
when it exits or bypasses the receive state following a ssfakinvocation. This trap occurs just
afterthe parameter words (if any) have been copied out to the@djan. In consequence, it occurs
after any associated exceptions are processed by thearti@ontrol has not been returned to the
receiver.
If this bit is set at process system call returmgracess.FC _SysCallReturn  fault will be set
in the process state just prior to returning. Tgrecess.resume() does not cause the invokee
to resume in the system call exit path, so this exceptionnaitlre-occur on resumption.

Ccs Call Step if set (1), indicates that thee bit should be ignored at the next point where it would
normally take effect.
This bit is set as a side effect of theocess.resume() operation if the currently pending fault
code isprocess.FC _SysCallEntry . Itis cleared whenever the process proceeds successfully
to the commit point of the current system call.

pc Parameter Copyout This bitis set by the kernel whenever a parameter copyount fhe parameter
scratchpad area is required before resuming user-modetxeof the current process.

3.2 Execution Model

The instruction set available to a Coyotos process consiiste user mode (non-privileged) instruction set of the un-
derlying processor architecture, the kernel-implemeitedkeCap instruction (which is the subject of Chapter 5).

From the perspective of the kernel, a process exists in otteedbllowing run states:

blocked Process is attempting to send, but is blocked availabilitg &ernel resource. Process has no current or
pending software interrupts. On release, process willmesin thereadystate.

receiving Process is waiting for an incoming message from an endpaimt,has no current or pending software
interrupts. On receipt, process will resume in thadystate.

ready Processis attempting to execute instructions. Processimagycurrent or pending software interrupts. Pending
exceptions will be delivered when the process transitiorieérunningstate.

running Process is assigned to a CPU and is executing instructions.

faulted Process has incurred an exception that has been reportée texternal fault handler designated by the
process'tiandler capability. Process will not executing instructions.

The state transition diagram is shown in Figure 3.3.

Theblockedstate is not externally observable. A blocked process hastnnally reportedunState  of “running”.
Such a process is deemed to be running without making pregramnsuming CPU cycles. The receiving state it also
not externally observable. A receiving process is exegutie receive phase of a capability invocation very slowly.
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Figure 3.3: Process state transitions

A process that is in theunning state will initiate instructions as long as its procéasltCode field is set to
FC_NoFault (0). Execution behavior when any other value is stored infthdtCode field is discussed in
Section 3.3.

3.3 Exception Handling

An exception occurs as the result of an instruction exechyethe process. Every exception has an associated fault
code. Specific exceptions may define an additional pointelev@ be delivered as additional fault information. The
fault code and fault information are delivered to the predeg storing them in théaultCode  andfaultinfo

fields of the Process and causing the process to resume execut

3.3.1 Exception Delivery

When a process attempts to initiate instructions wittaatCode  other thanFC_NoFault , the behavior is as
follows:

1. If an Entry capability is stored in the process&ndler slot, the kernel synthesizes a message to this endpoint
on behalf of the faulting process. The message will provigdgfaultCode  andfaultinfo values and a
process capability to the faulted process. Dispositiomeffaulted process is now at the discretion of the fault
handler.

If the handler process is blocked, handler message deliwéhbe re-attempted when the external handler
process becomes unblocked.

2. The process enters tfaultedstate (runState = stopped) and ceases to execute instrsictio

In the absence of a specified external handler, a processitegy to deliver a fault notification to its external handle
will effectively cease to execute instructions withoutinetto anyone. It is the responsibility of the programmer to
ensure that an external handler capability is defined ifoagithis condition is required.

Note that the state of the per-proclssidler slotis checked on each delivery attempt. If a process blattkepting

to deliver its fault information to an external fault hangland thehandler slot is modified before the external
handler becomes unblocked, the fault may end up being detite a different handler or to no handler at all depending
on the new value of thkandler slot.
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3.3.2 Return From Out-of-Process Handler

If an exception has been delivered to a handler, the handlet take action to clear the fault. It does this by invoking
the process capability provided by the kernel upcall tordlea fault and return the process to the running state.

3.4 Application-Defined Notifications

Coyotos supports application-defined non-blocking natifans via theAppNotice capability type. A notification is
posted by invoking théppNotice capability with 32-bit mask indicating the notificationa (he range 0..31) to be
posted. The set of authorized natifications is determind¢keatime theAppNotice capability is fabricated. The ef-
fect of posting a set of application-defined notices is talsetorresponding bits of the target procesi&Notices

word, and to set then bit of the target process flags if the valuermitices has changed as a consequence of this
posting (i.e. if the notice was not already pending). Of tteo notices posted, only the authorized subset is delivere

If any notices are pending when the recipient enters an opéntivey will be delivered as a message, with a specified
endpoint ID of Oull  and a protected payload value of zero. Delivery of pendintras has higher priority than
other incoming messages.

Delivery of application-defined notices is suppressedrdyai closed wait.
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Chapter 4

Address Spaces

The Coyotos architecture defines 64-bit address space®for32-bit and 64-bit machines. On 32-bit machines, the
leading 32 byte positions are addressable by hardware load and stetreidtions. That is, the hardware-accessible
map is awindowonto the leading subrange of the software-defined space.

On some architectures, a portion of the hardware-addriessphce may be reserved for use by the kernel. On such
machines, the hardware-accessible address space isidwsrihe kernel-defined region.

4.1 Memory Objects and Address Interpretation

Three objects are used to define Coyotos address spaces, pappages, and GPTs. Capabilities to these objects
may be invoked in the usual way. The interface definitiongliese objects are provided in Part Il.

The meaning of a data (capability) address reference isrdeted by starting at the data (capability) address space
capability of the referencing process and traversing mgrobjects until the address has been successfully tradslate
or an exception has occurred. The traversal process isssitoithe traversal of hardware-based hierarchical tréinsla
tables, but there are several differences:

e The Coyotos mapping structures provide support for peierefault handlers. Any region of sizekpages
may have an associated fault handler. When a memory faultpisrted to the in-process fault handler, the
in-process handler may optionally forward memory fault saggs to the per-region handler in order to request
region-specific fault handling.

e The “levels” of the mapping hierarchy are dynamically detgred. Smaller subspaces may appear where a
larger space is expected, with the effect that the “missiegjions are considered invalid addresses. Larger
subspaces may appear where a smaller space would natypalda with the effect that only the leading
subrange of the larger subspace is addressable throughalpising.

e A mechanism is provided for mapping “windows” onto other gel$ spaces by reference. This enables one
address space to map (portions of) another even when thadspace is opaque.

e In order to support certain essential types of addressinxgpfldy — notably windows — it is necessary to
allow some unusual arrangements of the hierarchical strest An unfortunate consequence of this is that
it is possible for a hostile or erroneous program to creaadicgtlly cyclic address spaces. Such spaces are
malformed, and attempts to reference a cyclically defined addressgenaVialformedSpace exception.

4.1.1 Permissions

All memory object capabilities carry a field, "restr”, whisipecifies restrictions on which types of access may legally
be performed through that capability. The RO, NX, and WK hitsy be set on any memory capability type. The OP
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and NC bits are meaningful only for GPT objects. The CD and W3 dre meaningful only for device pages.

RO Read Only (Ox1) Attempts to perform write references along any addressstasion path that traverses this
capability are prohibited.

NX No Execute (0x2) Instruction fetch references along any address transigtéth that traverses this capability
are prohibited. Attempts to perform instruction fetcheswath addresses generateNwExecute exception.

Issue

| have not yet examined the exception handling policy for hiraes that implemertiX to confirm
that a differentiated access violation type is generatdldeahardware level.

On hardware that does not support tt& restriction, theNX bit is ignored.

WK Weak (0x4) A capability read reference along an address translatitntpat traverses a capability with this bit
set conservatively downgrades the returned capabilitgdtiired, in a way that ensur&sinsitivelyread-only
authority.

Capability and data stores that traverse a weak capahilithe translation path generate an access violation
exception.

OP Opaque (0x8) The address space structure may not be accessed or modifiedthany GPT capability with
the Opaque bit set. This bit is meaningful only for GPT calitéds.

NC No-Call (0x10) The address space structure may not be accessed or modibedltrany GPT capability with
the Opaque bit set. This bit is meaningful only for GPT calitéds.

CD Cache Disable (0x8) Indicates that the content of this page must not be cacheatisRend writes must be issued
to the main memory bus precisely in the order and referermeesgiecified. This bit is meaningful only for page
capabilities that name device pages.

WT Write Through (0x10) Indicates that writes to this page must be passed immeylitel precisely to the main
memory bus. This bit is meaningful only for page capab#itieat name device pages.

The result of translation of the fortnanslate(space,addr,access-type) is either an exception or a valid
translation of the fornfpage,offset) . If an exception is generated, the type of the exception haatiginally
referenced address are reported to a handler (if one is dgfitihes faulting instruction (if any) has no effect), and the
program counter is not advanced. The defined reference arges

Fetch Instruction load from address space.
Load Data Read data from address space.
Load Capability Read capability from address space.
Store Data Write data to address space.

Store Capability Write capability to address space.

4.1.2 References and Access Violations

The rules for address translation are given below in theudisions of individual memory objects. As traversal of
the memory objects proceeds, thifective restrictiongssociated with the address are computed by beginning with
no initial restrictions and performing a cumulating lodica with the restriction bits in each traversed capability as
translation progresses.

If a capability is traversed during translation that canlegally appear within an address spac®jaformedpace
exception is generated according to the reference type.

If the traversed path is well-formed, but the address cahaatompletely translated, danvalidAddress excep-
tion is generated according to the reference type. Untagaisle fetch references generate tinealidAddress
exception.
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If an address is completely translatable, the resultingymsion restrictions may not permit the reference typehis t
case an exception will be generated according to the fofigwules:

Ref Type Permissions Result
Fetch NX ExceptionNoExecute
Capability Store, Data Store R@ WK Exception:AccessViolation

If the permissions are sufficient to allow the operation, alfaheck is made to ensure that the type of the load or store
operation (data or capability) matches the type of the pagjgped at that address (Page, CapPage). If a type mismatch
occurs, éDataAccessTypeError  or CapAccessTypeError  exception is raised.

A capability load that traverses a path havinKrestrictions will succeed, but will return a downgradedufesis
follows:

Capability At Address Result

Page, CapPage, GPT, Window, Endpoint  Copy with RO, WK btts se
Discrim Return value is unchanged.
other Null capability is returned.

4.2 Pages and Capability Pages

The smallest mappable unit, and therefore the smalleseaddpace, is the page or the cappage. A page is the atomic
unit of data storage whose size is implementation-definethpfability page is a page-sized unit that holds capatlsilitie
rather than data. Capabilities are byte-addressed op&ibgté quantities that are aligned at 16 byte boundaries.

With the exception of device pages, Coyotos implementsg@lesipage size whose size matches some hardware page
size implemented by the underlying hardware. This sizeégified by the architecture-specific annex. On processors
that implement multiple page sizes, the selected page siee not be the smallest size supported by the underlying
hardware. It is implementation-dependent whether theédemill attempt to exploit larger hardware page mapping
sizes if available. If such exploitation is attempted, iatcomplished by re-synthesizing larger pages by physical
arrangement of standard-sized pages. The atomic unit opimg@and permissions remains the Coyotos page size.
Pages always appear in both the physical and virtual memapsrat naturally aligned addresses.

A device page may be any siz& that is greater than or equal to the basic page size. If treejaager than the basic
page size, they appear in both the physical and virtual mgmaps aligned at ak?address. Device pages may be
marked non-cacheable or write-through.

A page capability may be inserted into the address spacefsgbrocess, with the effect of defining an address space
having valid offsets betweemylardguard+pgsizel]. Attempts to reference offsets outside this range tasuhn
invalid address exception.

Capability pages are byte-addressable units. Howeveahilies must be stored and referenced at naturally atigne
(16 byte) boundaries.

Address translation of an addresddr with respect to a page or cappage capability is defined asafsil

1. If the value ofaddr exceeds the page size, lvalidAddress exception is generated.

2. Otherwise: theddris a valid offset, and the overall address reference is valid

4.3 Address Space Composition

Address spaces are composed by means of the GPT object. AGsmply a fixed-length vector of capabilities
(currently 16), each of which is paired withgaiard. In Coyotos, the guard has been incorporated into the chiyabi
format itself. The state of a GPT is shown below.
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Cap[ls](capft)

cap[O] (cap_t)
reserved g ]bg Ihal 12vg)

Figure 4.1: GPT State

Invariant: 12v > log2( page size)

The meanings of the GPT fields are:

I2v Subspace size Each slot of the GPT names a subspace of 2i2¢ bytes.

ha fault handler Slot 15 of the GPT contains an Entry capability to the fautidiar.

Care should be taken to set tt& value appropriately when thiea bit is set. If the translation algorithm
traverses an Entry capability in the normal course of tratitsh, a malformed space exception will be generated.

bg background space Slot 14 of the GPT contains a memory capability to a backgimpace (see window capa-
bilities).
Care should be taken to set tt&v value appropriately when thieg bit is set. If the translation algorithm
traverses a background capability during the normal coofrs@nslation, the translation result will appear as if
a larger space was entered.

cap[0..15] Capabilities to subspaces.

When theha or bg bits are set, it is the responsibility of the process marqtie GPT to ensure that thi2v value
prevents collision.

4.3.1 Translation Algorithm

Note: Inthe discussion that follows, it may be useful to refer t ¢apability representation for window and memory
object capabilities (see Chapter 2), with particular refee to thé2v andl2g fields.

Address translation is performed by translating an unsigneual addressa with respect to some memaory capabil-
ity C (a GPT, page, capability page, or window capability). Tlatien begins at the address space capability of the
process structure with a 64-bit virtual address. In the rediwase, the progress of translation causes bits to be “con-
sumed” from the left, leading to virtual addresses of pregieely smaller magnitudes. Window capabilities, however
may cause the remaining virtual address to grow as traoslatioceeds.

The virtual addressa that is currently being translated is conceptually divid®d three fieldsy, u, andv. Theg
field (which may be zero width) contains tigeiard value. Theu field contains the index value that will be used to
index into the next GPT. The field contains either the address bits that will remain toreadlated when the current
step has completed (GPT or window capability) or the pageeofiits (page or capability page capability).

’ 9(lg| = 64-129) | U(ju) = max(i2g-12v,0)) | V(| = 12v >= log2(pgsz)) \

Figure 4.2: Virtual address structure

In reading the following section, recall the invariants césed in Section 2.1.1. These are checked at capability
fabrication time, and are assumed to hold by the followirggpathm statements.

The values ofj, u, andv are computed from the capabili§and the address as follows:

g = va >> C.2g;
guard = C.guard << C.l2g;
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u
\%

(va - guard) >> C.I2v;
va & (lu << C.2v) - 1)

At the start of translation, the background space capgb@ackground and the memory handler capability

Chandler
IPC logic) and the effective access restrictigkR is the empty set. Translation proceeds by iteration, witthea

iteration performing the following steps in sequence:

are initialized to the Null capability, the virtual addrassas provided by the hardware (or possibly the

1. Theg value is compared to the zero-extended guard value stortteinapability. If they do not match, the
address is invalid and dnvalidAddress exception is generated.

2. Iftheu value exceeds the number of slots in the GPT, the addressiédmand arinvalidAddress excep-
tion is generated.

3. The effective access restrictions are updated from tpelulty C by:

AR:=AR+C.restr

If the resulting effective access restrictions are insigfic for the requested access type, an
AccessViolation exception is generated.

4. Processing now proceeds according to the capability. type

If the capability typeC.type is Page or CapPage, translation has completed successfully.

If a local or background window capability appears in theradd space slot of a process, all addresses are
deemed invalid.

If the capability is a local window capability appearing it some GPT, translation proceeds from the
capability contained in theootSlotslot of the GPT containing the local window capability at tféset
named by the capability.

va = v + C.offset
C := containingGPT[C.rootSlot]

Note that the invariants of Section 2.1.1 guarantee thatetli® no bitwise overlap betweewn and
C.offset . Thatis: the addition can be correctly implemented as aibévior” operation.

If the capability is a background window capability, traat&n proceeds from the capability to the back-
ground space with

va := v + C.offset

C = Cpackground
Note that the invariants of Section 2.1.1 guarantee thatetli® no bitwise overlap between and
C.offset . Thatis: the addition can be correctly implemented as aibévior” operation.

Recall thaCpackground is initialized to Null at the start of translation. If no otieackground capability
has been defined at the point where the background windovbidiy# encountered, all addresses that
fall within the background window are invalid.

If the capability type iSGPT, translation proceeds with
gpt := target-of(C);

if (gpt- >bg)

Coackground = 9gpt- >cap[14];
if (gpt- >ha)

Chandler = gpt- >cap[15];
va = v

C := gpt- >cap[ u]
If the capability is @Null capability, aninvalidAddress exception is generated.
Otherwise, aMalformedSpace exception is generated.
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4.3.2 Exception Handling

If an exception is generated by the translation mechaniathitze memory exception handler capabilliyandier 1S

not Null , then the exception will be delivered to the memory excepliandler. Otherwise, the exception type and
address are stored in the procedagltCode andfaultinfo slots, respectively, and the process is set running
with the pending fault code, and the exception is then dedivas described in Section 3.3.1.

4.3.3 Cycle Detection

It is possible for an erroneous or hostile program to arra@&8 objects in such a way as to create a static cycle.
Such an address spacenmlformed and attempts to traverse such a cycle during address d@taskesult in an
MalformedSpace exception.

No final selection has been made for a method of cycle detecTioree rules have been proposed:

1. A bound on the total number of GPT structures that will bsited before generating MalformedSpace
exception.

This method has been rejected. It has the unfortunate gyofiet existing, valid addressing structures can
be rendered invalid by “splitting” an existing GPT. We waaotgreserve the ability to split without semantic
alteration in order to be able to map subspaces.

2. A bound on the total number of capabilitigmat do not translate new bithat will be visited before generating
aMalformedSpace exception.

This method keeps track 0§ |east |, the shortest virtual address that has been obtained bsiatan to the
current point. IfC.12v >|v|east |, then the current capability does not translate new bits.

This method has been rejected. It has the unfortunate pyofiert existing, valid addressing structures can
be rendered invalid by “splitting” an existing GPT. We waaotgreserve the ability to split without semantic
alteration in order to be able to map subspaces.

3. A bound on the total number bfts visited for translation, defined as the cumulative surG|of |- |v]) for all
capabilities visited during a translation attempt.

This approach preserves the possibility of a correctnessepving split operation.

All methods of cycle detection introduce a complicationifoplementers: the validity of addresses within a subspace
is contextually dependent on the number of bound-coun&l®ats in the prefix path leading to that subtree. This
means that two process address spaces may both have sompacaiveapped at otherwise valid subspaces addresses,
and selected subranges of the mapped subspace may nosethelalid in one space but not in the other.

Because of this problem, care must be taken when implentgeptige table sharing to ensure that page tables are
shared only when all possible references through that hemeltable are equally valid in all referencing contexts. If
this is not done, one process would be able to produce valfgbings in the hardware mapping table that would be
usable by the second, even though the second lacks the abiitoduce those hardware mappings for itself.

4.4 Address Space Splitting

Experimental

The feature described in this section is experimental.fbipresently implemented, and may be removed
in future versions of Coyotos.

In order to support the subspace transfer item describdtkiodpability invocation chapter, Coyotos introduces a new
type of exception that may occur in an address spaceSpiig-ault
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Split faults allow an invoker to send a single capability toabitrary X page region of an address space, provided
that the region is naturally aligned and the invoker has aeffit access rights to extract the dominating capability.
Similarly, they permit a receiver to generate appropridelés” into which such a capability must be received.

The problem solved by split faults is that there may not be matprally dominating GPT for the subspace. For
example, in a system having 4 kilobytel@byte) pages, the invoker may wish to transmitld page (23 byte)
subspace, but the subspace may currently be dominated byf @&fhgl2v=21 . Thatis: there is no single slot in
the GPT that directly holds a capability of the desired sga@fore a single dominating capability can be sent, this
GPT must be “split” into an arrangement where the targetrselitas a single dominating GPT wilv=23 . When
such a send is attempted, the invoker will receivgpditFault exception. This is an advisory that the GPT must
be split in order to bring a dominating GPT into existence.

Similarly, if a receiver specifies a “hole” of some si2BISZ pages, there must exist some GPT in the receiver tree
that could receive (with an appropriate guard value) a ciipaitominating a tree of the requested size.

The reason this feature is considered experimental is lileatdrrect strategy for splitting GPTs is not obvious.

The address space splitting idea is not yet fully developlére are certainly holes, including necessary but undgfine
exception types, that need to be resolved in the definitiaveb
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Chapter 5

Capabillity Invocation (including IPC)

Coyotos is an object-based system. A process wishing t@pedn operation (equivalently: invoke a service) does
so by invoking some capability that it holds. The capabhifg a defined interface that specifies some set of invokable
methods, including their argument and return types. Theiges of these methods may be either the kernel or an
application; the invocation mechanism is the same in eithse. That is: Coyotos is an extensible object system [16].
The primary system call in Coyotos is the “invoke capabilgystem call (Section 6.5). Other system calls defined by
the Coyotos specification may all be viewed as convenienappars for capability method invocations.

Because kernel-provided and application-provided ses/ghare a common invocation mechanism, it is necessary
to specify both the low-level binding of capability intecs and the externally observable semantics of capability
invocation. While the specific binding is architecture-eirgent, this chapter includes recommendations on bindings
that suffice for most platforms.

The invoke capability system call implements a variant efSendAndWaiprimitive proposed by Liedtke [12] or the
CALL andRETURN primitives of EROS [4]. The send phase of the invocation carblocking or non-blocking. If

a non-blocking send is performed, some or all of the messanelra truncated. The receive phase may wait for an
arbitrary endpoint (an “open wait”) or a specific endpoint¢sed wait”). The receive phase is optional.

5.1 Invocation Payload

An invocation passes a message that consists of:

e Up to 8 direct words, the first of which is the invocation cahtvord. The size of these words is architecture
dependent. These words may be carried in registers or mem®gpecified by the architecture-specific annex
for the target platform. The index of the last word transedtis given byIPRO.ldw .

Input parameter word 0 of the invoke capability operationtams control information describing the rest of the
message payload:

] reserved ;o) lex|colac]sc]rc [sp]rpewlnblas]sg] Ircy) [Isci | ldwg | nr=0y |

Figure 5.1: Invocation control word (input)

Provided the invokee is valid and well-formed, a messagssisting solely of untyped parameter words is
guaranteed to proceed without exceptions on all architestu

e Up to four capabilities. Capabilities are transmittedHR0.SC=1 . If so, IPRO.Isc  gives the index of the

last capability transmitted. Capabilities are receiveldlPR0O.AC=1 . If so, IPRO.Irc  gives the index of the
last capability that will be accepted.
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e Anindirect string of up to 64 kilobytes. The length of this string is given in agraeter word to the system
call.

In addition to the payload of the invocation, the invokerdfies:

e The capability to be invoked.

e Whether they are willing to block in order for the messageealblivered (PRO.NB ).
e Whether to fabricate a reply capabilitf?(R0.RC).

e Whether the receive phase should be perfornieRQ.RP ).

e Whether copy-out of soft registers should be performed arséharchitectures that define soft registers.
(IPR0O.CO).

e Whether the receive phase should accept messages only froparicular endpoint IPRO.CW,
upcb.rcveplD ).

If a receive phase is executed, the receiver receives tlmviolg information in addition to the invocation payload:

e The endpoint identifier of the Endpoint on which the invocativas received.
e The “protected payload” of the capability that was invoked.
e The length of the string that was sent, it any.

e A modified copy of the invocation control word, which indieatvarious information about the incoming mes-
sage. In this returned word, thie RG andSC fields are copied from the senderiputinvocation control word.
Thelsc field indicates the number of capabilities that have beeeived. Thddw field indicates the number
of data words that have been received.

The protected payload and the endpoint ID can be used toietethe receiver-defined context in which the received
message should be interpreted. One common use of theseifiétadthe endpoint ID to identify the object invoked
and the protected payload to identify the permissions onabgect.

5.2 Invocation-Related Exceptions

Exceptions may occur during invocation on either the sendére receiver side of the transmission. All such excep-
tions logically occubeforethe invocation. In practice, exceptions are generated assecjuence of payload transfer.

If an exception occurs, the implementation is free to resthedransfer at the point of interruption if it is able to do
so. However, the receiver of an interrupted transmissigichlly reverts to the beginning of its receive phase when an
exception occurs. In the event that a second sender is dtteip send when a messaging exception is incurred, the
second sender’'s message may prevail.

If the sender specifies non-blocking transmission, thesfearof indirect strings and capabilities is “best effortf”
the receiver incurs a page fault during the receipt of anr@udistring or a capability argument, that argument will be
truncated. In this case the receiver will be notified of tratien, but no receiver-side exception will be generated.

The meaning of a non-blocking send is that the sender is ling/ilo be blocked for any cause whose handling is
controlled by the receiver. The use-case for this optiorsisraer returning a reply to an untrusted client. For purpose
of understanding truncation, a hardware page fault thatdsessfully resolved by the object paging subsystem is not
considered to be an architecturally observable fault. Bityi an exception that can be satisfied by reconstructing a
hardware mapping entry from an already defined GPT hieraschgt considered an architecturally observable fault.
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5.3 Endpoints

A process that wishes to accept capability invocations dodsy means of one or more endpoints (Figure 5.2). End-
points have two capability types: the Endpoint capabilitihich implements the control interface for the endpoint
object, and the Entry capability, which provides the meangktending the object system. When an Entry capability
is invoked, the invocation parameters are delivered as aageso the process named by tbeipient  field of the
Endpoint.

] endpointID g, ]

protPayload s,
recipient(cap ¢
ipWO 4y
ipwlga
IPW264)

Figure 5.2: Endpoint structure

The meanings of the endpoint fields are:

Field Meaning

pm

Payload Match Indicates that the protected payload of the endpoint shbeldompared to the
protected payload of the Entry capability. If they are nat&gqthe invocation behaves as if the Null
capability had been invoked.

protPayload Protected Payload This value will be conditionally used as a matching valueMis set (1).
endpointiID A 60-bit field having meaning only to the recipient. The vabfehis field will be delivered to the

recipient during message receive.

recipient A process capability to the receiving process.

Non-Normative lllustration

When a server implements a single logical object, it willibghly operate with two endpoints. The first is
the one used to invoke the service (the “receive endpoiffitie endpoint ID of this endpoint is not used.
The protected payload of the corresponding Entry capgmiay be used to express distinct permissions
or restrictions on the permitted operations. The secongeintlis used to accept replies (the “reply
endpoint”). The endpoint ID of this endpoint is used as a hiatgvalue to implement a closed wait so
that unrelated messages are not received where a reply étexp The endpoint’s protected payload is
used to ensure that no more than one reply will be receivedngsns of thePR0O.RC bit of the invoke
capability system call).

When a server implements multiple objects, a distinct rexendpoint is typically allocated for each
object implemented by the server. In this case, the endfDiist used to identify which object or service
is being invoked, and the protected payload field of the spwading Entry capability is used to express
distinct permissions or restrictions on the permitted afiens on that object.

Non-Normative Note on Reply Endpoints

If the IPRO.RC bit is set in the invocation control word parameter, the gcted payload of the endpoint
is pre-incremented before the Entry capability is fabedatThe purpose of the RC bit is to allow a caller
to ensure that a call/return sequence receives at most pheimehe normal case. This is accomplished
by ensuring that stale reply capabilities are invalidatedrotected payload mismatch) before the next
receive on the reply endpoint is performed.

Whenever an Entry capability is invoked, the invokee reegihe protected payload value of the invoked
Entry capability. In the case of a reply endpoint, the PM $ieét, so the received protected payload value
matches the value stored in the endpoint.
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Itis the responsibility of the application to notice whee thcoming protected payload value approaches
UINT32_MAX. In this situation, the pre-increment will overflow thegtected payload counter when it is
next used. The recommended solution for this is to obtainnareply endpoint from a space bank when
the protected payload reaches UINTBAX-1.

5.4 Semantics of Kernel Capability Invocation

To ensure consistent invocation behavior, it is necessaspécify the externally observable behavior when a kernel-
implemented method is invoked. In particular, the obsdevaffect on process state and the sequencing of operations
and events during a kernel invocation must be defined.

When a kernel capability is invoked, the externally obsble@ehavior should be as if the invoker had invoked an end-
point to some application providing the service. Becauskeanpel operation accepts an indirect string, the invocatio

of a kernel capability behaves as if this hypothetical pdevihad performed a receive phase WRR0.AS=0 (no
strings will be accepted). This hypothetical provideraes at the specified answer and accomplishes any effects of
the invocation by unspecified means. It then replies as #dt imvoked thénvCap system call with the control bits

of the first input parameter word set as followdB=1 (non-blocking) RC=0(no reply capability is generated}W=0

(the kernel conceptually enters an open wait state),RiPd1 (the kernel waits for the next invocation). In addition,
the SC(send capabilities) control bit will be set (clear) if capiies are (are not) returned by the method. Note that
because the kernel reply is non-blocking, and the kerne¢&kd to be in theunning state until it has replied, the
reply from a kernel-implemented capability cannot causec@sd kernel-implemented capability to be invoked.

This statement of behavior has (at least) the following iogtions:

e The effects of a kernel capability invocation occur whetbienot the invocation returns successfully, provided
any preconditions specified for the method are satisfied.

e There exist several kernel operations that alter the sfatg@mcess. When the process altered is also the process
receiving the kernel reply (the “invokee”), the kernel beloa must be well-defined. There are two such cases:

1. The invokee process is destroyed as an effect of the imvistathod. In this case, the reply proceeds as if
via an endpoint that contains a Null capability.

By intention, kernel-implemented operations satisfy tamariants that simplify or eliminate other potentially chse
corner cases:

¢ No kernel-implemented interface accepts or returns améctistring.

e Kernel methods that modify address space mappings or redojeets return only scalar return values (and
therefore behave as 8C=0). This ensures that changes in the meaning of the receiabdayp capitem _t
values cannot impact the return of these operations.

Undefined Locations The content of receive buffers, receive parameters, aredvecapability locations is undefined
between the start of the IPC receive phase and the complgftibie IPC receive phase. For performance reasons, the
kernel is entitled to arbitrarily modify state whose cortenundefined during invocation. In particular, the kernel
is entitled to modify the receive parameters or the recefiiiags buffers of a waiting process without releasing that
process from its wait state. This allows the kernel to mofieiehtly implement indirect string moves that may induce
invoker or invokee page faults during the transfer. This nsehatall of the receive string buffers of a recipient may
be modified during receive, even if the final message receieads only a single indirect byte. Similarly, any valid
receive capability locations may be overwritten even if @ben number of capabilities was transferred.

State Transitions The overwhelming majority of kernel capability invocat@return to the invoker without gen-
erating any exception. In these cases, the kernel may befsaife¢he operation occurred instantaneously, with the
consequence that the invoker may never be observed to leaugnningstate.

Elided Reply Capability When a kernel capability is invoked and replies to the invokighout an exception, the
kernel implementation is free to elide the fabrication of tleply capability. Elided reply capabilities are obseteab
because the protected payload value of the reply endpdimaetibe incremented.
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System Calls

Coyotos currently defines three system calls:

Number Name Description

0 InvokeCap Invokes a capability and (optionally) waits for a reply oneardpoint.

1 reserved Reserved for future use.

2 CopyCap Copy a capability from one location to another.

3 Yield Yield the processor, moving the current process to the béit& scheduling class.
4.15 reserved Reserved for future use.

6.1 Parameters and Parameter Words

At the system call trap interface, arguments and returnesafure conveyed by means of a combination of registerized
parameter values and (optionally) a system-call specifickstframe. Every architecture-specific annex specifies a
subset of hardware registers that are be used to conveynsystk parameters. No annex defines fewer than four
registers to be available at this interface. Where a speethbktack frame is specified, the architecture-specifieann
may specify that some or all of that stack frame is conveyedsacthe user/supervisor boundary in registers. The
corresponding fields of the stack frame will never be acatbgehe kernel.

The Coyotos system call specification ensures that all aegisnand return values of system catither than
InvokeCap can be marshalled in registers. In addition, the majoritkernel-implemented capabilities, includ-
ing all capabilities likely to be invoked in performancetical application paths, can be invoked without a string
parameter.

In the system call specifications that follow, the notatieRi and OPR indicate input and output parameter registers,
respectively. Except where required by the architectpeesic system call mechanism, or explicitly noted by the
system call, output registers retain their value at the tifrgystem call entry.

6.2 Exceptions

The following exceptions may be incurred by the caller dgisgstem call execution.
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Exception Cause

MalformedSyscall The operand was malformed. This includes field value rangesor
reserved type codes.
Thefaultinfo field is zero.

MisalignedReference The operand specified a capability address, but the addesssilded is
not aligned to a 16-byte boundary.
Thefaultinfo field contains the errant address value.

InvalidAddress The operand specified an address that is not defined.
Thefaultinfo field contains the errant address value.
AccessViolation A store operation was attempted, but the operand specifieatidress

that does not permit write access.
ThefaultInfo field contains the errant address value.

DataAccessTypeError The address specified by a data load/store operand doesfai@nee a
data page.
Thefaultinfo field contains the errant address value.
CapAccessTypeError The address specified by a capability load/store systendcal not ref-

erence a capability page.

Thefaultinfo field contains the errant address value.
MalformedSpace The address specified by the operand violated the well-fdratklress

space constraints.

Thefaultinfo field contains the errant address value.

Any system call may generate thMalformedSyscall exception if bits marked “reserved” are non-zero or speci-
fied field value bounds are exceeded. Individual system ealtidiptions below specify which of the other exceptions
may be incurred by that system call.

6.3 Capability Locations

’ IOcatiOn(31/63) Ity ‘

Figure 6.1: caplod structure

A caploc _t parameter (Figur@MISSING XREF ID?) describes a generalized capability location that is eithe
capability register (ty=0) or a memory address (ty=1).

The encoding of registeraploc _t values is identical to the encoding usedd¢apreg -t values, modulo the wider
location  field. When thecaploc _t describes a memory address, tbeation  field holds the most significant
bits of the address. Capability addresses are required i liyte aligned. In consequence, the expression of valid
capability addresses is not restricted by the re-use ofetast Isignificant bit for this purpose.

The size of a&caploc _t matches the architecture-defined word size.

6.4 Pseudo-Instructions

TheYield andCopyCap system calls are best thought of as pseudo-instructions.

6.4.1 Yield [syscall]

TheYield system call relinquishes the processor. If thiit is clear (0), the yielding process is placed at the end of
the appropriate ready queue.
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Parameter Format
IPRO l reSerVed(zgleo) N R:4(4)

TheYield system call does not return any output parameters.

Open Issue
Should there be a directed yield operation? If so, the yigdtiesn call needs to take a second parameter.

6.4.2 CopyCap [syscall]

Parameter Format

IPRO l reSerVed(zgleo) NR:2(4) ‘
IPR1 | SOUICE caplor |
IPR2 | destcapioc o |

The CopyCap system call copies a capability from a source location &tegior memory address) to a target location
(register or memory address). TR@pyCap system call does not return any output parameters. Exaepiiay be
generated by the references to fmeirceanddestparameters.

Any of the exceptions listed in Section 6.2 other thi2ataAccessTypeError may be generated by this system
call.

6.5 InvokeCap [syscall]

ThelnvokeCap system call invokes a capability, passing the suppliedmaters to the implementing server. It
is both the most complex and the most commonly used systdnndale interface. It invokes one capability and
optionally blocks for an incoming message on an EndpointiokeCap takes a variable number of parameters
determined by the invocation control word provided in IPR@ a system-call specific stack frame.

Any of the exceptions listed in Section 6.2 may be generagatib system call.

6.5.1 Arguments

The arguments ttnvokeCap are organized in a specialized stack frame. Some elemetits stack frame are then
registerized. The canonical stack frame formatifamokeCap is shown below:

typedef struct {
uintptr  _t pw]8];
union {
caploc t invCap; / = on entry =*/
uintptr  t pp; / * on exit =/
bu
caploc _t sndCap[4];
caploc _t rcvCap[4];
uint32 _t sndLen; / * FIX: Should be 16 bits */
uint32 _t rcvBound; / =+ FIX: Should be 16 bits */
void * sndPtr;
void * rcvPtr;
uinté4 _t eplD;
} InvParameterBlock  t;
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All architectures guarantee that the/[0]..pw[3] field are conveyed in registers on both entry and exit. Sihee t
message payload may contain up to 8 data words, the calletdsassume thaiw|[0]..pw[7] may be modified on
return.

The control word parameter tavokeCap is given by:

Argument Format

IPRO | reservedops) ]ex]co]ac]sc]rc]sp]rp ]cw]nblaslsglIrc(z)llsc(z)l ldw s ] nr=0
IPR1 Inputpw[1] , if transmitted.
IPR2 Inputpw[2] , if transmitted.
IPR3 Inputpw[3] , if transmitted.
OPRO | reservedoe) lex[cofac]sc]rc [sp]rp kwinblas[sg] Irc ) [Iscy [ ldwgg | nr=0g
OPR1 Outpupw[1] , if received.

OPR2 Outpupw([2] , if received.
OPR3 Outpupw[3] , if received.

Other fields and registers are sourced and modified accotditige interpretation of the control word and the param-
eters provided in the stack frame.

The fields of the control word have the following meanings:

Bit Name Meaning

[dw Last Data Word On entry, the index of the last data woragraitted. Following a receive phase, this
field will contain the values specified in the sender’s intmsacontrol word. A receiving
process must be prepared to accept 8 direct data words.

Isc  Last Sent Capability The index of the last sent capgbNb capabilities are sent if tHeCfield is clear (0). Fol-
lowing a receive phase, this field will contain the value $fgeatin the sender’s invocation
control word.

Irc  Last Received Capability On entry: the index of the lagpability slot that will be received. No capabilities are
received if theACfield is clear (0).

sg Send Gather Send transmitted string(s) using the gatkelnanism. This mechanism is not yet speci-
fied, and the bit should be clear (0) in all invocations.

as accept scatter Accept transmitted string(s) using thtesanechanism. This mechanism is not yet spec-
ified, and the bit should be clear (0) in all invocations.

nb  Non-Blocking If set (1), send is non-blocking. Any actitiat would require the sender to be enqueued in

such a fashion that re-awakening is controlled by the receil result in a dropped mes-
sage. Any action that would cause a receiver-controlle@etien handler to be executed
will result in a truncated message.

cw  Closed Wait If set (1), indicates that the receive phagerforming a closed wait, and only messages
from endpoints whose endpoint ID matches the sup@i@® value will be accepted.
If clear (0), no restrictions are imposed on receipt andeipk® field is ignored.

sp Send Phase If set (1), the send phase will be executed.
rp Receive Phase If set (1), the receive phase will be exdcute
rc Reply Capability If set (1), anshdCap0 names an endpoint capabilisndCap0 will be replaced with the

corresponding Entry capability. The protected payloachef Entry capability will be set
to the current protected payload value stored in the endipoin

sc Send Capabilities If set (1), capabilities will be traited. Following a receive phase, this field will contain
the value specified in the sender’s invocation control word.

ac  Accept Capabilities If set (0), incoming capabilitied Wwe accepted.

co CopyOut If set (0), the copy out phase will be executedt iggfster values will be copied back from

the kernel to the invocation parameter structure.
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Bit Name Meaning
ex exceptional return If set (1), indicates that the mesgayéoad describes an exception. Following a receive
phase, this field will contain the value specified in the se€adievocation control word.

The parameters of thimvokeCap system call are unusual, in that IPRO determines how theiréngainput pa-
rameter words are interpreted. Further, some of the biteenPRO word determine how the output parameteres are
processed and delivereldivokeCap is alsounusual because control flow may not return immediatelyearitioker.
Finally, it is unusual because amvokeCap system call may cause exceptions to be incurred by the rmwhiving

the system call rather than before it.

Conventions

InvokeCap is areflective system call. Because the kernel-implemeargpdbilities use the same request marshalling
and demarshalling conventions as application-implentecapabilities, these conventions are effectively marttiate

Requests IPR1 contains the request code (a method code that is typicallgesd by CapIDL). The implementing
process uses this request code, in combination with thévestendpoint ID and protected payload, to determine what
interface has been invoked, what method has been requasigayhat permissions the invoker has. By convention,
no method should be assigned the method code zero (0).

Replies If OPRO.ex is clear (0), then the remaining parameter words contairsfleeified out parameters accord-
ing to the interface specification. @PRO.ex is set (0), then the remaining parameter words contain thepion
message, which consists of a 64-bit exception code folldwean optional structure containing additional informa-
tion. The exception code may occu@PR1lor OPR1..0PR2 or OPR2..0PR3 (notably SPARC) depending on
whether the target architecture is 64-bit or 32-bit and tignanent restrictions imposed on 64-bit integral values by
the underlying architecture.

Kernel Invocation Conventions

The following behavioral specification describes the serarof thelnvokeCap instruction as if the capability
invoked were an Entry capability. If the capability invokisdh kernel-implemented capability, the invocation belsave
as if the kernel were a receiving process that had just pmddra SendAndWait with IPRO and IPR1 fields set as
follows:

Field Meaning Field Meaning

IPRO.CW=0 Perform an open wait. IPRO.NB=0 Reply will be radoeking.
IPRO.AS=1 Accept string arguments. IPRO.AC=1 Accept cédipphrguments.
IPW1 (ignoredcapitem _t). IPRO.RP=1 Perform a receive operation.
IPRO.RC=0 No reply capability. IPRO.Idw Set according st laperation.

6.5.2 Return Values

The return values dihvokeCap are copies of the sender’s argument values with minor diterst

e The protected payload of the invoked endpoint capabilitysupplied in place of the invoked capability
caploc t.

e The sender control bits are replacediya bit indicating that one or more incoming typed items weracated.
e All addresses supplied in the input typed items are zerodltbimutput typed items.

e On output, the kernel injects @apiditem _t as the first output typed item.
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Result

OPRO

OPR1

OPR2..0PR
OPRU+1..0PRu+t+1

Format
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reservedore)

lex[colac]sc]rc [sp]rp kwinblas[sg] Irc ) [Iscy [ ldwgg) | nr=0g

rcvP P(32/54)

|
|
|
|

|
|
untyped wordsz/e4) ‘
|

typed item wordssy/es)




Chapter 7

Schedules

7.1 Scheduling Model
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Chapter 8

Other Kernel Objects

This chapter describes the services provided by the mésustius kernel capabilities.

Thenull capability is used when a non-optional capability field mhestransmitted but the sender does not wish to
send a capability in that position. Capabilities to destbgbjects become null.

Thekeybits  capability discloses the canonical representation ofloiéipas. Thekeybits  capability is considered
sensitive, and should be closely held. The value of the lddziaHZ is always shown as zero.

Thediscrim  capability classifies capabilities into one of a limited sktlassifications. The purpose discrim
is to support the implementation of the confinement policgh®constructor  , which is one of the core Coyotos
applications.

Therange capability conveys the authority to fabricate and destmijtary object capabilities. Theange capa-
bility is highly sensitive, and should be closely held.

Thesleep capability allows its holder to receive an event at a scheditime.

ThelrqCtl  capability allows the holder to allocatejWait capabilities. This capability is highly sensitive, and
should be closely held.

ThelrqWait capability allows the holder to wait for a particular intept to occur. This capability is highly sensitive,
and should be closely held.

The schedctl  capability allows the holder to alter the kernel-level sthieng dispatch table. This capability is
highly sensitive, and should be closely held.

Thecheckpoint  capability allows the holder to initiate a system-levelpsteot operation and force the checkpoint
age-out logic to run to completion. This capability is higkensitive, and should be closely held.

The obstore  capability implements a “reverse” protocol. The objectrstserver uses this capability to wait for
kernel object fill and flush requests and acts on them.
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Part Il

Microkernel Realization
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Part | of this specification describes an abstract maching,gives semantics for the objects associated with that
machine. While there are exposed implementation depeietetitat are inherent in the representations of process
register sets and the sizeing of page objects, the theorpartion for these objects is relatively independent of the
underlying hardware.

As a practical matter, real machines incorporate featuegeid these core abstractions. These are not managed by the
microkernel, but they require some degree of support in pleeigication. In particular, the specification must address
issues of device memory and support for direct memory add@§s\), because these are places where the binding
between abstract and concrete objects becomes visiblétiase.

In addition, the Coyotos specification must address the ar@sim of persistence for those implementations that
provide it.
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Chapter 9

Device Interaction and DMA Support

This section describes behavior that is not yet implemented

This chapter addresses support for device access and #izing pages so that DMA hardware features can be used.
This chapter doesotaddress kernel support for integrating hot-pluggable ntgroards as general-use object cache
storage.

9.1 Device I/O Registers

Some hardware implementations provide a hardware regastéress space (/0O space) that is independent of the
memory address space. This is most notably true on the Penbiut more selectively true on other processors (e.g.
Coldfire MOVCR). Authorization of access to the hardwarastsy address space is determined by the per-process I/0
space capability. The mechanics of hardware control reggsicess is inherently target-dependent, and the mechanis
used should be specified by the architecture-specific annex.

On some architectures, device registers can be memory rdappé page-level protections are sufficient to provide
effective isolation. On those systems, device registardedareated as a form of device memory.

9.2 Device Memory

Some devices publish memory to the device bus that can beadagipolly or partially into the main memory address
space. Modern video cards are an example of this.

Typically, the mechanical and electrical bus architeduwéa given machine limit the number of devices that are
able to publish memory-mapped device memory. Busses su8C8&s$, ATAPI, USB, and FireWire, by contrast,
generally do not support memory mapped interfaces for titeaiched client devices. The controllers themselves may
use memory mapping, but the attached devices do not.

This design allows the kernel to pre-plan for memory attactievice memory by reserving a pre-planned constant
number of page frames for each device, where the total nuofbmemory-attachable devices is bounded at compile
time. Thesizeof these pages may be larger than the hardware page sizedlefiniee MMU.

9.2.1 Device Ranges
A device rangedescribes a contiguous region of the physical memory mapsthmacked by some memory-attached
device. Every device range may have up to 16 data pages, &éadiiah is of some size® Thus, a device range

is defined as a (base, limit, size) tuple, wherelthee andlimit  are physical addresses and #ize describes
both the alignment restrictions on thase andbound addresses and the size of the physical pages defined by this
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device range. A one megabyte memory-mapped device regiotheaefore be specified as 16 64Kbyte pages or as 4
256Kbyte pages.

The architecture-specific annex specifies the number otdeainges that can be defined in a given implementation.
This is required because the kernel must be able to prewest@rage for device memory ranges during early initial-
ization, long before the drivers associated with those earage executed or the size of the respective device memory
spaces are knowh.

Device memory ranges are not persistent.

The theory of operation for device ranges is that the kernelrpserves the storage for the device range descriptors
at startup time, and also the per-page management dattusesithat are required to track the device pages that will
later be defined. As individual drivers come up and deterrttied associated physical address windows for device
memory, the “allocate” a device range for that device. Oheedevice range is defined, the coyotos.Range capability
can be used to allocate device pages within that device range

Destroying a device range destroys all of the device pagesiuily associated with that range.

9.2.2 Device Pages

A device pages a data page whose physical address falls within the raafieed by some device range. The size
of a device page may be any siZétBat is greater than or equal to the hardware page size. Tysiqathand virtual
addresses of a device page are naturally aligned.

Device pages are not persistent, and are not subject togagein

Issue
| suspect that device pageapabilitiesshould not be persistent, and should be written to disk ak Nul

The OID range [0xffO0000000000000ull, Oxffffffffffffffull] is reserved for device pages. I2page is defined
such that the hardware page size 8P29¢ then the OID of the physical page whose physical addrés$2page
is (0xff00000000000000uH2K-12pags. The corresponding page capability is obtained by invglange.getCap or
Range.waitCap with this OID and a typeaiPage . The returned capability will be a page capability to pagsipé
2K at the desired physical address.

While a device page capability obeys the page capabilitioea, implements the same permissions as a page capa-
bility, and can be mapped like any other page capabilityt¢hm "device page” is somewhat misleading:

e Device pages are not persistent.
e A device page may map onto device registers rather than eevénory.

e A device page does not really define a block of storage. It i@’ onto memory that resides on some device.
This view has a known location and size in the physical addspace, but in some cases the device driver may
be able to alter the relationship between this view and tlke@ated device memory (e.g. by changing how
addresses presented to the card are demultiplexed).

e Device pages are not zeroed on allocation or rescind, becaeiave no way to know what sits behind them.
It may be registers, and the kernel does not know what the¢aipdns of zeroing those registers might be.

Because of this, writes or reads to device pages can havelainsise effects, and it is not always the case that a
write to a location within a device page followed by a reacdhat tocation will produce the same value. In contrast to
conventional pages, the semantics of device pages is whiofigirtially determined by the device.

1 In implementations where boot-time parameters can be geovio the kernel, an implementation is free to provide méaestend this default,
but this should be viewed as a means to deal with high-enthmized hardware configurations rather than a means fottiaggio card insertion
and removal.
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Several of these factors suggest that use of device pagakidtmw undertaken with care, and should be restricted to
device drivers. If direct access to device memory must beigeal to persistent programs, the provided memory space
should be encapsulated by an opaque GPT.

Device Page Windows It is possible to define windows into device pages using windapabilities, and the window
size may be smaller than the device page size, but must basatds large as the hardware page size. This permits a
device driver to use larger device page sizes without seirifipage protection at the normal hardware granularity.

9.3 Object DMA

Because device pages exist at known physical addresseppisible for device drivers to use physical direct memory
access (DMA) mechanisms to move data to and from these pajissdoes not address the problem of DMA to and
from conventional pages. For example, it is desirable foweds to be able to transfer data directly to and from user

space.
In abstract, there are three issues that need to be addiasseidr to support this:

1. Discovering the physical address at which DMA should otoueach the target page.

2. In some cases, ensuring that the target page falls whkiphysical address span reachable by the specific DMA
subsystem, and satisfies any alignment or address congrrezngrements of that DMA engine.
An ancillary problem here is that two DMA engines may competéhe same page with incompatible address-
ing constraints. This either needs to be prevented or redajensistently.

3. Ensuring that the target of DMA remains in memory (pinnadl the DMA operation has completed.
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coyot os. Addr essSpace

Abstract Interface coyotos.AddressSpace

Derivation:
coyotos.Cap
coyotos.Memory
coyot 0s. Addr essSpace

Synopsis:Operations common to all Coyotos memory-related capadslit

The memory interface captures constant values and opesdtiat are common to all memory-related capabilities.

Type Definitions

slot.t Slotindex values.
typedef uint32 slot t;

Exceptions

OpaqueSpace Unable to return a capability which is under@® GPT

NoSuchSlot No slot of the requested size was found.

Note that this exception can be raised by éx¢endedFetch  andextendedStore  operations if the re-
guested slot location is a leaf slot and the leaf object isargapability page.

CapAccessTypeError Unable to read capabilities from a Page.

Operations

getSlot Fetch capability from sloglot.

Cap getSlot(
slot _t slot);

If the invoked capability is a weak capability, the returmagability will be the weakened form of the capability
that was found in the target slot.

RaisesCapAccessTypeError  if the invoked capability designates a memory object thatsdaot have ca-
pability slots.
setSlot Store cap into the specified slot.

void setSlot(
slot _t slot,
Cap c);
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Raises:NoAccess

Inserts a new capability into th@PTor page aslot.  If the specified prefix already exists, the associated
capability is overwritten.

RaisesCapAccessTypeError  if the invoked capability designates a memory object thasdwot have ca-
pability slots.

RaisedNoAccess if the invoked capability is weak or read-only.

guardedSetSlot Store capabilityc into the specified slot, adjusting the guard accordinguard.

void guardedSetSlot(
slot _t slot,
Cap c,
guard _t guard);

Raises:RequestError
RaisedNoSuchSlot if the invoked capability designates a memory object thaisdwot have capability slots.
RaisesRequestError  if the argument capabilitg is not a memory capability.

fetch Fetch capability from the specifieaffset  in address space.

Cap fetch(
coyaddr _t offset);

Raises:NoSuchSlotNoAccess

This is the capability invocation form of the load capalilitstruction. The primary difference is that it can be
invoked on any memory capability.

If the invoked capability is a weak capability, the returmagability will be the weakened form of the capability
that was found in the target slot.
store Storec at the specifiedffset in address space.

void store(
coyaddr _t offset,
Cap c¢);

Raises:NoSuchSlotNoAccess

This is the capability invocation form of the store capabilhstruction. The primary difference is that it can be
invoked on any memory capability.

RaisedNoAccess if the invoked capability is weak or read-only.

extendedFetch Return capability froni2arg sized slot at specifiedffset.

Cap extendedFetch(
coyaddr _t offset,
[2value _t I2arg,
OUT [2value _t I2slot,
OUT restrictions perms);

Raises:OpaqueSpaceRequestError

Retrieves a capability from an address space from thed®3twhosel2v is greater than or equal t@arg,
subject to the following constraints:

e NnoGPThaving an I2v less thali2arg  will be traversed,
e no capability having an 12g less théarg  will be traversed,

e any slot traversal that would result in a malformed or in¥alpace exception will not be performed — that
is, a slot from the containinGPTwill be returned.
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On successful return2slot  contains thd2v of the GPTcontaining the returned capability, apérms
describes the cumulative permissions along the path updaénatuding the containingPT, butexcludingthe
permissions of the returned capability. If the access patletses a weak capability, the returned capability will
be the weakened form of the capability that was found in thgetsslot.

Note that if extendedFetch  returns anl2slot  that does not match the request@drg, and there

are GPTs in the tree whosd2v is greater than their parent’s 12v (larger space in smalejjoa call to

extendedStore(offset, 12slot, newCap) using the returnet®slot  may replace a different slot
then the sloextendedFetch  returned.

If either the invoked capability or the PTthat it names do not satisfy the traversal constraints destabove,
the requested slot does not exist. The invoked capabilitgtigned, an2slot  of zero is reported, and an
perms of zero is reported.

RaisesOpaqueSpace if the traversal encounters an opaque capability on the patto, but excluding the
returned capability.

Note: This method specification is provisional. We are attemptingxpose existing kernel function for use by
memory fault handlers, but we probably haven't got the ret@ues and termination conditions quite right yet.
extendedStore Storevalue into al2arg sized slot at offsebffset.

void extendedStore(
coyaddr _t offset,
[2value _t I2arg,
guard _t guard,
Cap value);

Raises:OpaqueSpaceRequestErrorNoSuchSlotNoAccessCapAccessT ypeError
Traverses the address space headed by the inBRado find a slot whose size i2arg.  The request will
fail if:

The offset presented is not a multiple2f2arg,  in which caseRequestError s raised.
Thel2g field of a traversed capability is less thi2arg; NoSuchSlot may be raised.

A guard mismatch occurbloSuchSlot may be raised.

An opaque©P GPTcapability is traversed)paqueSpace may be raised.

The slot number we are traversing to iG®Tis out of rangeNoSuchSlot may be raised.
Thel2v of aGPTwe traverse is less thdRarg; NoSuchSlot may be raised.

Aro orwk capability is traversedoAccess may be raised.

Anl2arg less thartCOYOTOSAGEL2\s given.RequestError  will be raised.

© N o o0k~ wDdPE

If the traversal succeeds, the capability slot modified bélthe first slot encountered by the traversal algorithm
suchthatthé2v value associated with the slot matches the arguf@@ang.  This location will be overwritten
by value.

If the traversal fails, and more than one failure could bemed, it is not yet defined which failure is raised.
If the I2g component ofjuard is is non-zero, and the capability namedatue is a memory capability,
the suppliedyuard word replaces the one found in the capability nameddlye.

erase Rewrite this object to null capabilities and/or zero data.
void erase();
Raises:NoAccess

RaisedNoAccess if the invoked capability is not writable.
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copyFrom Copy this object from another object of the same type, rétigra capability with a matching guard.

AddressSpace copyFrom(
Memory other);

Raises:NoAccessRequestError

RaisesNoAccess if the invoked capability is not writable. Rais&equestError  if the passed capability
type does not match the invoked capability type.

The returned capability will be a duplicate of the invokegakility, with the guard field copied from the target
object. Restrictions aneot copied from the target object. If the caller wishes to copyelements of the target
object without altering the guard field of the recipient ngtthe returned capability can be discarded.



coyot os. AppNoti ce

Interface coyotos.AppNotice

Derivation:
coyotos.Cap
coyot 0os. AppNoti ce

Synopsis:Application-defined interrupt posting interface

An AppNotice capability authorizes up to 32 distinct notices that arergnized to be delivered to the recipient.
Notices posted using thmostNotice  method are guaranteed to be delivered when the recipiesuyif next enters
a receiving state, but invocation pbstNotice is also guaranteed not to block. This makesAlppNotice ca-
pability useful to support the implementation of flow comirobidirectional streams or input notification in situat®
where the notifier must not block.

If a given notice is posted multiple times prior to receipg teceiving application will receive it exactly once.

Operations

postNotice Post a (set of) application-defined noticexices n to the application.

/* oneway =*/ void postNotice(
uint32 notices);

ThepostNotice ~ method posts the authorized subsenofices  to the receiving application if one exists.
There are two ways in which the invocationmdstNotice  can fail:

1. The endpoint directly named by tiig@pNotice capability may contain a Null capability in its recipient
slot.

2. The endpoint itself may have been destroyed.

In both cases an error is returned internally, but cannoébeived becausemmewayinvocation does not involve
areceive phase.

getNotices Return the list of notices whose delivery is authorized hy tapability.
uint32 getNotices();
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Abstract Interface coyotos.Cap
Synopsis:Operations common to all Coyotos capabilities.

The cap interface defines a set of operations that are commat €oyotos capabilities. While some objects do
not implement some of these operations (e.g. many kernelbilities do not honor the destroy operation), these
operations are nonetheless so universal that they wanelnision in the common ancestor of all interfaces.

Type Definitions

coyaddrt Type of address space positions as defined by the operasitensy
Coyotos defines address space offsets to be 64 bits on dinphest
typedef uint64 coyaddr £

archaddr_t Interface type for native machine addresses.

The archaddt type is a 64-bit value, even on implementation architextihat use 32-bit addresses. This is
done to avoid the need to duplicate th@yotos.process.swapSpaceAndPC methods and the corre-
sponding field in the Process structure.

Wherever a kernel interface is specified as accepting ameggtiof type archaddr;, the value passed must
fall within the user-mode addressable bound of the undegljiardware architecture. Where the architecture
specific annex specifies further constraints on valid usederaddresses, the value passed must also satisfy
those constraints.

typedef coyaddr _t archaddr t;

payloadt Type declaration for protected payload values.
Issue: Not clear that this should live in the cap interface.
typedef uint32 payload £

exceptiont Type to use when exception codes are passed as explicit argsito methods.
typedef uint64 exception £

AllegedType Type declaration for the alleged interface type value.
typedef uint64 AllegedType;

Exceptions

OK No error occurred.

This "exceptional result” supports the process teardovaqmol, where the exiting process is expected to spec-
ify an exception code to return, and needs a way to say thateep&on occurred. This exception code should
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onlybe used when an exception code is explicitly passed as amargwalue. It shouldotbe used to indicate
a non-exceptional result from a normally returning method.

InvalidCap Invoked capability was invalid.
Exceptional result returned when a capability has becoradithby virtue of its target object being destroyed.

Open lIssue: there is a suggestion on the table that invoking an invaligabdity should be viewed as an
instruction execution exception rather than an invocagieeption. | am provisionally inclined to the view that
we should continue the (neverimplementE®8®OS]esign in which an invocation exception can be conditignall
propagate to the fault handler.

UnknownRequest Requested operation not implemented by this capability.
Exceptional result returned when the operation requesteddaapability is not recognized by the implementing
interface.

RequestError Message was malformed.

Exceptional result returned when the payload of a requesst dot correspond to the expected argument payload,
or a provided argument falls outside the expected range.

When a operation is requested with insufficient permissgngia malformed request, it is unspecified whether
the RequestError  or NoAccess exceptions is returnedCapldl -generated services perform early ar-
gument demultiplexing, and therefore tend to generateRbguestError  exception before considering
NoAccess exception. Correctly written programs should not rely ois thrdering preference, which may
change at any time without notice.

NoAccess Insufficient permissions for requested operation.

Exceptional result returned when the operation is recaghlut the operation requested requires permissions
that are not conveyed by the invoked capability.

Operations

destroy Destroy the object.
void destroy();

The destroy operation requests that the target objectajesself. This operation is not implemented by most
kernel capabilities, but is declared as part of the basials#ipy interface because we want to establish a gener-
ally shared convention about the operation code used femofhération by those interfaces that actually imple-
ment it.

getType Get alleged type code.
AllegedType getType();
Returns an integral value indicating the alleged type cddbeninvoked interface.



coyot os. CapBits

Interface coyotos.CapBits

Derivation:
coyotos.Cap
coyot os. CapBits

Synopsis:Kernel interface to key representation.
KeyBits provides a means to inspect a capability as a value.

Structures

info Capability as data response structure.

struct info{
uint32  wil4j;
h

Operations

get void get(
Cap c,
OUT info bits);

Return the representation of a key as data.
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Interface coyotos.CapPage

Derivation:
coyotos.Cap
coyotos.Memory
coyotos.AddressSpace
coyot os. CapPage

Synopsis:Capability page interface
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Interface coyotos.Checkpoint

Derivation:
coyotos.Cap
coyot 0s. Checkpoi nt

Synopsis:Checkpoint control capability

The kernel cycles between normal execution and backgrobedkpoint writeback. When executing normally, a
snapshot can be declared, transitioning the kernel intalieekpoint aging state.

Exceptions

Ckptincomplete An attempt was made to initiate a new snapshot before wigteb&the previous snapshot was
completed.

Operations

snapshot Declare a new checkpoint.
void snapshot();
Raises:Ckptincomplete
processCheckpoint Make some implementation-defined amount of progress dyivia pageout of the current snap-

shot. Return true if the checkpoint process requires mdoetedt the end of the current request. Return false if
no further progress is required.

bool processCheckpoint();
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Interface coyotos.DevRangeCtl

Derivation:
coyotos.Cap
coyot 0s. DevRangeCt |

Synopsis:Authority to create and destroy device ranges.
TheDevRangeCtl capability provides the authority to define and destroy cewnemory ranges.

Type Definitions

physaddr_t Type of a physical address.
typedef uint64 physaddr £

DevRangeNdx typedef int32 DevRangeNdx;

Operations

getNumRanges Return the number of device range structures implementéiadiyernel in its present configuration.
DevRangeNdx getNumRanges();

getPagesPerRangeReturn the number of pages supported per range.
uint32 getPagesPerRange();

setup Define a new device memory range to the kernel.

void setup(
DevRangeNdx range,
physaddr _t base,
physaddr _t bound,
Memory.l2value t 12sz);

Raises:RequestErrorNoAccess

Allocates a new kernel device range. RaiBesjuestError  if 12sz is too small or if the requested device
range overlaps some existing range. RaiNe#ccess if the device range is in use or the requested range
overlaps with theBSPs RAMranges.

destroy Deallocate a device range and destroy all of its associaede pages.

void destroy(
DevRangeNdx range);
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Interface coyotos.Discrim

Derivation:
coyotos.Cap
coyot 0s. Di scrim

Synopsis:Discriminate among capability categories.

Enumerations

capClass Capability classifications returned by the classify operat

Name Type  Value
cINull uint32 0
clwWindow uint32 1
clMemory uint32 2
clSched uint32 3
clEndpoint  uint32 4
clEntry uint32 5
clProcess uint32 6
clAppNotice uint32 7
clOther uint32 255
Operations

classify Return the classification of the passed capability, whiaimis of the selections in ttmapClass enumer-
ation.

capClass classify(
Cap c);
isDiscreet Return true exactly if this capability is discreet.

bool isDiscreet(
Cap c¢);

A discreet capability is one that (transitively) conveysaubhority to mutate. These inclu@apBits , Discrim,
Null, Window, andLocalWindow . These also include weak PagapPage, andGPTcapabilities.
compare Compare two capabilities for (exact) identity.

bool compare(
Cap cl,
Cap c2);
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Interface coyotos.Endpoint

Derivation:
coyotos.Cap
coyot 0s. Endpoi nt

Synopsis:Endpoint interface
An endpointis a destination for a message. Endpoints aribed in detail in the Coyotos Microkernel Specification.

Operations

setRecipient Set the recipient procegs

void setRecipient(
coyotos.Process p);

Raised th&RequestError  exception if the inserted capability is not a Process cdipabi a Null capability.

setPayloadMatch Enable protected payload matching.
void setPayloadMatch();

Note that payload matching cannot be disabled once enabiésiensures that Entry capabilities which become
invalid as a result of a payload match failure remain invalid
setEndpointID Set the endpoint identifier value .
void setEndpointID(
uinté4 id);
getEndpointlD Fetch the endpoint identifier valued.
uinté4 getEndpointID();

makeEntryCap Fabricate an entry capability to this endpoint.
Cap makeEntryCap(
payload _t payload);
makeAppNotifier Fabricate an application notify issuance capability tos tleindpoint capable of sending
application-defined notice exactly if bitn of allowedNotices is non-zero.

AppNotice makeAppNoatifier(
uint32 allowedNotices);
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Interface coyotos.GPT

Derivation:
coyotos.Cap
coyotos.Memory
coyotos.AddressSpace
coyotos. GPT

Synopsis:Guarded Page Table

A guarded page table5P7) is the mechanism for composing address spaces. The datéusér and basic idea of
GPTsis discussed in the Coyotos Microkernel Specification. Tlappable unit depends on the address space type:

Address Space Type Mappable Unit

Data Space bytes
Capability Space capabilities
I/O Space I/0O ports
Constants
Name Type Value Description
nSlots [2valuet 16 number of slots in &PT
[2slots [2valuet 4 log(2) of number of slots in &PT
handlerSlot slott 15
backgroundSlot slott 14
Operations

setl2v set the 12v field of thisSPTto I2v, returning the previous I2v value.

[2value _t setl2v(
[2value _t 12v);

getl2v Return the current 12v field value of thGPT.
[2value _t getl2v();

setHandler Set whether or not thi&§PThas a handler

void setHandler(
bool hasHandler);

getHandler Find out whether thi&SPThas a handler
bool getHandler();
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makeLocalWindow Store a new local window capability in slskot.

void makeLocalWindow(

slot _t slot,

uint32 restr,

coyaddr _t offset,

guard _t guard,

slot _t localRoot);
Raises:NoAccessRequestError
The offset  argument specifies the offsedlative to the windowed spagemed by thdocalRoot  slot.
Therestr argument gives the permission restrictions imposed bydhbal lwindow. Theguard argument
specifies the guard value for the window capability.
The supplied offsebffset  must be an integral multiple of!2¥. If this constraint is violated, the
RequestError  exception is raised.

makeBackgroundWindow Store a hew background window capability in sitxt.

void makeBackgroundWindow(

slot _t slot,

uint32 restr,

coyaddr _t offset,

guard _t guard);
Raises:NoAccessRequestError
The offset  argument specifies the offsatlative to the background spadhat this window names. The
restr argument gives the permission restrictions imposed by thdow. Theguard argument specifies the
guard value for the new window capability.
The supplied offsebffset  must be an integral multiple of!2¥. If this constraint is violated, the
RequestError  exception is raised.



coyotos. |l rqCt|

Interface coyotos.IrqCtl

Derivation:
coyotos.Cap
coyotos. lrqCtl

Synopsis:Low-level interrupt control capability.

An IrqCtl  capability provides the authority to allocalieWait capabilities. wait on one of a range of inter-
rupts. The invoker callgvaitForinterrupt , which returns when the requested interrupt becomes incgervhe

IrgRange capability describes a range of interrupts that the wietderwait for. A given process can wait for only
one interrupt at a time.

Type Definitions

irg_t typedef uint32 irq _t;

Operations

getlrgWait Retrieve a capability enabling the wielder to wait for arenntipt.
IrgWait getlrgWait(

irg _t irg);
bindlrg Mark an interrupt line as being bound to real hardware.
void bindlrg(
irg _t irg);
wait Wait for an interrupt to occur on a given hardware interrumpe|
void wait(
irg _t irg);
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Interface coyotos.lrqWait

Derivation:
coyotos.Cap
coyotos. lrgWait

Synopsis:Low-level interrupt control capability.

An IrqCtl  capability provides the authority to allocdtgWait capabilities. wait on one of a range of interrupts.
The invoker calls wait(), which returns when the requestedrrupt becomes in service. ThgRange capability
describes a range of interrupts that the wielder can wait4ajiven process can wait for only one interrupt at a time.

Operations

wait Wait for an interrupt to occur on a given hardware interrumpe|
void wait();
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Interface coyotos.KernLog

Derivation:
coyotos.Cap
coyot os. KernLog

Synopsis:Capability to read/write the kernel log data.

Type Definitions

logString typedef anon2 logString;

Operations

log void log(
logString msg);
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Interface coyotos.LocalWindow

Derivation:
coyotos.Cap
coyotos.Memory
coyotos.Window
coyot os. Local W ndow

Synopsis:Address space local window interface

Operations

getRootSlot Retrieve thaootSlot  value stored in this window capability.
uint32 getRootSlot();
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Abstract Interface coyotos.Memory

Derivation:
coyotos.Cap
coyot os. Menory

Synopsis:Operations common to all Coyotos memory-related capadslit
The memory interface captures constant values and opesdtiat are common to all memory-related capabilities.

Type Definitions

[2valuet Size of an address length.
typedef uint32 |2value £

guard_t Structure describing a guard word.

Ideally we would like to specify this as a bitfield, but thefdiences in bitfield packing rules from one platform
to the next involve too many variations f@apIDL to handle. We therefore resort (reluctantly) to using alsing

word. The least significant 7 bits of the word contain the |2¢pe. The most significant 24 bits contain the
match value.

typedef uint32 guard t;

Enumerations

restrictions Values used in the memory capability permissions mask.

Issue: These values could be pre-biased to match the positioninbeofype field. Should they be? How
confident are we about the commitment to a 5-bit type field?

Name Type Value Description

weak uint32 1 Capability is weak.
All capabilities fetched through a weak capability are
returned with (conservatively) read only and weak per-
missions. If the kernel cannot determine how to per-
form this downgrade, the returned capability will be
null.
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Name Type Value Description

readOnly  uint32 2 Capability is read only.
This capability does not permit mutation of the target
object.

noExecute uint32 4 Capability does not permit execution.

On hardware that supports a non-execute control bit,
attempts to execute from a range marke@xecute
will generate exceptions.

opaque uint32 8 Capability is opaque.
GPT does not permit slot fetch or store opera-
tions. This restriction is not meaningful for Page or
CapPage objects.

noCall uint32 16 Capability is no-call.
No keeper will be called below this point in the mem-
ory traversal. This restriction is not meaningful for
Page oiCapPage objects.

Operations

reduce Return copy of current memory capability with reduced pesiuns.

Memory reduce(
restrictions mask);

The returned capability will implement the same concreterface as the invoked capability with appropriately
reduced permissions.

RaisefRequestError  if an attemptis made to set the opaque or no-call bits on a®dg@pPage capability.

setGuard Return a capability having a different guard value.

Memory setGuard(
guard _t guard);

Theguard argument specifies the guard value to be set.

getGuard Return the guard value stored in the capability.
void getGuard(
OUT guard_t guard);
getRestrictions Return the restriction bits set for this memory capability.
restrictions getRestrictions();
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Interface coyotos.MemoryHandler

Derivation:
coyotos.Cap
coyot os. Menor yHandl er

Synopsis:Kernel interface for per-process fault handlers.

A fault handler should implement this interface on its emdoint capability. When delivering a fault to an external
handler, the kernel will upcall the fault according to thetoicol of this interface.

Operations

handle Kernel-invoked entry point for process fault handler.

/* oneway =*/ void handle(
Process proc,
Process.FC faultCode,
uinté4 faultinfo);

This entry point is invoked by the kernel. The capabiptypc names the process that incurred the fault. The
fault  structure provides the fault code and the issued addetssve to the manage@PT at which the fault
occurred.

Whether the fault will be resolved is at the discretion of imeked handler. If the handler chooses to resolve
the fault, it should take any action necessary to preventrrence and then call tHerocess.resume  method
onproc with theclearFault parameter set toue.  This will clear the fault and allow the victim process
to restart the faulting instruction.

If the memory fault handler is unable to resolve the faulshbuld call theProcess.resume  method on
proc with theclearFault parameter set tfalse.  This will cause the process to restart with the fault still
pending, which will cause the per-process handler to bekieso

Note that the process capabilityoc supplied by the kernel at this interface is the restrictegstart” form. It
permits only the resume() method and getType () method. Any other operation will generat®laAccess
response.

Note that this is a oneway invocation; the capability sugpin the reply slot at the time of upcall will be the
Null capability. Merely replying in the conventional wayrnist sufficient to restart the faulted process.
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Interface coyotos.Null

Derivation:
coyotos.Cap
coyot os. Nul |

Synopsis:Universal invalid capability.

Capabilities to objects that have been destroyed becorheapabilities. The null capability implements no operato
of its own. It will respond to thgetType () operation (only).
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Interface coyotos.ObStore

Derivation:
coyotos.Cap
coyot os. ObSt ore

Synopsis:Object storage manager interface
THI S| SA PLACEHOLDER

The object backing store manager responds to kerneldimitisequests for object pagein or object pageout. Like the
cap.fault interface it is a “reverse” interface in the sense that itdelel defined but server implemented.

The details of the object backing store interface are notigetrmined.
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Interface coyotos.Page

Derivation:
coyotos.Cap
coyotos.Memory
coyotos.AddressSpace
coyot os. Page

Synopsis:Page interface
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Abstract Interface coyotos.Process

Derivation:
coyotos.Cap
coyot os. Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interfaaw. niany operations of interest the architecture dependent
interface should be consulted.

Type Definitions

capRegister typedef uint32 capRegister;

Enumerations

arch Process execution model (architecture).

This is primarily useful on machines that support (directithrough simulation) mutiple execution models. It
allows a debugger to learn the execution model (architettfra subject process.

Name Type Value Description

ia32 uint32 0 IntellA32 (and derivatives)
coldfirevV4 uint32 1 Later coldfire processors
arm uint32 2 AcornRISC Machine
amd64 uint32 3 AMD64

sparc uint32 4 Sun 32-biSPARC

sparc64 uint32 5 Sun 64-biSPARC

ia64 uint32 6 IntellTANIC

FC Fault (exception) codes.

The fault code provides a mostly machine independent remguafi the exception codes returned by the pro-
cessor, plus a small number of additional exceptions géseiay kernel software. Some architectures (notably
IA32 ) extend this code space with additional, architecturesifipeextensionsFC code points beginning at 128
are reserved for architecture-specific fault codes.

Name Type Value Description
NoFault uint8 0 Process currently does not have any fault.
MalformedSyscall uint8 1 System call parameters were malformed, or system

call number unknown.
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Name

SoftNotice
SliceExpired
InvalidDataReference
InvalidCapReference
NoExecute

AccessViolation
DataAccessTypeError
CapAccessTypeError
MisalignedReference
TraverseLimit
MalformedSpace
Notify

Startup

NoAddrSpace

NoSchedule
BreakPoint

BrokePoint

Type
uint8
uint8
uint8
uint8
uint8

uint8
uint8
uint8
uint8
uint8
uint8
uint8

uint8

uint8

uint8
uint8

uint8

Value

OO, WN

o

10

12

13

24

25

32

33
34

35

77

Description

An application-defined interrupt is being delivered
Slice expiration occurred.

Issued data reference address was undefined.

Issued capability reference address was undefined.
Insufficient access rights for instruction referenc

Note that this exception will be generated only on ma-
chines that provide thdXpermission bit or equivalent
functionality.

Cannot write to specified address.

A data load/store was attempted to a capability page.
A capability load/store was attempted to a data page o
1/0 page.

Reference to item at misaligned address. Noteltisat t
is not considered a memory error.

GPTtraversal limit exceeded in address space refer-
ence.

Address spaggPTarrangementis malformed, GPT
contains an inappropriate capability type.

Issued to ensure notification delivery to in-praces
fault handler.

Issued when a process is first made running to allow
activation handler to initialize.

Process has invalid/maltyped address space diapabi
Bug: Not sure this can ever be issued — won't
this simply manifest as one @fatalnvalidAddr ,
CaplnvalidAddr , orlOlnvalidAddr  ?

Process has invalid/maltyped schedule capability
Process encountered a breakpoint instruction
(PC=&bpt).

This fault code is used on architectures where the
breakpoint instruction does not advance the program
counter, or when the kernel can automatically roll the
program counter back to point to the breakpoint in-
struction.

Process encountered a breakpoint instruction
(PC=&bpt+1).

This fault code is used on architectures where it is im-
possible to automatically recover the correct address
of the breakpoint instruction. On architectures where
the address of the breakpoint instruction can be reli-
ably re-established in software, the kernel will back up
the instruction pointer and report thi&greakPoint
exception instead.
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Name Type Value Description

BadOpcode uint8 36 Process issued an illegal or unknown instruction.

Alien uint8 37 Process marked as “alien” performed an invocatien i
struction.

DivZero uint8 38 Process performed an integer divide by zero

BadAlign uint8 39 Process performed a checked misaligned memory ref-
erence.

NoFPU uint8 40 No floating point unit available.

This exception indicates that there is neither a hard-
ware floating point unit nor a kernel-provided software
emulation available on this machine.

FPfault uint8 41 Unsupported floating point instruction.
Other floating point error. More detailed information
about the error should be obtained by executing the
architecture specifiGetRegsFP () operation and ex-
amining the appropriate floating point status register.

Debug uint8 42 Debug Exception
A hardware debugging event has occurred.

Overflow uint8 44 Overflow trap.

Bounds uint8 45 Bounds Violation.

SysCallEntry uint8 46 Trap on Start of Invocation

SysCallReturn uint8 47 Trap on Post-Receive

ActivationFail uint8 48 Trap on Post-Receive

ObjectContentLost uint8 49 Backing store has unrecoverably lost the stateisf th
object.

GeneralProtection  uint8 128 General Protection fault.

StackSeg uint8 129 Stack Segment fault.

SegNotPresent uint8 130 Segment Not Present fault.

SIMDfp uint8 131 SIMD floating point error.

cslot Capability slots of a process.

This is obsolete

Name Type  Value Description

handler uint32 0 Fault handler.

addrSpace uint32 1 Address space.

schedule  uint32 2 Schedule.

ioSpace uint32 3 IO address space

cohort uint32 4 Cohort capability.
Operations

resume Resume the process.

void resume(
bool cancelFault);

Raises:NoAccess

Transitions the process to the ready state. When ready,cegsavill initiate new instructions according to its
schedule, and may make progress in an invocatiocaiicelFault  is true, resume the process with its fault
code set td-C.NoFault

setSpaceAndPC Sets the address space &fdvalue as a single operation, and transitions the targeggsm the
running state.
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void setSpaceAndPC(
Cap newAS,
archaddr _t newPC);

Atomically installsnewASin the address space slot amelWwPCin the program counter slot. Typically used by
a process on itself to switch to/from protospace.

If the operation is performed on the invoker, the load midtipaps and send phase are marked completed in the
invoker register set. If the operation is performed on thekee, these phases will already have completed.

Note that if this operation is performed on the invoker, feefively causes the system call to be aborted after a
successful kernel operation but without a receive or stoustipte capabilities phase during the current kernel
invocation. If this operation is performed on the invokde invokee is logically made running immediately,
with the effect that the invokee receive phase is similaglyrinated and no store multiple capabilities phase
occurs during the current kernel invocation.

The phrase "during the current kernel invocation” address@eculiar corner case. If the target proceg&s
andAS point to the system call trap instruction prior to invocati@and the result o$etSpaceAndPC is to
set them to their prior values, the target process will resioy re-executing the system call trap. Depending
on how much progress the target process has made duringstensyall, it may or may not then complete the
system call by performing a receive phase and/or a storaptauttapabilities phase. Note, however, that these
actions will occur in thesubsequenhvocation.

getState Retrieve architecture-neutral state.

void getState(
OUT FC faultCode,
OUT archaddr _t faultinfo);

This interface is subject to change; at some poimState and notices will be added, and everything will
move into a structure.
setState Set architecture-neutral state.

void setState(
FC faultCode,
archaddr _t faultinfo);

This interface will fail withRequestError  if faultCode is FC_NoFault andfaultinfo is non-zero.
This interface is subject to change; at some poimState and notices will be added, and everything will
move into a structure. (note that this interface wilver be able to setunState )

getSlot Retrieve the capability stored in the specified capability. s
Cap getSlot(

cslot slot);

setSlot Store the supplied capability stored to the specified cdipablot. If the type of the stored capability is

unsuitable for the slot, thRequestError  exception is raised.

void setSlot(
cslot slot,
Cap c);

Raises:RequestError

getCapReg Retrieve the capability stored in the specified capabiétjister.

Cap getCapReg(
capRegister req);

Raises:RequestError
If reg is out of bounds¥$= 32), theRequestError  exception is raised.



80 COYOTCS. PROCESS

setCapReg Store the supplied capability stored to the specified cdipak@gister.

void setCapReg(
capRegister reg,
Cap c);
Raises:RequestError
If reg is outof bounds¥=32), theRequestError exceptionis raised. ifeg is zero, theRequestError

exception is raised.

identifyEntryWithBrand Identify whether the passed entry capabitityt is an entry capability to a process whose
brand matchebrand.

bool identifyEntryWithBrand(

Cap ent,

Cap brand,

OUT payload _t pp,

OUT uint64 eplD,

OUT bool isMe);
Returns true ient is an entry capability, and tHeand slot of the process designated (indirectly) by the entry
capability matches the argument capabititgnd.  If so, then the endpoinD value of the endpoint named by
ent is returned ineplD and the protected payload valueeft is returned inpp. Otherwise, returns false,
eplD andpp are zero, anisMe s false.

If the endpoint names the invoked process capabitiMe will be true.

identifyEntry Identify whether the passed entry capabilgt is an entry capability to a process whose brand
matches ours.

bool identifyEntry(

Cap ent,

OUT payload _t pp,

OUT uint64 eplD,

OUT bool isMe);
Functional specification is identical Rrocess.identifyEntryWithBrand , except that the brand used
for comparison will be taken from the brand slot of the pracéesignated by the process capability that was

invoked.
amplifyCohortEntry Identify whether the passed entry capabibtyt is an entry capability to a peer thread.

bool amplifyCohortEntry(

Cap ent,

OUT payload _t pp,

OUT uint64 eplD,

OUT Process peer);
Return true ifent is an entry capability, and thewhort  slot of the process designated (indirectly) by the entry
capability matches theohort  slot of the invoked process.

If the capabilityent doesname a peer process, returns the endp@invalue inepiD,
protected payload value pp, and the peer process capabilitypgeer.

the entry capability’s
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Interface coyotos.ProcessHandler

Derivation:
coyotos.Cap
coyot 0s. ProcessHandl er

Synopsis:Kernel interface for per-process fault handlers.

A fault handler should implement this interface on its emdoint capability. When delivering a fault to an external
handler, the kernel will upcall the fault according to thetoicol of this interface.

Operations

handle Kernel-invoked entry point for process fault handler.

/* oneway =*/ void handle(
Process proc,
Process.FC faultCode,
uinté4 faultinfo);

This entry point is invoked by the kernel. The capabiptypc names the process that incurred the fault. The
fault  structure provides the fault code and the issued addresielwhe fault occurred.

Whether the fault will be resolved is at the discretion of itneoked handler. If the handler chooses to resolve
the fault, it should take any action necessary to preventrence and then call tHerocess.resume  method
with theclearFault parameter set to true.

Note that in contrast ttdemoryHandler.handle |, the process capability provided here is a full-strength
capability.

Note that this is a oneway method; no reply is expected. Thelulity supplied in the reply slot at the time of
upcall will be the Null capability. Merely replying in the neentional way isot sufficient to restart the faulted
process.
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Interface coyotos.Range

Derivation:
coyotos.Cap
coyot os. Range

Synopsis:Kernel interface to object ranges.
The Range interface provides the primitive means for thecation and deallocation of object capabilities.

All allocation operations return objects whose data fields set to zero and whose capability fields are set to
cap.null

Constants

Name Type Value Description
devOidStart oidt 18374686479671623680 Beginning of physiodéD frames.

OIDs in the range [0xff00000000000000ul,
Oxffffffffffffffffull] are reserved for physical ob-
ject frame allocations associated with device memory.
Allocating one of theseOIDs has the effect of
allocating the physical object frame whose frame
numbern is (0id-0xff00000000000000ull), provided
that a corresponding object frame of the requested
type exists within the appropriate kernel object vector.

Type Definitions

oid_t Type of an objectD .
typedef uint64 oid t;

Exceptions

RangeErr Attempted to allocate object from unbacked/undefined range
NotMounted Attempt was made to allocate an object from a dismountederang

IoErr  An 1/O error occurred during object allocation.

AllocCountRollover Requested object could not be allocated because the alocatunt has reached its maximal
value.
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Enumerations

obType Object types returned by identify.
This must match the enumeration in obst@eFrameType.h

Bug: At some point the enumeration here should become defindive the enumeration @bFrameType.h
should be retired.

Name Type Value
otPage uint32 0
otCapPage uint32 1
otGPT uint32 2
otProcess uint32 3
otEndpoint uint32 4
otNUM_TYPES uint32 5
otlnvalid uint32 4294967295
Operations
identify Identify an object.
void identify(
Cap c,

OUT obType type,
OUT uint64 offset);

Determines th®ID and type of an object. If the capabilityis a non-object capability, he reportgge  will
beotlnvalid and the reportedffset  will be 0.

rescind Rescind an object.

void rescind(

Cap c);
Rescinds the passed capability if it is the “full poweredfiaat of this capability type. That is: a read-write
page, cappage, or gpt capability, a process capabilityndpant capability, or a rcvqueue capability, but not
an enty capability or any reduced form of page/cappage dlitgab

nextBackedSubrange Report next populated subrange.

void nextBackedSubrange(
oid _t startOffset,
obType type,
OUT oid_t base,
OUT oid_t bound);

Returns the offset and length of then next subrange of type for which backing objects actually exist,
starting the search at offsestartOffset / of the passed range key.

Note: This operation may be obsoleted in future versions of tierface, as the idea @ID to location corre-
spondence may away.

getCap Create capability to object.

Cap getCap(
oid _t oid,
obType ty);

Raises:RangeErrNotMountedAllocCountRollover

Returns object capability to an object of the specified typdaving the givemid. If the range is dismounted
or otherwise unavailable, this operation will throw an epten.
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waitCap Create capability to object (blocking).

Cap waitCap(

oid _t oid,

obType ty);
Raises:AllocCountRollover

Returns an object capability to an object of the specifie@ typ having the giveroid. If the range is dis-
mounted or otherwise unavailable, this operation will Blaatil it becomes available.

getProcess Create capability to process.

Process getProcess(
oid _t oid,
Cap brand);

Raises:RangeErrNotMountedAllocCountRollover

Creates a process capability having the specifidld The process brand slot will be initialized to the value
of brand.  If the range is dismounted or otherwise unavailable, thisragon will throw theRangeErr
exception.

waitProcess Create capability to process (blocking).

Process waitProcess(
oid _t oid,
Cap brand);

Raises:AllocCountRollover

Creates a process capability having the specifidd The process brand slot will be initialized to the value
of brand. If the range is dismounted or otherwise unavailable, thisrafion will block until it becomes
available.
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Interface coyotos.RcvQueue

Derivation:
coyotos.Cap
coyot 0os. RcvQueue

Synopsis:Receive queue interface.

This interface is a place-holder for a future implementatiwat may never happen. This interface may be dropped in
future specification revisions.

Operations

dequeue Dequeue an endpoint from this receive queue if one is preaedtreturn a capability to it viep. Return
value is true if an endpoint has been returned.

bool dequeue(
OUT Endpoint ep);
makeSendCap Fabricate a sender’s capability to this receive queue.

Cap makeSendCap(
payload _t payload);

85



coyot os. SchedCt |

Interface coyotos.SchedCtl

Derivation:
coyotos.Cap
coyot 0s. SchedCt |

Synopsis:Low-level scheduler control capability.
THI S| SA PLACEHOLDER

This will eventually be the interface that is used by the agpion-level admission control agent to introduce new
entries into the kernel schedule table.
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Interface coyotos.Schedule

Derivation:
coyotos.Cap
coyot 0s. Schedul e

Synopsis:Base scheduling interface.
THI S1 SA PLACEHOLDER
This will eventually be the interface that is used by an aggtion to define its scheduling criteria.
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Interface coyotos.Sleep

Derivation:
coyotos.Cap
coyot o0s. Sl eep

Synopsis:Kernel delay mechanism.

The sleep capability allows a process to block for a speciieribd of time. Note that the sleep(), if any, happens
before the reply. Itis the invoker rather than the invoke@wlocks.

In contrast to all other kernel interfaces, the sleep cditybontrives to be in a non-receiving state until the resped
interval has expired.

Operations

sleepTill Sleep until the specified number of secosds and microsecondssec have passed since the beginning
of the current restart epoch.

void sleepTill(
uint32 sec,
uint32 usec);

RaisesRequestError  if usec >=100
sleepFor Sleep until the specified number of secosds and microsecondssec have passed. Note that this will
be re-written by the kernel intosleepTill invocation.

void sleepFor(
uint32 sec,
uint32 usec);
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Interface coyotos.SysCitl

Derivation:
coyotos.Cap
coyot 0s. SysCt |

Synopsis: System control capability

This capability provides the authority to perform low-léwystem control functions, notably halt, shutdown, and
reboot.

Operations

halt Halt the system immediately. This is primarily useful fortkel debugging.
void halt();

powerdown Power the hardware down.
void powerdown();

reboot Reboot the hardware.
void reboot();
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Interface coyotos.Window

Derivation:
coyotos.Cap
coyotos.Memory
coyot os. W ndow

Synopsis:Address space background window interface

Operations

getOffset Retrieve the offset value stored in this window capability.
coyaddr _t getOffset();
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Abstract Interface coyotos.coldfire.Process

Derivation:
coyotos.Cap
coyotos.Process
coyot os. col dfire. Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interfaaw. niany operations of interest the architecture dependent
interface should be consulted.

Structures

fixregs Architecture-specific fixed-point registers layout

struct fixregg

uint32 ExceptAddr; Other address associated with excepsioch as page
fault virtual address.

uint32  d[8];

uint32  a[8];

uint32 ExceptWord; First word of exception frame. This unbés the con-
dition code register in its least byte.

uint32 ExceptPC;  PCof instruction incurring exception.
This is usually the current program counter.

h
floatregs Architecture-specific floating point registers.
struct floatreg$
uint32  fpcr;
uint32  fpsr;
uint32 fpiar;
uinté4  fp[8];
h

emacregs Extended multiply-accumulate unit registers.

struct emacreds
uint32 macsr;
uint32 acc[4];
uint32 accExt01;
uint32 accExt23;
uint32 mask;
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Operations

getFixRegs Fetch the fixed-point register set.
fixregs getFixRegs();
setFixRegs Set the fixed-point register set.

void setFixRegs(
fixregs regs);

The overwrite of the register set area occurs atomically.

A RequestError  exception will be raised if the size of the provided registiencture does not match the size
of the register set being updated.

getFloatRegs Fetch the floating-point register set.
floatregs getFloatRegs();

setFloatRegs Set the floating-point register set.

void setFloatRegs(
floatregs regs);

The overwrite of the register set area occurs atomically.

A RequestError  exception will be raised if the size of the provided registeucture does not match the size
of the register set being updated.

getEmacRegs Fetch theEMAQunit register set.
emacregs getEmacRegs();

setEmacRegs Set theEMAQunit register set.

void setEmacRegs(
emacregs regs);

The overwrite of the register set area occurs atomically.

A RequestError  exception will be raised if the size of the provided registeucture does not match the size
of the register set being updated.
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Abstract Interface coyotos.i386.Process

Derivation:
coyotos.Cap
coyotos.Process
coyot 0s. i 386. Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interfaaw. niany operations of interest the architecture dependent
interface should be consulted.

Type Definitions

ssereg typedef uint32 sse _reg[4];

Structures

fixregs Architecture-specific fixed-point registers layout

struct fixregg

uint32 EDI;

uint32 ESI;

uint32 EBP;

uint32  ExceptAddr;
uint32 EBX;

uint32 EDX;

uint32 ECX;

uint32 EAX;

uint32  ExceptNo;
uint32  Error;

uint32 EIP;
uint32 CS;
uint32 EFLAGS;
uint32 ESP;
uint32  SS;
uint32 ES;
uint32 DS;
uint32 FS;
uint32 GS;

b

floatregs Architecture-specific floating point ar®IMD registers layout.
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struct floatreg$
uintle  fcw;
uintle  fsw;
uintle  ftw;
uintle  fop;
uint32  eip;
uint32  cs;
uint32  dp;
uint32  ds;

uint32  mxcsr;
uint32  mxcsrmask;
ssereg fpr[8];
ssereg xmm[8];
b
There is a policy problem here: Intel changed the formatisg@in the Pentiunlll (FSAVE-> FXSAVE,
and they have reserved space for future extensions. Thisgai tricky question about what to present at the
interface.

It is possible to reconstruct tHteSAVEinformation from theFXSAVEinformation. It is also possible to run
on an older machine by initializing th8SE slots to well-defined values and pretending that sinceSB8&
instructions were executed the state must not have chaigedlis what we do here.

This leaves us with the question of what type to present aintieeface. Our sense is that it is better to present
a well-defined, shorter structure than to give a generattira whose internals will need to be edited later. If
necessary we can add a new fetch operation to deal with faiiemsions t&SE state.

Operations

getFixRegs Fetch the fixed-point register set.
fixregs getFixRegs();

setFixRegs Set the fixed-point register set.

void setFixRegs(
fixregs regs);

The overwrite of the register set area occurs atomically.
A RequestError  exception will be raised if the size of the provided registeucture does not match the size
of the register set being updated.
getFloatRegs Fetch the floating-point an8IMD register set.
floatregs getFloatRegs();

setFloatRegs Set the floating-point an8IMD register set.

void setFloatRegs(
floatregs regs);

The overwrite of the register set area occurs atomically.

A RequestError  exception will be raised if the size of the provided registeucture does not match the size
of the register set being updated.
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Appendix A

|A-32 Interface

The kernel header fileoyotos/i386/UPCB.h defines the UPCB layout for this architecture.

A.1 Execution Models

The 1A-32 implementation supports the “small spaces” ofation. If a process restricts its address references
(ignoring KIP references) to the inclusive range [0, 0x1@0the kernel will attempt to run it in a small space region.
Control transfers between two applications running in alatress space, or between a large address space and a
small address space, are significantly faster than largeesgantrol transfer.

By referencing an address outside of the small space boupighcass signals that it wishes to be treated as a large
address space process. The user-mode addressable ranigegef address space is [0x0,0xC0000000]. Because this
transition is transparent to the process, the value retliogé& SL (load segment limit) is subject to change between any
two instructions. The transition between large and small@sk space models is otherwise transparent to application
code.

A.2 System Call Trap Interface

In all cases the register utilization convention follows tequirements of SYSENTER:

Register Input Output

EAX IPRO OPRO

EBX IPR1 OPR1

ECX Post-syscall SP Undefined

EDX Post-syscall return PC Undefined

ESI IPR2 OPR2

EDI IPR3 OPR3

EBP InvokeCap: invCap InvokeCap: rcvPP
Other: unused Other: unal tered

ESP Unavailable input ECX value

Table A.1: System call entry and exit conventions.
Different generations of IA-32 implementations requirBetient system call implementations for efficiency. Depend

ing on the hardware implementation, either a software iotgr(int $0x31 ) the SYSENTERinstruction, or the
SYSCALL instruction may be used. The software interrupt entry poiat be used on all platforms. The preferred
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entry and exit mechanism is left to the kernel implementatibhe kernel publishes the preferred mechanism via the
kernel interface page The system call trap instruction appears at offset zerbisfriage.

The kernel interface page is mapped into all user addresesza a well-knowfar address0x32:0 .* The protocol

for invoking the preferred system call trap instruction @gsrarshal all arguments and perfornfaa jump to this
address. The use of a far address allows the kernel inteplage to be accessible to both large and small address
spaces within a single compilation and execution model.s Bidress is a well-known constant that is part of the
architecture specification, and will not change in futuresiens of Coyotos.

A.3 Virtual Registers

The architecture defines the following locations for inpntlautput parameters, buffer registers, and capability in-
vocation paramaters. Locations described with an identiditner than a register name indicate a field in the UPCB
structure.

Virtual Register Location Virtual Register Location

IPRO Y%eax OPRO Y%eax

IPR1 %ebx OPR1 %ebx

IPR2 %esi OPR2 %esi

IPR3 %edi OPR3 %edi
IPR4..IPR7 caller stack OPRA4..0PRY receiver stack
invCap caller stack rcvPP softregs.rcvPP
rcvEplD softregs.eplD

Values in thesoftregs  structure are copied out to the receiver stack after theveghase if IPR0O.CO is set (1).

A.4 Thread ldentification

This section is stale

The first two words of the UPCB are used by the applicatiomlleuntime system to provide support for multi-
threading. Word O should be used by the multi-threadinglipto store the pointer to the thread control block. Word
1 should be used to store the virtual address of the UPCB, iesebeen by the application. Neither word is initialized
by the kernel. Provided the address range exposed fallsntile user-mode addressable range, the value of UPCB
word 1 is loaded as the base address of the segment named bywiils & limit value of 0x1000.

The critical effect of this is that %GS:0 can be used to loadistare the application-level thread control block pointer
which is in turn used to access thread-local storage [21].

Open Issue

While storing the UPCB VA in the UPCB is attractive, it is naaessarily efficient. The problem is that
the value must be range checked on every kernel exit becaoar be modified by user-mode code. It
may be better to introduce a system call for this and storettié Process instead.

A.5 Device Ranges

A minimum of 16 device ranges, each supporting 16 device gagast be provided by the implementation.

1 The selector value is provisional.
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The Coyotos specification may be seen as defining an absteattine architecture. In a real-world implementation,
this abstract machine must be mapped on to a combinationrdiaae and software by the kernel implementation.
This mapping must satisfy two properties:

e The permissions of the implementation state must never exed those of the abstract stateAny instruction
whose effect is permitted by the implementation state maspdrmitted by the abstract machine state. The
implementation state is a conservative approximation efthstract state.

e Ignoring latency, every instruction whose execution is penitted by the abstract machine must ultimately
be permitted by the implementation. The implementation state is an approximation of the abisstate that
is constructed on demand.

The means by which demand update is triggered are the systiétrap and the various protection and permis-
sions violation traps. This induces several requirementhie underlying hardware:

— The hardware must implement page-granularity protectjonbetter) in its memory management unit.

— The hardware must implement precise exceptions — or precisagh that the software implementation
can correct them (e.g. the Pentium family’s breakpoint in@prrectly advances the program counter, but
the amount of the advance is known and be corrected in saftwar

— Preferred hardware must implement a “no-execute” permissthis is a recently rediscovered feature in

the hardware world, and the specification does not reduipermissions to be enforced on hardware that
does not provide this feature.

Any change to the abstract state that reduces permissiosshaueflected by an immediate change in the hardware
state that (conservatively) maintains these invariants.sdme cases it is not obvious how to do this. This part
of the specification discusses possible implementatiomiigaes for several key parts of the dependency tracking
implementation.

The entirety of this part is non-normative.
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Appendix B

Implementation of Capabilities

Because so much of any implementation depends on the ihteprasentation of capabilities, we begin with a brief
discussion of capability representation choices.

It is convenient for capabilities to have two forms, which eal prepared andunprepared. The unprepared form

is the one described in Section™2.1. TRbIt indicates whether the capability is prepared (1) or epared (0). The
representation of a prepared capability is a matter thatiigfe to the kernel. When the kernel discloses capability
representation to application codealtvaysdiscloses the unprepared format.

B.1 Unprepared Capabilities

An unprepared capability may be valid or invalid, becauss itot known from the capability whether the object it
names has been destroyed subsequent to the creation ofghkiltg. This can only be known by comparing the
allocCount  of the capability to thellocCount  of the object itself.

Assuming the capability is valid, the object designated yaprepared capability may or may not be in memory.
This can only be determined by performing an object lookugisoover whether the object is in memory. In all current
implementations of KeyKOS, EROS, and Coyotos, a hash taliiaintained that provides a mapping from object id
(OID) to the actual object for every object that is currently inmogy. In systems supporting transparent persistence,
there may béwo objects for a giver®ID: the current one and the one that was current at the time daghanapshot.

B.2 Prepared Capabilities — Linked Implementation

In KeyKOS and EROS, a prepared capability designates arctothjat is known to be in memory. The prepared
capability points directly to this object. In addition, tipeepared capability resides on a “key chain”, which is a
circularly linked list whose “head” is part of the object ldea This allows the object to be efficiently found given the
capability, and also allows all prepared capabilities tdduad given the object.

Capability

Object

%

Figure B.1: EROS/KeyKOS key chain
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There are several advantages to this design:

e Once a capability is determined to be prepared, the objéctas/n to be in memory as a consequence of invari-
ants, and few further checks related to residency or wethfxiness are necessary. In addition, the capability is
known to be valid, in the sense that@#$ocCount  matches that of the target object.

e When an object is destroyed, it is straightforward to lo¢hgeactive capabilities to the object and rewrite them
as invalid capabilities.

e When an object is to be removed from memory, it is straightfod to locate all capabilities to the object and
restore them to their unprepared form.

¢ Ineither the destruction or pageout case, it is straightfod to identify thdocationsof all prepared capabilities.
KeyKOS and EROS exploit this property very aggressivelyeylimaintain a significant amount of dependency
information in hashed structures that are indexed by céipabidress. For example, the KeyKOS/EROS “de-
pend table” is a hash table of (capability address, page ity address) pairs.

However, there is a key disadvantage as well:

e Capability copy is a frequent operation. Empirically, waufal in EROS that many copied capabilities were
prepared, that most overwritten capabilities were prefhassmd that updating the key chain when both the
source and destination capabilities are prepared entai® tcache misses per copy to access the neighbors
(Figure 10.2). On modern machines, this cost is a substdra@ion of the total IPC cost.

e Capability invocation may take time @) wheren is the size of memory. This is possible because an arbitrary
number of resume capabilities may accumulate on the keychad the chain needs to be traversed in order to
destroy them.

by by

| Capabilty | | capabilty |

Py Py

[ capaviity | —>| capabilty |

t o by

‘ Capability ‘ ‘ Capability ‘

by by

Figure B.2: EROS/KeyKOS key copy

B.3 Prepared Capabilities — Scavenged Implementation

In Coyotos, a prepared capability dosst guarantee either that the target object is in memory or thafprepared
capability is valid. We are accepting weaker invariantsriten to improve capability copy performance. Instead of a
linked list, the relationship between a capability and tgect is shown in Figure 10.3.

In this design, the capability points to the object (equewdlly: holds an index), but also contains a pointer (equiva-
lently: an index) to arDbTable structure. The object pointer is valid only if the capakitObTable reference
matches th®©bTable reference in the object itself. The purpose of @&Table structure is to hold the information
needed to deprepare the capability back to its on-disk fofimis consists of a copy of the object ID (because that
field of the capability is overwritten by the references) angalid bit. Under normal circumstances, an object has one
ObTable entry?!

1 There may be none if there are no prepared capabilities sodhject, but this is a transient case because object pageriduced only by
capability preparation.
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Capability

N

Object

N
N
N

Y
’ ObTable Entry

Figure B.3: Capability/object relationship

When an object is paged out, the first step is to chang®thiEable reference in the object header to Null. This
ensures that all outstanding capabilities will be depregéack to their on-disk format. When an object is destroyed,
the valid bit in the currenObTable entry is set to “invalid” before th®©bTable reference in the object header
is nullified. In this situation, outstanding capabilitieslivibe deprepared to the Null capability. Capabilities are
deprepared through a combination of proactive update wikeicantaining object is written to store and background
scavenging.

B.3.1 Scavenging

This design requires an oversupply@bTable structuresObTable structures are freed by background scavenging.
The scavenging proceeds as follows:

1. Make a pass over abbTable structures. Mark the ones that are current. Clear the matk®wones that are
not current.

2. Traverse all in-memory objects that contain capabditieor each capability:

e Ifthe ObTable entry is current, leave the capability alone.
e Ifthe ObTable entry is invalid, deprepare the capability to null.
e Ifthe ObTable entry is valid but not current, deprepare the capabilitykdtadt’s on-disk form.

3. Make a second pass over@lbTable structures, placing the unmarked structures onto the fsee |

This algorithm can be implemented incrementally by for@gogne progress whenever@bTable entry is allocated.

Note that the algorithm isottrying to detect unreferenced objects. This is the reslitgiof the aging logic, which
is handled separately.

When the algorithm is executed incrementally, there is thealirace between the mark pass and the mutator that is
copying and overwriting references. The unfortunate casied sequence where:

1. The mark pass has moved past capability slot A, but hasaiaegched slot B.
2. Slot B holds the only outstanding capability to some abjec
3. Acopy is made from slot B to slot A.

4. Slot B is overwritten before it is reached by the mark passow holds the only capability to th@bTable
entry, but it will not be seen by the mark pass.

Note that the race condition does not matter if B igadid capability, because in this case tBbTable structure is
already marked. The issue arises only when B ignaalid capability. The race is resolved by checking whenever a
prepared capability is copied, and updating the newly emittapability to the null capability if it is invalid.
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B.3.2 Pros and Cons

The primary advantage of this design over the KeyKOS/ERG®ydds speed of capability copy. There is only one
marginal cache miss per copy, which is the probe that chéuksapability for validity. If it is feasible to scan all
processes in a non-incremental fashion, this probe caritbaated in the fast IPC path because any copy proceeding
froma capability register does not need to be checked for validiie need for this optimization should be guided by
measurement, and our initial implementation will not afeimh

The main disadvantage is that this design requires an irem&ghscavenging pass whose performance cost is not yet
known.



Appendix C

Mapping Dependencies

The most challenging set of structures to design in the Gmymhplementation is the mechanism for keeping GPT
structures, objects, and page table entries consisterteBie three requirements:

1. When a page is destroyed or removed from memory, all pdge &ntries that point to that page must be
invalidated.

2. When a GPT is destroyed or removed from memory, all culyestid translations in the page table structures
that were constructed by traversing the GPT must be invaitla

3. When a capability slot within a GPT is overwritten, all mntly valid translations in the page table structures
that were constructed by traversing that slot of the GPT rbestvalidated. This may viewed as a sub-case of

).

C.1 Page Removal

In KeyKOS and EROS, the key chain meant that any implememtafirequirement (3) also satisfied requirement (1).
When a page is removed from memory, its key chain can be saddo locate all of the capability slots that reference
the page. These can then be used to invalidate the necessgyable entries.

In the Coyotos implementation, which does not have a keynchaé maintain a reverse page table structure known
asPTEL . For every valid page table entry in the hardware page taidemaintain a reverse entry that provides a
mapping from the physical object address to the kernel &iddress of its referencing page table entry.

In systems having hierarchical page tables, we maintainitiierse page table structure at all levels of the tramsiati
hierarchy. This allows mapping tables to be aged and reeléim

C.2 GPT Dependencies

The statement of requirements in (2, 3) is a bit subtle. Thagitforward implementation of these requirements

is to record a pairwise relationship between capability alidresses and page table entry addresses, and use this to
invalidate all page table entries when a slot is overwritiea GPT is removed. This was, in essence, the implemen-
tation used by KeyKOS and EROS, and it is fairly straightfamivto see why it satisfies the requirement that “the
permissions of the implementation state must never exdeesttof the abstract state.” However, this implementation

is both unnecessarily aggressive and unnecessarily eixpens

Because we do not rely on key rings for page removal, Coyoéssdtightly different properties than KeyKOS or
EROS. Whenever we consider changing the value of a slot, wayal have the address of its containing GPT in
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hand?. Coyotos therefore maintains a dependency table that maps@PT addresses to page table entry addresses.
There may be multiple entries in this table for a given GPTisTan happen for two reasons:

1. A GPT may produce multiple page tables because it spangpiewutntries in a page directory (Figure 11.1).
This arises only in hardware system having hierarchicaldi@ion systems, but it can arise at any “layer” of the
translation system. In fact, a single GPT can span three oe hagers if it describes the only valid path across
multiple levels of the hardware tables.

2. Because of page table reuse, a GPT may produce both réadnairead-write variants of the same page table.

Page
Directory

Page 000 Page .
Table Table |9 Dits I 7 bits

Figure C.1: Capability/object relationship

The hierarchical case is complicated by the desire for pagke tsharing. In KeyKOS and EROS, we recorded de-
pendency information at all implicated levels of the hardwiaanslation hierarchy. In Coyotos we do not. Instead,
we record dependencies only when the GPT wholly or part@ddigninates the hardware table. This is sufficient to
let is invalidate allpathsthrough the hardware tree that are implicated by change<@B® It doesot allow us to
invalidate all of the page table entries, but we assert ghiet actually necessary to satisfy the requirements.

This assertion imot obvious and will need to be confirmed by demonstration as weldp a statement of invariants
maintained by the translation logic in this case. The sulegtaf it, however, is that valid entries higher in the hardwa
structures do not matter if all of the lower entries they spescorrectly invalidated. If the GPT is being destroyed,
the lower tables will in due course be reclaimed and the hitghesl page table entries will then be invalidated. If
the GPT is being overwritten, the higher-level page tabtéenwould get rebuilt in any case, and the permissions of
the lower-level page table entries are sufficient to enswanaervative mapping of the abstract machine’s permission
state.

C.3 Optimizations

Ironically, the new structure should be more compact tharotd structure.

Inverse Page Table ThePTEL table requires only a single word per entry, because thet@oia the PTE can be
used to read the physical page address in order to detecthbisions and stale dependency table entries.

Observe further that the majority of pages and page tables daly one or two simultaneous page table entries. A
possible storage optimization is to dedicate ®WBE1 entries in the frame management structures for each of these
leaving the gener®TE1 table to handle only those pages that are widely shared. M¢htitis is worthwhile depends
on whether a sulfficiently good hash function can be discalver&eep hash chains short in the usual case.

GPT Dependencies Because we use GPT object pointers rather than GPT slogpsintthe GPT dependency table,
our GPT dependency table will have a factor of 16 (well, givederutilization probably a factor of 5 to 8) reduction
in space requirements compared to the old dependencyrigaskheme.

Observe that while a GPT may produce entries in multiple gagees, it always producek 2ntries at a natural
alignment boundary within those tables. This statemenisis tue of GPTslots and offered a basis for run length

1 In EROS, we knew the location of the vector of Nodes (the psamuo GPTs), and we could use this knowledge to infer theaioimg Node
address from any given Node slot address. This inferencetisnemory safe, and we wanted to avoid it in Coyotos in ardiogm of later
verification efforts.
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compression of the GPT dependency table in some impleni@msat/Ve note that this option remains available in the
new implementation.
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