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Preface

Coyotos is a security microkernel. It is a microkernel in thesense that it is a minimal protected platform on which a
complete operating system can be constructed. It is a security microkernel in the sense that it is a minimal protected
platform on which higher level security policies can be constructed.

The Original Plan

As originally conceived, Coyotos was intended to be a relatively minor departure from its predecessor, EROS [6].
EROS [4] was a small, robust microkernel whose central design ideas were pervasive use of capabilities [11] as the
fundamental access model, an atomic, blocking capability invocation (therefore atomic and blocking IPC) model , and
a persistent single-level store [5]. All of these features were inherited with some revision from the KeyKOS system.
[2] Early application-level work on EROS, notably the defensible network system [10] and the secure window system
[8] revealed areas where the EROS architecture would clearly benefit from refinement, but did not initially suggest
fundamental shortcomings in the architecture. Coyotos wasto have been that minor refinement, incorporating a new
IPC primitive called “endpoints” and a revised memory mapping entity called a PATT. Our main goals were cleanup,
consistency, and formalization.

For algorithmic reasons, the PATT idea did not survive into the current specification, and has been replaced by guarded
page tables [3, 1]. Though they were independently invented, guarded page tables may be seen as a generalization of
the level skipping techniques of the KeyKOS translation mechanism or the Motorola MC68851 memory management
unit [20]. The variant of guarded page tables incorporated here are modified to incorporate the fault handler and
background space mechanisms of KeyKOS and EROS.

In January 2004, a summit meeting of sorts occurred between the several research groups working on L4 derivatives
and Shapiro. The L4 Dresden group, in particular, wanted to get a better understanding of capability-based design
and kernel mechanisms, with the intent that these would be adapted into the L4 architecture [9]. The new kernel
architecture would come to be known as “L4.sec”. There was some discussion of merging the two kernels, but
no agreement could be reached on the future of L4’smap and unmap operation. While the failure to merge the
architectures was a disappointment, the idea that there would be a controlled experiment that would allow us to
directly evaluate themap/unmap approach against the EROSnode approach was a promising result in its own right.

Overrun by the Hurd

Events intervened in the form of Neal Walfield and Marcus Brinkmann, the current architects of the GNU Hurd
system. The Hurd is a protected, object-based operating system that was initially constructed on top of the Mach
microkernel. Mach has a variety of problems that have been thoroughly documented in the research literature. Of
particular importance to Hurd are a lack of resource accounting mechanisms and poor performance. As a result of
these issues, the Hurd project had provisionally decided tomove to L4.

Unfortunately, modeling copyable, protected object references using L4’smap/grant operations proved unexpect-
edly challenging. This left the Hurd project temporarily disrupted, leading Brinkmann and Walfield to seek more
information about capability-based design. An extended discussion between Shapiro, Walfield, and Brinkmann at the
2005 Libre Software Meetingabout capability systems in general and the plans for Coyotos ensued. As more informa-
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tion about the L4.sec design emerged [19], it became clear that copyable protected references might be problematic on
the L4.sec interface as well. Walfield and Brinkmann traveled to Baltimore for a month-long set of design discussions
in January 2006, leading to the current design for Coyotos.

In response to those discussions, we flirted for a while with introducing scheduler activations and a new IPC model. It
didn’t pan out. Initially, we thought that activations might be lighter weight than synchronous IPC. They aren’t, and
they introduce a lot of complexity in the exception handlingmodel. Through editing errors, you may still find traces
of that effort remaining in this document. If so, they are errors, and we would appreciate it if you might bring them to
our attention.

Coyotos Today

The version of Coyotos described here has come full circle, and returns to the basic model of the EROS system. The
primary differences are the introduction of endpoints, a first-class process object, and GPTs. It also reflects the January
2006 discussions between Walfield, Brinkmann, and Shapiro.As a result of those discussions, the architecture has
been challenged a bit harder than it had been. Coyotos retains the atomicity and pure capability-based design of the
EROS system.

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

August, 2007



Chapter 1

Overview

This document describes the abstractions, objects, and interface specifications (capability types) implemented by the
Coyotos microkernel. At some points it includes discussionof the intended model of usage by way of motivating or
explaining what has been incorporated. Such discussions are non-normative.

All kernel-implemented objects are named and manipulated by means of capabilities, which grant varying degrees of
authority according to the capability type. Developers canextend the system with new objects by deploying processes
that implement the associated interfaces. Several such application-implemented objects are part of the core Coyotos
system.

1.1 Microkernel Objects

The Coyotos kernel provides processes, GPTs (mapping structures), schedules, receive queues, pages, and a small
number of other kernel objects.

Processes Processes are the unit of execution, scheduling, and resource binding. A process names its address space,
its schedule (which governs their execution timing) and their fault handler (which receives notice of exceptions).

Schedules Schedules are an abstraction of computational resources. In order to execute instructions, a process must
name (via a capability) the schedule under which it runs. Theschedule, in turn, must convey authority to use one or
more processors under a defined scheduling contract.

GPTs GPTs are the unit of address mapping composition. An addressmapping is defined as a mapping from
addresses to capability slots, and is represented by a directed (potentially cyclic) graph of GPTs whose leaf capability
slots name atomic storage units (pages or capability pages). A virtual address is divided into avirtual page address
and apage offset. Valid virtual page addresses describe paths to leaf slots that contain data page or capability page
capabilities.

Endpoints An endpoint is a named rendezvous point between a message sender and a message receiver. Each
endpoint carries a receiver-interpreted endpoint identifier. In addition, each endpoint provides means for ensuring that
its capabilities can be used exactly once.

Receive Queues Receive queues provide a means for several processes to receive from a single endpoint. The
receive queue acts as a rendezvous point for the receiving processes. When a message is sent via the endpoint, the
kernel will select a waiting process from the receive queue and deliver the message to that receiver. This permits kernel
demultiplexing of receive processes, which enhances performance on multiprocessors.

Receive queues remain an experimental idea, and are not implemented by the current kernel.

Pages Pages are the atomic unit of data and capability storage allocation. An address space consists of a lattice of
GPTs whose leaves are pages. Pages are typed: a page may contain either data or capabilities, but not both. The size
of a page is determined by the underlying hardware architecture.

There are a small number of other kernel-implemented capabilities. These primarily provide protected transformation

1



2 CHAPTER 1. OVERVIEW

operations on capabilities.

1.2 Entry Capabilities and Extensibility

Endpoint objects have “entry capabilities”. An entry capability does not implement operations on the endpoint. In-
stead, it provides the means by which an application introduces new services. Any invocation of an entry capability is
delivered to the providing object server.

1.3 Checkpointing and Persistence

Coyotos is a persistent object system. Main memory is treated as acacheof a larger backing store. Objects are loaded
from backing store on demand and are rewritten to the backingstore as a consequence of age or checkpoint. Following
a system restart, persistent objects retain their state as of the last checkpoint. A checkpoint saves a “consistent cut”of
the system. In consequence, processes are recovered in sucha way that ongoing communications on the local machine
may be resumed without recovery effort.

Secure Restart On restart, any connection to the outside world isseveredif continued communication on that connec-
tion might (conservatively) require re-authentication. In particular, network and terminal connections are terminated.

Lost Objects One risk in this class of design is that objects may be permanently lost as a consequence of low-
level storage failures (e.g. sector errors). When backing store is not already duplexed, the Coyotos object store
implementation uses software duplexing of critical systemstructures. Applications may also use this mechanism if
desired.

The checkpoint management interfaces used in a driverless kernel are still being refined, and are not yet included in
this specification.

1.4 Process States and Exceptions

From the kernel perspective, a process has five run states:blocked, faulted, receiving, ready, andrunning . A blocked
process is waiting for a kernel resource. A ready process is attempting to execute instructions and is waiting for a CPU.
A running process is currently executing. A faulted processis not attempting to initiate instructions.

When a process incurs an exception, the Coyotos kernel synthesizes a message on behalf of the faulted process to
a fault handler. It is the responsibility of the fault handler to decide what to do. The kernel does not define a fault
handling policy.

1.5 Messages

From the sender perspective, message transmission is (nearly) atomic. From the receiver perspective, message transfer
occurs asynchronously. Arrival is signalled by a message completion event delivered to the receiver’s activation
handler.

Relaxed Data Atomicity Coyotos permits relaxed data atomicity for stateful messages. While a stateful receive is
pending, the data bytes of the receive area are considered undefined and may be modified by the kernel to arbitrary
values. When receipt has completed, the receive area is defined up to the kernel-provided length of the received
message. The relaxed atomicity rule allows the kernel message send implementation to avoid a pre-probe pass on the
received data area, which significantly improves performance. Note that the ”undefined” rule explicitly doesnotapply
to received capabilities. The complete set of capabilities(if any) transferred by a message are required to be transferred
to receiver-controlled storage atomically. This requirement ensures that the inductive state transition requirements of
the formal capability protection model are satisfied.
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Blocking Send A blocking send guarantees eventual delivery provided the operation completes and the receiver is not
destroyed before delivery. Page faults at the receiver’s designated receive location(s) will be delivered to the receiver-
designated fault handlers as required. When fault handlinghas completed, the sender will retry the send operation
from the beginning.1 Senders may implement watchdog timeouts on send operationsby arranging to post exceptions
to themselves after a timed delay.

Non-blocking Send A non-blocking send will be silently discarded if any condition arises that would cause a blocking
send to block. It will be truncated if a receiver page fault occurs during transmission. If truncation occurs, the receiver
is notified of the partial delivery.

1.6 Naming and Invocation

Coyotos objects are named by capabilities. A capability is akernel-protected value that names a resource and identifies
some interface (equivalently: facet or object) of that resource. The interface in turn defines methods that the invoker
can invoke by sending a message specifying the corresponding method code point. Thus, every invocation consists
of a message send to a particular method of a particular interface of a particular resource, performed by invoking a
capability. This is true both for server-implemented interfaces and kernel-implemented interfaces.

The Coyotos invocation mechanism is derived in part from theEROS design. The invocation payload has been en-
riched, but the invocation state model has been simplified. An invocation consists of a send phase followed by an
optional asynchronous receive phase. The send phase may specify blocking or non-blocking behavior. If a non-
blocking send is unable to make immediate progress, its message payload is truncated or dropped. The receive phase,
if present, blocks until an incoming message arrives, and can optionally require that the incoming message arrive on a
particular endpoint identifier.

The Coyotos kernel implements only one major system call:InvokeCap . A small number of additional system calls
exist to implement pseudo-instructions such as capabilityload and store.

Entry capabilities contain a 32-bit protected payload field. The endpoints that they name contain a 64-bit endpoint
identifier. Both values are delivered to the recipient as part of an incoming message. Neither is readable or modifiable
by the capability’s invoker. Servers may use these values todistinguish interfaces, object identities, permissions,or
other desired characteristic.

1.7 Exception and Interrupt Handling

For reasons of performance, the Coyotos kernel handles scheduling-related interrupts directly. It does not specify
or implement a policy for other interrupt handling. The kernel maintains a capability-named interface for interrupt
handler registry. With the exception of low-level scheduling preemption, all policy and processing associated with
interrupts is handled by application-level code.

The Coyotos kernel also pushes responsibility for exception handling policy to application level. When runtime
application exceptions occur, the kernel delivers the state associated with the exception to an external fault handler
designated by an endpoint.

1.8 Protection Model

An essential part of the security microkernel concept is that security policy — including mandatory security policy
— should be implemented by application code. The code that enforces system-wide policy needs to be protected and
must not be evaded, but it does not necessarily need to run in supervisor mode.

In keeping with this philosophy, the Coyotos kernel does notimplement a security policy. Coyotos provides primitive
protection support in the form of protected capabilities. Applications can invoke services only by invoking capabilities.

1 The need to retry from the beginning is onerous, and the specification will eventually be refined to allow optimization in this case.
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Capabilities are kernel protected, and can be obtained onlyby transfer over capability-authorized channels. It has been
shown formally that this restriction is sufficient to support (overt) confinement of subsystems [7], and that given
overt confinement, a higher-level security policy can be implemented either by construction or by an application-level
reference monitor [18].

A useful property of capability systems is that they directly express the “relies-on” relationships between components.
If an object or subsystemA depends directly on a second object or subsystmB for its operation, thenA necessarily
holds a capability toB. In the absence of such a capability,A cannot invokeB at all (or even know if the existence ofB).
A key point here is thatA may rely onB only in a qualified way, and (in some cases) may be able to take measures to
guard against failures or hostility fromB. This allows applications to take direct responsibility for their dependencies,
and also to impose context-sensitive access restrictions on their providers.

For this reason, we try to avoid the term “trust” in our designs, preferring instead to use “relies on.”
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Chapter 2

Capabilities

The Coyotos kernel implements a number of object types, eachof which has a corresponding capability type:

Encoding Type Description Restrictions
0 Null Universal, invalid capability.
1 Window A local mapping window (Chapter 4). RO,NX,WK
2 Background A background mapping window (Chapter 4). RO,NX,WK
3 KeyBits Discloses the bit representation of capabilities.
4 Discrim Classifies capabilities.
5 Range Fabricates object capabilities.
6 Sleep Interface to the kernel interval timer.
7 IRQ Control Interrupt request line control interface.
8 Schedule Control Interface to the kernel master scheduling table.
9 Checkpoint Control capability for the kernel checkpoint mechanism.
10 ObStore Interface between kernel and object store manager.
11 Pin Control Permission to pin objects in memory.
12 Schedule Permission to execute under a particular schedule.
13 SysCtl Start, stop system, enter sleep states.
14 KernLog Append text to kernel log.
15 IOPriv Authority to read/write IO ports.
16 IrqWait Authority to wait for an arriving interrupt.
17-31 Reserved Encodings reserved for future use.
32 Endpoint Control capability for an endpoint.
33 Page Data page. In general, the size of a page is determinedby

the underlying hardware page size. Device pages may be any
power of two larger than this.

RO,NX,WK

34 CapPage Capability page. The size of a capability page is determined
by the page size of the underlying hardware page size.

RO,NX,WK

35 GPT Guarded Page Table. Used to compose larger address spaces
from pages.

RO,NX,WK,OP

36 Process Capability that manipulates the kernel process abstraction.
37 AppNotice Capability that permits posting of non-blocking, application-

defined software notices.
38-62 Reserved Encodings reserved for future use.
63 Entry Authority to send to the process designated by an Endpoint.

TheRO, NX, WK , andOP restrictions respectively indicate, read-only, non-executable, weak, and opaque permission
restrictions. These are described in detail in the chapter on address spaces.

7
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2.1 Representation

A capability is 16 bytes, and uses the same representation onboth 32-bit and 64-bit platforms. The capability struc-
ture is a “tagged union” whose details depend on the capability type field. The kernel is entitled to use optimized
representations internally. The representation given below is the representation disclosed by KeyBits, which is the
representation typically used on disk.

Except where otherwise indicated, reserved fields must be zero-filled. TheP (prepared) bit and thehz (hazard) bit are
kernel internal, and are always zeroed bykeybits when the capability representation is returned.

2.1.1 Capabilities to Memory Objects

Memory capabilities include page, cappage, GPT, local window capabilities, and background window capabilities. All
of these are used to describe portions of the address space. The format of page, cappage, and GPT capabilities is:

type(6)Prestr(5)AllocCount(20)

l2g(7)0guard(24)

OID(64)

Figure 2.1: Memory object capability

The format of a window capability is:

type(6)Prestr(5)rootSlot(4)reserved(16)

l2g(7)0guard(24)

offset(64)

Figure 2.2: Mapping window capability

The rootSlotfield of the window capability is used only for local window capabilities, this field is reserved in back-
ground window capabilities.

Invariant: l2g ≤ 64
Invariant: (l2g == 64) ⇒ (guard == 0) 1

Invariant: ((guard << l2g) >> l2g) == guard 2

Invariant: l2g ≥ log2( page size)
Invariant: (offset mod 2 l2g ) == 0

These invariants are ensured by the operations that fabricate the respective capabilities. The balance of the system is
entitled to assume that they hold.

When traversing a memory capability, the virtual addressva is defined as the bitwise concatenation of three fields
g+u+v , whereg is a variable length, possibly empty bit string that will be used as a guard value,u is a variable
length, possibly empty bit string that will be used to index into the slots of the named GPT (if any), andv is the virtual
address that will remain to be translated at the next step (ifany). The length|v | is determined by thel2v field of
the named Page, CapPage, or GPT. The capability fieldl2g contains length of the bit string|u+v |. The value of the
effective guard is a multiple of2l2g . For page and capability page capabilities, the valuel2g also specifies the target
page size. This is possible because neither pages nor capability pages have slots to be indexed.

1 This invariant ensures that no bounds check is required before performing C shift operations whose size equals the machine word size. On most
architectures such shift operations truncate the shift amount, but if the value being shifted is zero any shift (including none at all) will produce
the right answer during address space traversal.

2 This invariant ensures that any bits of the guard value that would appear (after the normalizing shift) above the highestvalid bit position in an
address must be zero.



2.2. VALID CAPABILITIES 9

2.1.2 Message-Related Capabilities

Endpoint capabilities currently do not carry permission bits, but are otherwise similar in layout to memory capabilities.
The protected payload field is reserved in the respective control capabilities, and should be zero.

type(6)P00000(4)AllocCount(20)

ProtectedPayload(32)

OID(64)

Figure 2.3: Endpoint capability

Invocations of an endpoint capability ignore the protectedpayload and provide access to the kernel-implemented
object. Invocations of an Entry capability are delivered toan implementing process designated by the endpoint. The
protected payload field of the endpoint capability is provided as an additional output of the invocation.

2.1.3 Capabilities to Processes

The format of a process capability is:

type(6)P00000(5)AllocCount(20)

reserved(32)

OID(64)

Figure 2.4: Process capability

2.1.4 Miscellaneous Capabilities

The format of a miscellaneous capability is:

type(6)P00000(5)reserved(20)

reserved(96)

Figure 2.5: Miscellaneous capability

2.2 Valid Capabilities

Wherever this specification refers to a capability of a specific type, it should be taken to mean avalid capability of the
stated type. The meaning of an invocation of a valid capability is determined by its implementation provider (kernel
or server).

A non-object capability is any capability whose external representation does not include an allocation count. A non-
object capability is always valid. Non-object capabilities are not revocable.

All other capabilities are object capabilities. An object capability is valid if and only if all of the following conditions
are met:

• There exists some object with a matching object identifier (OID) whose type is compatible with the type of the
capability.3

This condition may be violated if backing store is lost or corrupted, or through a bug in the object manager.

3 This specification intentionally does not take a position onwhether OIDs are globally unique or only unique with respectto objects of compatible
representation type. This choice is left to the implementation. However, the specification reserves the OID range [0xff00000000000000ull,
0xffffffffffffffffull] to refer to device memory page frames. See Part I and the specification of the Range capability for discussion of this.
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• The allocation count in the capability matches the allocation count in the object.

This condition ceases to be true when an object is revoked (seecoyotos.range.rescind ).

• In the case of an endpoint capability whosePMbit is set, the protected payload field of the endpoint capability
matches the protected payload field of the endpoint object that it names.

All other object capabilities are invalid. An invalid capability behaves in all observable respects as if it were the Null
capability. This applies both to invocation of an invalid capability and to operations that act on invalid capabilities
(notably KeyBits, which has implications for debugging invalid capabilities). The kernel is free to overwrite any
capability location with a Null capability when it determines that the capability contained in that location is invalid.

2.3 Capability Prepare

Coyotos is an object paging system. Both object load and object unload are driven by the use of capabilities. Ignoring
latency, this paging behavior is normally invisible to applications. The exception is that object page-in may reveal
low-level storage failures that make an object unrecoverable.

Whenever a capability is used, the kernel internally performs aprepareoperation on the capability. Conceptually, this
prepare step is being done by the process that is performing the current system call. The prepare operation may have
several outcomes:

• If the capability is a non-object capability, the prepare operation succeeds (by definition).

• If the capability names an object, but itsallocCount does not match theallocCount of the corresponding
object, the capability is re-written (in place) to the Null capability.

The containing object is not marked modified. If other operations cause the containing object to be modified,
the Null capability will be written to disk. Otherwise, subsequent reloads of the object will re-obtain the stale
capability and this check will be performed again with the same result.

Several optimizations and mechanisms are used to ensure that the disk allocation count does not overflow.

• If the object named by the capability is not in memory, steps are taken to load it. The preparing process is
enqueued to wait for the completion of this request, and re-starts its operation when the object has been loaded.
In rare cases, this step may result in anObjectContentLost exception if the backing store has experienced
an unrecoverable storage error.

• If the object named by the capability is in memory, it is locked for the duration of the current system call unless
they are unlocked explicitly.

A capability is “used” if:

• The capability is invoked by the current system call.

• The capability designates the invokee of the current systemcall.

• Fetching a capability argument or storing a capability result requires memory traversal, in which case all capa-
bilities in the traversed slots are used.

• The operation requested by the current system call accessesor mutates the target object of the capability.

Coyotos implementations are required to be atomic. This implies that all resource acquisitions (and therefore all
capability prepares) must be acquired before any observable side-effect of a system call occurs.
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2.4 Extensibility

Coyotos is an extensible object system in the sense of Hydra [16]. New objects may be introduced by designing a
process that implements the desired object. Capabilities to these objects are implemented as Entry capabilities. The
kernel checks these capabilities for validity, and optionally for a protected payload match (see Chapter 5), but does not
otherwise define semantics for these capabilities.

Because the kernel does not know the semantics of these extensions, entry capabilities are not considered “safe” by
thecoyotos.discrim.classify operation.
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Chapter 3

Processes

A Coyotos process provides an abstraction of the user-mode execution engine presented by the underlying micropro-
cessor. From the kernel perspective, a process is the unit that is dispatched by the kernel for execution.

Coyotos does not distinguish between processes and threads. A process encapsulates a single kernel thread of exe-
cution. Coyotos address spaces are first-class objects. Two(or more) processes may be constructed that designate
the same address space. This achieves concurrent executionof multiple kernel threads of control within a common
addressing environment and resource pool.

Coyotos implements the system calls described in Chapter 6.Most of these should be viewed as software-defined
instructions. The exception is theInvokeCap system call, which performs capability invocation (see Chapter 5).
The majority of the kernel’s function is provided in the formof kernel-implemented objects (equivalently: services)
that are named by capabilities. These services are invoked in the usual way by invoking their capabilities.

3.1 State of a Process

The state of a process may be divided conceptually into kernel (privileged or sensitive) state and user (non-privileged)
state. User state is that state which a process may modify directly without kernel intervention. This includes
architecture-defined non-privileged register state. It also includes additional “pseudo registers” defined by Coyotos
that support the capability invocation mechanism.

Kernel state is that state which records or discloses protection information, or for which the kernel must guarantee
invariants for reasons of security, robustness, or operational consistency. The representation of capabilities, forexam-
ple, is kernel state. The Coyotos process structure contains space to save both the kernel state and the user state of a
process.

On some hardware architectures, the separation between kernel state and user state is not cleanly accomplished by the
architecture. The most common examples of this involve design failures in the architected processor status word. The
IA-32 EFLAGSregister, for example, includes state such as the supervisor mode bit and the current “IO privilege level.”
Such fields present a problem because the balance of theEFLAGS register must be modifiable by untrusted code. When
an unprivileged application runs normal instructions, thehardware generally protects these bits from modification. On
such architectures, Coyotos must ensure that any registersmodified by get/set registers and similar operations properly
protect these fields. The architecture-specific annex for each architecture identifies any such registers and their update
constraints.

3.1.1 Per-process State

Each process has the following state:

• The process run state. This field indicates whether the process is running (0), receiving (1), or faulted (2).

13
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runState(8)0(8)flags(16)

notices(32)

faultCode(32)

faultInfo(64)

schedule(cap_t)

addrSpace(cap_t)

brand(cap_t)

cohort(cap_t)

ioSpace(cap_t)

handler(cap_t)

capReg[0..31](cap_t)

(fixed point registers)(32/64*)

(floating point registers)(32/64*)

(soft registers)(32/64*)

Figure 3.1: Per-Process kernel state

xmsxsntctrcspcreserved(9)

Figure 3.2: Process flags word

• The process flags word. This word contains the process run state and several bits that control fault-related and
debugging-related behavior.

• A software-defined notices bitfield,notices, indicating (by bit position) the software-defined noticesthat are
pending for this process.

• 32 capability “registers” that are implemented in softwareby the Coyotos kernel.

• Capability slots that support process recognition and identification: brand and thecohort.

• Capability slots that identify resources on which the process depends: the address space, the schedule, and the
external fault handler.

Coyotos address spaces are “first class”. An address space may exist without having any associated process.
Multiple processes may name the same address space by placing the same address space capability in their
respective address space slots. Schedules are similarly “first class.”

• Slots related to exception handling.

The faultCode andfaultInfo are conceptually similar to the underlying hardware processor’s exception regis-
ters. A process-incurred exception causes these registersto be updated with the information necessary for error
diagnosis and possible resolution. The exception fault code space unifies both hardware-defined and kernel-
defined exceptions into a single code point space.

Thehandler capability slot contains an entry capability to the external fault handler (if any). This is an external
process that should be notified whenever this process incursa fault.

• Storage for the architecture-defined non-privileged register set. Access to these registers is by means of invoca-
tions on the architecture-specific process capability.

The per-process capability state, fault code, and fault information can be accessed and manipulated only through
invocations of the process capability.

The process flags are shown in Figure 3.2. The fields have the following meanings:
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Field Meaning
xm Execution Model indicates whether this process uses a 32-bit (0) or 64-bit (1) execution model.

This bit is significant mainly on architectures having multiple execution models, such asamd64. It
controls certain aspects of cross-model invocations.

sx Slice Expired This bit is set by the kernel when the process’s real-time slice has expired. The slice
expired event is considered an application-defined interrupt. Use and delivery of thesx notification
is discussed in Chapter 7.

sn Soft Notice This bit is set by the kernel whenever a new bit is set in the pending application-defined
notices field.

tc Trap On Call indicates that the process should incur a “trap on syscall exception when it attempts
to perform a system call. This trap will occurafter registers have been saved to the process structure,
but beforearguments have been examined by the kernel. In particular, the system call number will
not yet have been examined by the kernel.

tr Trap On Return indicates that the process should incur a “trap on system call return exception
when it exits or bypasses the receive state following a successful invocation. This trap occurs just
after the parameter words (if any) have been copied out to the application. In consequence, it occurs
after any associated exceptions are processed by the recipient. Control has not been returned to the
receiver.
If this bit is set at process system call return, aprocess.FC SysCallReturn fault will be set
in the process state just prior to returning. Theprocess.resume() does not cause the invokee
to resume in the system call exit path, so this exception willnot re-occur on resumption.

cs Call Step if set (1), indicates that thetc bit should be ignored at the next point where it would
normally take effect.
This bit is set as a side effect of theprocess.resume() operation if the currently pending fault
code isprocess.FC SysCallEntry . It is cleared whenever the process proceeds successfully
to the commit point of the current system call.

pc Parameter Copyout This bit is set by the kernel whenever a parameter copyout from the parameter
scratchpad area is required before resuming user-mode execution of the current process.

3.2 Execution Model

The instruction set available to a Coyotos process consistsof the user mode (non-privileged) instruction set of the un-
derlying processor architecture, the kernel-implementedInvokeCap instruction (which is the subject of Chapter 5).

From the perspective of the kernel, a process exists in one ofthe following run states:

blocked Process is attempting to send, but is blocked availability of a kernel resource. Process has no current or
pending software interrupts. On release, process will resume in thereadystate.

receiving Process is waiting for an incoming message from an endpoint,and has no current or pending software
interrupts. On receipt, process will resume in thereadystate.

ready Process is attempting to execute instructions. Process mayhave current or pending software interrupts. Pending
exceptions will be delivered when the process transitions to therunningstate.

running Process is assigned to a CPU and is executing instructions.

faulted Process has incurred an exception that has been reported to the external fault handler designated by the
process’shandler capability. Process will not executing instructions.

The state transition diagram is shown in Figure 3.3.

Theblockedstate is not externally observable. A blocked process has anexternally reportedrunState of “running”.
Such a process is deemed to be running without making progress or consuming CPU cycles. The receiving state it also
not externally observable. A receiving process is executing the receive phase of a capability invocation very slowly.
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Figure 3.3: Process state transitions

A process that is in therunning state will initiate instructions as long as its processfaultCode field is set to
FC NoFault (0). Execution behavior when any other value is stored in thefaultCode field is discussed in
Section 3.3.

3.3 Exception Handling

An exception occurs as the result of an instruction executedby the process. Every exception has an associated fault
code. Specific exceptions may define an additional pointer value to be delivered as additional fault information. The
fault code and fault information are delivered to the process by storing them in thefaultCode andfaultInfo
fields of the Process and causing the process to resume execution.

3.3.1 Exception Delivery

When a process attempts to initiate instructions with afaultCode other thanFC NoFault , the behavior is as
follows:

1. If an Entry capability is stored in the process’shandler slot, the kernel synthesizes a message to this endpoint
on behalf of the faulting process. The message will provide the faultCode andfaultInfo values and a
process capability to the faulted process. Disposition of the faulted process is now at the discretion of the fault
handler.

If the handler process is blocked, handler message deliverywill be re-attempted when the external handler
process becomes unblocked.

2. The process enters thefaultedstate (runState = stopped) and ceases to execute instructions.

In the absence of a specified external handler, a process attempting to deliver a fault notification to its external handler
will effectively cease to execute instructions without notice to anyone. It is the responsibility of the programmer to
ensure that an external handler capability is defined if noticing this condition is required.

Note that the state of the per-processhandler slot is checked on each delivery attempt. If a process blocksattempting
to deliver its fault information to an external fault handler, and thehandler slot is modified before the external
handler becomes unblocked, the fault may end up being delivered to a different handler or to no handler at all depending
on the new value of thehandler slot.
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3.3.2 Return From Out-of-Process Handler

If an exception has been delivered to a handler, the handler must take action to clear the fault. It does this by invoking
the process capability provided by the kernel upcall to clear the fault and return the process to the running state.

3.4 Application-Defined Notifications

Coyotos supports application-defined non-blocking notifications via theAppNotice capability type. A notification is
posted by invoking theAppNotice capability with 32-bit mask indicating the notifications (in the range 0..31) to be
posted. The set of authorized notifications is determined atthe time theAppNotice capability is fabricated. The ef-
fect of posting a set of application-defined notices is to setthe corresponding bits of the target processsoftNotices
word, and to set thesn bit of the target process flags if the value ofnotices has changed as a consequence of this
posting (i.e. if the notice was not already pending). Of the set of notices posted, only the authorized subset is delivered.

If any notices are pending when the recipient enters an open wait, they will be delivered as a message, with a specified
endpoint ID of˜0ull and a protected payload value of zero. Delivery of pending notices has higher priority than
other incoming messages.

Delivery of application-defined notices is suppressed during a closed wait.
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Chapter 4

Address Spaces

The Coyotos architecture defines 64-bit address spaces for both 32-bit and 64-bit machines. On 32-bit machines, the
leading 232 byte positions are addressable by hardware load and store instructions. That is, the hardware-accessible
map is awindowonto the leading subrange of the software-defined space.

On some architectures, a portion of the hardware-addressable space may be reserved for use by the kernel. On such
machines, the hardware-accessible address space is overlaid by the kernel-defined region.

4.1 Memory Objects and Address Interpretation

Three objects are used to define Coyotos address spaces: pages, cappages, and GPTs. Capabilities to these objects
may be invoked in the usual way. The interface definitions forthese objects are provided in Part II.

The meaning of a data (capability) address reference is determined by starting at the data (capability) address space
capability of the referencing process and traversing memory objects until the address has been successfully translated
or an exception has occurred. The traversal process is similar to the traversal of hardware-based hierarchical translation
tables, but there are several differences:

• The Coyotos mapping structures provide support for per-region fault handlers. Any region of size 2k pages
may have an associated fault handler. When a memory fault is reported to the in-process fault handler, the
in-process handler may optionally forward memory fault messages to the per-region handler in order to request
region-specific fault handling.

• The “levels” of the mapping hierarchy are dynamically determined. Smaller subspaces may appear where a
larger space is expected, with the effect that the “missing”regions are considered invalid addresses. Larger
subspaces may appear where a smaller space would naturally appear, with the effect that only the leading
subrange of the larger subspace is addressable through thismapping.

• A mechanism is provided for mapping “windows” onto other address spaces by reference. This enables one
address space to map (portions of) another even when the second space is opaque.

• In order to support certain essential types of addressing flexibility — notably windows — it is necessary to
allow some unusual arrangements of the hierarchical structures. An unfortunate consequence of this is that
it is possible for a hostile or erroneous program to create statically cyclic address spaces. Such spaces are
malformed, and attempts to reference a cyclically defined address generate aMalformedSpace exception.

4.1.1 Permissions

All memory object capabilities carry a field, ”restr”, whichspecifies restrictions on which types of access may legally
be performed through that capability. The RO, NX, and WK bitsmay be set on any memory capability type. The OP
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and NC bits are meaningful only for GPT objects. The CD and WT bits are meaningful only for device pages.

RO Read Only (0x1) Attempts to perform write references along any address translation path that traverses this
capability are prohibited.

NX No Execute (0x2) Instruction fetch references along any address translation path that traverses this capability
are prohibited. Attempts to perform instruction fetches atsuch addresses generate anNoExecute exception.

Issue

I have not yet examined the exception handling policy for machines that implementNX to confirm
that a differentiated access violation type is generated atthe hardware level.

On hardware that does not support theNX restriction, theNX bit is ignored.

WK Weak (0x4) A capability read reference along an address translation path that traverses a capability with this bit
set conservatively downgrades the returned capability, ifrequired, in a way that ensurestransitivelyread-only
authority.

Capability and data stores that traverse a weak capability in the translation path generate an access violation
exception.

OP Opaque (0x8) The address space structure may not be accessed or modified through any GPT capability with
the Opaque bit set. This bit is meaningful only for GPT capabilities.

NC No-Call (0x10) The address space structure may not be accessed or modified through any GPT capability with
the Opaque bit set. This bit is meaningful only for GPT capabilities.

CD Cache Disable (0x8) Indicates that the content of this page must not be cached. Reads and writes must be issued
to the main memory bus precisely in the order and reference size specified. This bit is meaningful only for page
capabilities that name device pages.

WT Write Through (0x10) Indicates that writes to this page must be passed immediately and precisely to the main
memory bus. This bit is meaningful only for page capabilities that name device pages.

The result of translation of the formtranslate(space,addr,access-type) is either an exception or a valid
translation of the form(page,offset) . If an exception is generated, the type of the exception and the originally
referenced address are reported to a handler (if one is defined), the faulting instruction (if any) has no effect), and the
program counter is not advanced. The defined reference typesare:

Fetch Instruction load from address space.
Load Data Read data from address space.
Load Capability Read capability from address space.
Store Data Write data to address space.
Store Capability Write capability to address space.

4.1.2 References and Access Violations

The rules for address translation are given below in the discussions of individual memory objects. As traversal of
the memory objects proceeds, theeffective restrictionsassociated with the address are computed by beginning with
no initial restrictions and performing a cumulating logical or with the restriction bits in each traversed capability as
translation progresses.

If a capability is traversed during translation that cannotlegally appear within an address space, aMalformedpace
exception is generated according to the reference type.

If the traversed path is well-formed, but the address cannotbe completely translated, anInvalidAddress excep-
tion is generated according to the reference type. Untranslatable fetch references generate theInvalidAddress
exception.
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If an address is completely translatable, the resulting permission restrictions may not permit the reference type. In this
case an exception will be generated according to the following rules:

Ref Type Permissions Result
Fetch NX Exception:NoExecute
Capability Store, Data Store ROor WK Exception:AccessViolation

If the permissions are sufficient to allow the operation, a final check is made to ensure that the type of the load or store
operation (data or capability) matches the type of the page mapped at that address (Page, CapPage). If a type mismatch
occurs, aDataAccessTypeError or CapAccessTypeError exception is raised.

A capability load that traverses a path havingWKrestrictions will succeed, but will return a downgraded result as
follows:

Capability At Address Result
Page, CapPage, GPT, Window, Endpoint Copy with RO, WK bits set.
Discrim Return value is unchanged.
other Null capability is returned.

4.2 Pages and Capability Pages

The smallest mappable unit, and therefore the smallest address space, is the page or the cappage. A page is the atomic
unit of data storage whose size is implementation-defined. Acapability page is a page-sized unit that holds capabilities
rather than data. Capabilities are byte-addressed opaque 16-byte quantities that are aligned at 16 byte boundaries.

With the exception of device pages, Coyotos implements a single page size whose size matches some hardware page
size implemented by the underlying hardware. This size is specified by the architecture-specific annex. On processors
that implement multiple page sizes, the selected page size need not be the smallest size supported by the underlying
hardware. It is implementation-dependent whether the kernel will attempt to exploit larger hardware page mapping
sizes if available. If such exploitation is attempted, it isaccomplished by re-synthesizing larger pages by physical
arrangement of standard-sized pages. The atomic unit of mapping and permissions remains the Coyotos page size.
Pages always appear in both the physical and virtual memory maps at naturally aligned addresses.

A device page may be any size 2k that is greater than or equal to the basic page size. If they are larger than the basic
page size, they appear in both the physical and virtual memory maps aligned at a 2k address. Device pages may be
marked non-cacheable or write-through.

A page capability may be inserted into the address space slotof a process, with the effect of defining an address space
having valid offsets between [guard,guard+pgsize-1]. Attempts to reference offsets outside this range result in an
invalid address exception.

Capability pages are byte-addressable units. However, capabilities must be stored and referenced at naturally aligned
(16 byte) boundaries.

Address translation of an addressaddrwith respect to a page or cappage capability is defined as follows:

1. If the value ofaddr exceeds the page size, anInvalidAddress exception is generated.

2. Otherwise: theaddr is a valid offset, and the overall address reference is valid.

4.3 Address Space Composition

Address spaces are composed by means of the GPT object. A GPT is simply a fixed-length vector of capabilities
(currently 16), each of which is paired with aguard. In Coyotos, the guard has been incorporated into the capability
format itself. The state of a GPT is shown below.
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cap[15](cap_t)

...
cap[0](cap_t)

l2v(6)habgreserved(24)

Figure 4.1: GPT State

Invariant: l2v ≥ log2( page size)

The meanings of the GPT fields are:

l2v Subspace sizeEach slot of the GPT names a subspace of size2l2v bytes.

ha fault handler Slot 15 of the GPT contains an Entry capability to the fault handler.

Care should be taken to set thel2v value appropriately when theha bit is set. If the translation algorithm
traverses an Entry capability in the normal course of translation, a malformed space exception will be generated.

bg background space Slot 14 of the GPT contains a memory capability to a background space (see window capa-
bilities).

Care should be taken to set thel2v value appropriately when thebg bit is set. If the translation algorithm
traverses a background capability during the normal courseof translation, the translation result will appear as if
a larger space was entered.

cap[0..15] Capabilities to subspaces.

When theha or bg bits are set, it is the responsibility of the process managing the GPT to ensure that thel2v value
prevents collision.

4.3.1 Translation Algorithm

Note: In the discussion that follows, it may be useful to refer to the capability representation for window and memory
object capabilities (see Chapter 2), with particular reference to thel2v andl2g fields.

Address translation is performed by translating an unsigned virtual addressva with respect to some memory capabil-
ity C (a GPT, page, capability page, or window capability). Translation begins at the address space capability of the
process structure with a 64-bit virtual address. In the normal case, the progress of translation causes bits to be “con-
sumed” from the left, leading to virtual addresses of progressively smaller magnitudes. Window capabilities, however,
may cause the remaining virtual address to grow as translation proceeds.

The virtual addressva that is currently being translated is conceptually dividedinto three fieldsg, u, andv. Theg
field (which may be zero width) contains theguard value. Theu field contains the index value that will be used to
index into the next GPT. Thev field contains either the address bits that will remain to be translated when the current
step has completed (GPT or window capability) or the page offset bits (page or capability page capability).

v(|v| = l2v >= log2(pgsz))u(|u| = max(l2g-l2v,0))g(|g| = 64-l2g)

Figure 4.2: Virtual address structure

In reading the following section, recall the invariants described in Section 2.1.1. These are checked at capability
fabrication time, and are assumed to hold by the following algorithm statements.

The values ofg, u, andv are computed from the capabilityCand the addressva as follows:

g = va >> C.l2g;
guard = C.guard << C.l2g;
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u = (va - guard) >> C.l2v;
v = va & ((1u << C.l2v) - 1);

At the start of translation, the background space capability Cbackground and the memory handler capability
Chandler are initialized to the Null capability, the virtual addressis as provided by the hardware (or possibly the
IPC logic) and the effective access restrictionsAR is the empty set. Translation proceeds by iteration, with each
iteration performing the following steps in sequence:

1. Theg value is compared to the zero-extended guard value stored inthe capability. If they do not match, the
address is invalid and anInvalidAddress exception is generated.

2. If theu value exceeds the number of slots in the GPT, the address is invalid and anInvalidAddress excep-
tion is generated.

3. The effective access restrictions are updated from the capability Cby:

AR:=AR+C.restr

If the resulting effective access restrictions are insufficient for the requested access type, an
AccessViolation exception is generated.

4. Processing now proceeds according to the capability type:

• If the capability typeC.type is Page or CapPage, translation has completed successfully.

• If a local or background window capability appears in the address space slot of a process, all addresses are
deemed invalid.

• If the capability is a local window capability appearing within some GPT, translation proceeds from the
capability contained in therootSlotslot of the GPT containing the local window capability at theoffset
named by the capability.

va := v + C.offset
C := containingGPT[C.rootSlot]

Note that the invariants of Section 2.1.1 guarantee that there is no bitwise overlap betweenv and
C.offset . That is: the addition can be correctly implemented as a bitwise “or” operation.

• If the capability is a background window capability, translation proceeds from the capability to the back-
ground space with

va := v + C.offset
C := Cbackground

Note that the invariants of Section 2.1.1 guarantee that there is no bitwise overlap betweenv and
C.offset . That is: the addition can be correctly implemented as a bitwise “or” operation.
Recall thatCbackground is initialized to Null at the start of translation. If no other background capability
has been defined at the point where the background window capability is encountered, all addresses that
fall within the background window are invalid.

• If the capability type isGPT, translation proceeds with

gpt := target-of(C);
if (gpt- >bg)

Cbackground = gpt- >cap[14];
if (gpt- >ha)

Chandler = gpt- >cap[15];
va := v
C := gpt- >cap[ u]

• If the capability is aNull capability, anInvalidAddress exception is generated.

• Otherwise, aMalformedSpace exception is generated.
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4.3.2 Exception Handling

If an exception is generated by the translation mechanism, and the memory exception handler capabilityChandler is
not Null , then the exception will be delivered to the memory exception handler. Otherwise, the exception type and
address are stored in the process’sfaultCode andfaultInfo slots, respectively, and the process is set running
with the pending fault code, and the exception is then delivered as described in Section 3.3.1.

4.3.3 Cycle Detection

It is possible for an erroneous or hostile program to arrangeGPT objects in such a way as to create a static cycle.
Such an address space ismalformed, and attempts to traverse such a cycle during address translation result in an
MalformedSpace exception.

No final selection has been made for a method of cycle detection. Three rules have been proposed:

1. A bound on the total number of GPT structures that will be visited before generating aMalformedSpace
exception.

This method has been rejected. It has the unfortunate property that existing, valid addressing structures can
be rendered invalid by “splitting” an existing GPT. We want to preserve the ability to split without semantic
alteration in order to be able to map subspaces.

2. A bound on the total number of capabilitiesthat do not translate new bitsthat will be visited before generating
aMalformedSpace exception.

This method keeps track of|v least |, the shortest virtual address that has been obtained by translation to the
current point. IfC.l2v ≥|v least |, then the current capability does not translate new bits.

This method has been rejected. It has the unfortunate property that existing, valid addressing structures can
be rendered invalid by “splitting” an existing GPT. We want to preserve the ability to split without semantic
alteration in order to be able to map subspaces.

3. A bound on the total number ofbitsvisited for translation, defined as the cumulative sum of( |va |- |v |) for all
capabilities visited during a translation attempt.

This approach preserves the possibility of a correctness-preserving split operation.

All methods of cycle detection introduce a complication forimplementers: the validity of addresses within a subspace
is contextually dependent on the number of bound-countableevents in the prefix path leading to that subtree. This
means that two process address spaces may both have some subspace mapped at otherwise valid subspaces addresses,
and selected subranges of the mapped subspace may nonetheless be valid in one space but not in the other.

Because of this problem, care must be taken when implementing page table sharing to ensure that page tables are
shared only when all possible references through that hardware table are equally valid in all referencing contexts. If
this is not done, one process would be able to produce valid mappings in the hardware mapping table that would be
usable by the second, even though the second lacks the ability to produce those hardware mappings for itself.

4.4 Address Space Splitting

Experimental

The feature described in this section is experimental. It isnot presently implemented, and may be removed
in future versions of Coyotos.

In order to support the subspace transfer item described in the capability invocation chapter, Coyotos introduces a new
type of exception that may occur in an address space: theSplitFault .
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Split faults allow an invoker to send a single capability to an arbitrary 2k page region of an address space, provided
that the region is naturally aligned and the invoker has sufficient access rights to extract the dominating capability.
Similarly, they permit a receiver to generate appropriate “holes” into which such a capability must be received.

The problem solved by split faults is that there may not be anynaturally dominating GPT for the subspace. For
example, in a system having 4 kilobyte (212 byte) pages, the invoker may wish to transmit a 211 page (223 byte)
subspace, but the subspace may currently be dominated by a GPT havingl2v=21 . That is: there is no single slot in
the GPT that directly holds a capability of the desired span.Before a single dominating capability can be sent, this
GPT must be “split” into an arrangement where the target subtree has a single dominating GPT withl2v=23 . When
such a send is attempted, the invoker will receive aSplitFault exception. This is an advisory that the GPT must
be split in order to bring a dominating GPT into existence.

Similarly, if a receiver specifies a “hole” of some size2hlsz pages, there must exist some GPT in the receiver tree
that could receive (with an appropriate guard value) a capability dominating a tree of the requested size.

The reason this feature is considered experimental is that the correct strategy for splitting GPTs is not obvious.

The address space splitting idea is not yet fully developed.There are certainly holes, including necessary but undefined
exception types, that need to be resolved in the definition above.
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Chapter 5

Capability Invocation (including IPC)

Coyotos is an object-based system. A process wishing to perform an operation (equivalently: invoke a service) does
so by invoking some capability that it holds. The capabilityhas a defined interface that specifies some set of invokable
methods, including their argument and return types. The provider of these methods may be either the kernel or an
application; the invocation mechanism is the same in eithercase. That is: Coyotos is an extensible object system [16].
The primary system call in Coyotos is the “invoke capability” system call (Section 6.5). Other system calls defined by
the Coyotos specification may all be viewed as convenience wrappers for capability method invocations.

Because kernel-provided and application-provided services share a common invocation mechanism, it is necessary
to specify both the low-level binding of capability interfaces and the externally observable semantics of capability
invocation. While the specific binding is architecture-dependent, this chapter includes recommendations on bindings
that suffice for most platforms.

The invoke capability system call implements a variant of theSendAndWaitprimitive proposed by Liedtke [12] or the
CALL andRETURN primitives of EROS [4]. The send phase of the invocation can be blocking or non-blocking. If
a non-blocking send is performed, some or all of the message may be truncated. The receive phase may wait for an
arbitrary endpoint (an “open wait”) or a specific endpoint (a“closed wait”). The receive phase is optional.

5.1 Invocation Payload

An invocation passes a message that consists of:

• Up to 8 direct words, the first of which is the invocation control word. The size of these words is architecture
dependent. These words may be carried in registers or memory, as specified by the architecture-specific annex
for the target platform. The index of the last word transmitted is given byIPR0.ldw .

Input parameter word 0 of the invoke capability operation contains control information describing the rest of the
message payload:

nr=0(4)ldw(3)lsc(2)lrc(2)sgasnbcwrpsprcscaccoexreserved(10/26)

Figure 5.1: Invocation control word (input)

Provided the invokee is valid and well-formed, a message consisting solely of untyped parameter words is
guaranteed to proceed without exceptions on all architectures.

• Up to four capabilities. Capabilities are transmitted ifIPR0.SC=1 . If so, IPR0.lsc gives the index of the
last capability transmitted. Capabilities are received ifIPR0.AC=1 . If so, IPR0.lrc gives the index of the
last capability that will be accepted.
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• An indirect string of up to 64 kilobytes. The length of this string is given in a parameter word to the system
call.

In addition to the payload of the invocation, the invoker specifies:

• The capability to be invoked.

• Whether they are willing to block in order for the message to be delivered (IPR0.NB ).

• Whether to fabricate a reply capability (IPR0.RC ).

• Whether the receive phase should be performed (IPR0.RP ).

• Whether copy-out of soft registers should be performed on those architectures that define soft registers.
(IPR0.CO ).

• Whether the receive phase should accept messages only from aparticular endpoint (IPR0.CW,
upcb.rcvEpID ).

If a receive phase is executed, the receiver receives the following information in addition to the invocation payload:

• The endpoint identifier of the Endpoint on which the invocation was received.

• The “protected payload” of the capability that was invoked.

• The length of the string that was sent, it any.

• A modified copy of the invocation control word, which indicates various information about the incoming mes-
sage. In this returned word, theu, RC, andSC, fields are copied from the sender’sinput invocation control word.
Thelsc field indicates the number of capabilities that have been received. Theldw field indicates the number
of data words that have been received.

The protected payload and the endpoint ID can be used to determine the receiver-defined context in which the received
message should be interpreted. One common use of these fieldsis for the endpoint ID to identify the object invoked
and the protected payload to identify the permissions on that object.

5.2 Invocation-Related Exceptions

Exceptions may occur during invocation on either the senderor the receiver side of the transmission. All such excep-
tions logically occurbeforethe invocation. In practice, exceptions are generated as a consequence of payload transfer.
If an exception occurs, the implementation is free to resumethe transfer at the point of interruption if it is able to do
so. However, the receiver of an interrupted transmission logically reverts to the beginning of its receive phase when an
exception occurs. In the event that a second sender is attempting to send when a messaging exception is incurred, the
second sender’s message may prevail.

If the sender specifies non-blocking transmission, the transfer of indirect strings and capabilities is “best effort.”If
the receiver incurs a page fault during the receipt of an indirect string or a capability argument, that argument will be
truncated. In this case the receiver will be notified of truncation, but no receiver-side exception will be generated.

The meaning of a non-blocking send is that the sender is unwilling to be blocked for any cause whose handling is
controlled by the receiver. The use-case for this option is aserver returning a reply to an untrusted client. For purposes
of understanding truncation, a hardware page fault that is successfully resolved by the object paging subsystem is not
considered to be an architecturally observable fault. Similarly, an exception that can be satisfied by reconstructing a
hardware mapping entry from an already defined GPT hierarchyis not considered an architecturally observable fault.
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5.3 Endpoints

A process that wishes to accept capability invocations doesso by means of one or more endpoints (Figure 5.2). End-
points have two capability types: the Endpoint capability,which implements the control interface for the endpoint
object, and the Entry capability, which provides the means for extending the object system. When an Entry capability
is invoked, the invocation parameters are delivered as a message to the process named by therecipient field of the
Endpoint.

pmsmreserved(2)endpointID(60)

protPayload(32)

recipient(cap_t)

ipw0(64)

ipw1(64)

ipw2(64)

Figure 5.2: Endpoint structure

The meanings of the endpoint fields are:

Field Meaning
pm Payload Match Indicates that the protected payload of the endpoint shouldbe compared to the

protected payload of the Entry capability. If they are not equal, the invocation behaves as if the Null
capability had been invoked.

protPayload Protected Payload This value will be conditionally used as a matching value ifPMis set (1).
endpointID A 60-bit field having meaning only to the recipient. The valueof this field will be delivered to the

recipient during message receive.
recipient A process capability to the receiving process.

Non-Normative Illustration

When a server implements a single logical object, it will typically operate with two endpoints. The first is
the one used to invoke the service (the “receive endpoint”).The endpoint ID of this endpoint is not used.
The protected payload of the corresponding Entry capability may be used to express distinct permissions
or restrictions on the permitted operations. The second endpoint is used to accept replies (the “reply
endpoint”). The endpoint ID of this endpoint is used as a matching value to implement a closed wait so
that unrelated messages are not received where a reply is expected. The endpoint’s protected payload is
used to ensure that no more than one reply will be received (bymeans of theIPR0.RC bit of the invoke
capability system call).

When a server implements multiple objects, a distinct receive endpoint is typically allocated for each
object implemented by the server. In this case, the endpointID is used to identify which object or service
is being invoked, and the protected payload field of the corresponding Entry capability is used to express
distinct permissions or restrictions on the permitted operations on that object.

Non-Normative Note on Reply Endpoints

If the IPR0.RC bit is set in the invocation control word parameter, the protected payload of the endpoint
is pre-incremented before the Entry capability is fabricated. The purpose of the RC bit is to allow a caller
to ensure that a call/return sequence receives at most one reply in the normal case. This is accomplished
by ensuring that stale reply capabilities are invalidated (by protected payload mismatch) before the next
receive on the reply endpoint is performed.

Whenever an Entry capability is invoked, the invokee receives the protected payload value of the invoked
Entry capability. In the case of a reply endpoint, the PM bit is set, so the received protected payload value
matches the value stored in the endpoint.
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It is the responsibility of the application to notice when the incoming protected payload value approaches
UINT32 MAX. In this situation, the pre-increment will overflow the protected payload counter when it is
next used. The recommended solution for this is to obtain a new reply endpoint from a space bank when
the protected payload reaches UINT32MAX-1.

5.4 Semantics of Kernel Capability Invocation

To ensure consistent invocation behavior, it is necessary to specify the externally observable behavior when a kernel-
implemented method is invoked. In particular, the observable effect on process state and the sequencing of operations
and events during a kernel invocation must be defined.

When a kernel capability is invoked, the externally observable behavior should be as if the invoker had invoked an end-
point to some application providing the service. Because nokernel operation accepts an indirect string, the invocation
of a kernel capability behaves as if this hypothetical provider had performed a receive phase withIPR0.AS=0 (no
strings will be accepted). This hypothetical provider arrives at the specified answer and accomplishes any effects of
the invocation by unspecified means. It then replies as if it had invoked theInvCap system call with the control bits
of the first input parameter word set as follows:NB=1 (non-blocking),RC=0(no reply capability is generated),CW=0
(the kernel conceptually enters an open wait state), andRP=1 (the kernel waits for the next invocation). In addition,
theSC(send capabilities) control bit will be set (clear) if capabilities are (are not) returned by the method. Note that
because the kernel reply is non-blocking, and the kernel is deemed to be in therunningstate until it has replied, the
reply from a kernel-implemented capability cannot cause a second kernel-implemented capability to be invoked.

This statement of behavior has (at least) the following implications:

• The effects of a kernel capability invocation occur whetheror not the invocation returns successfully, provided
any preconditions specified for the method are satisfied.

• There exist several kernel operations that alter the state of a process. When the process altered is also the process
receiving the kernel reply (the “invokee”), the kernel behavior must be well-defined. There are two such cases:

1. The invokee process is destroyed as an effect of the invoked method. In this case, the reply proceeds as if
via an endpoint that contains a Null capability.

By intention, kernel-implemented operations satisfy two invariants that simplify or eliminate other potentially obscure
corner cases:

• No kernel-implemented interface accepts or returns an indirect string.

• Kernel methods that modify address space mappings or revokeobjects return only scalar return values (and
therefore behave as ifSC=0). This ensures that changes in the meaning of the receive capability capitem t
values cannot impact the return of these operations.

Undefined Locations The content of receive buffers, receive parameters, and receive capability locations is undefined
between the start of the IPC receive phase and the completionof the IPC receive phase. For performance reasons, the
kernel is entitled to arbitrarily modify state whose content is undefined during invocation. In particular, the kernel
is entitled to modify the receive parameters or the receive string buffers of a waiting process without releasing that
process from its wait state. This allows the kernel to more efficiently implement indirect string moves that may induce
invoker or invokee page faults during the transfer. This means thatall of the receive string buffers of a recipient may
be modified during receive, even if the final message receivedsends only a single indirect byte. Similarly, any valid
receive capability locations may be overwritten even if a smaller number of capabilities was transferred.

State Transitions The overwhelming majority of kernel capability invocations return to the invoker without gen-
erating any exception. In these cases, the kernel may behaveas if the operation occurred instantaneously, with the
consequence that the invoker may never be observed to leave therunningstate.

Elided Reply Capability When a kernel capability is invoked and replies to the invoker without an exception, the
kernel implementation is free to elide the fabrication of the reply capability. Elided reply capabilities are observable
because the protected payload value of the reply endpoint will not be incremented.
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System Calls

Coyotos currently defines three system calls:

Number Name Description
0 InvokeCap Invokes a capability and (optionally) waits for a reply on anendpoint.
1 reserved Reserved for future use.
2 CopyCap Copy a capability from one location to another.
3 Yield Yield the processor, moving the current process to the back of its scheduling class.
4..15 reserved Reserved for future use.

6.1 Parameters and Parameter Words

At the system call trap interface, arguments and return values are conveyed by means of a combination of registerized
parameter values and (optionally) a system-call specific stack frame. Every architecture-specific annex specifies a
subset of hardware registers that are be used to convey system call parameters. No annex defines fewer than four
registers to be available at this interface. Where a specialized stack frame is specified, the architecture-specific annex
may specify that some or all of that stack frame is conveyed across the user/supervisor boundary in registers. The
corresponding fields of the stack frame will never be accessed by the kernel.

The Coyotos system call specification ensures that all arguments and return values of system callsother than
InvokeCap can be marshalled in registers. In addition, the majority ofkernel-implemented capabilities, includ-
ing all capabilities likely to be invoked in performance-critical application paths, can be invoked without a string
parameter.

In the system call specifications that follow, the notation IPRn and OPRn indicate input and output parameter registers,
respectively. Except where required by the architecture-specific system call mechanism, or explicitly noted by the
system call, output registers retain their value at the timeof system call entry.

6.2 Exceptions

The following exceptions may be incurred by the caller during system call execution.
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Exception Cause
MalformedSyscall The operand was malformed. This includes field value range errors or

reserved type codes.
ThefaultInfo field is zero.

MisalignedReference The operand specified a capability address, but the address described is
not aligned to a 16-byte boundary.
ThefaultInfo field contains the errant address value.

InvalidAddress The operand specified an address that is not defined.
ThefaultInfo field contains the errant address value.

AccessViolation A store operation was attempted, but the operand specified anaddress
that does not permit write access.
ThefaultInfo field contains the errant address value.

DataAccessTypeError The address specified by a data load/store operand does not reference a
data page.
ThefaultInfo field contains the errant address value.

CapAccessTypeError The address specified by a capability load/store system calldoes not ref-
erence a capability page.
ThefaultInfo field contains the errant address value.

MalformedSpace The address specified by the operand violated the well-formed address
space constraints.
ThefaultInfo field contains the errant address value.

Any system call may generate theMalformedSyscall exception if bits marked “reserved” are non-zero or speci-
fied field value bounds are exceeded. Individual system call descriptions below specify which of the other exceptions
may be incurred by that system call.

6.3 Capability Locations

tylocation(31/63)

Figure 6.1: caploct structure

A caploc t parameter (Figure?MISSING XREF ID?) describes a generalized capability location that is either a
capability register (ty=0) or a memory address (ty=1).

The encoding of registercaploc t values is identical to the encoding used forcapreg t values, modulo the wider
location field. When thecaploc t describes a memory address, thelocation field holds the most significant
bits of the address. Capability addresses are required to be16 byte aligned. In consequence, the expression of valid
capability addresses is not restricted by the re-use of the least significant bit for this purpose.

The size of acaploc t matches the architecture-defined word size.

6.4 Pseudo-Instructions

TheYield andCopyCap system calls are best thought of as pseudo-instructions.

6.4.1 Yield [syscall]

TheYield system call relinquishes the processor. If theI bit is clear (0), the yielding process is placed at the end of
the appropriate ready queue.
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Parameter Format

IPR0 NR=4(4)reserved(28/60)

TheYield system call does not return any output parameters.

Open Issue

Should there be a directed yield operation? If so, the yield system call needs to take a second parameter.

6.4.2 CopyCap [syscall]

Parameter Format

IPR0 NR=2(4)reserved(28/60)

IPR1 source(caploc_t)

IPR2 dest(caploc_t)

TheCopyCap system call copies a capability from a source location (register or memory address) to a target location
(register or memory address). TheCopyCap system call does not return any output parameters. Exceptions may be
generated by the references to thesourceanddestparameters.

Any of the exceptions listed in Section 6.2 other thanDataAccessTypeError may be generated by this system
call.

6.5 InvokeCap [syscall]

The InvokeCap system call invokes a capability, passing the supplied parameters to the implementing server. It
is both the most complex and the most commonly used system call in the interface. It invokes one capability and
optionally blocks for an incoming message on an Endpoint.InvokeCap takes a variable number of parameters
determined by the invocation control word provided in IPR0 and a system-call specific stack frame.

Any of the exceptions listed in Section 6.2 may be generated by this system call.

6.5.1 Arguments

The arguments toInvokeCap are organized in a specialized stack frame. Some elements ofthe stack frame are then
registerized. The canonical stack frame format forInvokeCap is shown below:

typedef struct {
uintptr t pw[8];
union {

caploc t invCap; / * on entry * /
uintptr t pp; / * on exit * /

} u;
caploc t sndCap[4];
caploc t rcvCap[4];
uint32 t sndLen; / * FIX: Should be 16 bits * /
uint32 t rcvBound; / * FIX: Should be 16 bits * /
void * sndPtr;
void * rcvPtr;
uint64 t epID;

} InvParameterBlock t;
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All architectures guarantee that thepw[0]..pw[3] field are conveyed in registers on both entry and exit. Since the
message payload may contain up to 8 data words, the caller should assume thatpw[0]..pw[7] may be modified on
return.

The control word parameter toInvokeCap is given by:

Argument Format

IPR0 nr=0(4)ldw(3)lsc(2)lrc(2)sgasnbcwrpsprcscaccoexreserved(10/26)

IPR1 Inputpw[1] , if transmitted.
IPR2 Inputpw[2] , if transmitted.
IPR3 Inputpw[3] , if transmitted.

OPR0 nr=0(4)ldw(3)lsc(2)lrc(2)sgasnbcwrpsprcscaccoexreserved(10/26)

OPR1 Outputpw[1] , if received.
OPR2 Outputpw[2] , if received.
OPR3 Outputpw[3] , if received.

Other fields and registers are sourced and modified accordingto the interpretation of the control word and the param-
eters provided in the stack frame.

The fields of the control word have the following meanings:

Bit Name Meaning
ldw Last Data Word On entry, the index of the last data word transmitted. Following a receive phase, this

field will contain the values specified in the sender’s invocation control word. A receiving
process must be prepared to accept 8 direct data words.

lsc Last Sent Capability The index of the last sent capability. No capabilities are sent if theSCfield is clear (0). Fol-
lowing a receive phase, this field will contain the value specified in the sender’s invocation
control word.

lrc Last Received Capability On entry: the index of the last capability slot that will be received. No capabilities are
received if theACfield is clear (0).

sg Send Gather Send transmitted string(s) using the gather mechanism. This mechanism is not yet speci-
fied, and the bit should be clear (0) in all invocations.

as accept scatter Accept transmitted string(s) using the scatter mechanism. This mechanism is not yet spec-
ified, and the bit should be clear (0) in all invocations.

nb Non-Blocking If set (1), send is non-blocking. Any actionthat would require the sender to be enqueued in
such a fashion that re-awakening is controlled by the receiver will result in a dropped mes-
sage. Any action that would cause a receiver-controlled exception handler to be executed
will result in a truncated message.

cw Closed Wait If set (1), indicates that the receive phase isperforming a closed wait, and only messages
from endpoints whose endpoint ID matches the suppliedepID value will be accepted.
If clear (0), no restrictions are imposed on receipt and theepID field is ignored.

sp Send Phase If set (1), the send phase will be executed.
rp Receive Phase If set (1), the receive phase will be executed.
rc Reply Capability If set (1), andsndCap0 names an endpoint capability,sndCap0 will be replaced with the

corresponding Entry capability. The protected payload of the Entry capability will be set
to the current protected payload value stored in the endpoint.

sc Send Capabilities If set (1), capabilities will be transmitted. Following a receive phase, this field will contain
the value specified in the sender’s invocation control word.

ac Accept Capabilities If set (0), incoming capabilities will be accepted.
co Copy Out If set (0), the copy out phase will be executed. Soft register values will be copied back from

the kernel to the invocation parameter structure.
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Bit Name Meaning
ex exceptional return If set (1), indicates that the messagepayload describes an exception. Following a receive

phase, this field will contain the value specified in the sender’s invocation control word.

The parameters of theInvokeCap system call are unusual, in that IPR0 determines how the remaining input pa-
rameter words are interpreted. Further, some of the bits in the IPR0 word determine how the output parameteres are
processed and delivered.InvokeCap is alsounusual because control flow may not return immediately to the invoker.
Finally, it is unusual because anInvokeCap system call may cause exceptions to be incurred by the receiverduring
the system call rather than before it.

Conventions

InvokeCap is a reflective system call. Because the kernel-implementedcapabilities use the same request marshalling
and demarshalling conventions as application-implemented capabilities, these conventions are effectively mandated.

Requests IPR1 contains the request code (a method code that is typically assigned by CapIDL). The implementing
process uses this request code, in combination with the received endpoint ID and protected payload, to determine what
interface has been invoked, what method has been requested,and what permissions the invoker has. By convention,
no method should be assigned the method code zero (0).

Replies If OPR0.ex is clear (0), then the remaining parameter words contain thespecified out parameters accord-
ing to the interface specification. IfOPR0.ex is set (0), then the remaining parameter words contain the exception
message, which consists of a 64-bit exception code followedby an optional structure containing additional informa-
tion. The exception code may occupyOPR1or OPR1..OPR2 or OPR2..OPR3 (notably SPARC) depending on
whether the target architecture is 64-bit or 32-bit and the alignment restrictions imposed on 64-bit integral values by
the underlying architecture.

Kernel Invocation Conventions

The following behavioral specification describes the semantics of theInvokeCap instruction as if the capability
invoked were an Entry capability. If the capability invokedis a kernel-implemented capability, the invocation behaves
as if the kernel were a receiving process that had just performed a SendAndWait with IPR0 and IPR1 fields set as
follows:

Field Meaning Field Meaning
IPR0.CW=0 Perform an open wait. IPR0.NB=0 Reply will be non-blocking.
IPR0.AS=1 Accept string arguments. IPR0.AC=1 Accept capability arguments.
IPW1 (ignoredcapitem t ). IPR0.RP=1 Perform a receive operation.
IPR0.RC=0 No reply capability. IPR0.ldw Set according to last operation.

6.5.2 Return Values

The return values ofInvokeCap are copies of the sender’s argument values with minor alterations:

• The protected payload of the invoked endpoint capability issupplied in place of the invoked capability
caploc t .

• The sender control bits are replaced byT, a bit indicating that one or more incoming typed items were truncated.

• All addresses supplied in the input typed items are zeroed inthe output typed items.

• On output, the kernel injects anepiditem t as the first output typed item.
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Result Format

OPR0 nr=0(4)ldw(3)lsc(2)lrc(2)sgasnbcwrpsprcscaccoexreserved(10/26)

OPR1 rcvPP(32/64)

OPR2..OPRu untyped word(32/64)

OPRu+1..OPRu+t+1 typed item words(32/64)



Chapter 7

Schedules

7.1 Scheduling Model
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Chapter 8

Other Kernel Objects

This chapter describes the services provided by the miscellaneous kernel capabilities.

Thenull capability is used when a non-optional capability field mustbe transmitted but the sender does not wish to
send a capability in that position. Capabilities to destroyed objects become null.

Thekeybits capability discloses the canonical representation of capabilities. Thekeybits capability is considered
sensitive, and should be closely held. The value of the hazard bit HZ is always shown as zero.

Thediscrim capability classifies capabilities into one of a limited setof classifications. The purpose ofdiscrim
is to support the implementation of the confinement policy bytheconstructor , which is one of the core Coyotos
applications.

The range capability conveys the authority to fabricate and destroy arbitrary object capabilities. Therange capa-
bility is highly sensitive, and should be closely held.

Thesleep capability allows its holder to receive an event at a scheduled time.

The IrqCtl capability allows the holder to allocateIrqWait capabilities. This capability is highly sensitive, and
should be closely held.

TheIrqWait capability allows the holder to wait for a particular interrupt to occur. This capability is highly sensitive,
and should be closely held.

The schedctl capability allows the holder to alter the kernel-level scheduling dispatch table. This capability is
highly sensitive, and should be closely held.

Thecheckpoint capability allows the holder to initiate a system-level snapshot operation and force the checkpoint
age-out logic to run to completion. This capability is highly sensitive, and should be closely held.

The obstore capability implements a “reverse” protocol. The object store server uses this capability to wait for
kernel object fill and flush requests and acts on them.
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Part II

Microkernel Realization
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Part I of this specification describes an abstract machine, and gives semantics for the objects associated with that
machine. While there are exposed implementation dependencies that are inherent in the representations of process
register sets and the sizeing of page objects, the theory of operation for these objects is relatively independent of the
underlying hardware.

As a practical matter, real machines incorporate features beyond these core abstractions. These are not managed by the
microkernel, but they require some degree of support in the specification. In particular, the specification must address
issues of device memory and support for direct memory access(DMA), because these are places where the binding
between abstract and concrete objects becomes visible to software.

In addition, the Coyotos specification must address the mechanism of persistence for those implementations that
provide it.
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Chapter 9

Device Interaction and DMA Support

This section describes behavior that is not yet implemented.

This chapter addresses support for device access and for localizing pages so that DMA hardware features can be used.
This chapter doesnot address kernel support for integrating hot-pluggable memory cards as general-use object cache
storage.

9.1 Device I/O Registers

Some hardware implementations provide a hardware registeraddress space (I/O space) that is independent of the
memory address space. This is most notably true on the Pentium, but more selectively true on other processors (e.g.
Coldfire MOVCR). Authorization of access to the hardware register address space is determined by the per-process I/O
space capability. The mechanics of hardware control register access is inherently target-dependent, and the mechanism
used should be specified by the architecture-specific annex.

On some architectures, device registers can be memory mapped, and page-level protections are sufficient to provide
effective isolation. On those systems, device registers can be treated as a form of device memory.

9.2 Device Memory

Some devices publish memory to the device bus that can be mapped wholly or partially into the main memory address
space. Modern video cards are an example of this.

Typically, the mechanical and electrical bus architectures of a given machine limit the number of devices that are
able to publish memory-mapped device memory. Busses such asSCSI, ATAPI, USB, and FireWire, by contrast,
generally do not support memory mapped interfaces for theirattached client devices. The controllers themselves may
use memory mapping, but the attached devices do not.

This design allows the kernel to pre-plan for memory attached device memory by reserving a pre-planned constant
number of page frames for each device, where the total numberof memory-attachable devices is bounded at compile
time. Thesizeof these pages may be larger than the hardware page size defined by the MMU.

9.2.1 Device Ranges

A device rangedescribes a contiguous region of the physical memory map that is backed by some memory-attached
device. Every device range may have up to 16 data pages, each of which is of some size 2k. Thus, a device range
is defined as a (base, limit, size) tuple, where thebase and limit are physical addresses and thesize describes
both the alignment restrictions on thebase andbound addresses and the size of the physical pages defined by this
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device range. A one megabyte memory-mapped device region can therefore be specified as 16 64Kbyte pages or as 4
256Kbyte pages.

The architecture-specific annex specifies the number of device ranges that can be defined in a given implementation.
This is required because the kernel must be able to pre-reserve storage for device memory ranges during early initial-
ization, long before the drivers associated with those ranges are executed or the size of the respective device memory
spaces are known.1

Device memory ranges are not persistent.

The theory of operation for device ranges is that the kernel pre-reserves the storage for the device range descriptors
at startup time, and also the per-page management data structures that are required to track the device pages that will
later be defined. As individual drivers come up and determinetheir associated physical address windows for device
memory, the “allocate” a device range for that device. Once the device range is defined, the coyotos.Range capability
can be used to allocate device pages within that device range.

Destroying a device range destroys all of the device pages currently associated with that range.

9.2.2 Device Pages

A device pageis a data page whose physical address falls within the range defined by some device range. The size
of a device page may be any size 2k that is greater than or equal to the hardware page size. The physical and virtual
addresses of a device page are naturally aligned.

Device pages are not persistent, and are not subject to ageing.

Issue

I suspect that device pagecapabilitiesshould not be persistent, and should be written to disk as Null.

The OID range [0xff00000000000000ull, 0xffffffffffffffffull] is reserved for device pages. Ifl2page is defined
such that the hardware page size is 2l2page, then the OID of the physical page whose physical address 2k≥l2page

is (0xff00000000000000ull+2k-l2page). The corresponding page capability is obtained by invoking Range.getCap or
Range.waitCap with this OID and a type ofotPage . The returned capability will be a page capability to page ofsize
2k at the desired physical address.

While a device page capability obeys the page capability protocol, implements the same permissions as a page capa-
bility, and can be mapped like any other page capability, theterm ”device page” is somewhat misleading:

• Device pages are not persistent.

• A device page may map onto device registers rather than device memory.

• A device page does not really define a block of storage. It is a “view” onto memory that resides on some device.
This view has a known location and size in the physical address space, but in some cases the device driver may
be able to alter the relationship between this view and the associated device memory (e.g. by changing how
addresses presented to the card are demultiplexed).

• Device pages are not zeroed on allocation or rescind, because we have no way to know what sits behind them.
It may be registers, and the kernel does not know what the implications of zeroing those registers might be.

Because of this, writes or reads to device pages can have unusual side effects, and it is not always the case that a
write to a location within a device page followed by a read at that location will produce the same value. In contrast to
conventional pages, the semantics of device pages is whollyor partially determined by the device.

1 In implementations where boot-time parameters can be provided to the kernel, an implementation is free to provide meansto extend this default,
but this should be viewed as a means to deal with high-end, customized hardware configurations rather than a means for adapting to card insertion
and removal.
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Several of these factors suggest that use of device pages should be undertaken with care, and should be restricted to
device drivers. If direct access to device memory must be provided to persistent programs, the provided memory space
should be encapsulated by an opaque GPT.

Device Page Windows It is possible to define windows into device pages using window capabilities, and the window
size may be smaller than the device page size, but must be at least as large as the hardware page size. This permits a
device driver to use larger device page sizes without sacrificing page protection at the normal hardware granularity.

9.3 Object DMA

Because device pages exist at known physical addresses, it is possible for device drivers to use physical direct memory
access (DMA) mechanisms to move data to and from these pages.This does not address the problem of DMA to and
from conventional pages. For example, it is desirable for drivers to be able to transfer data directly to and from user
space.

In abstract, there are three issues that need to be addressedin order to support this:

1. Discovering the physical address at which DMA should occur to reach the target page.

2. In some cases, ensuring that the target page falls within the physical address span reachable by the specific DMA
subsystem, and satisfies any alignment or address congruency requirements of that DMA engine.

An ancillary problem here is that two DMA engines may competefor the same page with incompatible address-
ing constraints. This either needs to be prevented or resolved consistently.

3. Ensuring that the target of DMA remains in memory (pinned)until the DMA operation has completed.
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Part III

Microkernel Interfaces
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coyotos.AddressSpace

Abstract Interface coyotos.AddressSpace

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.AddressSpace

Synopsis:Operations common to all Coyotos memory-related capabilities.

The memory interface captures constant values and operations that are common to all memory-related capabilities.

Type Definitions

slot t Slot index values.

typedef uint32 slot t;

Exceptions

OpaqueSpace Unable to return a capability which is under anOP GPT.

NoSuchSlot No slot of the requested size was found.

Note that this exception can be raised by theextendedFetch andextendedStore operations if the re-
quested slot location is a leaf slot and the leaf object is nota capability page.

CapAccessTypeError Unable to read capabilities from a Page.

Operations

getSlot Fetch capability from slotslot.

Cap getSlot(
slot t slot);

If the invoked capability is a weak capability, the returnedcapability will be the weakened form of the capability
that was found in the target slot.

RaisesCapAccessTypeError if the invoked capability designates a memory object that does not have ca-
pability slots.

setSlot Store capc into the specified slot.

void setSlot(
slot t slot,
Cap c);
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Raises:NoAccess

Inserts a new capability into theGPTor page atslot. If the specified prefix already exists, the associated
capability is overwritten.

RaisesCapAccessTypeError if the invoked capability designates a memory object that does not have ca-
pability slots.

RaisesNoAccess if the invoked capability is weak or read-only.

guardedSetSlot Store capabilityc into the specified slot, adjusting the guard according toguard.

void guardedSetSlot(
slot t slot,
Cap c,
guard t guard);

Raises:RequestError

RaisesNoSuchSlot if the invoked capability designates a memory object that does not have capability slots.

RaisesRequestError if the argument capabilityc is not a memory capability.

fetch Fetch capability from the specifiedoffset in address space.

Cap fetch(
coyaddr t offset);

Raises:NoSuchSlotNoAccess

This is the capability invocation form of the load capability instruction. The primary difference is that it can be
invoked on any memory capability.

If the invoked capability is a weak capability, the returnedcapability will be the weakened form of the capability
that was found in the target slot.

store Storec at the specifiedoffset in address space.

void store(
coyaddr t offset,
Cap c);

Raises:NoSuchSlotNoAccess

This is the capability invocation form of the store capability instruction. The primary difference is that it can be
invoked on any memory capability.

RaisesNoAccess if the invoked capability is weak or read-only.

extendedFetch Return capability froml2arg sized slot at specifiedoffset.

Cap extendedFetch(
coyaddr t offset,
l2value t l2arg,
OUT l2value t l2slot,
OUT restrictions perms);

Raises:OpaqueSpaceRequestError

Retrieves a capability from an address space from the lastGPTwhosel2v is greater than or equal tol2arg,
subject to the following constraints:

• noGPThaving an l2v less thanl2arg will be traversed,

• no capability having an l2g less thanl2arg will be traversed,

• any slot traversal that would result in a malformed or invalid space exception will not be performed – that
is, a slot from the containingGPTwill be returned.
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On successful return,l2slot contains thel2v of the GPTcontaining the returned capability, andperms
describes the cumulative permissions along the path up to and including the containingGPT, butexcludingthe
permissions of the returned capability. If the access path traverses a weak capability, the returned capability will
be the weakened form of the capability that was found in the target slot.

Note that if extendedFetch returns anl2slot that does not match the requestedl2arg, and there
are GPTs in the tree whosel2v is greater than their parent’s l2v (larger space in small hole), a call to
extendedStore(offset, l2slot, newCap) using the returnedl2slot may replace a different slot
then the slotextendedFetch returned.

If either the invoked capability or theGPTthat it names do not satisfy the traversal constraints described above,
the requested slot does not exist. The invoked capability isreturned, anl2slot of zero is reported, and an
perms of zero is reported.

RaisesOpaqueSpace if the traversal encounters an opaque capability on the pathup to, but excluding the
returned capability.

Note: This method specification is provisional. We are attemptingto expose existing kernel function for use by
memory fault handlers, but we probably haven’t got the return values and termination conditions quite right yet.

extendedStore Storevalue into a l2arg sized slot at offsetoffset.

void extendedStore(
coyaddr t offset,
l2value t l2arg,
guard t guard,
Cap value);

Raises:OpaqueSpaceRequestErrorNoSuchSlotNoAccessCapAccessT ypeError

Traverses the address space headed by the invokedGPTto find a slot whose size isl2arg. The request will
fail if:

1. The offset presented is not a multiple of2ˆl2arg, in which caseRequestError is raised.

2. Thel2g field of a traversed capability is less thanl2arg; NoSuchSlot may be raised.

3. A guard mismatch occurs;NoSuchSlot may be raised.

4. An opaque (OP) GPTcapability is traversed;OpaqueSpace may be raised.

5. The slot number we are traversing to in aGPTis out of range.NoSuchSlot may be raised.

6. Thel2v of a GPTwe traverse is less thanl2arg; NoSuchSlot may be raised.

7. A ro or wk capability is traversed;NoAccess may be raised.

8. An l2arg less thanCOYOTOSPAGEL2Vis given.RequestError will be raised.

If the traversal succeeds, the capability slot modified willbe the first slot encountered by the traversal algorithm
such that thel2v value associated with the slot matches the argumentl2arg. This location will be overwritten
by value.

If the traversal fails, and more than one failure could be returned, it is not yet defined which failure is raised.

If the l2g component ofguard is is non-zero, and the capability named byvalue is a memory capability,
the suppliedguard word replaces the one found in the capability named byvalue.

erase Rewrite this object to null capabilities and/or zero data.

void erase();

Raises:NoAccess

RaisesNoAccess if the invoked capability is not writable.
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copyFrom Copy this object from another object of the same type, returning a capability with a matching guard.

AddressSpace copyFrom(
Memory other);

Raises:NoAccessRequestError

RaisesNoAccess if the invoked capability is not writable. RaisesRequestError if the passed capability
type does not match the invoked capability type.

The returned capability will be a duplicate of the invoked capability, with the guard field copied from the target
object. Restrictions arenot copied from the target object. If the caller wishes to copy the elements of the target
object without altering the guard field of the recipient node, the returned capability can be discarded.



coyotos.AppNotice

Interface coyotos.AppNotice

Derivation:
coyotos.Cap
coyotos.AppNotice

Synopsis:Application-defined interrupt posting interface

An AppNotice capability authorizes up to 32 distinct notices that are guaranteed to be delivered to the recipient.
Notices posted using thepostNotice method are guaranteed to be delivered when the recipient (ifany) next enters
a receiving state, but invocation ofpostNotice is also guaranteed not to block. This makes theAppNotice ca-
pability useful to support the implementation of flow control in bidirectional streams or input notification in situations
where the notifier must not block.

If a given notice is posted multiple times prior to receipt, the receiving application will receive it exactly once.

Operations

postNotice Post a (set of) application-defined noticesnotices n to the application.

/ * oneway * / void postNotice(
uint32 notices);

ThepostNotice method posts the authorized subset ofnotices to the receiving application if one exists.

There are two ways in which the invocation ofpostNotice can fail:

1. The endpoint directly named by theAppNotice capability may contain a Null capability in its recipient
slot.

2. The endpoint itself may have been destroyed.

In both cases an error is returned internally, but cannot be received because aonewayinvocation does not involve
a receive phase.

getNotices Return the list of notices whose delivery is authorized by this capability.

uint32 getNotices();
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Abstract Interface coyotos.Cap

Synopsis:Operations common to all Coyotos capabilities.

The cap interface defines a set of operations that are common to all Coyotos capabilities. While some objects do
not implement some of these operations (e.g. many kernel capabilities do not honor the destroy operation), these
operations are nonetheless so universal that they warrant inclusion in the common ancestor of all interfaces.

Type Definitions

coyaddr t Type of address space positions as defined by the operating system.

Coyotos defines address space offsets to be 64 bits on all platforms.

typedef uint64 coyaddr t;

archaddr t Interface type for native machine addresses.

The archaddrt type is a 64-bit value, even on implementation architectures that use 32-bit addresses. This is
done to avoid the need to duplicate thecoyotos.process.swapSpaceAndPC methods and the corre-
sponding field in the Process structure.

Wherever a kernel interface is specified as accepting an argument of type archaddrt, the value passed must
fall within the user-mode addressable bound of the underlying hardware architecture. Where the architecture
specific annex specifies further constraints on valid user-mode addresses, the value passed must also satisfy
those constraints.

typedef coyaddr t archaddr t;

payload t Type declaration for protected payload values.

Issue: Not clear that this should live in the cap interface.

typedef uint32 payload t;

exceptiont Type to use when exception codes are passed as explicit arguments to methods.

typedef uint64 exception t;

AllegedType Type declaration for the alleged interface type value.

typedef uint64 AllegedType;

Exceptions

OK No error occurred.

This ”exceptional result” supports the process teardown protocol, where the exiting process is expected to spec-
ify an exception code to return, and needs a way to say that no exception occurred. This exception code should
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onlybe used when an exception code is explicitly passed as an argument value. It shouldnotbe used to indicate
a non-exceptional result from a normally returning method.

InvalidCap Invoked capability was invalid.

Exceptional result returned when a capability has become invalid by virtue of its target object being destroyed.

Open Issue: there is a suggestion on the table that invoking an invalid capability should be viewed as an
instruction execution exception rather than an invocationexception. I am provisionally inclined to the view that
we should continue the (never implemented)EROSdesign in which an invocation exception can be conditionally
propagate to the fault handler.

UnknownRequest Requested operation not implemented by this capability.

Exceptional result returned when the operation requested on a capability is not recognized by the implementing
interface.

RequestError Message was malformed.

Exceptional result returned when the payload of a request does not correspond to the expected argument payload,
or a provided argument falls outside the expected range.

When a operation is requested with insufficient permission using a malformed request, it is unspecified whether
the RequestError or NoAccess exceptions is returned.CapIdl -generated services perform early ar-
gument demultiplexing, and therefore tend to generate theRequestError exception before considering
NoAccess exception. Correctly written programs should not rely on this ordering preference, which may
change at any time without notice.

NoAccess Insufficient permissions for requested operation.

Exceptional result returned when the operation is recognized but the operation requested requires permissions
that are not conveyed by the invoked capability.

Operations

destroy Destroy the object.

void destroy();

The destroy operation requests that the target object destroy itself. This operation is not implemented by most
kernel capabilities, but is declared as part of the basic capability interface because we want to establish a gener-
ally shared convention about the operation code used for this operation by those interfaces that actually imple-
ment it.

getType Get alleged type code.

AllegedType getType();

Returns an integral value indicating the alleged type code of the invoked interface.



coyotos.CapBits

Interface coyotos.CapBits

Derivation:
coyotos.Cap
coyotos.CapBits

Synopsis:Kernel interface to key representation.

KeyBits provides a means to inspect a capability as a value.

Structures

info Capability as data response structure.

struct info{
uint32 w[4];

};

Operations

get void get(
Cap c,
OUT info bits);

Return the representation of a key as data.
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Interface coyotos.CapPage

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.AddressSpace

coyotos.CapPage

Synopsis:Capability page interface
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Interface coyotos.Checkpoint

Derivation:
coyotos.Cap
coyotos.Checkpoint

Synopsis:Checkpoint control capability

The kernel cycles between normal execution and background checkpoint writeback. When executing normally, a
snapshot can be declared, transitioning the kernel into thecheckpoint aging state.

Exceptions

CkptIncomplete An attempt was made to initiate a new snapshot before writeback of the previous snapshot was
completed.

Operations

snapshot Declare a new checkpoint.

void snapshot();

Raises:CkptIncomplete

processCheckpoint Make some implementation-defined amount of progress driving the pageout of the current snap-
shot. Return true if the checkpoint process requires more effort at the end of the current request. Return false if
no further progress is required.

bool processCheckpoint();
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Interface coyotos.DevRangeCtl

Derivation:
coyotos.Cap
coyotos.DevRangeCtl

Synopsis:Authority to create and destroy device ranges.

TheDevRangeCtl capability provides the authority to define and destroy device memory ranges.

Type Definitions

physaddr t Type of a physical address.

typedef uint64 physaddr t;

DevRangeNdx typedef int32 DevRangeNdx;

Operations

getNumRanges Return the number of device range structures implemented bythe kernel in its present configuration.

DevRangeNdx getNumRanges();

getPagesPerRangeReturn the number of pages supported per range.

uint32 getPagesPerRange();

setup Define a new device memory range to the kernel.

void setup(
DevRangeNdx range,
physaddr t base,
physaddr t bound,
Memory.l2value t l2sz);

Raises:RequestErrorNoAccess

Allocates a new kernel device range. RaisesRequestError if l2sz is too small or if the requested device
range overlaps some existing range. RaisesNoAccess if the device range is in use or the requested range
overlaps with theBSP’s RAMranges.

destroy Deallocate a device range and destroy all of its associated device pages.

void destroy(
DevRangeNdx range);
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Interface coyotos.Discrim

Derivation:
coyotos.Cap
coyotos.Discrim

Synopsis:Discriminate among capability categories.

Enumerations

capClass Capability classifications returned by the classify operation.

Name Type Value
clNull uint32 0
clWindow uint32 1
clMemory uint32 2
clSched uint32 3
clEndpoint uint32 4
clEntry uint32 5
clProcess uint32 6
clAppNotice uint32 7
clOther uint32 255

Operations

classify Return the classification of the passed capability, which isone of the selections in thecapClass enumer-
ation.

capClass classify(
Cap c);

isDiscreet Return true exactly if this capability is discreet.

bool isDiscreet(
Cap c);

A discreet capability is one that (transitively) conveys noauthority to mutate. These includeCapBits , Discrim,
Null, Window, andLocalWindow . These also include weak Page,CapPage, andGPTcapabilities.

compare Compare two capabilities for (exact) identity.

bool compare(
Cap c1,
Cap c2);
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Interface coyotos.Endpoint

Derivation:
coyotos.Cap
coyotos.Endpoint

Synopsis:Endpoint interface

An endpoint is a destination for a message. Endpoints are described in detail in the Coyotos Microkernel Specification.

Operations

setRecipient Set the recipient processp.

void setRecipient(
coyotos.Process p);

Raised theRequestError exception if the inserted capability is not a Process capability or a Null capability.

setPayloadMatch Enable protected payload matching.

void setPayloadMatch();

Note that payload matching cannot be disabled once enabled.This ensures that Entry capabilities which become
invalid as a result of a payload match failure remain invalid.

setEndpointID Set the endpoint identifier value toid.

void setEndpointID(
uint64 id);

getEndpointID Fetch the endpoint identifier valued.

uint64 getEndpointID();

makeEntryCap Fabricate an entry capability to this endpoint.

Cap makeEntryCap(
payload t payload);

makeAppNotifier Fabricate an application notify issuance capability to this endpoint capable of sending
application-defined noticen exactly if bitn of allowedNotices is non-zero.

AppNotice makeAppNotifier(
uint32 allowedNotices);
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Interface coyotos.GPT

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.AddressSpace

coyotos.GPT

Synopsis:Guarded Page Table

A guarded page table (GPT) is the mechanism for composing address spaces. The data structure and basic idea of
GPTs is discussed in the Coyotos Microkernel Specification. The mappable unit depends on the address space type:

Address Space Type Mappable Unit
Data Space bytes
Capability Space capabilities
I/O Space I/O ports

Constants

Name Type Value Description
nSlots l2value t 16 number of slots in aGPT
l2slots l2value t 4 log(2) of number of slots in aGPT
handlerSlot slot t 15
backgroundSlot slot t 14

Operations

setl2v set the l2v field of thisGPTto l2v, returning the previous l2v value.

l2value t setl2v(
l2value t l2v);

getl2v Return the current l2v field value of thisGPT.

l2value t getl2v();

setHandler Set whether or not thisGPThas a handler

void setHandler(
bool hasHandler);

getHandler Find out whether thisGPThas a handler

bool getHandler();

64



COYOTOS.GPT 65

makeLocalWindow Store a new local window capability in slotslot.

void makeLocalWindow(
slot t slot,
uint32 restr,
coyaddr t offset,
guard t guard,
slot t localRoot);

Raises:NoAccessRequestError

The offset argument specifies the offsetrelative to the windowed spacenamed by thelocalRoot slot.
The restr argument gives the permission restrictions imposed by the local window. Theguard argument
specifies the guard value for the window capability.

The supplied offsetoffset must be an integral multiple of 2l2v. If this constraint is violated, the
RequestError exception is raised.

makeBackgroundWindow Store a new background window capability in slotslot.

void makeBackgroundWindow(
slot t slot,
uint32 restr,
coyaddr t offset,
guard t guard);

Raises:NoAccessRequestError

The offset argument specifies the offsetrelative to the background spacethat this window names. The
restr argument gives the permission restrictions imposed by the window. Theguard argument specifies the
guard value for the new window capability.

The supplied offsetoffset must be an integral multiple of 2l2v. If this constraint is violated, the
RequestError exception is raised.
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Interface coyotos.IrqCtl

Derivation:
coyotos.Cap
coyotos.IrqCtl

Synopsis:Low-level interrupt control capability.

An IrqCtl capability provides the authority to allocateIrqWait capabilities. wait on one of a range of inter-
rupts. The invoker callswaitForInterrupt , which returns when the requested interrupt becomes in service. The
IrqRange capability describes a range of interrupts that the wieldercan wait for. A given process can wait for only
one interrupt at a time.

Type Definitions

irq t typedef uint32 irq t;

Operations

getIrqWait Retrieve a capability enabling the wielder to wait for an interrupt.

IrqWait getIrqWait(
irq t irq);

bindIrq Mark an interrupt line as being bound to real hardware.

void bindIrq(
irq t irq);

wait Wait for an interrupt to occur on a given hardware interrupt line.

void wait(
irq t irq);
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Interface coyotos.IrqWait

Derivation:
coyotos.Cap
coyotos.IrqWait

Synopsis:Low-level interrupt control capability.

An IrqCtl capability provides the authority to allocateIrqWait capabilities. wait on one of a range of interrupts.
The invoker calls wait(), which returns when the requested interrupt becomes in service. TheIrqRange capability
describes a range of interrupts that the wielder can wait for. A given process can wait for only one interrupt at a time.

Operations

wait Wait for an interrupt to occur on a given hardware interrupt line.

void wait();
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Interface coyotos.KernLog

Derivation:
coyotos.Cap
coyotos.KernLog

Synopsis:Capability to read/write the kernel log data.

Type Definitions

logString typedef anon2 logString;

Operations

log void log(
logString msg);
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Interface coyotos.LocalWindow

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.Window

coyotos.LocalWindow

Synopsis:Address space local window interface

Operations

getRootSlot Retrieve therootSlot value stored in this window capability.

uint32 getRootSlot();
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Abstract Interface coyotos.Memory

Derivation:
coyotos.Cap
coyotos.Memory

Synopsis:Operations common to all Coyotos memory-related capabilities.

The memory interface captures constant values and operations that are common to all memory-related capabilities.

Type Definitions

l2value t Size of an address length.

typedef uint32 l2value t;

guard t Structure describing a guard word.

Ideally we would like to specify this as a bitfield, but the differences in bitfield packing rules from one platform
to the next involve too many variations forCapIDL to handle. We therefore resort (reluctantly) to using a single
word. The least significant 7 bits of the word contain the l2g value. The most significant 24 bits contain the
match value.

typedef uint32 guard t;

Enumerations

restrictions Values used in the memory capability permissions mask.

Issue: These values could be pre-biased to match the positioning ofthe type field. Should they be? How
confident are we about the commitment to a 5-bit type field?

Name Type Value Description
weak uint32 1 Capability is weak.

All capabilities fetched through a weak capability are
returned with (conservatively) read only and weak per-
missions. If the kernel cannot determine how to per-
form this downgrade, the returned capability will be
null.
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Name Type Value Description
readOnly uint32 2 Capability is read only.

This capability does not permit mutation of the target
object.

noExecute uint32 4 Capability does not permit execution.
On hardware that supports a non-execute control bit,
attempts to execute from a range markednoExecute
will generate exceptions.

opaque uint32 8 Capability is opaque.
GPT does not permit slot fetch or store opera-
tions. This restriction is not meaningful for Page or
CapPage objects.

noCall uint32 16 Capability is no-call.
No keeper will be called below this point in the mem-
ory traversal. This restriction is not meaningful for
Page orCapPage objects.

Operations

reduce Return copy of current memory capability with reduced permissions.

Memory reduce(
restrictions mask);

The returned capability will implement the same concrete interface as the invoked capability with appropriately
reduced permissions.

RaisesRequestError if an attempt is made to set the opaque or no-call bits on a PageorCapPage capability.

setGuard Return a capability having a different guard value.

Memory setGuard(
guard t guard);

Theguard argument specifies the guard value to be set.

getGuard Return the guard value stored in the capability.

void getGuard(
OUT guard t guard);

getRestrictions Return the restriction bits set for this memory capability.

restrictions getRestrictions();
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Interface coyotos.MemoryHandler

Derivation:
coyotos.Cap
coyotos.MemoryHandler

Synopsis:Kernel interface for per-process fault handlers.

A fault handler should implement this interface on its entrypoint capability. When delivering a fault to an external
handler, the kernel will upcall the fault according to the protocol of this interface.

Operations

handle Kernel-invoked entry point for process fault handler.

/ * oneway * / void handle(
Process proc,
Process.FC faultCode,
uint64 faultInfo);

This entry point is invoked by the kernel. The capabilityproc names the process that incurred the fault. The
fault structure provides the fault code and the issued addressrelative to the managedGPT at which the fault
occurred.

Whether the fault will be resolved is at the discretion of theinvoked handler. If the handler chooses to resolve
the fault, it should take any action necessary to prevent recurrence and then call theProcess.resume method
onproc with theclearFault parameter set totrue. This will clear the fault and allow the victim process
to restart the faulting instruction.

If the memory fault handler is unable to resolve the fault, itshould call theProcess.resume method on
proc with theclearFault parameter set tofalse. This will cause the process to restart with the fault still
pending, which will cause the per-process handler to be invoked.

Note that the process capabilityproc supplied by the kernel at this interface is the restricted ”restart” form. It
permits only the resume() method and thegetType () method. Any other operation will generate aNoAccess
response.

Note that this is a oneway invocation; the capability supplied in the reply slot at the time of upcall will be the
Null capability. Merely replying in the conventional way isnot sufficient to restart the faulted process.
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Interface coyotos.Null

Derivation:
coyotos.Cap
coyotos.Null

Synopsis:Universal invalid capability.

Capabilities to objects that have been destroyed become null capabilities. The null capability implements no operations
of its own. It will respond to thegetType () operation (only).
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Interface coyotos.ObStore

Derivation:
coyotos.Cap
coyotos.ObStore

Synopsis:Object storage manager interface

THIS ISA PLACEHOLDER

The object backing store manager responds to kernel-initiated requests for object pagein or object pageout. Like the
cap.fault interface it is a “reverse” interface in the sense that it is kernel defined but server implemented.

The details of the object backing store interface are not yetdetermined.
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Interface coyotos.Page

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.AddressSpace

coyotos.Page

Synopsis:Page interface
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Abstract Interface coyotos.Process

Derivation:
coyotos.Cap
coyotos.Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interface. For many operations of interest the architecture dependent
interface should be consulted.

Type Definitions

capRegister typedef uint32 capRegister;

Enumerations

arch Process execution model (architecture).

This is primarily useful on machines that support (directlyor through simulation) mutiple execution models. It
allows a debugger to learn the execution model (architecture) of a subject process.

Name Type Value Description
ia32 uint32 0 IntelIA32 (and derivatives)
coldfireV4 uint32 1 Later coldfire processors
arm uint32 2 AcornRISC Machine
amd64 uint32 3 AMD64
sparc uint32 4 Sun 32-bitSPARC
sparc64 uint32 5 Sun 64-bitSPARC
ia64 uint32 6 IntelITANIC

FC Fault (exception) codes.

The fault code provides a mostly machine independent renaming of the exception codes returned by the pro-
cessor, plus a small number of additional exceptions generated by kernel software. Some architectures (notably
IA32 ) extend this code space with additional, architecture-specific extensions.FCcode points beginning at 128
are reserved for architecture-specific fault codes.

Name Type Value Description
NoFault uint8 0 Process currently does not have any fault.
MalformedSyscall uint8 1 System call parameters were malformed, or system

call number unknown.
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Name Type Value Description
SoftNotice uint8 2 An application-defined interrupt is being delivered.
SliceExpired uint8 3 Slice expiration occurred.
InvalidDataReference uint8 4 Issued data reference address was undefined.
InvalidCapReference uint8 5 Issued capability reference address was undefined.
NoExecute uint8 6 Insufficient access rights for instruction reference.

Note that this exception will be generated only on ma-
chines that provide theNXpermission bit or equivalent
functionality.

AccessViolation uint8 7 Cannot write to specified address.
DataAccessTypeError uint8 8 A data load/store was attempted to a capability page.
CapAccessTypeError uint8 9 A capability load/store was attempted to a data page or

I/O page.
MisalignedReference uint8 10 Reference to item at misaligned address. Note that this

is not considered a memory error.
TraverseLimit uint8 12 GPT traversal limit exceeded in address space refer-

ence.
MalformedSpace uint8 13 Address spaceGPTarrangement is malformed, orGPT

contains an inappropriate capability type.
Notify uint8 24 Issued to ensure notification delivery to in-process

fault handler.
Startup uint8 25 Issued when a process is first made running to allow

activation handler to initialize.
NoAddrSpace uint8 32 Process has invalid/maltyped address space capability.

Bug: Not sure this can ever be issued – won’t
this simply manifest as one ofDataInvalidAddr ,
CapInvalidAddr , or IOInvalidAddr ?

NoSchedule uint8 33 Process has invalid/maltyped schedule capability.
BreakPoint uint8 34 Process encountered a breakpoint instruction

(PC=&bpt).
This fault code is used on architectures where the
breakpoint instruction does not advance the program
counter, or when the kernel can automatically roll the
program counter back to point to the breakpoint in-
struction.

BrokePoint uint8 35 Process encountered a breakpoint instruction
(PC=&bpt+1).
This fault code is used on architectures where it is im-
possible to automatically recover the correct address
of the breakpoint instruction. On architectures where
the address of the breakpoint instruction can be reli-
ably re-established in software, the kernel will back up
the instruction pointer and report theBreakPoint
exception instead.
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Name Type Value Description
BadOpcode uint8 36 Process issued an illegal or unknown instruction.
Alien uint8 37 Process marked as “alien” performed an invocation in-

struction.
DivZero uint8 38 Process performed an integer divide by zero
BadAlign uint8 39 Process performed a checked misaligned memory ref-

erence.
NoFPU uint8 40 No floating point unit available.

This exception indicates that there is neither a hard-
ware floating point unit nor a kernel-provided software
emulation available on this machine.

FPfault uint8 41 Unsupported floating point instruction.
Other floating point error. More detailed information
about the error should be obtained by executing the
architecture specificGetRegsFP () operation and ex-
amining the appropriate floating point status register.

Debug uint8 42 Debug Exception
A hardware debugging event has occurred.

Overflow uint8 44 Overflow trap.
Bounds uint8 45 Bounds Violation.
SysCallEntry uint8 46 Trap on Start of Invocation
SysCallReturn uint8 47 Trap on Post-Receive
ActivationFail uint8 48 Trap on Post-Receive
ObjectContentLost uint8 49 Backing store has unrecoverably lost the state of this

object.
GeneralProtection uint8 128 General Protection fault.
StackSeg uint8 129 Stack Segment fault.
SegNotPresent uint8 130 Segment Not Present fault.
SIMDfp uint8 131 SIMD floating point error.

cslot Capability slots of a process.

This is obsolete

Name Type Value Description
handler uint32 0 Fault handler.
addrSpace uint32 1 Address space.
schedule uint32 2 Schedule.
ioSpace uint32 3 IO address space
cohort uint32 4 Cohort capability.

Operations

resume Resume the process.

void resume(
bool cancelFault);

Raises:NoAccess

Transitions the process to the ready state. When ready, a process will initiate new instructions according to its
schedule, and may make progress in an invocation. IfcancelFault is true, resume the process with its fault
code set toFC.NoFault .

setSpaceAndPC Sets the address space andPCvalue as a single operation, and transitions the target process to the
running state.
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void setSpaceAndPC(
Cap newAS,
archaddr t newPC);

Atomically installsnewAS in the address space slot andnewPCin the program counter slot. Typically used by
a process on itself to switch to/from protospace.

If the operation is performed on the invoker, the load multiple caps and send phase are marked completed in the
invoker register set. If the operation is performed on the invokee, these phases will already have completed.

Note that if this operation is performed on the invoker, it effectively causes the system call to be aborted after a
successful kernel operation but without a receive or store multiple capabilities phase during the current kernel
invocation. If this operation is performed on the invokee, the invokee is logically made running immediately,
with the effect that the invokee receive phase is similarly terminated and no store multiple capabilities phase
occurs during the current kernel invocation.

The phrase ”during the current kernel invocation” addresses a peculiar corner case. If the target processPC
andAS point to the system call trap instruction prior to invocation, and the result ofsetSpaceAndPC is to
set them to their prior values, the target process will resume by re-executing the system call trap. Depending
on how much progress the target process has made during its system call, it may or may not then complete the
system call by performing a receive phase and/or a store multiple capabilities phase. Note, however, that these
actions will occur in thesubsequentinvocation.

getState Retrieve architecture-neutral state.

void getState(
OUT FC faultCode,
OUT archaddr t faultInfo);

This interface is subject to change; at some point,runState and notices will be added, and everything will
move into a structure.

setState Set architecture-neutral state.

void setState(
FC faultCode,
archaddr t faultInfo);

This interface will fail withRequestError if faultCode is FC NoFault andfaultInfo is non-zero.

This interface is subject to change; at some point,runState and notices will be added, and everything will
move into a structure. (note that this interface willneverbe able to setrunState )

getSlot Retrieve the capability stored in the specified capability slot.

Cap getSlot(
cslot slot);

setSlot Store the supplied capability stored to the specified capability slot. If the type of the stored capability is
unsuitable for the slot, theRequestError exception is raised.

void setSlot(
cslot slot,
Cap c);

Raises:RequestError

getCapReg Retrieve the capability stored in the specified capability register.

Cap getCapReg(
capRegister reg);

Raises:RequestError

If reg is out of bounds (>= 32), theRequestError exception is raised.
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setCapReg Store the supplied capability stored to the specified capability register.

void setCapReg(
capRegister reg,
Cap c);

Raises:RequestError

If reg is out of bounds (>= 32), theRequestError exception is raised. Ifreg is zero, theRequestError
exception is raised.

identifyEntryWithBrand Identify whether the passed entry capabilityent is an entry capability to a process whose
brand matchesbrand.

bool identifyEntryWithBrand(
Cap ent,
Cap brand,
OUT payload t pp,
OUT uint64 epID,
OUT bool isMe);

Returns true ifent is an entry capability, and thebrand slot of the process designated (indirectly) by the entry
capability matches the argument capabilitybrand. If so, then the endpointID value of the endpoint named by
ent is returned inepID and the protected payload value ofent is returned inpp. Otherwise, returns false,
epID andpp are zero, andisMe is false.

If the endpoint names the invoked process capability,isMe will be true.

identifyEntry Identify whether the passed entry capabilityent is an entry capability to a process whose brand
matches ours.

bool identifyEntry(
Cap ent,
OUT payload t pp,
OUT uint64 epID,
OUT bool isMe);

Functional specification is identical toProcess.identifyEntryWithBrand , except that the brand used
for comparison will be taken from the brand slot of the process designated by the process capability that was
invoked.

amplifyCohortEntry Identify whether the passed entry capabilityent is an entry capability to a peer thread.

bool amplifyCohortEntry(
Cap ent,
OUT payload t pp,
OUT uint64 epID,
OUT Process peer);

Return true ifent is an entry capability, and thecohort slot of the process designated (indirectly) by the entry
capability matches thecohort slot of the invoked process.

If the capabilityent doesname a peer process, returns the endpointID value inepID, the entry capability’s
protected payload value inpp, and the peer process capability inpeer.



coyotos.ProcessHandler

Interface coyotos.ProcessHandler

Derivation:
coyotos.Cap
coyotos.ProcessHandler

Synopsis:Kernel interface for per-process fault handlers.

A fault handler should implement this interface on its entrypoint capability. When delivering a fault to an external
handler, the kernel will upcall the fault according to the protocol of this interface.

Operations

handle Kernel-invoked entry point for process fault handler.

/ * oneway * / void handle(
Process proc,
Process.FC faultCode,
uint64 faultInfo);

This entry point is invoked by the kernel. The capabilityproc names the process that incurred the fault. The
fault structure provides the fault code and the issued address at which the fault occurred.

Whether the fault will be resolved is at the discretion of theinvoked handler. If the handler chooses to resolve
the fault, it should take any action necessary to prevent recurrence and then call theProcess.resume method
with theclearFault parameter set to true.

Note that in contrast toMemoryHandler.handle , the process capability provided here is a full-strength
capability.

Note that this is a oneway method; no reply is expected. The capability supplied in the reply slot at the time of
upcall will be the Null capability. Merely replying in the conventional way isnot sufficient to restart the faulted
process.
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Interface coyotos.Range

Derivation:
coyotos.Cap
coyotos.Range

Synopsis:Kernel interface to object ranges.

The Range interface provides the primitive means for the allocation and deallocation of object capabilities.

All allocation operations return objects whose data fields are set to zero and whose capability fields are set to
cap.null .

Constants

Name Type Value Description
devOidStart oid t 18374686479671623680 Beginning of physicalOID frames.

OIDs in the range [0xff00000000000000ull,
0xffffffffffffffffull] are reserved for physical ob-
ject frame allocations associated with device memory.
Allocating one of theseOIDs has the effect of
allocating the physical object frame whose frame
numbern is (oid-0xff00000000000000ull), provided
that a corresponding object frame of the requested
type exists within the appropriate kernel object vector.

Type Definitions

oid t Type of an objectID .

typedef uint64 oid t;

Exceptions

RangeErr Attempted to allocate object from unbacked/undefined range.

NotMounted Attempt was made to allocate an object from a dismounted range.

IoErr An I/O error occurred during object allocation.

AllocCountRollover Requested object could not be allocated because the allocation count has reached its maximal
value.
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Enumerations

obType Object types returned by identify.

This must match the enumeration in obstore/ObFrameType.h

Bug: At some point the enumeration here should become definitive, and the enumeration inObFrameType.h
should be retired.

Name Type Value
otPage uint32 0
otCapPage uint32 1
otGPT uint32 2
otProcess uint32 3
otEndpoint uint32 4
otNUM TYPES uint32 5
otInvalid uint32 4294967295

Operations

identify Identify an object.

void identify(
Cap c,
OUT obType type,
OUT uint64 offset);

Determines theOID and type of an object. If the capabilityc is a non-object capability, he reportedtype will
beotInvalid and the reportedoffset will be 0.

rescind Rescind an object.

void rescind(
Cap c);

Rescinds the passed capability if it is the “full powered” variant of this capability type. That is: a read-write
page, cappage, or gpt capability, a process capability, an endpoint capability, or a rcvqueue capability, but not
an enty capability or any reduced form of page/cappage capability.

nextBackedSubrange Report next populated subrange.

void nextBackedSubrange(
oid t startOffset,
obType type,
OUT oid t base,
OUT oid t bound);

Returns the offset and length of then next subrange of typetype for which backing objects actually exist,
starting the search at offset /startOffset / of the passed range key.

Note: This operation may be obsoleted in future versions of the interface, as the idea ofOID to location corre-
spondence may away.

getCap Create capability to object.

Cap getCap(
oid t oid,
obType ty);

Raises:RangeErrNotMountedAllocCountRollover

Returns object capability to an object of the specified typety having the givenoid. If the range is dismounted
or otherwise unavailable, this operation will throw an exception.
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waitCap Create capability to object (blocking).

Cap waitCap(
oid t oid,
obType ty);

Raises:AllocCountRollover

Returns an object capability to an object of the specified type ty having the givenoid. If the range is dis-
mounted or otherwise unavailable, this operation will block until it becomes available.

getProcess Create capability to process.

Process getProcess(
oid t oid,
Cap brand);

Raises:RangeErrNotMountedAllocCountRollover

Creates a process capability having the specifiedoid. The process brand slot will be initialized to the value
of brand. If the range is dismounted or otherwise unavailable, this operation will throw theRangeErr
exception.

waitProcess Create capability to process (blocking).

Process waitProcess(
oid t oid,
Cap brand);

Raises:AllocCountRollover

Creates a process capability having the specifiedoid. The process brand slot will be initialized to the value
of brand. If the range is dismounted or otherwise unavailable, this operation will block until it becomes
available.
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Interface coyotos.RcvQueue

Derivation:
coyotos.Cap
coyotos.RcvQueue

Synopsis:Receive queue interface.

This interface is a place-holder for a future implementation that may never happen. This interface may be dropped in
future specification revisions.

Operations

dequeue Dequeue an endpoint from this receive queue if one is present, and return a capability to it viaep. Return
value is true if an endpoint has been returned.

bool dequeue(
OUT Endpoint ep);

makeSendCap Fabricate a sender’s capability to this receive queue.

Cap makeSendCap(
payload t payload);
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Interface coyotos.SchedCtl

Derivation:
coyotos.Cap
coyotos.SchedCtl

Synopsis:Low-level scheduler control capability.

THIS ISA PLACEHOLDER

This will eventually be the interface that is used by the application-level admission control agent to introduce new
entries into the kernel schedule table.
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Interface coyotos.Schedule

Derivation:
coyotos.Cap
coyotos.Schedule

Synopsis:Base scheduling interface.

THIS ISA PLACEHOLDER

This will eventually be the interface that is used by an application to define its scheduling criteria.
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Interface coyotos.Sleep

Derivation:
coyotos.Cap
coyotos.Sleep

Synopsis:Kernel delay mechanism.

The sleep capability allows a process to block for a specifiedperiod of time. Note that the sleep(), if any, happens
before the reply. It is the invoker rather than the invokee who blocks.

In contrast to all other kernel interfaces, the sleep capability contrives to be in a non-receiving state until the requested
interval has expired.

Operations

sleepTill Sleep until the specified number of secondssec and microsecondsusec have passed since the beginning
of the current restart epoch.

void sleepTill(
uint32 sec,
uint32 usec);

RaisesRequestError if usec >= 106

sleepFor Sleep until the specified number of secondssec and microsecondsusec have passed. Note that this will
be re-written by the kernel into asleepTill invocation.

void sleepFor(
uint32 sec,
uint32 usec);
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Interface coyotos.SysCtl

Derivation:
coyotos.Cap
coyotos.SysCtl

Synopsis:System control capability

This capability provides the authority to perform low-level system control functions, notably halt, shutdown, and
reboot.

Operations

halt Halt the system immediately. This is primarily useful for kernel debugging.

void halt();

powerdown Power the hardware down.

void powerdown();

reboot Reboot the hardware.

void reboot();
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Interface coyotos.Window

Derivation:
coyotos.Cap

coyotos.Memory
coyotos.Window

Synopsis:Address space background window interface

Operations

getOffset Retrieve the offset value stored in this window capability.

coyaddr t getOffset();
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Abstract Interface coyotos.coldfire.Process

Derivation:
coyotos.Cap

coyotos.Process
coyotos.coldfire.Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interface. For many operations of interest the architecture dependent
interface should be consulted.

Structures

fixregs Architecture-specific fixed-point registers layout

struct fixregs{
uint32 ExceptAddr; Other address associated with exception, such as page

fault virtual address.
uint32 d[8];
uint32 a[8];
uint32 ExceptWord; First word of exception frame. This includes the con-

dition code register in its least byte.
uint32 ExceptPC; PCof instruction incurring exception.

This is usually the current program counter.
};

floatregs Architecture-specific floating point registers.

struct floatregs{
uint32 fpcr;
uint32 fpsr;
uint32 fpiar;
uint64 fp[8];

};

emacregs Extended multiply-accumulate unit registers.

struct emacregs{
uint32 macsr;
uint32 acc[4];
uint32 accExt01;
uint32 accExt23;
uint32 mask;

};
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Operations

getFixRegs Fetch the fixed-point register set.

fixregs getFixRegs();

setFixRegs Set the fixed-point register set.

void setFixRegs(
fixregs regs);

The overwrite of the register set area occurs atomically.

A RequestError exception will be raised if the size of the provided registerstructure does not match the size
of the register set being updated.

getFloatRegs Fetch the floating-point register set.

floatregs getFloatRegs();

setFloatRegs Set the floating-point register set.

void setFloatRegs(
floatregs regs);

The overwrite of the register set area occurs atomically.

A RequestError exception will be raised if the size of the provided registerstructure does not match the size
of the register set being updated.

getEmacRegs Fetch theEMACunit register set.

emacregs getEmacRegs();

setEmacRegs Set theEMACunit register set.

void setEmacRegs(
emacregs regs);

The overwrite of the register set area occurs atomically.

A RequestError exception will be raised if the size of the provided registerstructure does not match the size
of the register set being updated.



coyotos.i386.Process

Abstract Interface coyotos.i386.Process

Derivation:
coyotos.Cap

coyotos.Process
coyotos.i386.Process

Synopsis:Operations common to all Coyotos processes.

This is the architecture-independent process interface. For many operations of interest the architecture dependent
interface should be consulted.

Type Definitions

ssereg typedef uint32 sse reg[4];

Structures

fixregs Architecture-specific fixed-point registers layout

struct fixregs{
uint32 EDI;
uint32 ESI;
uint32 EBP;
uint32 ExceptAddr;
uint32 EBX;
uint32 EDX;
uint32 ECX;
uint32 EAX;
uint32 ExceptNo;
uint32 Error;
uint32 EIP;
uint32 CS;
uint32 EFLAGS;
uint32 ESP;
uint32 SS;
uint32 ES;
uint32 DS;
uint32 FS;
uint32 GS;

};

floatregs Architecture-specific floating point andSIMD registers layout.
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struct floatregs{
uint16 fcw;
uint16 fsw;
uint16 ftw;
uint16 fop;
uint32 eip;
uint32 cs;
uint32 dp;
uint32 ds;
uint32 mxcsr;
uint32 mxcsrmask;
ssereg fpr[8];
ssereg xmm[8];

};

There is a policy problem here: Intel changed the format starting in the Pentium-III (FSAVE-> FXSAVE),
and they have reserved space for future extensions. This raises a tricky question about what to present at the
interface.

It is possible to reconstruct theFSAVEinformation from theFXSAVEinformation. It is also possible to run
on an older machine by initializing theSSE slots to well-defined values and pretending that since noSSE
instructions were executed the state must not have changed.That is what we do here.

This leaves us with the question of what type to present at theinterface. Our sense is that it is better to present
a well-defined, shorter structure than to give a general structure whose internals will need to be edited later. If
necessary we can add a new fetch operation to deal with futureextensions toSSEstate.

Operations

getFixRegs Fetch the fixed-point register set.

fixregs getFixRegs();

setFixRegs Set the fixed-point register set.

void setFixRegs(
fixregs regs);

The overwrite of the register set area occurs atomically.

A RequestError exception will be raised if the size of the provided registerstructure does not match the size
of the register set being updated.

getFloatRegs Fetch the floating-point andSIMD register set.

floatregs getFloatRegs();

setFloatRegs Set the floating-point andSIMD register set.

void setFloatRegs(
floatregs regs);

The overwrite of the register set area occurs atomically.

A RequestError exception will be raised if the size of the provided registerstructure does not match the size
of the register set being updated.



Part IV

Architecture Specific Annexes
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Appendix A

IA-32 Interface

The kernel header filecoyotos/i386/UPCB.h defines the UPCB layout for this architecture.

A.1 Execution Models

The IA-32 implementation supports the “small spaces” optimization. If a process restricts its address references
(ignoring KIP references) to the inclusive range [0, 0x10000], the kernel will attempt to run it in a small space region.
Control transfers between two applications running in a small address space, or between a large address space and a
small address space, are significantly faster than large space control transfer.

By referencing an address outside of the small space bound, aprocess signals that it wishes to be treated as a large
address space process. The user-mode addressable range of alarge address space is [0x0,0xC0000000]. Because this
transition is transparent to the process, the value returned byLSL (load segment limit) is subject to change between any
two instructions. The transition between large and small address space models is otherwise transparent to application
code.

A.2 System Call Trap Interface

In all cases the register utilization convention follows the requirements of SYSENTER:

Register Input Output
EAX IPR0 OPR0
EBX IPR1 OPR1
ECX Post-syscall SP Undefined
EDX Post-syscall return PC Undefined
ESI IPR2 OPR2
EDI IPR3 OPR3
EBP InvokeCap: invCap InvokeCap: rcvPP

Other: unused Other: unaltered
ESP Unavailable input ECX value

Table A.1: System call entry and exit conventions.

Different generations of IA-32 implementations require different system call implementations for efficiency. Depend-
ing on the hardware implementation, either a software interrupt (int $0x31 ) the SYSENTER instruction, or the
SYSCALL instruction may be used. The software interrupt entry pointmay be used on all platforms. The preferred
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entry and exit mechanism is left to the kernel implementation. The kernel publishes the preferred mechanism via the
kernel interface page. The system call trap instruction appears at offset zero of this page.

The kernel interface page is mapped into all user address spaces at a well-knownfar address:0x32:0 .1 The protocol
for invoking the preferred system call trap instruction is to marshal all arguments and perform afar jump to this
address. The use of a far address allows the kernel interfacepage to be accessible to both large and small address
spaces within a single compilation and execution model. This address is a well-known constant that is part of the
architecture specification, and will not change in future versions of Coyotos.

A.3 Virtual Registers

The architecture defines the following locations for input and output parameters, buffer registers, and capability in-
vocation paramaters. Locations described with an identifier rather than a register name indicate a field in the UPCB
structure.

Virtual Register Location Virtual Register Location
IPR0 %eax OPR0 %eax
IPR1 %ebx OPR1 %ebx
IPR2 %esi OPR2 %esi
IPR3 %edi OPR3 %edi
IPR4..IPR7 caller stack OPR4..OPR7 receiver stack
invCap caller stack rcvPP softregs.rcvPP
rcvEpID softregs.epID

Values in thesoftregs structure are copied out to the receiver stack after the receive phase if IPR0.CO is set (1).

A.4 Thread Identification

This section is stale

The first two words of the UPCB are used by the application-level runtime system to provide support for multi-
threading. Word 0 should be used by the multi-threading library to store the pointer to the thread control block. Word
1 should be used to store the virtual address of the UPCB itself, as seen by the application. Neither word is initialized
by the kernel. Provided the address range exposed falls within the user-mode addressable range, the value of UPCB
word 1 is loaded as the base address of the segment named by %GS, with a limit value of 0x1000.

The critical effect of this is that %GS:0 can be used to load and store the application-level thread control block pointer,
which is in turn used to access thread-local storage [21].

Open Issue

While storing the UPCB VA in the UPCB is attractive, it is not necessarily efficient. The problem is that
the value must be range checked on every kernel exit because it can be modified by user-mode code. It
may be better to introduce a system call for this and store it in the Process instead.

A.5 Device Ranges

A minimum of 16 device ranges, each supporting 16 device pages, must be provided by the implementation.

1 The selector value is provisional.



Part V

Notes on Implementation
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The Coyotos specification may be seen as defining an abstract machine architecture. In a real-world implementation,
this abstract machine must be mapped on to a combination of hardware and software by the kernel implementation.
This mapping must satisfy two properties:

• The permissions of the implementation state must never exceed those of the abstract state.Any instruction
whose effect is permitted by the implementation state must be permitted by the abstract machine state. The
implementation state is a conservative approximation of the abstract state.

• Ignoring latency, every instruction whose execution is permitted by the abstract machine must ultimately
be permitted by the implementation. The implementation state is an approximation of the abstract state that
is constructed on demand.

The means by which demand update is triggered are the system call trap and the various protection and permis-
sions violation traps. This induces several requirements on the underlying hardware:

– The hardware must implement page-granularity protections(or better) in its memory management unit.

– The hardware must implement precise exceptions — or preciseenough that the software implementation
can correct them (e.g. the Pentium family’s breakpoint trapincorrectly advances the program counter, but
the amount of the advance is known and be corrected in software.

– Preferred hardware must implement a “no-execute” permission. This is a recently rediscovered feature in
the hardware world, and the specification does not requireNXpermissions to be enforced on hardware that
does not provide this feature.

Any change to the abstract state that reduces permissions must be reflected by an immediate change in the hardware
state that (conservatively) maintains these invariants. In some cases it is not obvious how to do this. This part
of the specification discusses possible implementation techniques for several key parts of the dependency tracking
implementation.

The entirety of this part is non-normative.
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Appendix B

Implementation of Capabilities

Because so much of any implementation depends on the internal representation of capabilities, we begin with a brief
discussion of capability representation choices.

It is convenient for capabilities to have two forms, which wecall prepared andunprepared. The unprepared form
is the one described in Section˜2.1. TheP bit indicates whether the capability is prepared (1) or unprepared (0). The
representation of a prepared capability is a matter that is private to the kernel. When the kernel discloses capability
representation to application code, italwaysdiscloses the unprepared format.

B.1 Unprepared Capabilities

An unprepared capability may be valid or invalid, because itis not known from the capability whether the object it
names has been destroyed subsequent to the creation of the capability. This can only be known by comparing the
allocCount of the capability to theallocCount of the object itself.

Assuming the capability is valid, the object designated by an unprepared capability may or may not be in memory.
This can only be determined by performing an object lookup todiscover whether the object is in memory. In all current
implementations of KeyKOS, EROS, and Coyotos, a hash table is maintained that provides a mapping from object id
(OID) to the actual object for every object that is currently in memory. In systems supporting transparent persistence,
there may betwoobjects for a givenOID: the current one and the one that was current at the time of thelast snapshot.

B.2 Prepared Capabilities — Linked Implementation

In KeyKOS and EROS, a prepared capability designates an object that is known to be in memory. The prepared
capability points directly to this object. In addition, theprepared capability resides on a “key chain”, which is a
circularly linked list whose “head” is part of the object header. This allows the object to be efficiently found given the
capability, and also allows all prepared capabilities to befound given the object.

Capability

Capability

Capability

Object

Figure B.1: EROS/KeyKOS key chain
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There are several advantages to this design:

• Once a capability is determined to be prepared, the object isknown to be in memory as a consequence of invari-
ants, and few further checks related to residency or well-formedness are necessary. In addition, the capability is
known to be valid, in the sense that itsallocCount matches that of the target object.

• When an object is destroyed, it is straightforward to locatethe active capabilities to the object and rewrite them
as invalid capabilities.

• When an object is to be removed from memory, it is straightforward to locate all capabilities to the object and
restore them to their unprepared form.

• In either the destruction or pageout case, it is straightforward to identify thelocationsof all prepared capabilities.
KeyKOS and EROS exploit this property very aggressively. They maintain a significant amount of dependency
information in hashed structures that are indexed by capability address. For example, the KeyKOS/EROS “de-
pend table” is a hash table of (capability address, page table entry address) pairs.

However, there is a key disadvantage as well:

• Capability copy is a frequent operation. Empirically, we found in EROS that many copied capabilities were
prepared, that most overwritten capabilities were prepared, and that updating the key chain when both the
source and destination capabilities are prepared entails three cache misses per copy to access the neighbors
(Figure 10.2). On modern machines, this cost is a substantial fraction of the total IPC cost.

• Capability invocation may take time O(n), wheren is the size of memory. This is possible because an arbitrary
number of resume capabilities may accumulate on the key chain, and the chain needs to be traversed in order to
destroy them.

Capability

Capability

Capability

Capability

Capability

Capability

Figure B.2: EROS/KeyKOS key copy

B.3 Prepared Capabilities — Scavenged Implementation

In Coyotos, a prepared capability doesnot guarantee either that the target object is in memory or that the prepared
capability is valid. We are accepting weaker invariants in order to improve capability copy performance. Instead of a
linked list, the relationship between a capability and its object is shown in Figure 10.3.

In this design, the capability points to the object (equivalently: holds an index), but also contains a pointer (equiva-
lently: an index) to anObTable structure. The object pointer is valid only if the capability’s ObTable reference
matches theObTable reference in the object itself. The purpose of theObTable structure is to hold the information
needed to deprepare the capability back to its on-disk form.This consists of a copy of the object ID (because that
field of the capability is overwritten by the references) anda valid bit. Under normal circumstances, an object has one
ObTable entry.1

1 There may be none if there are no prepared capabilities to this object, but this is a transient case because object page-inis induced only by
capability preparation.
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Object

ObTable Entry

Capability

Figure B.3: Capability/object relationship

When an object is paged out, the first step is to change theObTable reference in the object header to Null. This
ensures that all outstanding capabilities will be deprepared back to their on-disk format. When an object is destroyed,
the valid bit in the currentObTable entry is set to “invalid” before theObTable reference in the object header
is nullified. In this situation, outstanding capabilities will be deprepared to the Null capability. Capabilities are
deprepared through a combination of proactive update when the containing object is written to store and background
scavenging.

B.3.1 Scavenging

This design requires an oversupply ofObTable structures.ObTable structures are freed by background scavenging.
The scavenging proceeds as follows:

1. Make a pass over allObTable structures. Mark the ones that are current. Clear the mark onthe ones that are
not current.

2. Traverse all in-memory objects that contain capabilities. For each capability:

• If the ObTable entry is current, leave the capability alone.

• If the ObTable entry is invalid, deprepare the capability to null.

• If the ObTable entry is valid but not current, deprepare the capability back to it’s on-disk form.

3. Make a second pass over allObTable structures, placing the unmarked structures onto the free list.

This algorithm can be implemented incrementally by forcingsome progress whenever anObTable entry is allocated.

Note that the algorithm isnot trying to detect unreferenced objects. This is the responsibility of the aging logic, which
is handled separately.

When the algorithm is executed incrementally, there is the usual race between the mark pass and the mutator that is
copying and overwriting references. The unfortunate case is the sequence where:

1. The mark pass has moved past capability slot A, but has not yet reached slot B.

2. Slot B holds the only outstanding capability to some object.

3. A copy is made from slot B to slot A.

4. Slot B is overwritten before it is reached by the mark pass.A now holds the only capability to theObTable
entry, but it will not be seen by the mark pass.

Note that the race condition does not matter if B is avalid capability, because in this case theObTable structure is
already marked. The issue arises only when B is aninvalid capability. The race is resolved by checking whenever a
prepared capability is copied, and updating the newly written capability to the null capability if it is invalid.
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B.3.2 Pros and Cons

The primary advantage of this design over the KeyKOS/EROS design is speed of capability copy. There is only one
marginal cache miss per copy, which is the probe that checks the capability for validity. If it is feasible to scan all
processes in a non-incremental fashion, this probe can be eliminated in the fast IPC path because any copy proceeding
froma capability register does not need to be checked for validity. The need for this optimization should be guided by
measurement, and our initial implementation will not attempt it.

The main disadvantage is that this design requires an incremental scavenging pass whose performance cost is not yet
known.



Appendix C

Mapping Dependencies

The most challenging set of structures to design in the Coyotos implementation is the mechanism for keeping GPT
structures, objects, and page table entries consistent. There are three requirements:

1. When a page is destroyed or removed from memory, all page table entries that point to that page must be
invalidated.

2. When a GPT is destroyed or removed from memory, all currently valid translations in the page table structures
that were constructed by traversing the GPT must be invalidated.

3. When a capability slot within a GPT is overwritten, all currently valid translations in the page table structures
that were constructed by traversing that slot of the GPT mustbe invalidated. This may viewed as a sub-case of
(2).

C.1 Page Removal

In KeyKOS and EROS, the key chain meant that any implementation of requirement (3) also satisfied requirement (1).
When a page is removed from memory, its key chain can be traversed to locate all of the capability slots that reference
the page. These can then be used to invalidate the necessary page table entries.

In the Coyotos implementation, which does not have a key chain, we maintain a reverse page table structure known
asPTE-1 . For every valid page table entry in the hardware page table,we maintain a reverse entry that provides a
mapping from the physical object address to the kernel virtual address of its referencing page table entry.

In systems having hierarchical page tables, we maintain this inverse page table structure at all levels of the translation
hierarchy. This allows mapping tables to be aged and reclaimed.

C.2 GPT Dependencies

The statement of requirements in (2, 3) is a bit subtle. The straightforward implementation of these requirements
is to record a pairwise relationship between capability slot addresses and page table entry addresses, and use this to
invalidate all page table entries when a slot is overwrittenor a GPT is removed. This was, in essence, the implemen-
tation used by KeyKOS and EROS, and it is fairly straightforward to see why it satisfies the requirement that “the
permissions of the implementation state must never exceed those of the abstract state.” However, this implementation
is both unnecessarily aggressive and unnecessarily expensive.

Because we do not rely on key rings for page removal, Coyotos has slightly different properties than KeyKOS or
EROS. Whenever we consider changing the value of a slot, we always have the address of its containing GPT in
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hand.1. Coyotos therefore maintains a dependency table that maps from GPT addresses to page table entry addresses.
There may be multiple entries in this table for a given GPT. This can happen for two reasons:

1. A GPT may produce multiple page tables because it spans multiple entries in a page directory (Figure 11.1).
This arises only in hardware system having hierarchical translation systems, but it can arise at any “layer” of the
translation system. In fact, a single GPT can span three or more layers if it describes the only valid path across
multiple levels of the hardware tables.

2. Because of page table reuse, a GPT may produce both read-only and read-write variants of the same page table.

GPT

Page Page
Table Table

Directory
Page

9 bits

9 bits 7 bits

7 bits

4 bits

Figure C.1: Capability/object relationship

The hierarchical case is complicated by the desire for page table sharing. In KeyKOS and EROS, we recorded de-
pendency information at all implicated levels of the hardware translation hierarchy. In Coyotos we do not. Instead,
we record dependencies only when the GPT wholly or partiallydominates the hardware table. This is sufficient to
let is invalidate allpathsthrough the hardware tree that are implicated by changes to aGPT. It doesnot allow us to
invalidate all of the page table entries, but we assert this is not actually necessary to satisfy the requirements.

This assertion isnot obvious and will need to be confirmed by demonstration as we develop a statement of invariants
maintained by the translation logic in this case. The substance of it, however, is that valid entries higher in the hardware
structures do not matter if all of the lower entries they spanare correctly invalidated. If the GPT is being destroyed,
the lower tables will in due course be reclaimed and the higher-level page table entries will then be invalidated. If
the GPT is being overwritten, the higher-level page table entries would get rebuilt in any case, and the permissions of
the lower-level page table entries are sufficient to ensure aconservative mapping of the abstract machine’s permission
state.

C.3 Optimizations

Ironically, the new structure should be more compact than the old structure.

Inverse Page Table ThePTE-1 table requires only a single word per entry, because the pointer to the PTE can be
used to read the physical page address in order to detect hashcollisions and stale dependency table entries.

Observe further that the majority of pages and page tables have only one or two simultaneous page table entries. A
possible storage optimization is to dedicate twoPTE-1 entries in the frame management structures for each of these,
leaving the generalPTE-1 table to handle only those pages that are widely shared. Whether this is worthwhile depends
on whether a sufficiently good hash function can be discovered to keep hash chains short in the usual case.

GPT DependenciesBecause we use GPT object pointers rather than GPT slot pointers in the GPT dependency table,
our GPT dependency table will have a factor of 16 (well, givenunderutilization probably a factor of 5 to 8) reduction
in space requirements compared to the old dependency tracking scheme.

Observe that while a GPT may produce entries in multiple pagetables, it always produces 2k entries at a natural
alignment boundary within those tables. This statement is also true of GPTslots, and offered a basis for run length

1 In EROS, we knew the location of the vector of Nodes (the precursor to GPTs), and we could use this knowledge to infer the containing Node
address from any given Node slot address. This inference is not memory safe, and we wanted to avoid it in Coyotos in anticipation of later
verification efforts.
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compression of the GPT dependency table in some implementations. We note that this option remains available in the
new implementation.
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