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Abstract

OTC derivative pricing has been relying on the risk neutral pricing framework presented by

(Black and Scholes, 1973) under the assumptions of funding at the risk free rate and the ability

to perfectly replicate derivatives to fully hedge all potential risks. The �nancial crisis of 2008

proved that these assumptions were indeed too simplistic. This has led to a new era of derivative

pricing, where issues as counterparty credit risk, funding costs and costs of capital must be

considered, as perfect hedging of these risks is not fully possible.

This thesis provides an application to price interest rate swaps (IRS) and �xed-�xed cross

currency swaps (CCS). It expands the risk neutral pricing method to use a multi-curve approach

to account for tenor risk of the �oating leg of IRS contracts. Furthermore, counterparty credit

risk, funding costs and costs of capital are quanti�ed as an extra Value Adjustment (xVA) to

the risk neutral price. This adjustment consists of di�erent xVA terms each accounting for

di�erent adjustments. Credit Value Adjustment (CVA) accounts for the costs of counterparty

risk. Funding Value Adjustment (FVA) covers costs of funding cash �ows of the swap contract

or cash �ow mismatches with the hedge, which constitutes the Hedging Value Adjustment

(HVA) and furthermore covers funding costs of collateral posted to mitigate potential credit risk,

resulting in the Collateral Value Adjustment (CollVA). Margin Value Adjustment (MVA) covers

the costs of funding initial margin collateral posted for further credit risk reduction. Capital

Value Adjustment (KVA) provides the cost of required regulatory capital, which must be held

against losses. Moreover, this paper includes theoretical discussions of xVA risk management,

optimization of the xVA charge, and xVA hedge strategies.

Monte Carlo simulation of the underlying stochastic risk factors is used to estimate the

di�erent xVA charges. This thesis assumes that interest rate dynamics follow one-factor CIR

models and that default intensity of the counterparty follows a JCIR model. We provide the

framework to calibrate these models to market data, respectively swap rates for the CIR model

and the iTRAXX Crossover Index credit spreads for the JCIR model using non-linear GRG

optimization of the model parameters. Dependency between default intensity and interest rates

is based on Cholesky factorization of the Gaussian variables and evaluation of discretization

schemes of the stochastic models contribute to enhance simulation precision. FX rates are

deterministically calculated from the stochastic OIS rates in EUR and USD in accordance with

the interest rate parity.

The pricing model results reveal that the total xVA charge increases for longer contract ma-

turities, increasing �oating tenor, and is much higher for �xed-�xed CCS than for IRS contracts,
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as CCS contracts depend on both interest rates and FX rates. Collateral agreements prove to

signi�cantly reduce the CVA, HVA, and KVA charge. However, this comes at the costs of higher

CollVA and potentially also higher MVA if adding an initial margin. Entering a reverse swap

contract with a central clearing party (CCP) to hedge market risk covers most or all of the

HVA and generally lowers the xVA charge. Combining collateralization and a market risk hedge

lowers the costs of collateral as collateral held from either the counterparty or the CCP can be

rehypothecated and hence posted as collateral at the other party. This thesis furthermore �nds,

that the optimal initial margin must depend on factors determining the expected exposure and

credit risk. Sensitivity analyses demonstrates model robustness. Results of changes in crucial

input factors are in accordance with theory and MC noise has an inconsiderable e�ect on results.

The xVA pricing model presented in this paper illustrates the quantitative complexity of

pricing and risk management of even plain vanilla derivatives when including xVAs. Appropriate

pricing models must be able to price in�nitely many di�erent derivative contracts with the

estimated xVA charge on each single trade as a marginal charge dependent on the entire existing

trading book and all current counterparties. Developing optimal model solutions to accomplish

this complexity at a reasonable computational e�ort is the most di�cult task �nancial engineers

currently face. Besides, inclusion of di�erent xVA terms is still under intense debate by both

theorists and �nancial professionals.
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Part I

Formalia



1.1 Introduction

�The gap that had traditionally existed between counterparty risk people, derivatives

pricing, and hedging people needs to be closed. On one side, it does not make sense to

consider derivatives as platonic instruments living in a world of their own without being

a�ected by credit, default, liquidity, funding and collateral . . . when even a vanilla instru-

ment portfolio is embedded in such risks, it becomes the most formidable derivative to be

priced and managed -� (Brigo et al., 2013)

The �nancial crisis in 2008 turned the view on derivative markets completely upside down.

Issues, which had earlier been deemed insigni�cant and thus been ignored in the �nancial market

turned out to have a huge impact on derivative costs, which completely undermined the simplistic

assumptions of pricing models for many simple derivative instruments. This started a new era

in the �eld of derivatives pricing. Financial engineers, who had been busy focusing on exotic

derivatives, had to return to the plain vanilla instruments, acknowledging that these in fact

included complexities requiring the same attention as exotic derivatives (Brigo et al., 2013). The

simple assumptions for derivative pricing did no longer provide even a decent approximation of

the fair derivative value.

This thesis focuses on vanilla interest rate swap contracts1 nominated in a single or dual

currency, which used to be priced and managed in a simple way. The pre-crisis pricing of plain

vanilla swaps simply used a single interest rate curve. Discounting of the swap cash �ows was

with the same interest rates, as those used to forward the �oating rate payments (Eriksson,

2012). Hence, such method assumed no signi�cant risk in the tenor of the �oating reference rate

(Bianchetti, 2008).

Financial institutions were assumed to be default free due to top credit ratings. The e�ect

of the credit risk related to the counterparty was not an issue when pricing the swap at the

trading desk, but instead left to be handled by the credit risk department (Brigo et al., 2013).

The contract collateral agreements were assumed to provide perfect collateralization meaning

that neither the �nancial institution nor the counterparty would have leftover credit risk expo-

sure. The e�ect of margining costs of such collateral agreements were disregarded due to the

assumption of funding at the risk free rate. Liquid capital markets and high bank ratings made

it possible to achieve close to risk free funding of the swap (Kenyon and Stamm, 2012). Required

regulatory capital holding as bu�er against unexpected losses were not very strict before the the

Capital Requirements Directive IV in the EU and Dodd-Frank in the US (Kenyon and Stamm,

2012) and target return on capitals were set as guidelines for the derivative desk rather than

charged individually to each single trade (Gregory, 2015a). Hence, the costs of such capital was

not a pricing issue (Kenyon and Green, 2014).

The �nancial crisis demonstrated how these simple methods of derivative pricing did not

result in a fair value of the contract as many risks were ignored. One of these being the basis

swap spread2, which rose to a signi�cant size due to higher credit risk on longer tenors. Hence,

forwarding the �oating payments of a swap and discounting with a risk free proxy had to be with

1See Appendix A for the fundamentals of swap contracts.
2See Appendix A.2 and Appendix A.3.
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two di�erent rates (Linderstrøm and Rasmussen, 2011). For this reason, this thesis presents the

multi-curve approach to account for tenor speci�c risk premiums on the �oating payments of

swaps (Bianchetti, 2008).

The acceptance of many new risk factors following in the post-crisis years, have led to a

whole new pricing �eld for OTC derivatives, including di�erent risk factors under the overall

term xVA3. This adjustment provides a the risk premium estimate to be included in the fair

price of an OTC derivative so that potential funding and capital costs and the default risk of the

counterparty are accounted for (Gregory, 2015a). There are many di�erent value adjustments

under the �eld of xVA, including:

- CVA measuring the costs of counterparty default on a derivative contract with pos-

itive value outstanding.

- DVA being equivalent to the CVA for the counterparty, which account for the bene�t

of defaulting while the value of the derivative contract is negative.

- FVA accounting for the costs of funding cash �ow mismatches of the derivative

contract (HVA) and funding of collateral posted against a positive market value of

the contract to mitigate CVA (CollVA).

- MVA covering costs of funding initial margins to be posted besides the ordinary

collateral.

- KVA accounting for the costs of capital required by regulators to be held against

unexpected losses.

Dealing with these value adjustments will be the main topic of this thesis paper. We present

the di�erent value adjustments and estimate them to price plain vanilla IRS contracts or �xed-

�xed CCS contracts while including the possibility to hedge market risk with a reverse trade at a

Central Clearing Party (CCP) and allow for di�erent choices of cash collateralization agreements.

We consider a numerical model approach based on Monte Carlo simulations of the values,

collateralization and value adjustments calculated from relevant input factors and underlying

risk factors to estimate the xVA charges. These xVA estimates are determined from stochastic

processes for underlying interest rates in two currencies and the default risk of the counterparty.

The stochastic models are calibrated to market data. As these factors depend on one another, a

simulation framework provides a better solution than approximations or closed formulas not able

to include such cross-gamma e�ects or account for complexities of the di�erent value adjustments

like details of collateral agreements.

We perform a sensitivity analysis for the most crucial model inputs including the model

choice for underlying risk factors to capture potential model risk and avoid biased results. We

discuss backtest of the model and potential Monte Carlo noise in results in order to ensure

con�dent estimates of the xVA charge.

3Extra Value Adjustment.
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Bearing in mind the signi�cance of the di�erent xVAs, we suggest approaches to optimize the

overall xVA premium and discuss potential hedging strategies and risk management measures

to lower xVA risk.

This thesis aims to give an application to pricing with xVAs relevant for medium-sized

�nancial institutions with respect to their minor corporate customers. In practice, the �nancial

institution can often consider themselves default free relative to the corporate counterparty,

which reduces the CVA charge to a unilateral case (Brigo et al., 2013). Swap contracts can

include collateral agreements, but are not limited to such. The models presented in this thesis

have the purpose of being su�ciently complex to describe issues rising from the �eld of xVAs

and provide an appropriate amount of robust details about the di�erent xVA terms allowing for

discussion of xVA risk management and hedging. However, the model is not complete in the sense

of being directly implementable and usable for xVA desks of �nancial institutions, where the xVA

charge should be seen as the marginal e�ect with respect to the entire derivatives portfolio, which

includes complex interdependency modelling. To keep the main focus on xVAs and acknowledge

the real life challenge of balancing between model complexity and the computational challenge

of measuring xVAs (Ruiz, 2015), plain one-factor models are used to describe the interest rate

dynamics while the default intensity measure of credit risk includes a jump di�usion.

1.2 Motivation

Modern pricing of interest rate derivatives has been an important and highly debated topic

since the �nancial crisis. Academic literature on the multi-curve approach for pricing interest

rate derivatives existed before the �nancial crisis. Despite the fact that this theory of market

segmentation of di�erent tenors was already accepted as the theoretical correct pricing method,

the low basis spread between tenors made the di�erence negligible in practice (Bianchetti, 2008).

Thus, the same interest curve was used to forward �oating rates and discount all cash �ows

(Tuckman and Serrat, 2012). The basis spreads between di�erent tenors increased signi�cantly

during the �nancial crisis and have not been negligible since then meaning that the multi-curve

approach is now used in practice. Hence, this addition to interest rate derivative pricing makes

it a relevant starting point for this thesis.

The years following the �nancial crisis triggered re�ection towards the �eld of derivatives for

academics, practitioners and regulators. The academic world acknowledged that issues of fund-

ing, capital requirement, and counterparty credit risk would no longer be possible to separate

from derivative pricing, but instead had to be an integrated part of pricing models. For these

issues, simplistic assumptions did no longer hold. Even pricing of simple interest rate deriva-

tives became a rather complex a�air. In practice, the ignorance of complexity in derivatives

pricing resulted huge losses to the �nancial sector, which motivated the �nancial institutions

to increase sophistication of their models to correct pricing errors, which could cause similar

losses in the future. Regulators recognized that the regulatory framework of Basel II did not

e�ciently capture all relevant risks. In Basel II only the counterparty default and credit mi-

gration risk was addressed within the framework to calculate required regulatory capital. But
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during the �nancial crisis these risks only accounted for one-third of the losses, whereas the

latter two-thirds came from marking-to-market CVA changes from higher credit risk volatility.

This led to inclusion of a CVA capital charge within Basel III expected to double required reg-

ulatory capital for counterparty credit risk compared to Basel II (BCBS, 2011). The new value

adjustment in derivative pricing for CVA, later followed by funding value adjustment (FVA)

and capital value adjustment (KVA), have along with other valuation adjustments created the

�eld of xVAs. This new �eld in �nancial engineering is still under development and intensely

debated among academics as well as practitioners.

This thesis introduces xVAs on a multi-curve pricing model applied to price swap contracts.

The types of swap contracts covered is vanilla IRS contracts and �xed-�xed CCS contracts.

These instruments are a relevant choice as they used to be priced in a very simple manner4.

Especially the IRS contracts are relevant to apply the new pricing methods to, as they account

for a majority of the total derivatives markets in both market value and notional volume5.

Adjusting the price of such contracts hence a�ect a major part of the �xed income derivatives

markets.

To be able to develop a model capable of estimating the xVAs, we create a stochastic model

to simulate the dynamics of underlying risk factors: interest rates and default intensity. The

entire �eld of stochastic interest rate models and intensity models for credit risk is in itself an

extension of the curriculum provided at the MSc. Finance program at Aarhus BSS. Hence, with

this thesis we seize the opportunity to extend our skills in �nancial engineering to interest rate

derivatives and be able to add credit risk modelling allowing for inclusion of advanced topics

such as counterparty risk, funding costs, capital requirements, and collateralization. Creating

a discrete simulation model furthermore requires additional theory on discretization schemes of

stochastic processes.

From our job experience within capital markets of the �nancial sector, we have both expe-

rienced the importance of interest rate derivatives, especially interest rate swaps in the total

derivatives markets. The �eld of xVA receives a lot of attention, whether the purpose is to

strengthen pricing competitiveness with better models or to comply with regulatory require-

ments on risk management. This practical experience has played an important role in the

motivation for the choice of thesis topic. Our background also inspired the choice to create a

pricing model in the perspective of a medium-sized bank with a funding spread to interbank

rates, but with a negligible relative default risk compared to its corporate counterparties.

1.3 Research Methods

This section outlines the thesis problem statement and describes the conceptual research frame-

work used, including general assumptions and limitations of the thesis. This includes a walk-

through of the overall structure of the di�erent parts included in this paper.

The research methods used for this thesis associates with the methodology widely accepted

in �nance research following an empirical and critical rational ideology based on a positivistic

4See Appendix A.4
5See Table A.1 and A.2 in Appendix A

4



view6 (Holm, 2011),(Ryan et al., 2002). Within this methodology of research, the development

of theories origins from some fundamental axioms7 resulting in a number of core assumptions

and models as described by (Lakatos and Musgrave, 1970). Even though these models have

some simplistic assumptions inconsistent with reality, they provide a comprehensive framework

necessary for development of general models to formulate theories (Ryan et al., 2002).

Some of the assumptions can be relaxed to account for actual abnormalities relevant for

the research results. E.g., the discussions of xVAs would be a relaxation of the strict general

assumption of perfect capital markets implying no transaction and funding at a risk free rate.

This thesis focus on fundamental research on the e�ect and nature of the xVAs. The model aims

to describe the nature and optimization of xVA charges for swap contracts issued by �nancial

intermediaries with high internal validity in such a manner decribed by (Ryan et al., 2002). For

this reason, the stochastic models describing dynamics of the underlying risk factors are limited

to simpli�ed choices, as these simply serve as input for the xVA model.

In order to secure the validity of the results as suggested by (Kane, 2004), this thesis provides

an in depth sensitivity analysis, which takes into account potential misspeci�cations of the model

emerging from the choice of assumptions. Data used for the thesis are all actual price quotes

available on (Bloomberg, 2015) or in the dataset of this thesis in order to allow for replication

of presented results. We stretch that as the model results are made for certain instruments,

maturities and a proxy for counterparty risk, these results might not yield a strong external

validity in such a manner decribed by (Ryan et al., 2002). Hence, the model should not be used

for such (Kane, 2004), but serve as input for a general discussion on xVA and as a framework

to develop an internal xVA model.

1.3.1 Problem Statement

The purpose of this thesis is to design a sophisticated model for pricing plain vanilla IRS con-

tracts and CCS contracts issued by a medium-sized �nancial institution to a minor corporate

customer. Post-crisis pricing of swaps has become far more complex, considering multiple-curve

pricing approach and a xVA charge including xVA terms like8 CVA, FVA, MVA, and KVA,

while also allowing for di�erent choices on collateral agreements. Besides pricing, the purpose

of thesis is to describe the nature of the di�erent xVA terms and suggest sophisticated ways of

managing and hedging xVA risk.

The overall research question is stated as follows:

- How can �nancial institutions set up a sophisticated pricing framework for plain

vanilla IRS and CCS contracts with corporate customers when taking into account

xVAs?

In order to design the swap pricing model and evaluate the implications of xVAs, the following

sub-questions supplement the overall research question:

6The acceptance and discussion of the actual existence of a methodology in �nance could be debated as in
(Frankfurter, 2007).

7The most well-know axioms being the von Neumann-Morgenstern axioms of the rational investor.
8See Section 1.1.
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- How can a simulation-pricing framework of swap contracts based on the multi-curve

approach be designed?

- What is the nature of xVAs and how can such adjustment be included?

- What signi�cance do the xVAs have on the price and what a�ect the relative impact

of the di�erent xVAs?

- How can �nancial institutions manage the xVA risks and is it possible to create

approximate hedge strategies for the xVAs?

1.3.2 Thesis Structure

Following this introducing part, the thesis has the theoretic framework separated into three

parts. Part V to VII covers analysis and discussion of the model results, risk management and

conclusions.

- Part II covers the theory and models needed for pricing swap contracts. Section 2.1

evaluates the increase in the basis swap spread during the �nancial crisis. Section

2.2 describes the framework of the multi-curve approach. Section 2.3 introduces

stochastic interest rate and default intensity models and includes a framework for

model calibration.

- Part III presents di�erent approaches and issues of Monte Carlo simulation. Sec-

tion 3.1 describes the purpose of using MC when pricing with xVAs. Section 3.2

shortly introduces the basic principles of MC simulation and measurements of sim-

ulation e�ciency. Section 3.3 explains issues and challenges in MC simulation when

estimating xVAs. Section 3.4 presents the appropriate discretization schemes for the

dynamics of the risk factor models required for simulation purpose.

- Part IV deals with the theory and nature of xVA. Section 4.1 introduces the �eld of

xVA terms and give a short overview of the di�erent kinds of xVA components and

discuss how these have changed the know pricing framework. Section 4.2 focus on

the nature of CVA, exposure calculation with and without collateral, and estimation

of CVA. Section 4.3 evaluates the theory of FVA and the di�erent FVA elements

including estimation of these. Section 4.4 discuss determination of initial margin and

estimation of MVA. Section 4.5 provides a discussion on capital requirements and

present regulatory capital charges using the standardized approach for counterparty

risk and the advanced approach for market risk in the Basel regulatory framework.

These serve as base for KVA estimation.

- Part V presents the xVA pricing model for IRS and �xed-�xed CCS contracts and

evaluates model results and sensitivity. Section 5.1 provides a primer on content

of the model results, while Section 5.2 discusses consideration and assumptions on

model input and market data. Section 5.3 provides interpretation of the model
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results while section 5.4 performs a sensitivity of input parameters and discuss model

robustness.

- Part VI discuss the challenge of managing xVA. While section 6.1 provides an in-

troduction to xVA managment, section 6.2 suggests optimization of contract terms

to reduce the total xVA charge. Section 6.3 presents ways to construct approxi-

mate hedges on some of the xVA risk, while section 6.4 discuss risk management

supplements to hedges.

- Part VII is the conclusion of the thesis summarizing previous parts and main lessons

learned from the analysis.

1.3.3 Software

The software used to make the necessary modelling and simulations has been carried out in

Microsoft Excel, including the Excel Visual Basic Application (VBA) and Excel the add-ins

Solver and Goal Seek. In addition, the collected data have been obtained from (Bloomberg,

2015).

1.3.4 General Assumptions

Fundamental assumptions within the framework of �nancial research apply to this thesis unless

stated otherwise. To keep a well-structured and tractable model, assumptions are only relaxed

when aiming to answers relevant questions of the thesis problem statement9, acknowledging

that xVAs are indeed extensions and reinterpretation of the traditional assumptions within

derivative pricing. Hence, the aim is to keep the model comprehensive and avoid drawing wrong

conclusions as a result of assumption choices (Ryan et al., 2002). This subsection discusses

general assumptions and the consequences of relaxing assumptions.

The basic von Neumann-Morgenstern axioms (Elton et al., 2011) assume a rational market

participants or a rational representative agent in the �nancial market (Munk, 2011) even though

debated and falsi�ed by many researchers like (Barberis and Thaler, 2003), (Kahneman and

Tversky, 1979). We do not pursue complexities within the �eld of the individual investor and

their preferences and maintain the rationality assumption.

Assuming strong market e�ciency will consequently eliminate long-term arbitrage oppor-

tunities. This requires all market participants to have full market information and be able to

exploit arbitrage opportunities, which drags the market into equilibrium (Wilmott, 2007). For

this to be possible, we must also assume complete markets in the sense that all risks can be per-

fectly hedged with a replication trading strategy (Munk, 2011). Thus, derivatives are assumed

to be purely redundant market instruments of underlying assets and an assumed riskless asset.

As no arbitrage can exist the perfect replication trading strategy of the derivative must have

the same value as the derivative itself. Otherwise, arbitrage opportunities would mean that it

is possible to earn a

9See Section 1.3.1.

7



- certain non-negative return at a negative initial costs or

- possible non-negative pro�t with no initial costs

by making an opposite position in the perfect replication strategy and exploit possible over-

or undervaluation of the derivative (Glasserman, 2003). The no-arbitrage assumption does

not restrict the derivative instruments to conform to the law of one price. When accounting

for funding costs, which di�ers among �nancial intermediaries, this leads to di�erent prices of

identical derivative instruments depending on the creditworthiness of the issuing intermediary

(Kenyon and Stamm, 2012). Furthermore, di�erent choices of regulatory framework for required

capital results in unique capital costs for derivative contracts depending on the issuing �nancial

institution (Ruiz, 2015). However, this still obeys the rule of no arbitrage, as intermediaries

in principle cannot charge much more for the derivative than their costs of the replication

strategy (Glasserman, 2003). Event studies like (MacKinlay, 1997) is an example of research

that falsifying even the medium e�ciency of the market. Although, this is not taken into further

consideration in this thesis. However, Section 4.1.1 describes how xVA challenge the no-arbitrage

opportunity.

The perfect capital market assumption allows investors to borrow at the risk free rate and

trade without incurring any transaction costs or be subject to any taxes (Hull, 2012). Tax issues

are ignored in this thesis, though warehousing credit risk does result in pro�ts and losses, which

are subject to taxes and hence create the Tax Value Adjustment (TVA) (Kenyon and Green,

2015b). Acknowledging FVA, we cannot allow borrowing at the risk free rate. However, this

assumption does not a�ect the risk-neutral pricing principle of the swap contracts when FVA

is estimated separately. We also relax the assumptions of no transaction costs, as signi�cant

transaction costs are indeed related to collateralization and potentially close-out issues of swap

contracts (Brigo et al., 2013).

The Martingale approach assumes that a risk neutral martingale measure can be used as

well as the actual drift of an asset to discount the expected payo� of a derivative under the

risk neutral probability measure10, resulting in the fair derivative value. This is the case, as the

PDE11 is constructed to be independent of risk preferences and expected asset return premium

(Hull, 2012). The choice of martingale measure or numeraire allows for a time varying discount

rate (Glasserman, 2003),

r (τ) = e
´ T
t
r(u)du

Hence, assuming that the OIS curve is a decent proxy for the risk free rate12, it can be used to

discount swap cash �ows13. This thesis uses the Martingale approach, which with the numeraire

above provides the fair value of the swap contract

Vt = EQt [r(τ) · VT ]

where VT is the expected payo� at maturity under the risk neutral probability measure, EQt ,

10See Appendix C.1 for a presentation of the risk-neutral probability measure.
11See Appendix C.6 for construction of the BS partial di�erential equation.
12Although, the OIS rate is not completely risk free, as it is still an unsecured lending rate.
13See Appendix A.3 for Bootstrapping of the discount curve.
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also known as the Q-Martingale (Munk, 2011).

When pricing single interest rate payo�s at time T , it is convenient to use the discount factor

from t to T as the martingale measure. A forward rate under this measure has the Martingale

property14. Hence, this is the T -Forward Martingale or the QT -Martingale. This di�ers from

the regular Q-Martingale with the following adjustment

dzQ
T

t = dzQt − βTt dt

Where βTt is the price volatility from time t to T (Munk, 2011). Hence, the uncertainty element

is not included in this measure as it takes the forward expectations.

Day count conventions might di�er for di�erent instruments, which slightly in�uences the

interests accrued. For simplicity this thesis disregards day count issues and estimate interests in

fractions of years. Date data are converted assuming 360 days a year ignoring leap years. The

amount of trading days varies in di�erent years and on di�erent exchanges. This thesis assumes

260 trading days a year as (Ruiz, 2015).

1.3.5 Limitations

The main goal of this thesis is to introduce additions to traditional derivative pricing. The multi-

curve pricing approach and inclusion of xVA in pricing makes it possible to extend the model

in unlimited possible ways for di�erent products and di�erent assumptions. This thesis applies

the most relevant methods to a case, which takes the viewpoint of a �nancial institution pricing

a single contract15 with corporate customers and focus solely on plain vanilla swaps. This aims

to give a well-structured insight into dealing with xVAs in pricing and keep a tractable model.

The results should be seen as indicative for the di�erent risks, but not as generalizable for more

complex products or all counterparties.

The simulation model exempli�es pricing of IRS and CCS contracts with maturity up to

10 years with two di�erent �oating tenor rates16. The swap contracts can include either uni-

lateral or bilateral collateralization. The model aims to present the methods and challenges of

including these additional risks, which in reality extends to deal with myriad of derivatives with

di�erent features, underlying instruments and maturities jointly rather than isolated. Hence, it

is important to notice, that the xVA framework provided in this thesis focus only on a per trade

basis. In reality, this should be seen as the marginal e�ect dependent on the existing trading

book. The marginal e�ect of xVAs from each trade will depend on the existing exposure of the

overall derivative portfolio, which might reverse the isolated xVA e�ect of a single derivative.

This creates a quantitative challenge far beyond the scope of this thesis. Therefore, the focus

is on describing factors a�ecting the di�erent xVA terms and their relative contribution to the

total xVA charge.

The xVA charge is the sum of di�erent components. New components have been introduced

gradually, and both practitioners and academics still debate on the appropriateness and market

14See Appendix C.
15Ignoring netting e�ects present when extending to a portfolio view.
163M EURIBOR and 6M EURIBOR.
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standard for many of these. This thesis includes CVA, MVA, and KVA, while CollVA and HVA

contributes to FVA also included. Components like TVA17, LVA18 and DVA19 are excluded.

DVA is the most crucial of those, but ignored by assuming the �nancial institution issuing the

swap contract to be relative default free compared to their counterparty20. Besides DVA has

some very undesirable features (Brigo et al., 2013), which makes it quite controversial21.

This thesis assumes use of the Standardized Approach described by Basel II (Choudhry

et al., 2012) for counterparty credit risk while having approval by regulatory authorities to use

the Advanced Approach for market risk.

Calibration of short-term interest rate models is based on the current term structure and

provides interest rate dynamics for simulation purpose. Similarly default intensity is calibrated

on index CDS series. Although, taking the current term structure into account, and deriv-

ing the forward rates from this, there are more sophisticated models available including time-

inhomogeneity, additional factors or recalibration (Brigo and Mercurio, 2007), (Hull, 2012),

(Wilmott, 2007). However, using such models would increase complexity and computational

time moving away from the main focus of this thesis being the challenge of xVA pricing.

17Tax Valuation Adjustment.
18See section 4.3.1.
19See Apendix E.
20Even though the presence of FVA based on funding costs above the risk free rate illustrates the fact that the

�nancial institution is not actually default free.
21See Appendix E for a short presentation of DVA and a discussion of the controversy about DVA.
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Part II

Risk Factor Modelling



2.1 Post-crisis Lessons for Interest Derivatives

Since the market of interest rate derivatives started back in the 1970s, the market has evolved

rapidly, but the pricing framework remained rather simplistic22 for e.g. IRS contracts. The

idea was to construct an interest rate curve or calibrate a model to determine the curve from

market prices. This could give the appropriate interest rates needed to forward all �oating cash

�ows of a swap contract. The same interest rates where used to discount all cash �ows to �nd

the present value of the swap (Linderstrøm and Rasmussen, 2011). The underlying assumption

was that tenor speci�c reference rate like the 3-month LIBOR were all risk free. Thus, making

the funding of future cash �ows equal to the forward rates (Tuckman and Serrat, 2012). Hence,

meaning no basis spread between di�erent tenors. This made it possible to price single-currency

swaps with just one interest rate curve (Eriksson, 2012). The main concern debated within this

pricing framework was limited to the bootstrapping and �tting of the curve23 (Eriksson, 2012).

In advance of the �nancial crisis, OTC-derivative prices relied solely on the present value of

future cash �ows, ignoring which parties entered the contract. Counterparty risk was a hedging

task for the risk management desk, which assumed a perfect and simple hedging strategy to be

available, so that counterparty risk was de facto eliminated (Brigo et al., 2013). Assuming a

perfect hedge, such would provide all funding of collateral required to be posted against a trade

with a negative market value, so that collateralization would be costless. The absence of any

counterparty risk and costs of collateralization meant that funding costs equaled the risk free

rate for all �nancial institutions (Kenyon and Stamm, 2012). This corresponded to the theory

of using the same curve for funding and discounting mentioned above. Hence, neither of these

factors were considered to e�ect on the derivative price.

The �nancial crisis of 2008 led to market participants being much more concerned about

credit and liquidity risks (Eriksson, 2012). The default and bailout of banks made the market

participants realize that the assumption of interbank rates being risk free did not hold and that

the liquidity in the money market could in fact dry out. This meant that investing in e.g. the

3-Month EURIBOR rather than the overnight rate increased the risk that the counterparty

could default before the next payment, which would yield a loss for uncollateralized lending

(Kenyon and Stamm, 2012), (Hull and White, 2012). Hence, the basis swap spread24 between

the OIS and the di�erent tenors increased drastically by the end of 2007 and 2008. Even though

the basis spread stabilized at lower level in the following years, it has not ever since 2007 been

negligible for even the most liquid tenor reference rates, as can be seen in �gure 2.1.

22See Appendix A.4.
23See Appendix A.3.
24See Appendix A.2.
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Figure 2.1: 3MV6M Basis Spread

Source: Author's own creation

With a risk premium occurring on longer tenors due to increased default risk of counter-

parties, the forwarding of the �oating payments of interest rate derivatives (like the �oating

leg of an IRS) would be di�erent depending on the tenor. E.g. the forward rate of a 3-month

EURIBOR should be bootstrapped from the spot rates of the 3-Month EURIBOR, as 6-Month

EURIBOR forward rates would include a premium from �xing the payment for 6 months rather

than 3 months at a time (Kenyon and Stamm, 2012). So in order to forward the �oating cash

�ows of a swap, it is necessary to derive a curve speci�c to that tenor risk premium and discount

with the risk free curve to �nd the present value. This resulted in a multi-curve approach for

pricing single currency swaps and other interest rate derivatives.

The assumption of risk free funding being possible for �nancial institutions collapsed along

with �nancial markets in light of the credit events of banks like Lehman Brothers and Bear

Sterns (Linderstrøm and Rasmussen, 2011). This led to breakdown of the risk free assumption

on the interbank rate. Financial institutions did in fact have risk of defaulting, which a�ected

their funding costs in the market. This led to higher expenses related to entering swap contracts

- collateralized or not, as collateral itself also requires funding (Brigo et al., 2013). These issues

fostered the FVA relating to the unsecured funding of the cash �ows and funding of collateral

and MVA accounting for funding of initial margin required in many collateral agreements for

additional security (Gregory, 2015a). A risk free hedge is not possible as used to be assumed,

and these costs must be included in the derivative price.

Counterparty credit risk of OTC derivatives became apparent in the �nancial crisis of 2008.

The risk of counterparties defaulting on derivative contracts with a positive market value would

mean a loss for the other party. Besides losses from actual defaults, the value loss from increasing

credit risk alone created paper losses as the value of contracts had to be written down. The

losses of increasing credit risk alone accounted for twice the actual losses from defaults (BCBS,

2011). To adjust the value of a derivative for this risk, CVA was introduced. The CVA can be

mitigated by the counterparty posting collateral, but not eliminated as perfect collateralization

in continuous time is necessary to remove CVA completely, but then again not possible in reality
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(Brigo et al., 2013).

Basel III added an additional capital charge to account for the CVA risk of credit derivatives

along with already existing capital charges. The amount of capital required became signi�cant

and KVA was introduced in order to ensure that their target return on capital could be honored

by the trading desk (Gregory, 2015a).

Considering the lessons learned from the �nancial crisis of 2008, the traditional pricing

approach for OTC interest rate derivatives requires an extension to be priced using more than

a single yield curve and adjusted for the di�erent risk factors related to costs counterparty risk,

funding costs, and capital costs.

2.2 Multi-curve Pricing Approach

Section 2.1 evaluates how the post crisis lack of liquidity and increase in credit risk led to a

tenor spread premium. This was apparent from the increase in the basis swap spread for longer

tenors. As a result of this, the forward curves had di�erent rates depending on the tenor. The

multi-curve approach use this tenor speci�c curve for forwarding, while using a proxy for the

risk free rate as discount curve.

First subsection adds some theoretical points to construction of the discount curve. Next

follows the derivation of single forward curves under the no-arbitrage condition, which later

extends to a multi-curve framework. This includes evidence that the basis swap spread accounts

for the di�erence between the discount curve and the forward curve. Last subsection evaluates

multi-curve pricing in a regime with two currencies necessary for pricing of a �xed-�xed CCS

contract.

2.2.1 Discount Curve

The discount curve is the only component in the single-curve approach and still has huge im-

portance in the multi-curve pricing approach, as the same curve applies for discounting cash

�ows for all di�erent tenors. Di�erent from the derivation of forward curves, there is no market

consensus on the choice of discount curve. As discussed in Appendix A.3 discount curves can

be bootstrapped from di�erent liquid instruments. This can give inconsistency between di�er-

ent market participants depending on their choice of instruments for bootstrapping (Bianchetti,

2008). Alternatively, the OIS curve is widely used as a proxy for the risk free rate. This is

justi�ed with the OIS having only a 1-day tenor and with the calculation of the rate being

based upon contributions only by solid market participants (Tuckman and Serrat, 2012). Clear-

inghouses like LCH Clearnet Group Ltd use the OIS curve as the risk free proxy for discounting

(Kenyon and Stamm, 2012). The OIS base itself on di�erent reference rates. The USD OIS is

the Fed Funds rate while the EUR OIS is the EONIA rate (Tuckman and Serrat, 2012).

Trying to smooth the di�erent maturities of instruments into a curve, di�erent interpolation

methods can be used to �t the term structure. Instead of interpolating complete curves, this

thesis uses interest rate models calibrated based on tenor relevant instruments25. Construction

25Though Nelson-Siegel Parameterization is used to provide holes in the term structure needed to calibrate
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of curves with either interpolation or simulation makes the pricing of interest rate derivatives an

approach relative to the quoted market prices market prices (Ametrano and Bianchetti, 2009).

This means the no-arbitrage assumption cannot be consistent at all points on the curve, though

the market microstructure and transaction costs make these small arbitrage opportunities im-

possible to exploid in practice (Bianchetti, 2008).

2.2.2 Single Forward Curve

This subsection uses the no-arbitrage assumption from Section 1.3.4 to derive the discount

and forward curve, CdOIS and CfOIS , used in the single-curve pricing framework presented by

(Bianchetti, 2008) and (Ametrano and Bianchetti, 2009). The notation ignores subscripts of

the forward and discount rates, as there is only a single curve26 within this framework. The

no-arbitrage condition implies that

D (t, T2) = D (t, T1) ·D (t;T1, T2)

with t ≤ T1 ≤ T2. Thus meaning, that the discount rate from t to T2 must equal the product of

the discount rate from t to T1 and the time t forward discount rate from time T1 to T2. Hence,

the forward discount rate is given by

D (t;T1, T2) =
D (t, T2)

D (t, T1)
=

1

1 + F (t;T1, T2) · τ
(2.1)

where F (t;T1, T2) = 1
τ ·
(

( 1
D(t;T1,T2) − 1

)
and τ = T2 − T1. Rearranging for F (t;T1, T2) gives

F (t;T1, T2) =
D (t, T1)−D (t, T2)

τ −D (t, T2)

Moving on to continuous time the discount rates can be written at time t as an integral of

instantaneous forward rates, f , with the reference rate tenor starting at t0:

D (t0, T ) = e
−
´ T
t0
f(t0,u)du

Here f is given as

f (t0, T ) = − ∂

∂t
logD (t0, t) |t=T

thus the forward rate curve Cf is given with the function of f for di�erent maturities up to

T ≥ t0.
Cf = {T → f (t0, T )}

the interest rate model.
26The OIS curve.
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A continuous spot discount rate d is instead

d (t0, T ) = −1

τ
eD(t0,t)

with τ = T − t0. Hence, in the same way the spot discount rate for di�erent maturities up to

T ≥ t0 is

Cd = {T → d (t0, T )}

Note that even though pricing using a single curve, the forwarding of cash �ows uses the

forward rate curve, while the present value discount with the spot discount rate curve or ac-

cumulated sum of forward discount rate curves to the time of the cash �ow. Yet, taking the

basis spread into account, the single curve approach would allow for arbitrage opportunities

(Tuckman and Serrat, 2012).

2.2.3 Multiple Forward Curves

The multi-curve approach aims to incorporate the e�ect of the basis swap spread, which since

the crisis has been signi�cant. The approach accepted a segmented market for the di�erent

tenors, meaning that each forward curve would follow di�erent dynamics for the interest rate

process (Ametrano and Bianchetti, 2009). This second extension is covered in Section 2.3.1.

To account for the di�erent tenors spreads, it is necessary to derive forward rate curves

for each di�erent tenor. The derivation of these curves works just as in Section 2.2.2. Hence,

subscripts cannot be ignored, because in

Cfx = {T → fx (t0, T )}

with

fx (t0, T ) = − ∂

∂t
logDx (t0, t) |t=T

where x = {d, f1, f2, . . . , fn} , fn are di�erent �oating tenors like 3-month, 6-month, 12-months

etc. Thus, when determining the future cash �ows of the �oating rate with a certain tenor under

the no-arbitrage condition, implying that forward rates can be extracted from the forward curve

with the same tenor

Fx (t;T1, T2) =
Dx (t, T1)−Dx (t, T2)

τ −Dx (t, T2)

with t ≤ T1 ≤ T2 and τ = T2 − T1 (Bianchetti, 2008). Hence, the expected cash �ow under the

QTid -Martingale, where i is the ith �oating cash �ow

cfli = cfl (t, Ti) = E
QTid
t [H (Fx)]

with H being the notional value and d is denoting that the numeraire for this QTid -Martingale

measure is the discount curve Dd (t, Ti). The discount curve must still be unique at all tenors,

as the no-arbitrage condition is violated under the risk neutral pricing approach if this is not

the case (Bianchetti, 2008). Thus, the single discount curve derived in Section 2.2.2 is used to
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assign the appropriate discount rates to the di�erent cash �ows (both legs of the swap). From

Appendix A.4 we know that the swap value is the sum of all discounted cash �ows

Vj =

m∑
i=j

τ ·Dd (Tj , Ti) ·H ·
(
rfix − EQTid −

t [(Fx)]

)
(2.2)

with m total cash �ows and rfix interest rate on the �xed leg of the swap. Figure 2.2 gives an

intuitive graphical illustration of the multi-curve pricing approach.

Figure 2.2: Multiple Approach

Source: Author's own creation

2.2.4 Relation Between Di�erent Tenors

The relationship between the di�erent tenor curves under condition of no-arbitrage assumes

independence of interest rate dynamics. The relationship in Section 2.2.2 does not hold when

the forward curve and discount curve have di�erent tenor due to the forward basis spread making

the two curves di�erent. This is the case, when acknowledging that di�erent tenor curves are

not identical. This is adjustable by including the spread between the discount curve, d, and

forward curve, f , with a longer tenor than the OIS (Bianchetti, 2008). Deriving the forward

discount rates from equation 2.1 with the basis swap spread taken into account gives

Df (t;T1, T2) =
1

1 + [Fd (t;T1, T2) +BAf d (t;T1, T2)] · τ
(2.3)

with BAf d (t;T1, T2) being the basis forward spread between the discount and the forward tenor

at that certain point in maturity. This basis forward equals27

BAf d (t;T1, T2) = Ff (t;T1, T2) + Fd (t;T1, T2) (2.4)

(Tuckman and Serrat, 2012) provides evidence that using the forward basis swap spreads

between two tenors, it is possible to use the spread and one tenor curve to derive the other.

Hence, for di�erent maturities the forward curve can be recursively calculated from the discount

curve and the forward curve basis spread (Bianchetti, 2008)

Df (t, Ti) =
Dd (t, Ti)

Dd (t, Ti−1)−Dd (t, Ti) ·BAf d (t;Ti−1, Ti) · τ
·Df (t, Ti−1)

27This is a reduced version of (Bianchetti, 2008) as a result of disregarding day count conventions.
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and vice versa for the discount curve

Dd (t, Ti) =
Df (t, Ti)

Df (t, Ti−1)−Df (t, Ti) ·BAf d (t;Ti−1, Ti) · τ
·Dd (t, Ti−1)

As mentioned the derivation of the relationship between basis swap spreads for di�erent

tenors and the di�erent forward curves is just a statistical measure of the di�erence between the

discount curves at some certain maturities, but does not account for dependence of the dynamics

of the underlying interest rates (Ametrano and Bianchetti, 2009). Using the current forward

rate is just an approximation. Theoretical correct pricing would require the use of expectations

under QTid -Martingale measure and involves dynamic properties of the interest rate markets for

the di�erent curves, meaning stochastic models for the interest rates (Bianchetti, 2008). The

dynamics can be di�erent so that calibrating interest rate models to market data on di�erent

tenors yields slightly di�erent parameters and stresses the segmented market of tenors.

2.2.5 Cross-Currency Basis Spread

Previous subsection, only considered the multi-curve framework in a single currency. However,

the relationship between similar tenor curves in two di�erent currencies is similar to the relation

between di�erent tenor curves in a single currency. (Brigo and Mercurio, 2007) shows that

in the risk neutral pricing framework, changing the measurement from foreign currency Qf to

domestic currency Qd is equivalent to change the numeraire from rf (t) to r(t)
Qd , so that the

value is equivalent at time t. (Brigo and Mercurio, 2007) also proves, that this relation holds,

when moving to the QT -forward measure. This means that cash �ows in foreign currency are

possible to discount with the suitable spot discount curve of that currency and convert at the

spot exchange rate S (t)

Df→d (t, Ti) = S (t) ·Df
d (t, Ti)

Alternatively, one can derive the forward exchange rates at all cash �ows to convert all foreign

cash �ows to domestic currency and then discount using the suitable domestic spot curve

Df→d (t, Ti) = S (t, Ti) ·Dd (t, Ti)

Figure 2.3 illustrates this procedure as in (Bianchetti, 2008), indicating that these two methods

must be equivalent

S (t) ·Df
d (t, Ti) = S (t, Ti) ·Dd (t, Ti)

to ful�ll the no-arbitrage condition.
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Figure 2.3: Measurement with Two Currencies

Source: Author's own creation inspired by (Bianchetti, 2008)

The spread between two currency �oating rates with identical tenors, has the same relations

as expressed with basis swap spreads between two di�erent tenors with a single currency. This

is characterized as the cross-currency basis spread (Brigo et al., 2013).

For explicit pricing formulas, the change in numeraire of currency requires a quanto-adjustment

(Bianchetti, 2008). However, this will not be covered in this thesis, as short-rate models are

used for numerical pricing, which as mentioned by (Hull, 2012) eliminates the need for quanto-

adjustment.

(Brigo et al., 2013) rearranges equation 2.1 to determine the forward exchange rates

S (t, Ti) =
S (t) ·Df

d (t, Ti)

Dd (t, Ti)
(2.5)

Modelling stochastic interest rates in both currencies, the forward exchange rate can be

determined as a function in equation 2.5 to ensure no-arbitrage. This relationship is known

as the interest rate parity (Hull, 2012). However, this ignores the cross-currency basis spread

above. Hence, such a currency basis depends on issues related to collateralization agreement

on the CCS market quotes, which mean this e�ect will be embedded in our choice of collateral

agreement speci�ed in Section 4.2.1 (Brigo et al., 2013).

2.3 Stochastic Models

This section of the thesis presents the dynamic models used for the underlying risk factors in

the simulation price model. This is respectively a model to describe the interest rate dynamics

and a model to simulate credit risk of counterparties. This thesis uses

- one-factor CIR model28 with constant parameters calibrated to swap rates for the

dynamics of interest rates.

28Cox-Ingersoll-Ross model presented in 1985 (Hull, 2012).
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- a JCIR model29 with constant parameters calibrated to index CDS credit rates as a

stochastic intensity model for the default probability of the counterparty.

Though these models are quite simple, they provide suitable dynamics for interest rates and

survival probability and remain tractable when computing the xVA terms in the simulation

of the IRS and CCS valuation. The following subsection suggests a simple way to include

correlation between the models.

For the purpose of CCS pricing, this thesis assumes independence of forward exchange rates

and credit risk. This simpli�cation might over- or underestimate CVA, but is a fair approxima-

tion for the EUR/USD currency cross, but not as good for emerging market currencies, where

the exchange rate might be critical to a counterparty operating in countries with that currency

(Brigo et al., 2013). Including the correlation between exchange rate and credit risk is also a

very complex matter, and thus left out. It makes less sense to include this, when assuming a

deterministic model for exchange rates as described in Section 2.2.5.

The �nal part of this section provides insights into the art of model calibration and presents

formulas and discuss issues necessary for calibration of CIR models for interest rate dynamics

and JCIR model for default intensities. Model calibration to market data provides the dynamic

properties of di�erent tenor segments of interest rates, which as explained in Section 2.2.4 results

in a theoretical correct price30.

2.3.1 Interest Rate Model

This subsection evaluates the theoretical framework of the calibrated one-factor CIR short-rate

model, which describes the dynamics of the interest rates for di�erent tenors. Appendix D

evaluates general properties of interest rate models, while Appendix D.2 focus on the general

properties of a square-root process like the CIR model.

The one-factor CIR model follows a mean reverting process for drt

drt = κ [θ − rt−1] dt+ β
√
rt−1dzt (2.6)

where the parameters are held constant. The properties of the di�erent parameters are as

described in D.2. With �xed parameters the future short rate is non-central χ2-distributed

under the risk-neutral measure (Glasserman, 2003).

The risk-neutral interest rate curve shape derived from a CIR process depends on the pa-

rameters. Assuming κ > 0, the curve is decreasing for r ≥ θ, increasing for 0 ≤ r ≤ θ√
κ2+2β2

and is humped with an increase followed by a decrease for θ < r < θ√
κ2+2β2

. If κ ≤ 0, the curve

is also increasing for 0 ≤ r ≤ θ√
κ2+2β2

and instead humped for r > θ√
κ2+2β2

(Munk, 2011).

However, in this case the yield curve cannot be decreasing. One of the weaknesses of one-factor

models like the CIR model is that they cannot generate curves, which �rst decrease for short

maturities, but increases for larger maturities, as is occasionally observable in reality (Hull,

2012). Furthermore, one-factor models allow only one hump changing the direction or steepness

29Jump-Di�usion CIR Model (Brigo and Mercurio, 2007).
30Assuming the chosen short-rate model is the true model.
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of the curve. In reality, there might be di�erent increasing and decreasing relationships along

the di�erent maturities of the curve, which one-factor models cannot capture. Another problem

with one-factor models is that shifts in the curves from interest rates changes are parallel, which

implies the unrealistic assumption of perfect correlation between di�erent maturities. Empirical

studies show, that a perfect correlation is far from realistic. E.g. parallel shifts only account for

around 10% of change in bond yields, while non-parallel shifts have twice that e�ect (Phoa and

Shearer, 1997). Short-term and long-term rates also might not even move in the same direction

as a change in the short interest rate occurs (Munk, 2011).

It is possible to mitigate these errors by extending the model with further factors like the

Longsta�-Schwarz model extension of the CIR model (Munk, 2011) or allow for time-varying

parameters when calibrating the model like the CIR++ model (Brigo et al., 2013). Extending to

additional factors would provide further possible shapes of the interest rate curve. An extension

to a time-inhomogeneous calibrated model will improve the precision, but still lack the ability

to capture curve movement of short-term and long-term maturity in di�erent directions as

response to a change in the short-term interest rate. Using one-factor models to value �nancial

instruments, the calibration must be on the same type of instruments in order to give a valid

price estimate. Otherwise, one-factor models are inferior to two-factor models in terms of pricing.

For hedging purpose, calibrated one-factor models are not even good approximations of the two-

factor models, which become superior (Munk, 2011), (Hull, 2012). Extension to a two-factor

CIR model will complicate the calibration and interpretation of the model. Hence, to keep

tractability when including xVAs, this thesis sticks to the rather simple calibrated one-factor

CIR model.

The CIR models have a shortcoming to other short-rate models when it comes to calibrating

a time-inhomogeneous model for forward rate curves. To avoid θ (t) ever being negative, the

following restriction is required for the relationship between forward rates fx (T ), initial interest

rate r0 and the derivative of non-centrality parameter in the χ2-distribution b′ (T )31

fx (T ) ≥ r0 · b′ (T )

Thus, even the CIR++ model cannot be calibrated to all shapes of term structures (Munk,

2011).

For this reason and for simplicity, this thesis settles for a time-homogeneous calibrated CIR

model. This means, that it does not ensure a perfect no-arbitrage model with the term structure

as input, but rather produces the term structure as output (Hull, 2012). It is important to note as

mentioned in Appendix D.2 that the CIR model as a square-root model has an advantage over

Ohrnstein-Uhlenbeck processes32. This is due to the fact, that interest rates cannot become

negative, which is generally a good assumption when using nominal interest rates33. Even

though the CIR model was originally for real interest rate dynamics, it is in practice also used

for nominal rates (Munk, 2011).

31See formula for b (τ) in Appendix D.2.
32See Appendix D.1.
33Though as proved by current EUR market rates not realistic.
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2.3.2 Counterparty Credit Model

This subsection presents a simple way to model credit risk as a stochastic default intensity

model. This provides an extension of the CIR model with a jump di�usion, which makes it

more suitable to measure default probabilities of counterparties.

As mentioned in Appendix D.2 a square-root process like the CIR model must obey the

restriction β2 ≤ 2ϕ in order to exclusively produce positive values. This restriction is less

problematic for modelling interest rates. However, for modelling stochastic default intensity,

the volatility might be much higher than allowed by the restriction. This will possibly violate

the restriction. Adding a jump di�usion to the stochastic process keeps the possible higher

variation in default intensity while avoiding violation of the restriction (Brigo et al., 2013). This

transforms equation 2.6 into a jump di�usion model

dλt = κ [θ − λt−1] dt+ β
√
λt−1dzt + dJα,γt (2.7)

The model is now describing the default intensity λt. The additional feature added is the

jump dJα,γt . (Brigo and Mercurio, 2007), (Brigo and El-Bachir, 2010), and (Brigo et al., 2013)

provides the following notation for the jump at time t in discrete form

Jα,γt =

Mt∑
i=1

Yi

Here Yi follows an exponential distribution Yi ∼ f (xi, γ) with xi an i.i.d. random generated

positive number (Brigo and Mercurio, 2007) with γ > 0 being a rate parameter determining

the size of each jump. Larger γ increases the size of all jumps (Brigo et al., 2013), (Brigo and

El-Bachir, 2010). The probability of each jump follows a Poisson distribution (Hull, 2012)

P (Yi | α) =
e−ααi

i!

which is the probability for a certain amount of events for a given period of time. The amount

of events at each time interval, is independent of other periods, but has the same probability

for equally large time intervals, thus making it depend on the size of the time interval (Keller,

2009). Jα,γt equals the cumulative Poisson distribution

Jα,γt =

Mt∑
i=1

Yi =

n∑
i=1

Yi
e−ααi

i!

where α > 0 is the arrival rate for the frequency of jumps and n is the number of jumps (Brigo

and El-Bachir, 2010). Thus, a larger α increases the probability of the Y thi jump. Mt denotes

a Poisson distribution variable with arrival rate α.

Due to the nature of the Poisson distribution described above, the jump process is uncorre-

lated with the current default density. Thus adding an unpredictable element to the probability

of default, which seems more aligned with reality. This feature is not available for structured
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models, which is an alternative way to model default rather than intensity models (Brigo et al.,

2013). Jump di�usions make the intensity model consistent with empirical data (Brigo and

El-Bachir, 2010).

Note that as the jumps are only positive, the long-term mean changes to θ = θ̃+ αγ
κ . Hence,

including the drift e�ect of the jump to the drift term of the process changes equation 2.7 to

dλt = κ
[
θ̃ − λt−1

]
dt+ β

√
λt−1dzt + dJα,γt − αγ dt

with dJα,γt now having a zero mean (Brigo and El-Bachir, 2010).

The JCIR model does as other intensity models not provide the precise time of default, but

instead the evolvement of default probability over time. This is acceptable to calculate CVA on

the exposure to the counterparty (Gregory, 2015a).

2.4 Correlation of Credit Risk and Interest Rate

The CIR model for interest rate dynamics in Section 2.3.1 and the JCIR model for default

intensity Section 2.3.2 have so far not included any dependency with one another. However,

(Brigo et al., 2013) shows that interest rate and default intensity correlate and that this has

a signi�cant impact on the counterparty risk. This subsection provides a simple framework

to include correlation between the two stochastic models and discusses the limitations of this

method.

The nature of stochastic uncertainty for the two processes both arise from Gaussian vari-

ables34. Moreover, the jump di�usion is independent of time. Thus, linear dependency modelling

through Pearson correlation measure of the Brownian motions creates the decent dependency

between the interest rate model and default intensity model (Munk, 2011).

However, the jump being exponential would not allow for this simple linear correlation, if

two jump processes should depend on one another (e.g. when taking into account correlation

between default intensity of more counterparties). So when valuating counterparty risk in a

joint framework rather than an isolated case, this would require more e�cient methods to

model dependency structures like copula functions (Brigo et al., 2013), (Glasserman, 2003). In

such cases, linear dependence structures through the Gaussian variables become too weak in

case of one counterparty defaulting (Glasserman, 2003). Shared jumps for dependent default

intensity processes could improve the linear correlation, but would still not be e�cient (Brigo

et al., 2013). Hence, heavy dependence in a crisis cannot be appropriate captured by the normal

distribution, which would require a rather heavy tailed distribution (Munk, 2011).

As mentioned above, dependency for the JCIR and the CIR model is applicable through the

Brownian motion independent of the rest of the models (Glasserman, 2003). Each Brownian

motion is a Gaussian variable i.e. that it follows a standard normal distribution

zi ∼ N (0, 1) (2.8)

34The Brownian motions in di�usion process.
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Equation 2.8 in matrix form for multiple independent Brownian motions becomes

Z ∼ N (0, I) (2.9)

where Z is the vector of i independent Brownian motions. Thus, the covariance matrix is an

identity matrix. Dependent Brownian motions will change equation 2.9 to

Z ∼ N
(

0,
∑)

(2.10)

where
∑

is the covariance matrix. In order to move from the independent case in equation 2.9

to the dependent case in equation 2.10 it is possible to use the linear transformation property35

for equation 2.10

AZ ∼ N
(

0, A
∑

AT
)

(2.11)

where A is a matrix, satisfying the condition
∑

= AAT (Glasserman, 2003). Equation 2.11 is

still following a normal distribution. By knowing AZ and be able to generate Z by equation 2.9

dependence is created through the construction of matrix A alone and thus achieve the result

of equation 2.10. In other words, by determining the elements of A from the correlation or

covariance matrix, AZ will be a vector with dependent standard normal distributed numbers

following the speci�ed correlation matrix (Hull, 2012).

The Cholesky factorization is a way to derive A as a lower triangular matrix, which is

convenient as it halves the calculations compared to the covariance matrix. This solution satis�es∑
= AAT , where AT then must be equal to the upper triangular matrix. We can rewrite the

condition in terms of elements in Aij

∑
ij

=

j∑
k=1

AikAjk

to be able to solve for each element sequentially (Glasserman, 2003)

Aij =

∑
ij

−
∑j−1

k=1
AikAjk


Ajj

(2.12)

As already mentioned, two processes must be correlated in this model framework. With
∑

=[
σ11 σ21

σ12 σ22

]
36, then using equation 2.12 (Glasserman, 2003)

A =

[
σ1 0

ρσ2

√
1− ρ2σ2

]
35This covariance matrix must be a symmetric d x d matrix and positive de�nite meaning that all eigenvalues of

elements in the matrix must be positive in order to allow for linear transformation, as using negative eigenvalues
to scale the matrix would reverse the direction of elements when multiplying with the eigenvalue matrix. A
Covariance matrix is so by construction (Wilmott, 2007).

36where σ21 = σ12 = σ1σ2ρ12. And ρ12 is the Pearson correlation measure of the two processes.
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And (Hull, 2012)

AZ =

[
Z1

Z2

][
σ1 0

ρσ2

√
1− ρ2σ2

]
(Brigo and Pallavicini, 2008) uses the above approach for correlating stochastic interest

rate and default models for pricing IRS contracts. They show that higher correlation between

the interest rate model and default intensity makes CVA for the receiver leg of IRS contracts

decrease. This supports the idea of wrong way risk or cross-gamma e�ects, as a counterparty

paying �xed rate will lose market value with interest rates dropping and vice versa for a receiver

leg, which a�ects the credit risk of the counterparty due to such losses (Gregory, 2015a). A

drop in interest rates often relates to economic recession times, while the interest rate increases

in times with recovery. (Du�ee, 1998) supports this by showing how corporate bond yield

spreads37 tighten with increasing Treasury bill yield38. These issues support the necessity of

dependence between interest rate and default probability as the cross-gamma sensitivity of these

two underlying risk factors increase the total sensitivity of the xVA terms.

Introducing correlation between the two di�usion models will theoretically introduce de-

pendency between interest rates and default intensity model parameters. This means that

calibration of the models must be jointly to account for the dependency. This will increase com-

plexity tremendously. (Brigo and Mercurio, 2007), however, shows that even when calibrating

parameters for two stochastic models jointly including high correlation for CDS contracts39, cal-

ibrating the parameters for two stochastic models jointly using a high correlation, parameters

does not di�er noteworthy from a separated calibration case40. Hence, it is then possible to

calibrate both models individually based on their most relevant instruments41 and afterwards

set the correlation parameter, ρ, to the desired level based on historical data or market-implied

correlation.

2.5 Calibration of Di�usion Models

This subsection presents the process for calibrating the �xed parameters for the time-homogeneous

one-factor models described in Section 2.3.1 and Section 2.3.2. First is a discussion on the advan-

tage of calibrating model parameters. Next, a short theoretical discussion on di�erent calibration

methods follows, which includes a brief evaluation of the non-linear Generalized Reduced Gra-

dients (GRG) optimization method used in this thesis. The interest model calibration �ts swap

rates calculated by the model to quoted market rates. Hence, there is a presentation on the

derivation of swap rates taken the CIR model as given. The default-intensity model calibration

�ts index CDS prices to market prices of the iTRAXX Europe Crossover Index. To achieve this,

37Indicating the risk premium of default risk compared to the risk free interest rate.
38Used as proxy for the risk free rate.
39Which are heavily dependent on the parameters of the default intensity.
40Di�erences in value between using joint and separated calibration fall within a small fraction of the bid-ask

spread.
41Calibration of an interest rate from the same instruments as those optimal for modelling default intensity is

not suitable. From Section 2.3.1 we described that calibration of the one-factor interest rate model needed to be
from the same instruments as those that the model aims to price to be a suitable model.
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the subsection also includes a derivation of a CDS pricing formula taking the JCIR model as

given.

2.5.1 The Purpose of Calibration

Calibration is an iterative process to determine the parameters in a stochastic model. These

iterations ensure that the �xed parameter are set so that the model implied values �t current

quoted market values of such instruments as precise as possible. Thus, meaning minimizing the

sum of squared errors between market quoted rate and model implied rates (Keller, 2009)

SSE =

k∑
j=1

(
xj − x∗j

)2
with xj the model rate and the mid of the quoted market rate x∗j for the j

th instrument. This

makes the term structure of the interest rate model as close as possible to the current term

structure of the chosen instruments and thus more suitable as input for pricing these models

(Brigo and Mercurio, 2007).

Calibration of stochastic models has the purpose to ensure that the pricing model is closer

to reality. This calibration can be to historical prices or to current market prices, the latter

assuming the risk-neutral measure, while when also combined with historical prices allows for

estimation with time-inhomogeneous parameters. However, even though the risk-neutral mea-

sure produces the best indications of current market conditions, it does not acknowledge that

the presence of risk premiums causes a systematic bias. Another downside is the potential

procyclicality in the stochastic models due to solely relying on current prices for calibration,

which might over- or underestimate the underlying volatility in the model. Even though these

downsides occur, calibration to market prices is consistent with the underlying risk neutral

approach, provides best indications of current market conditions, and is an accepted general

market practice (Gregory, 2015a)42.

The calibrated models only �t well, if the model chosen represents a good �t for the actual

fundamental dynamics. As discussed in Section 2.3.1 the CIR model already limit the possible

term structure, which in reality can take more forms. Furthermore, negative interest rates are

not possible, but present in current market data evaluated in Section 5.2.1. As the actual

dynamics have an in�nite number of maturities, the calibration based on only a �nite number

of market quotes will be an approximation. It is necessary to choose a decent amount of market

quotes to match the in�nite number of di�erent maturities properly (Brigo and Mercurio, 2007).

As mentioned in Section 2.3.1, one-factor models only provide a good base for pricing the same

instrument as those used to calibrate the model. For this reason, calibration of the CIR models43

is to market quotes of swap rates of generic IRS contracts. Calibration of the default intensity

model uses market quotes of the iTRAXX Europe Crossover Index credit spread to �t the default

intensities from the JCIR model. To avoid violating constraints of the models all parameters

42Market prices are sometimes used only for calibrating the drift, while market volatility is mixed with historical
time-series (Gregory, 2015a).

43Di�erent tenors and currencies.
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for all dynamic models are restricted to positive values (Munk, 2011), (Brigo et al., 2013).

2.5.2 Non-Linear GRG Optimization

Calibration of optimal model parameters is a non-linear mathematical optimization issue. There

are essentially six types of procedures to solve constrained nonlinear optimization programming

(NLP) problems.

- Successive Linear Programming

- Successive Quadratic Programming

- Generalized Reduced Gradients

- Penalty or Barrier Functions Methods

- The Augmented Lagrangian functions

- The Methods of Feasible Directions (or Projections)44

The three �rst methods above are have proven to be more e�cient than the last three (Pike,

1986).

For this thesis, the GRG method is chosen to solve the NLP problem. This method is

included in the Premium Solver Pro in Microsoft Excel, which can handle up to 500 decision

variables and 250 constraints (Systems, 2011).

The GRG algorithm is a non-linear extension of the Simplex Method for Linear Program-

ming45. It is shown that the implementation is both robust and e�cient (Lasdon et al., 1978),

(Systems, 2011). As the process iterates from point to point, GRG make adjustments for the

variables, so that the constraint remains satis�ed, �nding the optimal solution.

The basic idea behind GRG is to �rst make use of Taylor expansions to linearize the NLP

problem and then constraint equations to �nd a feasible optimal local solution for the NLP

problem. From this point the reduced gradient algorithm incrementally adjusts parameters

until reaching an optimum (Bazaraa et al., 2013), which satis�ed the speci�ed conditions (Pike,

1986). As the algorithm at each increment chose the best marginal improvement, it will move

towards and optimal solution. However, this might not be the global optimum as choosing

the best marginal improvements at each increment might just lead in the direction of a local

optimum depending on the starting point of the algorithm. Hence, the only way to ensure,

that the optimal solution found is indeed the global optimum and not just a local optimum,

the method has to be repeated with di�erent starting values to uncover di�erent optimums and

pick the best of those (Systems, 2011). An in depth discussion of the mathematical procedure

is beyond the scope of this thesis.

44Also called the methods of restricted movement.
45See e.g. (Balakrishnan et al., 2013) for evaluation of linear programming.
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2.5.3 Calibration of CIR Model on Swap Rates

Calibration of the CIR model sets the parameters that minimize the error of model estimated

swap rates relative to market quoted swap rates. This requires a model to estimate swap rates

based on the CIR model. Swap rates as derived in Appendix A.6 equals46

r∗t=0 =
1−D (0, Tn)

τ ·
∑n

i=1
D (0, Ti)

The discount factors depend on the interest rate and can be seen as a zero-coupon bond with a

notional of D (T, T, r) = 1

r∗t=0 =
1−D (0, Tn, r)

τ ·
∑n

i=1
D (0, Ti, r)

Thus, discount factors can be calculated given that the CIR model describes underlying interest

rate dynamics. (Munk, 2011) shows that the pricing formula

D (t, T, r) = e−a(τ)−b(τ)·r (2.13)

where τ = T − t with restriction

1

2
β2 · b (τ)

2
+ κ · b (τ) + b′ (τ)− 1 = 0

a′ (τ)− κ · θ · b (τ) = 0

is the solution for the PDE when r follows a CIR model. The terminal condition D (T, T, r) = 1

is as well satis�ed at T with τ = 0. Solving the restrictions for a (τ) and b (τ) equals

a (τ) = −2κ · θ
β2

(
ln (2ω) +

1

2
(κ+ ω) · τ − ln [(ω + κ) (eω·τ − 1) + 2ω]

)

b (τ) =
2 (eωτ − 1)

(ω + κ) (eω·τ − 1) + 2ω
(2.14)

with ω =
√
κ2 + 2β2. With these CIR dynamics, optimal estimate of the parameters r0, θ, κ

and β can be calibrated from quoted swap rates.

It is important to notice, that the model chosen for swap rates assume that there is not

counterparty risk, which contradicts the very foundation of this thesis. So deriving these under

the assumption of no counterparty risk is only an approximation. However, for this thesis it

has been reasonable to assume unilateral case with the �nancial institution assumed relatively

default free and able to hedge market risk with another default free institution47. As the swap

rate quotes are market prices for such �nancial institution counterparties, ignoring counterparty

risk, have little e�ect on a simple model like the one-factor CIR model.

46Assuming valuation at t = 0.
47See Section 1.3.5.
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2.5.4 Calibration of JCIR Model for Default Intensity

The JCIR model calibration has the purpose of achieving a decent proxy for the dynamics of

the default intensity based on credit spreads. This requires a model for CDS pricing assuming

that dynamics of default intensity are given by the JCIR model. In Appendix B the fair CDS

spread is given as

k∗t =
LGD·

∑n

i=1
λ (Ti−1, Ti) ·D (t, Ti)

τ ·
∑n

i=1
λ (t, Ti) ·D (t, Ti)

(2.15)

with λ (Ti−1, Ti) the current default intensity and LGD the loss given default. (Brigo et al.,

2013), (Brigo and Mercurio, 2007) and (Brigo and El-Bachir, 2010) provide a closed form solution

for survival probabilities48, which satis�es the PDE

1− λ (t, Ti) = a (τ) · τeb(τ)·λt (2.16)

where τ = T − t. Solving for a (τ) and b (τ) equals

a (τ) =

(
2ωe

(
ω+κ

2 · τ
)

(ω + κ) (eω·τ − 1) + 2ω

) 2κ·θ
β2
(

2ωe(
ω+κ+2γ

2 τ)

(ω + κ+ 2γ) (eω·τ − 1) + 2ω

) 2α·γ
β2−2κ·γ−2γ2

b (τ) =
2 (eω·τ − 1)

2ω + (κ+ ω) (eω·τ − 1)

with ω =
√
κ2 + 2β2. This solution does, however, collapse, if γ = ω−κ

2 , as 2α·γ
β2−2κ·γ−2γ2 → 2α·γ

0 .

Hence to avoid this

(
2ωe(ω+κ+2γ

2 ·τ)
(ω+κ+2γ)(eω·τ−1)+2ω

) 2α·γ
β2−2κ·γ−2γ2

= 1 when γ = ω−κ
2 , which reduces the

model to the CIR model.

To be able to �nd the CDS spread the above formula can estimate default probabilities49

λ (Ti−1, Ti) = Q (Ti−1 < τ∗ ≤ Ti | τ > t) = 1−Q (Ti−1 < τ∗ ≥ Ti | τ > t)

The discount rates in Section 2.15 following the CIR-model correlate with the default in-

tensity. Hence, parameters for the CIR model should principally be jointly calibrated on the

CDS spread. However, as mentioned in Section 2.4 and by (Brigo and El-Bachir, 2010), though

this dependency exists, it has a negligible e�ect on the CDS spread. Thus, it is reasonable to

assume a deterministic term structure based on the OIS rates derived from the CIR model with

parameters calibrated to swap rates as in Section 2.5.3 without causing a signi�cant e�ect on

the model parameters.

This thesis takes the perspective of a medium-sized �nancial institution in an international

scale with a corporate counterparty as mentioned in Section 1.3.5. Consequently, it is unlikely,

that a liquid single-name CDS if any would with just a little liquidity would exist on such a

counterparty. To account for this issue, parameters are calibrated to �t market quotes of a

48Survival Probability = 1− λ.
49Where τ∗ is the default time.
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CDS index, namely the iTRAXX Europe Crossover Index. The iTRAXX Europe Crossover

Index CDS consists of 75 actively traded European companies, which are characterized as non-

investment grade and have no rating50 (Markit, 2014b). Thus, making it a suitable proxy of

default probability for minor corporates. As mentioned in Appendix B.3, such an index spread

could roughly be the average spread of single-name CDS contracts of all companies included in

the index. However, it is not a precise measure as:

1. Not all companies potentially using this as proxy are in fact included in the index.

2. As Appendix B.3 shows, the payout features of the iTRAXX indices di�er from a normal

single-name CDS therefore making the CDS pricing formula unsuitable.

Nevertheless, no better public data are available and the simple assumption of a representative

index at least provides a decent range for the default intensity. If having at hand historical credit

risk data on the speci�c counterparty available, such can serve as a base for the individual credit

risk, but would also not provide a full perspective of future credit risk. This shows that credit

modelling is a very delicate matter. Determining λ0, θ, κ, β, γ and α of the JCIR model is

sub-optimally achieved by calibrating them to �t market quotes of iTRAXX Europe Crossover

Index CDS spreads paid quarterly, which makes the present value of the contract equal to 0

(Markit, 2012).

An important issue to mention is that the calibration of default intensity assumes a constant

LGD, which means a constant recovery rate. With LGD having a huge e�ect on the CVA,

so this might seem like a very strong assumption. However, there are two arguments in favor

of leaving LGD constant. First, it is almost impossible to calibrate recovery rates to any

instruments other than the single-name CDS contract or CDS indices, which are also used to

calibrate default intensity51. Hence, calibrating two variables to one instrument is an under-

de�ned problem and thus has in�nite solutions. The second argument relates a lot to the �rst,

because the credit spread is what is actually traded in the market, not the default intensity. As

can be seen from equation 2.15, both LGD and default intensity determines the credit spread

jointly. In other words, the calibrated default intensity only shows the actual probability of

default, if the LGD accounts for the actual recovery rate. Otherwise, the probability of default

shows a pseudo probability of default given a �xed LGD. Nevertheless, the credit spread is what

e�ects the CVA. Hence, we should not care whether the LGD di�ers, as this adjusts default

intensity to account for the actual LGD expected by market through the quoted credit spreads

(Ruiz, 2015)52.

50By Fitch, S&P or Moody's rating agency.
51Some theoreticians propose to use Digital CDS contracts (pay full notional at default) or Recovery Default

Swaps (Swap a �xed recovery rate for the actual recovery rate on a notional amount). However, in reality these
instruments are rare and extremely illiquid, hence making them less attractive to use (Ruiz, 2015).

52We do, however, acknowledge, that the choice of LGD will have some e�ect as default intensity is used
isolated for estimation of MVA in Section 4.4.1 and partially for estimation of KVA in Section 4.5.2.
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Part III

Monte Carlo Simulation



3.1 Purpose of Monte Carlo Simulation

For purpose of pricing plain vanilla derivatives, analytical approaches exists as a direct way

of pricing without any great computational e�ort. However, most of these analytical tech-

niques depend on some simple assumptions, which will be violated when introducing the e�ect

of xVAs. Even e�cient numerical procedures like �nite di�erence methods is not applicable

(Wilmott, 2007), as di�erent risk factors and variables required for pricing with inclusion of

xVA demand a high dimensional pricing framework. Hence, in order to be able to calculate the

right risk exposure with respect to underlying dynamics, Monte Carlo simulation is considered

the contemporary valuation method within the �nancial service industry (Gregory, 2015a).

MC simulation provides the necessary �exibility to model collateral, funding and path de-

pendent features, o�ering more holistic pricing (Gregory, 2015a). Albeit a powerful approach,

simulations for xVA purposes has become the greatest quantitative challenge for the �nancial

service industry (Ruiz, 2015). Estimates only converge as the number of simulated scenarios

increase. Getting rid of this MC noise within the estimates by increasing the number of sim-

ulations increases the computational time exponentially. Simulating derivative prices becomes

time consuming when including di�erent features and dependencies. However, as dependency

between di�erent counterparties and trades is present, the entire OTC portfolio of a �nancial

institution is interdependent, a�ecting each single derivative price. Thus, the computational

requirements for joint dependency simulations explodes with the number of trades (Ruiz, 2015).

Besides price estimates, calculation of sensitivities, exposure allocations to di�erent counter-

parties, and other metrics are required intra-day at the xVA desk (Ruiz, 2015). To solve this

challenge, there have been di�erent ways to approximate some elements to reduce the computa-

tional e�ort at the expense of �exibility in the pricing framework. It is also important to know,

if any estimates can be approximated rather than simulated, as avoiding this might ease the

simulation burden.

This thesis only focus on pricing swaps individually. Including xVAs on a per trade basis

is a numerical challenge in itself. Considering a whole portfolio with interdependencies, pricing

marginal exposure for each individual derivative with respect to one another will complicate this

matter further, which illustrates the magnitude of the xVA challenge.

Section 3.2 provides a general discussion on the art of MC simulation and e�ciency. Section

3.3 further provides the steps necessary for estimating xVAs in general, and Section 3.4 presents

methods of discretization for the stochastic dynamics of the di�erent underlying risk factors.

3.2 The Basics of Simulation

The concept of simulation is to generate an amount of di�erent scenarios each re�ecting a

potential future scenario. Random numbers serve as input for the stochastic models providing

randomness for the dynamics of factors determining each future scenario. If the probabilistic

distribution of the random numbers are set to �t the real dynamic behavior of di�erent risk

factors, then with a larger number of scenarios the average will converge to the expected value

(Glasserman, 2003). Each scenario must be calculated based on the current information and be
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independent of other scenarios (Ruiz, 2015). Following the Martingale approach described in

Section 1.3.4, it is possible to estimate the xVA charges in di�erent scenarios. The mean value

of all scenarios represent the expected value

E [Vt] = V̂t,n =

∑n

i=1
Vt,i

n

This expected value converges to the fair value if the estimator becomes unbiased, as the amount

of simulations increase

lim
n→∞

E
[
V̂t,n

]
= Vt

Hence, the central limit theorem Glasserman (2003). The estimator converges to the standard

normal distribution in the limit
V̂t,n − Vt
σVt/
√
n

= N (0, 1)

Thus, when rearranging the simulation error or MC noise, this is approximately

V̂t,n − Vt ≈ N
(

0,
σ2
Vt

n

)
(3.17)

This con�rms that in order to achieve a lower variance and converge to the true value, the

amount of simulations should be increased (Glasserman, 2003). The reduction of the MC noise

is only 1√
n
, meaning that the amount of simulations must be quadrupled in order to half the

MC noise (Hull, 2012).

As computational time constraints the maximum possible amount of simulations, the e�-

ciency of the simulation method can be compared if setting a time limit, s, and calculate the

duration of each simulation, τ . Thus, using the time-constrained integer amount of simulations

n =
[
s
t

]
the highest simulation e�ciency can be achieved (Glasserman, 2003).

The convergence to an unbiased estimator can remove potential small sample biases. How-

ever, some sources of biasness will persist for in�nite samples and thus make the estimator

ine�cient (Glasserman, 2003). The most obvious persistent bias is the discretization error,

which will be discussed in Section 3.4. It is possible to reduce biases and errors with di�erent

techniques. However, doing so will increase the computational time of each simulation. For

this reason, the above e�ciency measure will be relevant when measuring e�ciency of including

di�erent variance reduction techniques, selective sampling or as described in Section 3.4 a more

precise discretization.

3.3 Simulation Process for Pricing with xVAs

Pricing derivatives with xVAs potentially depends on numerous underlying risk factors deter-

mining cash �ows and exposures. To take these appropriately into account MC simulation is

the only possible method, which computationally can handle the high dimensionality occurring

from di�erent risk factors and decision variables (Gregory, 2015a).
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(Ruiz, 2015) divides the simulation process into three overall steps:

1. Risk factors

2. Pricing

3. Calculation of risk metrics to estimate xVA charges

As many risk factors potentially a�ect the prices and exposures of a derivative contract, it is

important to choose enough relevant risk factors to achieve a realistic model, but at the same

time keep the model tractable and limit the computational e�ort (Gregory, 2015a).

Using stochastic models to describe discrete paths for the risk factors provides an approx-

imation of the underlying dynamics up to maturity. The discrete dynamics of the underlying

risk factors allow calculation of the market price and exposure of the derivative contract at

all discrete time point for each simulated path (Ruiz, 2015). Such simulations should follow a

pathwise simulation scheme, which moves from each discrete point in time to the next. Using

pathwise simulation rather than direct simulation of each discrete point in time set from time 0

allows for collateral modelling (Gregory, 2015a). A discrete number of calculated prices and ex-

posure only approximates a continuous process. The swap exposure is highly discontinuous over

time due to payments at discrete points in time or potential options features at certain points in

time (Gregory, 2015a). Thus, the discretization grid should cover payment intervals and other

possible discontinuous features or in addition include these points in time in the discretization

grid (Ruiz, 2015). There is, however, still a tradeo� between accuracy and computational e�ort,

if a derivative contracts has many payments or option features.

Knowing the discrete exposure of the swap contract over the contract lifetime, one can

determine mark-to-market collateral directly on the model including terms of the collateral

agreement. Thus, it is possible to estimate the e�ect and costs mitigating credit exposure

through dynamic collateral posting. Including collateral and hedging in the simulation we

can examine the e�ect and dependency between di�erent xVA terms and be able to discuss

optimization of the total xVA charge. Approximations for the e�ect of collateral do exists.

However, such approximations do not capture the e�ect of having certain limits for the mark-

to-market amounts or the gap risk between each possible margin call very well (Gregory, 2015a).

When calibrating the underlying risk factor models, it is important to acknowledge the

dependency of the di�erent risk factors, so the pricing based upon these does not become

naïve (Gregory, 2015a). Dependency modelling becomes more time consuming and must be

rather sophisticated when considering more counterparties (Ruiz, 2015). As discussed in Section

2.4, this thesis only looks at individual pricing of swaps without considering netting e�ects of

di�erent counterparties or contracts. Hence, a linear correlation between interest rates and

default probability can be used to model dependency. In reality, simulation of underlying risk

factors and pricing are sometimes separated. Risk factors might be calibrated to historical data

rather than current market data53. Doing so, reduces the simulations required for convergence

of the price towards the true value (Ruiz, 2015). It is important to notice, that �nancial

53Especially if used for risk management rather than pricing.
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institutions might already calculate some of the underlying risk factors with credit or interest

rate models for other purposes than xVA estimation. Hence, such results can be reused to ease

the computational burden of the xVA terms.

Including details of e.g. the collateral agreement to �ne tune the estimate should be held

up against the computational burden of including such details. If the computational burden

increase, less simulations are possible to make. This increases the MC noise, which might

conceal detailed features anyway. Using the same seed value for the random number generation

used for the stochastic element �xes the MC noise. Accepting this �xed MC noise, it is possible

to separate it from the analysis of minor changes. This will require a very careful understanding

of the magnitude of the MC noise (Ruiz, 2015).

3.4 Discretization of Stochastic Models

Section 2.5.3 and Section 2.5.4 provide solutions to the PDE given the dynamics assumed for

the underlying risk factors. This allows for an analytical solution or an exact price estimate

with just a single step for each path simulation rather than a discrete path (Glasserman, 2003).

Nonetheless, in order to model collateral and estimate di�erent xVA terms, this requires the

discrete exposure pro�le of each simulation (Gregory, 2015a)54. Hence, a discretized version of

the stochastic di�usion models will be necessary. The downside of this is longer computational

time, as each simulation will include simulation of many discrete steps rather than a single

step. In discrete time, the total time interval of the simulation path, τ = T − t, is separated
into smaller intervals ∆t = τ

n summing up to the total time (Glasserman, 2003). As both the

CIR model and JCIR model have a PDE55, their discretization will converge to the continuous

process in the mean square limit (Wilmott, 2007). A simple Euler Discretization the CIR model

is given as

rt+∆t = rt + κ [θ − rt] ∆t+ β
√
rt∆Z (3.18)

where ∆Z = ε
√

∆t56 (Munk, 2011). This discretization causes a risk of negative rates not

allowed in the models. A simple way to avoid this is to adjust the model to

rt+∆t = rt + κ [θ − rt] ∆t+ β
√
max (0, rt)ε

√
∆t (3.19)

However, both the discretization schemes of the CIR model above do not exactly follow the

non-central χ2-distribution, which is the case for the continuous CIR model57. Hence, they

cause a discretization error. For this reason, this thesis use the more accurate discretization

scheme presented below.

Using equation D.2 from Appendix D.2 adjusted to constant parameters and inserting θ = ϕ
κ ,

the degrees of freedom are given as

a =
4θ · κ
β2

54Furthermore, if path-dependent features are included this also requires discretization.
55See Appendix C.6 for an evaluation of PDE.
56See Appendix C.2.
57See Section 2.3.1
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and the non-centrality parameter (inserting equation for c into b)

b =
4κe−κ∆t

β2 (1− e−κ∆t)
· ri

(Glasserman, 2003) shows, that random non-central χ2 (a, b)-distributed variable will equal a

squared Gaussian variable with mean b plus a χ2-distributed number with a − 1 degrees of

freedom.

Using this, equation 3.18 in an accurate discrete form is58

rt+∆t =
β2
(
1− e−κ∆t

)
4κ

χ2 (a, b) =
β2
(
1− e−κ∆t

)
4κ

(
Z +
√
b
)2

+ χ2
a−1

Extending the discrete CIR model to the JCIR model is straightforward as the jump and

the di�usion term are independent of one another59. The process from above can be written as

λt+∆t =
β
(
1− e−κ∆t

)
4κ

(
Z +
√
b
)2

+ χ2
a−1 + λt

Mt∆∑
i=1

Yi

Thus, the jumps are simply added at the time step in which they occur (Brigo et al., 2013).

The increase ratio in default intensity at each jump comes from the intensity parameter γ in the

exponential distribution (Glasserman, 2003). (Atkinson, 1979) describes methods to generate

random Poisson distributed variables with the sequential search method as a simple way to

determine the number of occurrences. With this method, the random probability deciding

the number of jumps for a given period comes from a uniform distributed number, U . The

Poisson random variable is then generated from a sequential loop through the cumulative Poisson

distribution with arrival rate α until U < Pi, where Pi is the cumulative Poisson probability for

i occurrences. This method gives an easy way to determine the amount of jumps, as long as

α is constant. This method, however, becomes computational heavier as α increases. Random

uniform variables, Ui, are used to assign the point in time, τi, from [t, T ], where each jumps

occur, which (Mikulevicius and Platen, 1988) proves to be a valid method estimation in a discrete

simulation model. In the discrete model given above, the jumps will then occur in the interval

including the jump time given by Ui · n, where n is the total number of discrete steps in a

simulation path.

As mentioned in Section 2.5.4 the size of each jump is determined by a random exponential

variable with the rate parameter γ. Which is generated as

X = γe−γ·U

with U a random uniform number (Gentle, 2006). The discretization scheme of the CIR

model and the JCIR model ensure that they follow a non-central χ2-distribution consistently,

as ∆t increases. The distribution of the brute discretization in equation 3.18 produces heavier

58This method to generate random χ2 (a, b) only holds, if a > 1.
59See Section 2.5.4.
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left tail and a higher mode60 compared to the exact distribution in equation 3.19 (Glasserman,

2003).

To generate random χ2-distributed numbers (Glasserman, 2003) shows, that this is a special

case of generating random γ distributed numbers, which has density function

f (x) = fα,β (x) =
1

Γ (α) · βα
· xα−1e

x
β

with x ≥ 0, µ = α · β and σ = α · β2. Setting β = 2 and a = a
2 , where a are the degrees of

freedom in the χ2-distribution, the γ distribution equals a χ2-distribution61. This thesis uses

the GKM1 algorithm62 in (Fishman, 2013) to generate the random χ2(a) when a > 2 which is

required for the algorithm to be valid (Glasserman, 2003). When 0 < a ≤ 2 the GS* algorithm63

in (Fishman, 2013) is instead used. The GKM1 and GS* algorithm only generate γ (α, β), where

β = 1. Hence multiplying the random γ distributed number with β = 2, will produce χ2(a) as

desired (Kroese et al., 2013).

The Gaussian variables, follow the standard normal distribution with the density function

Z = φ (x) =
1√
2π
e−

x2

2

with −∞ < x < ∞. To generate random normal distributed variables, this thesis uses the

algorithm by (Marsaglia and Bray, 1964) as described by (Glasserman, 2003).

60The mode is the most frequent number in the sample. See (Keller, 2009).
61Assuming that α is an integer (Kroese et al., 2013). (Glasserman, 2003), however, shows, the γ distribution

is valid for all α > 0, also non-integers.
62Based on (Cheng and Feast, 1979).
63Based on (Ahrens and Dieter, 1974).
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Part IV

xVAs



4.1 Introducing xVAs

This section presents the theory and application of xVA charges within a simulation model

including stochastic models for the underlying risk factors. As mentioned in Setion 2.1, the

�nancial crisis of 2007 made it obvious that the Black-Scholes equation based on risk neutral

pricing and strict assumptions did not �t reality (Ruiz, 2015). Counterparty risk, which was

already known but assumed insigni�cant, had to be included (Tuohy and Dooseman, 2014).

This section evaluates the weaknesses of the BS model compared to reality and introduces

the necessary extension to xVA charges, providing a more sophisticated era of derivative pricing,

though still being under development. First subsection provides an overall discussion of the need

for xVA pricing. The following sections deal with di�erent price adjustment terms of xVA: CVA,

FVA, MVA, and KVA. It is important to notice that it is widely debated whether to include

the credit risk of the derivative issuer, DVA, as well. This thesis does not include DVA. A short

evaluation and discussion the controversy of DVA is included in Appendix E. This part of the

thesis provides theory and estimation of each xVA term, while Part VI covers management and

hedging issues for all xVA terms.

As mentioned in Section 3.3, MC simulation is the most appropriate way to estimate dif-

ferent xVA terms. The precision depends on the quality of the models for the underlying risk

factors used as input for the calculation of the di�erent xVA terms. MC simulation is more

sophisticated than di�erent approximations, if using the suitable stochastic models for the un-

derlying risk factor dynamics, as it is possible to include further complexities than when using

analytical or semi-analytical approaches (Gregory, 2015a). Thus, this thesis will focus solely

on implementation of xVA charge estimation in a simulation framework and disregard other

approaches. This part of the thesis takes the underlying risk factor model for granted because

Part II and Part V discuss these issues. However, we use the setup provided by Basel III under

assumptions described in 4.5.1 for the calculation of regulatory capital resulting in the KVA

charge.

4.1.1 Pricing Beyond the Black-Scholes Equation

The classic BS risk neutral framework has been the market standard providing a straight forward

pricing framework based on the following assumptions (Hull, 2012), (Ruiz, 2015):

- The existence of a risk free rate, which has original been assumed constant, but can

be stochastic using numerical procedures. Unlimited lending and borrowing will be

available at this risk free rate.

- Returns follow an underlying di�usion model, which has been extended to more

advanced dynamic models over time.

- No transaction costs, taxes, and the option to trade fractions of securities in contin-

uous time to create a perfect hedge strategy.

- The assumption of no-arbitrage in the market.
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Some of these assumptions are also mentioned in Section 1.3.4. We still accept some of these

assumptions, but extend them to be far more realistic. The rule of no-arbitrage does still apply

to some extent. Thus, we can accept using stochastic model dependent on the no-arbitrage

assumption for the underlying risk factors and use risk neutral valuation of the price.

However, the OIS rate is now used as a proxy for the risk free rate though it is not completely

risk free and hence challenge the no-arbitrage assumptions required in Section 2.2.3. Even though

using no-arbitrage to allow for a risk neutral valuation, arbitrage opportunities can occur from

the pricing on the OTC market. The reason being, that it is di�cult to exploit small arbitrage

opportunities due to transaction costs and limited lending possibilities. It is also not possible to

create a perfect hedge portfolio as trading cannot be in fractions of securities and in continuous

time, which creates discrepancies between the derivative and the hedge strategy (Ruiz, 2015).

Di�erent from exchange traded derivatives, OTC derivatives carry counterparty credit risk,

which is not included in the original BS model, which assumes that both parties would ful�ll

their contractual obligations (Hull and White, 2014b). (Burgard and Kjaer, 2011a) try to

adjust the BS PDE for counterparty credit risk. They also try to take into account the spread

between the risk free rate and the actual funding rate, which are the actual costs of lending cash

rather than risk free rate. Hence, relaxing some of the BS assumptions. However, Burgard and

Kjaer (2011a) still operate in a continuous time framework causing discrepancies between the

derivative contract and the hedge strategy, which in reality cannot be adjusted in continuous

time. They also disregard transactions costs. Furthermore, (Burgard and Kjaer, 2011a) shows

that the Feynman-Kac risk neutral valuation is possible when simply including the adjustment

of CVA to the traditional risk neutral value and (Hull and White, 2014b) illustrates that this

can be extended to include collateral agreements. Thus, this thesis still relies on the PDE with

extensions to its shortcomings to provide the theoretical fair price when the xVA charge is simply

added.

FVA and KVA do not follow the risk neutral adjustment. These values depend on choices of

xVA management, which in reality goes beyond each single trade, as it depends on the overall

portfolio and xVA hedging of a �nancial institution individually. This creates potential arbitrage

opportunities, which violate the risk neutral pricing. However, in practice it is di�cult to exploit

such opportunities for third parties as the OTC trades are private transactions between two

parties (Ruiz, 2015). Though FVA and KVA are controversial to the risk neutral pricing, (Ruiz,

2015), (Gregory, 2015a) and (Brigo et al., 2013)64 still include them to improve simulation model

complexity to e.g. also take the e�ect of collateral agreements into account. The simulation

allows for direct estimation of CVA and FVA independent of the hedge of these, as hedging in

reality is a huge challenge65. Thus, xVA is still an art as much as it is a science, as there is

yet no market consensus on inclusion and method for estimating KVA and FVA (Ruiz, 2015),

(Brigo et al., 2013).

This thesis includes most of these xVA terms, as they account for actual costs, which the

�nancial institutions face when dealing with derivatives. These costs depend on the funding

curve and regulatory demands on the �nancial institution, which are not identical among di�er-

64KVA is newer to academia than (Brigo et al., 2013), which does hence not cover KVA.
65See Section 6.3.
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ent �nancial institutions. Thus, a violation of the law of one price, which has been a mandatory

assumption for derivative pricing for years (Kenyon and Stamm, 2012).

With this in mind, this thesis de�nes the theoretical fair price of a derivative within the xVA

framework as the risk neutral present value of the derivative plus the present value of the xVA

charge (Ruiz, 2015) including CVA, FVA, MVA, and KVA (but excluding DVA66). Hence, to

break even, the �nancial institution should only enter swaps where they can achieve a positive

present value after including the xVA costs.

4.2 Credit Value Adjustment

Credit risk measures the risk that the counterparty of the contract does not ful�ll the binding

contract obligations due to default (Gregory, 2015a). In terms of pricing of loans, risk measures

quantify a premium to account for the particular risk of a loan. To estimate such, risk statistical

measures as the Credit V aR have been popular. Credit V aR assumes a given �xed distribution

for the return from the loan with a volatility of this value caused by potential change in credit

rating and possible default. The Credit V aR given the assumed distribution is the maximum

value that can be lost with a certain probability and time horizon (Choudhry et al., 2012). The

time horizon can e.g. be set equal to the maturity of an OTC derivative.

However, Credit V aR only captures the current default intensity of the counterparty, but

this might change through the lifetime of the derivative contract. It also does not take into

account the directional way risk coming from the correlation between risk factors (e.g. interest

rates and default intensity). Due to this correlation, the risk of counterparty default increase

when the value of a swap increases from falling interest rates. This drives up the likelihood that

that potential positive value will be lost67 (Blundell-Wignall and Atkinson, 2010). As evaluated

in Section 1.2 losses due to actual default of the counterparty only accounted for one-third of

the OTC derivative losses during the �nancial crisis, while the latter came from higher credit

volatility due to increasing risk of default. Furthermore, OTC derivatives like swap contracts

have opposing cash �ows, which will mean that the cash �ows paid partially o�sets some of

the potential losses on cash �ows received (Gregory, 2015a). For a �xed-�oating IRS contract,

these cash �ows depend on the change of the �oating interest rate. Again, the directional way

correlation between interest rates and default intensity must be included (Brigo et al., 2013).

The CVA measure addresses the issues mentioned above. CVA is a price adjustment to the

risk neutral price of the derivative. Hence, it is based upon expectations under the Q-Martingale

estimated from the real world underlying risk factors (Brigo et al., 2013). In other words,

CVA is the present value di�erence between assuming a risk free counterparty and introducing

counterparty risk (Brigo et al., 2013). This section presents CVA. First subsection presents

the necessary exposure measures; �rst in an uncollateralized case and then extended to include

collateral agreements. Next subsection shows how to estimate CVA in the simulation model

based on exposure and default metrics. This thesis only considers a unilateral case of CVA

66See Appendix E.
67See Section 2.2.4 for discussion of correlation and directional way risk.
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adjusting for counterparty risk, but ignores subtracting own credit risk (DVA), assuming the

issuer default free relative to their counterparty68.

4.2.1 Credit Exposure

Credit risk will depend on three components changing over the time horizon (Ruiz, 2015):

- Probability of default

- Loss given default69

- Exposure of the derivative contract

Current exposure equals the current market value of the derivative contract at any point in time.

Assuming a unilateral case, this equals 0, if the market value is negative (Gregory, 2015a)70.

The expected exposure is then the estimation of the current exposure at a future point in time

(Brigo et al., 2013):

EEt = [Vt, 0]
+

(4.20)

This market value is only realizable as long as the counterparty has not yet defaulted.

Thus, at each point in time the counterparty risk will consist of the current exposure times the

probability of default and LGD.

Uncollateralized Exposure

Using equation 2.2 from Section 2.2.3 yields the price of an IRS contract in a multi-curve

framework. (Munk, 2011) shows that forward interest rates Fx, of the �oating rate given the

CIR model dynamics is

Fx (t, τ, r) = rt + κ [θ − r] · b (τ)− 1

2
β2 · rt · b (τ)

Where rt is the spot rate at time t, b (τ) is similar to equation 2.14 in Section 2.5.3 and τ =

Tk+1 − Tk with Tk being the time the �oating rate was last �xed. The parameters are equal

to those calibrated for the CIR model. Extraction of the forward and discount curves follows

under the QT -Martingale measure evaluated in Section 1.3.4.

Applying the multi-curve approach, by using as input:

- calibrated OIS rate parameters for the discount curve

- relevant calibrated tenor speci�c rate parameters for the forward curve

to price the swap contract at any point in time, it is possible to calculate the expected exposure

at all points in time. Hence, we can derive the exposure structure from all positive values during

the lifetime of the contract discretely. This will in practice only be a discrete approximation, as

68See Appendix E for a short description of DVA and a discussion of the controversy of including DVA.
69LGD is assumed constant in this thesis but as mentioned in Section 2.5.4 indirectly incorporated in the PD

dynamics.
70Negative values would be used in the bivariate case with inclusion of own default risk.
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the exposure changes in continuous time. However, as in many other cases this value converges

towards the true value, as the number of steps increase (Gregory, 2015a).

For the purpose of pricing CCS contracts (Brigo et al., 2013) provides a pricing function for

respectively a �xed-�xed CCS contracts paying the foreign currency leg ignoring the currency

basis for the reason provided in Section 2.2.5

V =

H · m∑
i=j

τ ·Dd (Tj , Ti) · r −Hf ·
m∑
i=j

τ · Si ·Dd (Tj , Ti) · rf
+

(
H − S (Tj , Tm) ·Hf

)
·Dd (Tj , Tm)

where r and rf are the �xed rates and H and Hf are the notional value of respectively the

domestic and foreign currency leg of the swap. Si is the spot exchange rate, which for simpli-

�cations this in the thesis follows the deterministic forward rates at initiation of the contract.

Using these deterministic spot FX rate and the stochastic interest to calculate the forward FX

rates S (Tj , Tm) following equation 2.5 in Section 2.2.5, the interest rate stochasticity in both

currencies provide some variation in the FX forward rates at di�erent points in time.

The exposure structure of an IRS contracts is not continuous increasing over time, but peaks

around 1/3 of the total maturity of the contract71. After this point, exposure start to decrease.

This exposure pro�le arises from the exchange of cash �ows during the life of the contract

amortizing the potential value over time, which at a certain point prevails against the higher

uncertainty of exposures further in the future. The total exposure will be higher with longer

time to maturity and can be asymmetric, if the exchange of cash �ows between the two parties

do not occur with the same frequency. The shape of the term structure and the leg received will

decide the direction of this asymmetry (Gregory, 2015a).

As the exposure at any point in time is EEt = [Vt, 0]
+
, this has an option-like payo�.

(Sorensen and Bollier, 1994) indeed shows that the unilateral exposure equals the value of a

swaption with strike 0 and maturity at time t. This simpli�cation is precise in the uncollater-

alized case, but would need an approximation for collateralization rather than the more precise

modelling with MC simulation (Gregory, 2015a). The semi-analytical approach also lacks other

�exibilities, as the need to incorporate changes future market practices and regulations (Gregory,

2015a).

Collateralized Exposure

The exposure pro�le described so far does not consider collateralization. Collateral is an asset

passed to the other party without changing ownership, when the contract between the two

parties has a positive value for the party receiving the collateral. Holding collateral to cover

exposure will reduce the loss72 of the counterparty defaulting and hence mitigate the credit risk,

as subtracting the value of the collateral from the value of the derivative contract minimizes the

exposure or reset it to 0 (Gregory, 2015a). Posting collateral based on the exposure is to mark-

71Under the simple assumption of Vt ∼ N
(
0, β
√
tτ
)
and a strictly positive upward sloping yield curve (Gregory,

2015d).
72There are few extreme cases for CDS contracts, where collateralization might increase exposure due to strong

dependency (Brigo et al., 2013).
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to-market, meaning that the collateral is supposed to equal the exposure. Collateral posted in

this way is the variation margin (Gregory, 2015a). Some gap risk might exist from remaining

exposure existing with a collateral agreement. This risk might occur due to depreciation of the

value of the collateral assets, new exposure occurring since last collateral post, or from the gap

between exposure and thresholds on collateral payments (Ruiz, 2015). For simpli�cation, this

thesis only allows collateralization to be with cash payments in domestic currency. This reduce

the gap risk to concern choice of margin period for collateral posting, thresholds/initial margins,

and transfer sizes.

The Credit Support Annex OTC derivative trades are not enforced to include a collat-

eral agreement, but since the �nancial crisis, doing so is quite typical (Gregory, 2015a). Such

agreements usually follow a Credit Support Annex (CSA), which is a part of the ISDA Master

Agreement for best practices for OTC transactions (Brigo et al., 2013). A CSA agreement is a

legal contract, which contains terms for all relevant issues in connection with collateralization

structure and determination of key parameters in the collateral agreement (Ruiz, 2015). Most

of these features allow for di�erent optionalities (Brigo et al., 2013). The weakness of the CSA

agreement is, that agreement terms are made upon upfront and can only be changed if both

parties agree to do so. Thus, making the CSA vulnerable to changing market conditions (Gre-

gory, 2015a). (ISDA, 2014) shows, that in 2013, 90% of all non-cleared OTC transactions were

subject to a collateral agreement. 87% of these collateral agreements were CSA agreements.

The structure of the CSA agreement resolves issues as eligible collateral, collateral legal

ownership, interests on collateral, rehypothecation, and whether the collateral agreement is

unilateral or bilateral (Ruiz, 2015):

- As mentioned above this thesis only consider cash payments as eligible collateral for

simplicity, which eliminates issues regarding the choice of collateral to deliver, change

in collateral value and the potential need of haircuts on risky collateral. These issues

would make collateral modelling even more complex.

- Issues of legal ownership in�uence the right to coupon and dividend payments on

collateral, which has an impact on the collateral value. These issues are not relevant

as this thesis assumes only domestic cash payments.

- Posting collateral will require funding or inclusion of the opportunity costs of the

collateral cash. A compensation interest rate is typically paid; often the OIS rate

(Ruiz, 2015). However, as Section 2.1 explains, the funding rate of �nancial institu-

tions is individual and signi�cant above the OIS rate in most cases. The mismatch

between those two lead to funding costs, which are evaluated in Section 4.3.1.

- ISDA de�nes rehypothecation as the right to reuse collateral held (Ruiz, 2015). This

allows the collateral receiver to sell or repo out assets or to invest cash received to

earn interest, which can �nance the interest payment to the collateral payer. Further-

more, rehypothecation allows collateral received to be posted as collateral elsewhere.

However, this also means that collateral posted at the counterparty might be at risk
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if the counterparty defaults. Hence, collateral that can be rehypothecated will less

e�ectively reduce counterparty risk from the view of the counterparty (Gregory,

2015a). The �ne balance between funding costs and counterparty risk determines

whether rehypothecation is attractive. This thesis allows for rehypothecation of the

variation margin.

- Lastly, it must be agreed whether the CSA agreement is unilateral or bilateral. In a

bilateral agreement both parties post collateral to cover counterparty exposure, while

in a unilateral case one party is willing to bear the entire default risk of the counter-

party. It must be said, that if a party does not post collateral, this will increase the

CVA charge on that party. However, as mentioned in Section 1.3.5 in contracts with

minor corporate counterparties, these might accept the �nancial institution as being

risk free relative to themselves, justifying a unilateral CSA agreement. However,

(Ruiz, 2015) argues that as even minor corporates have increased their management

of credit risk, they will not accept the above assumption. This thesis allows for both

unilateral and bilateral collateral agreements.

Besides the structural decisions in the CSA agreement, it also de�nes numerical values for

margining frequency, thresholds and initial margins (Ruiz, 2015):

- As mentioned earlier, collateral posting frequency cannot be in continuous time.

Furthermore, in reality posting a high margin frequency will result in increasing

transaction costs as each posting has operational costs. (RMA and Deloitte, 2015)

reports that collateral management for most �nancial institutions is still a manual

task handled by the back o�ce. Hence, it is necessary to �nd an optimum between

the e�ect of posting balanced against the operational costs of collateral management

(Ruiz, 2015). It is possible to set a �xed margin period, which is the time frequency

between each mark-to-market of exposure. The larger margin period, the larger

margin period of risk, which allows for change in collateral value and exposure (Gre-

gory, 2015a). Another parameter to alter costs is the threshold exposure acceptable

before making the �rst margin call for post of collateral. Also setting a minimum

transfer amount (MTA) and agree on rounding of the collateral calculations mini-

mizes the costs of transactions due to less frequent margining and fewer disputes73

about market value at the expense of higher gap risk.

- In case of a counterparty default the variation margin might not cover all costs of

terminating the contract. Besides the e�ect of margin period and threshold, close-

out costs might occur. These represent the costs replacing the contract with another

counterparty, e.g. to retain a hedge of market risk (Brigo et al., 2013). Replacement

costs are likely above the current market value of the contract due to potential change

in own credit risk or to transaction costs74. Besides there will be a period of risk

73Rounding agreements are used to minimize disputes. Longer margin period increases the risk of disputes, as
this increase the chance of di�erent value estimates (Gregory, 2015a).

74Transaction costs might e.g. come from potentially having to accept a less favorable CSA agreement with
the new counterparty.
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up to and after default before close-out is completed. During this margin period of

risk, no additional collateral is posted, market prices of a replacement contract might

increase, and the value of collateral might depreciate (Gregory, 2015a). Additional

collateral might be required upfront to account for this additional risk not covered

by the variation margin (Gregory, 2015a). This is the initial margin, which will be

relevant for the MVA in Section 4.4.

The size of the di�erent parameters might be linked to the credit quality of the counterparty, so

that lower rated counterparties will be required more frequent posts and have lower minimum

thresholds and MTAs. This might also in�uence the requirement of an initial margin (Gregory,

2015a). The �exibility of choosing di�erent structure and setting di�erent key parameters for

the CSA agreement clearly has great impact on CVA. However, this must be put up against

the funding costs (FVA and MVA), which follow. (RMA and Deloitte, 2015) shows that this

�exibility is indeed used in practice to di�er between counterparties, as 80% of the �nancial

institutions surveyed only used the same standard CSA agreement with less than 10% of their

collateralized counterparties.

Modelling Collateral Suggestions of simple analytical approximations to include the e�ect

of collateral on the exposure as in (Gregory, 2015b) exist. However, these only provide ap-

proximate measures and overlook the e�ect of di�erent terms within a CSA agreement. Thus,

simulating the collateralization process provides the �exibility to include more features. How-

ever, this might give some computational challenges if setting a very short margin period, as

this will a�ect the amount of discrete steps in the simulation. The simple collateral calculation

algorithm has the following steps at each discrete point in time (Ruiz, 2015)75:

1. First, collateral shall only be posted, if Vi > Thr, which means that the value is above the

threshold margin.

2. Collateral held since last margining, Cbeforei , is subtracted from the current value of the

swap contract Vi − Cbeforei = ∆Ci

3. If ∆Ci > MTA, which is the minimum transfer amount then Cafteri = Cbeforei +round (∆Ci)

else Cafteri = Cbeforei .

Threshold and initial margin are both two sides of the same coin as an initial margin can be

seen as a negative threshold (Gregory, 2015a). Merging these two e�ects into the initial margin,

IM76, the collateralized exposure can be calculated subtracting the collateral and initial margin

hold before marking-to-market at each point in time (Gregory, 2015a)

EEi =
[
Vi − Cbeforei − IM

]+
(4.21)

Not being able to post collateral in continuous time, the exposure in equation 4.21 measures the

gap risk. Hence, in this discrete model ∆V from i− 1 to i yields the gap risk, which equals the

75Assuming collateral can only be cash in domestic currency, the algorithm must not correct for changed value
of collateral or changes in the exchange rates.

76Negative if a threshold.
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market exposure above if positive. This is under the assumption that ∆t = Marging Period

(Ruiz, 2015). This thesis assumes quarterly margining for all maturities.

4.2.2 Estimating CVA

CVA expectations taken are under the Q-Martingale, as the CVA is a pricing adjustment to a

derivative. (Brigo et al., 2013) uses the indicator function 1{t<u<T}, to indicate that default

occurs between time t and T . If default happens at time u < T then the value Vu (if positive)

will be the value lost at default, when multiplying with LGD (Tuohy and Dooseman, 2014),

Discounting this loss to present value will yield the simple formula for the uncollateralized

unilateral CVA (Brigo et al., 2013)

CV At = Et

[
LGD · 1{t<u<T} ·D (t, u) · (Vu)

+
]

Replacing the value with the expected exposure EEt, we can use either equation 4.20 or 4.21

depending whether the derivative contract is uncollateralized or collateralized

CV At = Et
[
LGD · 1{t<u<T} ·D (t, u) · EEt

]
(4.22)

The CV At can be seen as a call option, as it only takes other values than 0 in case of default.

The premium of such an option is the subtracted value of the default free IRS contract compared

to the contract with default risk. The e�ect of adding default risk will require an interest rate

model to price the value at default. Hence, pricing an IRS contract with CVA is not model

independent, as is the case for the IRS price is in itself (Brigo et al., 2013). A discrete version

of equation 4.22 is a good approximation with a decent number of steps, as postponing the time

of default to the next Ti after default will then have a fading e�ect on the price (Brigo et al.,

2013)

CV At = LGD·
∑m

i=1
τ · Et

[
1{Ti−1<u<Ti} ·D (t, Ti) · EEi

]
(4.23)

with τ = Ti − Ti−1. It is possible to factor the indicator function 1{Ti−1<u<Ti}, inside the

summation into the probability of default, λi, at each point in time under the assumption,

that exposure and default intensity is uncorrelated (Brigo et al., 2013). This would mean that

default intensity would be model independent. However, as already shown in Section 2.4, there

is a signi�cant correlation between default intensity and the interest rates, which determine the

value of default free the swap contract. This is the argument in favor of including a model for

default intensity and model correlation with the interest rate model (Gregory, 2015a). Then

equation 4.23 can be rewritten as (Gregory, 2015a), but including discounting

CV At = LGD·
∑m

i=1
τ ·D (t, Ti) · EEi · λi (4.24)

assuming a �xed LGD as discussed in Section 2.5.4.

(Gregory, 2015a) further suggest that instead of using the EEi to account for the exposure

from step i− 1 to i, one should instead use the average of EEi and EEi−1, which gives a more
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precise discrete approximation of CVA. Hence, this thesis uses the average exposure at each

step, EE∗i instead in equation 4.24. The discount factors used are the forward rates for Ti set at

t (Gregory, 2015a). This means that these are determined under the QT -Martingale evaluated

in Section 1.3.4.

(Gregory, 2015c) provides a simple analytical approximation of CVA, which equals the CDS

spread times the average expected exposure. The average exposure is calculated from a chain

of swaption prices of di�erent maturities approximating the exposure pro�le as described in

Section 4.2.1. However, on top the shortcoming mentioned in Section 4.2.1, CDS prices are very

illiquid and only available for very few counterparties. Hence, the approximation would not be

very useful in practice.

4.3 Funding Value Adjustment

Funding of a derivative contract has always been necessary. Cash �ows of a contract requires

funding, collateral posted requires funding, and hedge of short position calls for funding (Brigo

et al., 2013). For derivative contracts like swaps, cash payments �ow from both counterparties,

collateral agreements can be bilateral, and long positions requires a short hedge. These e�ects

make it likely that there will also be both cash in�ows and out�ows. Cash out�ows require

funding while cash in�ows reduce funding requirements or can be lend out (Ruiz, 2015).

Before the �nancial crisis of 2008, the market considered �nancial institutions risk free.

Hence, there was no signi�cant di�erence between the borrowing and lending rate in the market,

both close to the interbank rate77 (Gregory, 2015a). In that case, unlimited funding and lending

at the risk free rate is possible (Hull, 2012). Hence, the mismatch of cash �ows had no in�uence

on the value, as this could be hedged away perfectly at no additional costs.

As described in Section 2.1, it is now very clear that �nancial institutions are not risk free.

Funding rates for �nancial institutions have become individual with respect to their actual credit

quality, while lending out excess liquidity at lowest risk78 would earn far less. Hence, funding

has become an issue increasing the costs of derivative contracts. Management of this issue

cannot just be passed on to the treasury department of the �nancial institution. It must be

included in the price of the derivatives, if a contract should be pro�table (Brigo et al., 2013).

As funding rates are di�erent for each �nancial institution, the price of an identical contract

will be di�erent. Thus, violating the law of one price ruling the BS framework (Kenyon and

Stamm, 2012). Besides, there is a di�erence between unsecured funding and repo funding secured

with collateral (Piterbarg, 2010). When the counterparty post collateral, they will usually

be entitled to a return on such collateral often equal to the OIS rate plus/minus a spread.

However, when the accrued interests are lower than the discount rate79, posting collateral is

costly for the counterparty (Gregory, 2015a). Funding issues are di�erent for collateralized and

uncollateralized derivative contracts, which apart from funding of collateral also accounts for

funding of any gap risk. Adjusting for these issues have signi�cant e�ect on the price (Piterbarg,

77Interbank rates like the LIBOR rate was for the same reason seen as the risk free rate.
78The OIS rate.
79The OIS rate is used.
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2010).

There is still much debate about, whether to charge FVA on OTC derivatives. Critics as

(Hull and White, 2012) oppose the inclusion of FVA. They argue that the reason CVA and DVA

should be included is that they include the economic value of default issues of both parties in the

contract. They add that a part of the FVA captures the risk that the �nancial institution might

default on its other liabilities in case of default, which should increase their funding costs. This

change should account for the same as the FVA, which means including FVA would be double

counting, when valuing liabilities under the Q-Martingale (Hull and White, 2012). (Ruiz, 2015)

instead argues that for the DVA and FVA to be the same, the CDS spread when a counterparty

hedge against our default risk should be equal to our bond yield spread over the risk free rate,

which should cover the same default risk. However, due to the lack of liquidity in bond market,

these yields are higher (Gregory, 2015a), which requires at least a liquidity adjustment when

including DVA (Ruiz, 2015). This part of DVA (Hull and White, 2014a) �nds justi�able. For

the remaining part of FVA, (Hull and White, 2012) sees the funding costs and derivative desk

as two di�erent things. Allocating the overall funding costs to each single derivative would

be the same as foregoing investments with positive net present value, because inclusion of the

funding issues, which should be separated (Berk and DeMarzo, 2013). (Ruiz, 2015) instead

argues that the funding can be seen as the costs of selling a derivative, equivalent to material

costs of manufacturing a physical product. Hence, if funding costs are not included, derivatives

might be sold with a negative value incurred for the �nancial institution.

(Burgard and Kjaer, 2011b) argue, that it is possible to eliminate funding costs in two

di�erent ways, which allows funding costs to be ignored:

1. If the value of the derivative is positive and there is a gap between the exposure and collat-

eral this di�erence requires funding. Assuming that this derivative is usable as collateral

somewhere else or the value can be repoed due to its positive value, this will provide the

necessary funding, just as assets as stocks are self-�nancing.

2. The di�erence between the funding liability and the derivative value at default can be

balanced away by actively trading own bonds of di�erent seniority, so that there should

not be charged higher funding costs.

(Gregory, 2015a) strongly rejects these two methods. Assuming that positive derivative values

is usable as collateral for funding is far from reality. (Burgard and Kjaer, 2011b) admits this

including the fact, that even if allowed, the collateral value of the derivative would be subject

to substantial haircuts creating a gap in collateralization. (Burgard and Kjaer, 2011b) argues,

that taking a portfolio perspective will partially solve this problem. The issue of free trade of

own bonds seems very naïve due to lack of liquidity in the bond market in general.

DVA is not included in this thesis. Hence, it seems even more relevant to include FVA

to account for the costs from the risk of own default. This also seems to be the industry

approach towards FVA, although there is not yet a clear market standard on the method of

doing so (Gregory, 2015a). 50% of questioned banks by (Solum, 2014) already include FVA

while another 40% have planned to implement FVA.
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The FVA is covering di�erent types of funding adjustments, which also might depend on

collateralization of the derivative contract. (Ruiz, 2015) groups this into 3 sub categories:

CollVA, HVA and LVA. First subsection evaluates these. Second subsection provides suggestions

to estimate CollVA and HVA with MC simulation building and expanding on the exposure

calculations evaluated in Section 4.2.1. Note that the mismatch between cash and collateral

comes from both additional cash required or received. Hence, the FVA has both a negative

funding adjustment called the Funding Cost Adjustment (FCA) and Funding Bene�t Adjustment

(FBA). The sum of these makes the FVA and can thus be both a negative or positive price

adjustment to the derivative contract. Bene�tting from collateral funding wise is only possible

assuming rehypothecation (Gregory, 2015a).

4.3.1 Sources of Funding Risk

The di�erent sources of FVA has been divided into Collateral Value Adjustment (CollVA),

Hedging Value Adjustment (HVA), and Liquidity Value Adjustment (LVA). The background for

each adjustment term follows below.

Collateral Value Adjustment

If an OTC trade is made with a corporate counterparty, the �nancial institution will likely want

to hedge away the market risk of this contract with a standardized contract with another �nancial

intermediary as shown in Appendix A. However, swaps trades nominated in EUR and USD with

�nancial counterparties has clearing obligations with a central clearing counterparty (CCP). This

means that there will be a �xed collateral agreement including initial margins80 required from

the CCP (ESMA, 2015). Hence, any discrepancy between the collateral agreements with the

counterparty and the agreement with the CCP will incur funding costs. If no hedge with a CCP

is made all collateral demands with the counterparty must be funded. If rehypothecation is not

allowed this is also the case, but in addition, collateral held does also not provide any funding

bene�t (Ruiz, 2015).

Allowing collateral in form of other assets than cash and in di�erent currencies might as well

result in mismatches creating funding issues (Brigo et al., 2013). However, this thesis assumes

only cash settlement in domestic currency.

Even if identical collateral posting happens simultaneously from the corporate counterparty

to the CCP, the collateral accrual rates paid by the �nancial institution might be higher, than

what it accrues on their collateral posted at the CCP (Gregory, 2015a).

Modelling the present value of the mismatches in collateral and collateral accrual rates

constitutes the CollVA. With the above in mind, market hedging with an o�setting contract at

the CCP in this thesis includes bilateral collateral agreements and include initial margin posted

to the CCP.

80Initial margin issues are evaluated in Section 4.4.
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Hedging Value Adjustment

A receiver IRS contract, assuming an upward sloping yield curve will mean that cash out�ows

are smaller than cash in�ows at the beginning of the contract resulting in net cash out�ow

needing funding. If hedging this receiver IRS with a payer IRS with longer tenor on the �oating

leg, this will as well create some cash out�ow mismatches requiring funding (Ruiz, 2015). With

the BS model assuming unlimited borrowing and lending at the risk free rate, hedging a trade

or a cash �ow with a replicating portfolio is possible at the cost of the risk free rate. Due to the

no-arbitrage condition, this will also be the payo� of the hedged position. Hence, no funding

costs (Hull, 2012).

In reality, Section 2.1 shows, how the market liquidity died out and funding rates clearly rose

above the risk free rate. Hence, the costs of funding and lending are di�erent from one another,

as described in Section 4.3. It is clear, that this di�erence will have an e�ect on the mismatch in

cash �ows described above, which gives an additional funding cost or bene�t depending on the

cash �ows (Ruiz, 2015). HVA covers the net present value of funding costs and funding bene�ts

of cash �ow mismatches through the lifetime of the derivative contract.

Liquidity Value Adjustment

The introduction to FVA already mentioned that the credit risk premium of a �rm di�ers

when looking at the bond yield premium81 or the credit spread paid on CDS protection on

the company. As the risk premium of default must be the same in both cases, the di�erence

observed comes from the lack of liquidity in the bond market increasing this spread and therefore

also funding costs (Gregory, 2015a). This is an extension to the CVA and the DVA (Hull and

White, 2014a). Including risk of own default, the spread between bond yield and CDS spread

provides a discount to DVA (Ruiz, 2015), as the �nancial institution fund itself with the funding

spread, which is higher than the CDS spread on the �nancial institution, hence leading to

higher funding costs. Funding does not solely come from issuance of bonds, but can include

many di�erent types of short-term borrowings, which might potentially lower funding costs.

Hence, the internal funding curve of the �nancial institution might be lower than the bond

yield curve. Still, the liquidity spread seems apparent. From the CVA point, it is far more

di�cult to adjust for the counterparty funding curve, which is unknown, even if knowing or

estimating the counterparty funding curve by a market proxy (Gregory, 2015a). (Morini and

Prampolini, 2011) illustrates di�erent liquidity e�ects with pure positive or negative exposure

pro�les and concludes that an extension for derivative contracts like swaps where exposure can

change between positive and negative is yet to be developed.

Disregarding DVA, the LVA on this side of the adjustment is not relevant to make in this

thesis. Estimating the CVA side LVA is extremely complex. First, choosing a funding curve

proxy for the counterparty might not be very precise. Second, adding the liquidity e�ect of

swap contracts is yet unsolved (Morini and Prampolini, 2011). Hence, this thesis also disregards

the liquidity adjustment for the counterparty side. In most cases, LVA has a negligible e�ect

on the derivative value in practice (Ruiz, 2015), and ignoring LVA for both parties might even

81Premium on top of the risk free rate accounting for the default risk of the company.
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out much of the value adjustment. (Ruiz, 2015) furthermore argues that including CollVA and

HVA, the e�ect of DVA and LVA will only re�ect future liabilities, and charging such up front

would be the same as borrowing the present value of expected future liabilities and hold the

cash. In practice, liability funding happens ad-hoc as they occur rather than upfront, when

entering the deal, as doing otherwise would result in huge cash holdings.

4.3.2 Estimating FVA

The three sources of funding risk adjustment described in Section 4.3.1 can simply be estimated

independently in the simulation and added together to get the total FVA (Ruiz, 2015)

FV A = CollV A+HV A+ LV A

where this thesis ignores LVA82. The funding adjustments depend on the expected future value,

which is simply the sum of the negative expected exposure and the positive expected exposure,

which are used to estimate respectively CVA in Section 4.2.2 and DVA in Appendix E.1 (Gregory,

2015a). EEt is an approximate base to estimate the FCA, while NEEt is the same to estimate

the FBA. This, however, is the uncollateralized case, where FV A = HV A. Making a general and

more precise calculation of FVA account for the fact that collateralized trades, require estimation

of HVA and CollVA based on the hedging cash and collateral surplus/de�cit depending on the

exposure (Ruiz, 2015). These estimations follow below.

Estimating CollVA

The CollVA depends on the expected collateral exposure after margining in each period

EECollateralt = Crecievedi − Cpaidi

Assuming bilateral collateral agreements, if the market value of the trade with the counterparty

is positive (negative), then Crecievedi is collateral posted by the corporate counterparty (CCP

hedge), while Cpaidi is the collateral to be posted to the CCP hedge (corporate counterparty)83.

In a unilateral collateral agreement with the counterparty collateral is only received. We can

de�ne

PEECollateralt =
[
Crecievedi − Cpaidi

]+
as the maximum of 0 and the collateral gap to fund, while

NEECollateralt =
[
Crecievedi − Cpaidi

]−
82See Section 4.3.1.
83Depending on the precision of the hedge there might be cases, where both swap contracts are either positive

or negative resulting in collateral exclusively paid or received.

49



is the minimum of 0 and the excess collateral held. (Ruiz, 2015) separates the CollVA into

Collateral Cost Adjustment (CollCA) and Collateral Bene�t Adjustment (CollBA),

CollV A = CollCA+ CollBA

The CollCA (CollBA) will depend on the positive (negative) expected collateral exposure

CollCA =

m∑
i=1

τ · PEECollaterali ·D (t, Ti+1) · sborrowi

CollBA =

m∑
i=1

τ ·NEECollaterali ·D (t, Ti+1) · slendi

with sborrowi and slendi being the borrowing and lending rate (Ruiz, 2015) and τ = Ti − Ti−1.

These e�ects, account for a collateral de�cit to be funded at Ti+1 at sborrowi , while a collateral

surplus accrues slendi received at Ti+1.

As mentioned in Section 4.3.1, collateral agreements often obligate the holder of collateral to

accrue interest to counterparty on their posted collateral (Gregory, 2015a). If this rate provided

by the hedging position is di�erent from the agreement with the counterparty, then this creates

an additional cost to CollVA, which we refer to as Accrued Interests,

AIi = τ ·−1{Vi>0}

(
−CCCPi−1 · r

AI,CCP
i−1 + CCi−1 · r

AI, c
i−1

)
+τ ·1{Vi−1<0}

(
CCCPi−1 · r

AI,CCP
i−1 − CCi−1 · r

AI, c
i−1

)
At time Ti−1, if the value and thus exposure is positive, then the �nancial institution holds

collateral from the corporate counterparty CC , on which it pays an interest rate of rAI, c, while

posting CCCP at the CCP receiving a rate of rAI,CCP and vice versa for negative exposure.

Furthermore, all positive AIi gap requires funding

AI∗i = AIi + 1{AIi>0} ·AIi · Sborrowi

while negative AIi gap instead earn the lending rate. Hence,

CollV A = CollCA+ CollBA+AI

with

AI =

m∑
i=1

τ ·AI∗i ·D (t, Ti)

This only allows for di�erent accruing interest rates agreements with respectively counter-

party and CCP, but not for di�erent accruing rates between the counterparty and the �nancial

institution.

Estimating HVA

HVA depends on the expected cash �ow exposure in each period before margining. If netting

exposure of the swap contract with the counterparty and the hedge with a CCP is positive, the
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cash �ow exposure is also positive and requires funding84. The total cash �ow exposure of the

trade and hedge at each point in time shows the mismatch requiring funding or providing excess

cash. (Ruiz, 2015) estimates HVA as

HV A = HCA+HBA

with HCA the funding costs of mismatch and HBA the funding bene�ts. (Gregory, 2015a)

provides the following discrete approximations

HCA =

m∑
i=1

τ · PEEHedget ·D (t, Ti+1) · sborrowi

HBA =

m∑
i=1

τ ·NEEHedgei ·D (t, Ti+1) · slendi

PEEHedgei =
[
EEci + EECCPi

]+
NEEHedgei =

[
EEci + EECCPi

]−
meaning, that if at time i the uncollateralized net exposure of the trade and hedge as described

above is positive, this contributes to the PEEHedgei while contributing to the NEEHedgei if

negative.

4.4 Margin Value Adjustment

As argued in Section 4.2.1, variation margin with collateral still leaves gap risk due to non-

perfect collateralization (margin periods, MTA, close-outs, etc.). Hence, additional collateral to

cover the gap risk might be required upfront. This collateral is the initial margin. However,

initial margin only reduces exposure if segregated, meaning no rehypothecation and that the

party posting initial margin has legal priority to reclaim it from the counterparty in case of coun-

terparty default (Gregory, 2015a). The exposure calculation in a bilateral collateral agreement

with non-segregated initial margins posted to the counterparty below demonstrate the need to

segregate the initial margin (Gregory, 2015a)

EEt =
[
Vi − Cheldi + IMposted

non−segregated

]+
If the �nancial institution has a derivative contract with positive value, but also have initial

margin posted at the counterparty without segregation, then this just reduce the net collateral

held against the positive market value and increases the exposure (similar to a threshold). If

both parties post initial margin, which is not segregated, this would have no e�ect on exposure,

as IMposted
non−segregated − IMrecieved

non−segregated = 0. Trades with a CCP would always require initial

margin to be posted (Ruiz, 2015). For trades with corporate counterparties unilateral or bilateral

post of initial margin if any can be negotiated, which might depend on the perceived CVA of

84The case of course vice versa for a negative net exposure.
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the two parties. Initial margins can also be contingent to credit ratings (Gregory, 2015a).

Initial margin might be a �xed amount set in the contract as a percentage of the notional

value. However, it might also depend on a dynamic V aR estimation, so in order to reduce the

expected exposure to a certain level of risk for a rolling period (Gregory, 2015a). (Kenyon and

Green, 2014), provides methods to calculate V aR within a simulation without double simula-

tions85. For simpli�cations, this thesis uses Potential Future Exposure, PFE, as the approxi-

mation for the V aR. PFE is a con�dence level for expected exposure for a certain period into

the future given the distribution of future exposure (Brigo et al., 2013). Assuming that the

PFE follows a normal distribution as (Ruiz, 2015),

PFEt = φ−1 (1− α)

√
MarginPeriod

Trading Days
· σ

where φ−1 (1− α) is the inverse standard normal distribution with α con�dence level, the

Margin Period is the number of days between each adjustment of the initial margin, Trading

Days86 is the number of days a year with active trading, and σ is the volatility of the swap

exposure. This thesis de�nes the initial margin as the PFE of the current exposure, so that

it varies over time, even when assuming a �xed volatility of the swap exposure. If using time-

inhomogeneous risk factor models, volatility could vary based on earlier periods in the simulation

and PFE could be set with respect to the notional value of the contract, improving the e�-

ciency of initial margin. (BCBS, 2015) recommends that 10-day margin period of risk be used

in bilateral agreements, with a distribution and volatility calibrated to historical data including

a �nancial stress period. To account for the lack of a varying volatility, this thesis set the mar-

gin period of risk equal to the margin period a quarter and set α = 1%. CCPs normally use

dynamic initial margins with 5-day time horizon (Gregory, 2015a). Hence, the dynamic initial

margin provided in this section is to be posted at the CCP in the estimation model. This should

also account for the marginal contribution to the CCP default fund, which is not accounted for

separately (Gregory, 2015a). The CCP on the contrary does not need to post any initial margin

themselves, as they have very low counterparty risk.

Posting initial margin when segregated requires funding of the entire margin. Thus, it should

be included in the pricing of a derivative contract (Gregory, 2015a). The present value of these

costs form the Margin Value Adjustment (MVA).

4.4.1 Estimating MVA

(Gregory, 2015a) provides the discrete approximation for MVA

MVA =
∑m

i=1
τ · E IMi ·D (t, Ti) ·

(
sborrowi−1 − rIAi−1

)
· (1− λi−1) (4.25)

where sborrowi is the funding rate, rIA is the interest earned or paid on initial margin, λi−1 the

85Simulations inside the simulations.
86Trading days per year is �xed at 260 as described in Section 1.3.4.
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probability of counterparty default87 and

E IMi = PFEi (Ti, Ti+MarginPeriod)

if the initial margin is set dynamical and

E IMi = IM0

if the initial margin is �xed at initiation of the derivative contract.

The formulas provided above only cover the costs of initial margin posted at the corporate

counterparty and the CCP. However, if the counterparty post initial margin to the �nancial

institution as well, then accrued interests on these require funding as well, because rehypothe-

cation is not possible. Hence, �nancing interests to be paid on the initial margin posted by the

counterparty cannot be generated from the collateral itself. If the accrued rate of the CCP and

the corporate counterparty is di�erent, then their respective contribution with their respective

interest rates must be separately calculated using equation 4.25.

4.5 Capital Value Adjustment

Basel provides an overall regulatory framework of reporting and determining capital require-

ments for �nancial institutions. The goal is to ensure, that �nancial institutions have reasonable

estimates of their risks and a su�cient level of capital to cover unexpected losses. Regulatory

capital requirements force �nancial institutions to �nance loans or derivative contracts partially

with equity capital. The main risks of �nancial institutions relate to credit risk, market risk, liq-

uidity risk, operational risk and geographical risk (Choudhry et al., 2012). For OTC derivatives,

required capital mainly focus on the market risk and credit risk. To maximize the shareholder

value, the return on the required regulatory capital tied to a derivative contract must at least

equal the target return demanded by shareholders of the �nancial institution.

Measures as RARoC88 used to be the guidelines account for the costs of capital used for

the trading desk (Ruiz, 2015). Managing this return on capital used to be ad-hoc with capital

limits or incremental capital requirements for di�erent types of derivatives and counterparties.

However, the capital requirements of Basel III implemented over the last years has signi�cantly

increased the capital requirements and complicated measurement of the required regulatory

capital. Along with higher capital requirements, costs of raising new capital have increased

in light of the �nancial crisis (Gregory, 2015a). Hence, fostering the need for a Capital Value

Adjustment (KVA)89, ensuring the correct capital charge on derivative trades has been crucial

to manage the overall RARoC goals of �nancial institutions correctly (Ruiz, 2015). KVA does

87(Gregory, 2015a) use the joint default probability of own default and counterparty default. As this thesis
does not estimate risk of own default, this is left out of the calculation.

88Risk Adjusted Return on Capital: RARoC = Expected Profit
RequiredCapital

.
89Using �K� for Capital in KVA is to distinguish the name from CVA (Kenyon et al., 2014). Even if this make

little sense in English, we use this abbreviation, as we consider ourselves more loyal to �nance jargon than the
English language.
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not just estimate current capital requirements, but the total expected capital requirements of a

derivative contract until maturity (Sherif, 2015).

Estimating KVA is more subjective than other xVA terms, as predicting future regulatory

capital requirements is extremely di�cult. Regulatory changes might revise whether available

hedge instruments for counterparty risk can achieve relief on regulatory capital, change regula-

tions on required capital, or change capital charge exceptions on certain instruments (Gregory,

2015a). (Sherif, 2015) discusses, how counterparties current exempted of the CVA capital charge

in EU, will probably not be able to keep this advantage in the future. Hence, trying to include

predictions on how regulations might change and a�ect required capital is very di�cult to price

and will give very subjective KVA estimates.

Regulatory capital result in individual issue costs of derivatives for di�erent �nancial institu-

tions, which means that there cannot be a single risk-neutral derivative price assumed with the

BS model (Kenyon and Green, 2014). Besides, KVA gives concerns about overlaps with other

xVAs terms. One issue being double counting of own credit risk, if including DVA. However,

KVA is beyond the BS model, knowing that not all risk is perfectly possible to hedge. Setting

capital aside covers unexpected losses, which might occur along the way. Hence, setting stricter

capital constraints would decrease the DVA not making them count the same thing (Ruiz, 2015).

As this thesis focus on unilateral counterparty credit risk, the overlap to DVA is not really an

issue.

CVA capital charge is a part of the KVA estimating the capital to cover the risk of CVA

changes over time, which some argue is already included in the CVA, which equals the costs of

hedging the counterparty risk (Gregory, 2015a). However, setting aside capital for losses does

not mean that the will not occur. Hence, the costs of hedging of expected losses also still exist

(Sherif, 2015). Besides, only hedging CVA with a single-name CDS on the counterparty provides

a full capital relief. But such instruments are only available on a few major counterparties

(Gregory, 2015a).

The capital required to be held against a derivative contract is usually the maximum of the

economic capital, which is the internal target of the �nancial institution for capital held and

the required capital by the regulatory authority. In reality, the regulatory requirements attract

all attention by �nancial institutions (Ruiz, 2015). With many �nancial institutions criticizing

e.g. the CVA capital charge of being too high90, they would likely perceive regulatory capital as

the largest compared to their internal economic capital measure. (Brigo et al., 2013) criticizes

the way regulators try to standardize models to calculate required capital, as this might cause

misleading capital requirements depending on the regulatory framework used by a �nancial insti-

tution. Inadequate capital requirements can lead to regulatory arbitrage exploitation increasing

procyclicality and bubbles in the �nancial industry. Nevertheless, calculation of regulatory cap-

ital exists. This thesis assumes required regulatory capital to be the base for estimation of KVA

rather than having to discuss economic capital targets.

This section �rst presents methods to calculate the regulatory capital under relevant assump-

tion on the regulatory framework for each source of capital charge (standardized or advanced).

90See Section 4.5.1.
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Second subsection provides a method to estimate KVA based on regulatory capital and discusses

measures for costs of capital.

4.5.1 Regulatory Capital

There are three main sources determining regulatory capital (Gregory, 2015a):

- Counterparty Credit Risk capital charge (CCR)

- CVA capital charge (CVA Capital)

- Market Risk capital charge (MR).

The methods for calculating these capital charges depend on the regulatory status of the �nancial

institution. In general, �nancial institutions can either use the Standardized Approach or apply

for the Advanced Approach (Choudhry et al., 2012). To make things even more complex, the use

of a standard approach and advanced approach might di�er for the di�erent sources of regulatory

capital. For counterparty credit risk an Internal Rating Based Approach (IRB) allow the use

internal default probability measures for credit risk91, while the Standardized Approach does

not. If furthermore allowed to use the Internal Model Method (IMM) for credit risk, this allows

use of internal measures of exposure at default (Ruiz, 2015). Similar for market risk capital

charges, a �nancial institution can use either the Standardized Measurement Method (SMM)

or seek approval to use the Internal Model Approach (IMA) by national regulation authorities

(Ruiz, 2015), which allows the use of an internal model to estimate the V aR for market risk

(Kenyon and Green, 2014). Using advanced approaches for respectively counterparty credit risk

(IMM) and market risk (IMA) requires separate approval (Kenyon and Stamm, 2012).

This thesis focus on a medium-sized �nancial institution with IMA approval for estimation

of market risk but without IMM approval for counterparty credit risk. Thus, the standardized

methods are used to determine CCR charge and CVA capital based on advanced internal ratings

of credit risk, while the internal model method is used for the MR charge.

Ideally the MR risk is completely hedged away with a reverse swap contract with a CCP.

(Kenyon et al., 2014), however, proves that this is only true if the hedge is perfect. As discussed

in 4.3.2 a perfect hedge is not always available. Thus, some market risk still exists due to the

mismatch of trade and hedge. (Kenyon et al., 2014) provides evidence that this market risk has

a signi�cant e�ect on the total value of an IRS contract when including xVAs. To account for

this issue, we includes a simpli�ed model estimation of the MR charge.

The regulatory framework of Basel includes two additional components of regulatory capital:

The Incremental Risk Charge (IRC) and the Operational Risk (OR). The marginal e�ect of a

trade will have no signi�cant e�ect on the operational costs. Hence, OR charge is disregarded as

in (Ruiz, 2015). IRC is a market risk measure V aR measure with a longer time horizon than the

other V aR measures de�ning regulatory capital. The purpose of the IRC charge is to capture

e�ects of larger price moves and potential loss of liquidity, which are unlikely to happen within

a short time horizon. The IRC charge also includes a component called the Comprehensive

91Advanced IRB if allowing internal measures of both default intensity and LGD.
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Risk Measure (CRM), which has the purpose of capturing correlation e�ects on basket credit

products. (Ruiz, 2015) argues that this measure in many cases is negligible for most instruments.

Only some instruments would have a high IRC charge due to low liquidity (covered by the IRC)

or because the product has strong inner correlations as CDO contracts (covered by the CRM).

To avoid unnecessary complexity from introducing another IMA model for the IRC charge, this

thesis disregards the IRC capital requirement, as it would not be worth considering the e�ect

on an IRS or a CSS contract.

Basel de�nes required capital as 8% of the Risk Weighted Assets, RWA. All capital require-

ments are determined in terms of RWA (Choudhry et al., 2012).

CCR Charge

The CCR charge has the goal of quantifying the default risk of counterparties. The measure is

normally on a portfolio level, but for this thesis, we look at the isolated e�ect of a single trade.

The CCR charge is given by

RWACCR = RW · EAD

where RW is the risk weight of the counterparty based on their credit quality. This measurement

is identical for all internal rating approaches and given by the formula (Kenyon et al., 2014)

RW = 12.5 · LGD ·
(
φ

(
φ−1 (λ)√

1− ρ
+ φ−1 (0.999)

√
ρ

1− ρ

)
− λ
)
· 1 + (M − 2.5) b

1− 1.5b
(4.26)

with

ρ = 0.12 · 1− e−50·λ

1− e−50
+ 0.24

1−
(
1− e−50·λ)

1− e−50

b = (0.11852− 0.0578 · ln λ)
2

and λ the expected default intensity over one year, M is the maturity of the contract, and φ

is the cumulative standard normal distribution. We use the closed form solution for survival

probability in equation 2.16 assuming the JCIR model to derive the expected one-year survival

probability. This is subtracted from 1 to provide λ.

Basel requires a �oor on the default intensity (Kenyon and Green, 2014).

λ = [0.03, E (λ)]
+

EAD is the exposure at default. With the IMM approach, an internal model can be used to

calculate EAD (Ruiz, 2015). If a �nancial institution does not have IMM approval, as is the case

used in this thesis, there are currently three di�erent standardized methods (Gregory, 2015a):

Standardized Method (SM), Current Exposure Method (CEM) and the Standardized Approach

for Counterparty Credit Risk (SA-CCR)92. SA-CCR will replace CEM and SM from 2017 (Ruiz,

2015). Hence, the SA-CCR method will be most adequate to use in this thesis.

SA-CCR calculates the EAD from the replacement costs and from future potential exposure.

92CEM method being more advanced than SM method and SA-CCR being the most sophisticated.
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However, it is important to notice, that these two measures di�er from EEt and PFEt. The

replacement costs is calculated as (BCBS-279, 2014)

RC = [V − IM ]
+

for uncollateralized contracts93 and

RC = [V − IM, Thr +MTA−NICA]
+

(4.27)

for collateralized contracts94. Thr is the threshold, MTA is the minimum transfer amount and

NICAt = Crecivedt − C posted
tnon−segregrated

(4.28)

Hence,

EAD = α · (RCt + PFE∗t ) (4.29)

α is multiplier also used in the IMM approach, where it varies due to portfolio size, default

intensity, correlation, and con�dence level of the model (Gregory, 2015a). For SA-CCR, α = 1.4

(Ruiz, 2015). PFEt is not an internal model estimate as in Section 4.4.1, but is an add-on value

de�ned by (BCBS-279, 2014) as

PFE∗t = mult ·AddOn

where

mult = min
[
1.5% + (1− 5%) e

V−C
2·(1−5%)·AddOn

]
mult is a multiplier ensuring that contracts with positive collateralized exposure are charged 1,

meaning the full AddOn while over-collateralized contracts with NEEt are charged less, as they

are less risky (BCBS-279, 2014)95. The AddOn depends on the primary underlying risk factors

divided into asset classes

AddOn = SF · EffetiveNotional

Both factors depend on the underlying asset class of the derivative. SF has the purpose of

approximating the positive expected exposure, EEt, of the notional value by accounting for

the volatility of the underlying asset class. For interest rate products SF = 0.5% and for FX

products F = 4%. As a CCS contracts depends on both risk factors, the AddOn must be

calculated for both risk factors (BCBS-279, 2014)96. The e�ective notional is calculated by the

formula97 (BCBS-279, 2014)

EffetiveNotional = δ · d ·MF

93However, allowing for an initial margin.
94If collateral in other forms than cash is possible, this requires the appropriate haircuts on IM and C.
95If AddOn is very close to 0, calculating mult in the model will not be possible. However, this re�ects mult

being very close to 1, which can then be assumed when AddOn is too small.
96In this thesis AddOn for CCS is calculated for respectively the e�ect of domestic interest rate (EONIA) and

FX rate.
97The EffectiveNotional is in absolute values if the product includes FX risk.
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where δ = ±1 is a supervisory delta with sign depending on a positive or negative relation

between the derivative value and the underlying risk factor. d is a trade-level adjusted discount

factor

d =
1− e−0.05M

0.05 ·M
if the swap is a spot trade (Kenyon and Green, 2014)98. M is the maturity of the contract.

MF represents the time risk horizon and di�ers between trades with and depends on trade and

collateral agreement99.

MFUncollateralized =

√
min [M ;Trading Days]

Trading Days

MFCollateralized =
2

3

√
MPR

Trading Days

if the swap contract is a spot trade. MPR depends on the margin frequency. Margining is

less frequent than daily, MPR = 20 for non-CCP trades and MPR = 5 for CCP trades100

(BCBS-279, 2014).

Trades cleared at a CCP used as hedging instruments in this thesis, will also be subject to

a capital charge. However, as central clearing houses have a very low risk, (BCBS-282, 2014)

only charge 2% risk weight to EAD calculated with the SA-CCR method. M must minimum

be 10 days (BCBS-282, 2014).

CVA Charge

As mentioned in Section 2.1, two thirds of the increase in counterparty risk came from higher

credit risk volatility, which was not covered by the capital charges already in place. Instead of

adjusting the existing V aR calculation, Basel III added the CVA capital charge as an additional

charge to take CVA risk into account (Gregory, 2015a). Not having IMM approval, this sub-

section focus on the Standardized CVA charge formula, which should approximate the 10-day

V aR101 of CVA with 99% con�dence (Ruiz, 2015). EU regulation, exempt CCP transactions

between clearing member and clients from the CVA charge (Gregory, 2015a). Hence, this the-

sis ignores such charge for the hedge with a CCP. However, to account for potential changes

in future regulation, the current exemption for non-�nancial counterparties below the clearing

obligation in the EU is ignored, as these indeed carry the highest counterparty risk and because

the EBA102 suggests this exemption be removed (EBA, 2015).

98We did discover a discrepancy between (Kenyon and Green, 2014) including M in the divisor of d and
(BCBS-279, 2014) not doing so. Testing this issue in our model, there is little doubt, that (BCBS-279, 2014) has
made a typo in their guidelines by excluding M in the divisor resulting in discount factors well above 1.

99This thesis assumes 260 trading days as described in Section 1.3.5.
100If there are outstanding margining and valuation disputes, the MPR should be the double number of days.
101See Section 4.5.1 for a speci�cation of the VaR-measure.
102European Banking Authority.
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(Kenyon et al., 2014) provides the standardized formula

RWACVA =
√
MF · 2.33 ·{(

0.5RW ·
(
M · EAD −MH ·HH

)
−RWH

` ·M
H
` ·H

H
`

)2
+ 0.75RW 2

(
M · EAD −MHHH

)2} 1
2

with RW the counterparty risk weight, M the swap contract maturity and MF the time risk

horizon equal to those described in Section 4.5.1. EAD also equals equation 4.29 in Section

4.5.1 but is discounted with d from Section 4.5.1.

The CVA capital charge allows for a direct hedge of the counterparty risk with a single-name

CDS and for partial hedge with an index CDS.
(
0.5RW ·

(
M · EAD −MH ·HH

)
−RWH

` ·M
H
` ·H

H
`

)2
can be seen as the systematic risk of the CVA, which can be fully hedged with a single-name

CDS or an Index CDS. 0.75RW 2 ·
(
M · EAD −MH ·HH

)2
represents the unsystematic CVA

risk, which can only be fully hedged with a single-name CDS, as it is counterparty speci�c

(Gregory, 2015a).

HH is the CDS hedge notional, while MH is the hedge maturity. This is similar with MH
`

and HH
` for the Index CDS hedges, but includes the risk weight of the CDS Index RWH

` .

To achieve a full hedge e�ect, the choice of notional and maturity for the hedge must match

respectively EAD and maturity for the swap contract (Gregory, 2015a). In absence of a hedge of

counterparty risk with the above mentioned instruments the formula reduces to (Kenyon et al.,

2014)

RWACV A = 2.33
√
MF

{
(0.5RW ·M · EAD)

2
+ 0.75RW 2 · (M · EAD)

2
} 1

2

When using this standardized formula to calculate the CVA capital charge for the entire

trading book of a �nancial institution, assuming counterparties with the same level of credit

risk
RWACV A

N
= 2.33

√
MF

(∑N

i=1
0.5RW ·M · EAD

)2
√

0.25 +
0.75

N

Hence, an increasing number of counterparties adds a diversi�cation e�ect with an implicit

assumed correlation of 25% and decreases the incremental CVA capital charge (Gregory, 2015a).

The CVA charge has been quite controversial. First, it gives a very conservative measure of risk

resulting in high capital requirements. Second, only allowing for capital relief to single-name

CDS and Index CDS contracts remove incentive of �nancial institutions to hedge CVA at all if

none of the allowed hedge instruments above are available. The motive being that other hedge

possibilities might actually increase total costs due to capital charges on the hedge outweighing

the potential CVA reduction. For this reason, the capital charge on other hedges is exempted

from capital charge in the US and Canada. A last issue is that the capital relief for CDS contract

might increase demand for such, which will drive up the credit spread in the market103. Up to

50% of the CDS spread alone represents the capital relief provided by a single-name CDS rather

than the default probability and LGD (Gregory, 2015a).

103This e�ect being even stronger as the single-name CDS market is relative illiquid.
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MR Charge

Basel III updated the traditional way to estimate the MR charge originally based on a 10-day

V aR estimation with a 99% con�dence level (Ruiz, 2015). Instead of V aR Basel III suggests

to use the Expected Shortfall, ES. VaR shows the 99th percentile of random CVA losses given

a distribution, while ES shows the expected CVA loss beyond the 97.5th percentile of a given

distribution (Brigo et al., 2013). Hence, ES includes the e�ect of heavy tail observations (BCBS-

265, 2013). If tails are small and losses are close to normal distributed, then the di�erence

between the two measures becomes insigni�cant (Ruiz, 2015). The data for the distribution

must represent a stressed scenario, as it is most critical that capital is able to absorb losses in

stressed periods (BCBS-265, 2013). Besides, the risk horizon �xed at 10 days will in the future

instead depend on the underlying risk factor to adjust for their individual riskiness (Ruiz, 2015).

(BCBS-265, 2013) �x the risk horizon for interest rate and FX products at 20 days. With these

changes added to the formula provided by (Ruiz, 2015)

RWAMR = 12.5 · (3 + x+ y) · s · ES97.5%,20d

x is determined by the regulatory authorities based on backtest on the model performance.

Backtest performance is measured by exceptions quanti�ed as the number of historical observa-

tions on a time horizon of the last year with actual losses that went above the losses predicted

by ES. x varies from 0 to 1 depending on the number of exceptions observed. For 10 or more

exceptions104 x = 1. y is an add-on, which can be set by national regulators (Ruiz, 2015).

This thesis assumes a normal distribution of the losses for simpli�cation, as for the dynamic

measure of initial margin in Section 4.4 If the tail risk is very small, there would be no signi�cant

di�erence between using ES and V aR105. As V aR is a simpler measure, we will use V aR instead

of ES assuming also a �xed expected volatility of the swap exposure and α = 1%

RWAMR = 12.5 · (3 + x+ y) · φ−1 (0.99)

√
20

Trading Days
σs

To adjust for a stress scenario, the expected volatility will be adjusted the maximum volatility

with a α = 5% signi�cance level

σs = σ · φ−1 (0.95)

This should set a high volatility improving the con�dence of V aR estimate. To account for

potential model inadequacy, x is set to 1, while y = 0. σ is the expected volatility of the hedged

exposure and �xed based on 10.000 simulation of the model.

104Even though not in the Basel framework, some �nancial institutions were assigned a higher add on than 1
during the �nancial crisis of 2008 (Ruiz, 2015).
105As discussed in Section 5.4 heavy tails of the total xVA charge do in fact seem to be an issue, which suggests
using ES.
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4.5.2 Estimating KVA

As described in Section 4.5.1 the Regulatory Capital charge equals RWA · 8%. Hence, the

expected capital equals

EKt = (RWACCR,t +RWACV A,t +RWAMR,t) · 8%

(Gregory, 2015a) provides following discretized approximation of KVA

KV A =

m∑
i=1

τ · EKi · rc · (1− λi)

where rc is the costs of capital and λi is the default intensity
106.

The costs of capital measure is often de�ned as the weighted average cost of capital, rWACC ,

as it weighs the cost of capital �nanced by debt and by equity with the capital structure of the

company (Berk and DeMarzo, 2013). However, as almost all Tier1 capital107 must be equity,

using return on capital, RoC, as the measure of capital costs is a decent approximation (Gregory,

2015a). (Kenyon and Green, 2015b) shows that not all CVA can be perfectly hedged, resulting

in left over credit risk providing pro�t or losses, which will be subject to tax. Accounting for this

e�ect would require a Tax Valuation Adjustment (TVA), which will be left out in this thesis.

However, it is important to state, that tax e�ects will lower the realized RoC, so that the gross

RoC required should be set higher. (Finansrådet, 2015) shows that the pre-tax RoC equals 8.3%

for the last 10 years for �nancial institutions in Denmark, while (Gregory, 2015a) argues that

gross RoC for OTC derivatives should be in the region of 15-20%. Hence, the costs of capital

should be set to re�ect the individual goal of �nancial institution, which might vary quite a lot

depending on the risk appetite of the shareholders of the �nancial institution.

106(Gregory, 2015a) uses the joint default probability of own default and counterparty default. As this thesis
does not estimate risk of own default, this is left out of the calculation.
107Tier1 Capital must consist of at least 85% common equity or retained earnings, while the latter 15% might
include deferred taxes, investments in other �nancial institutions and mortgage service rights (Choudhry et al.,
2012).
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Part V

Interpretation of Model Result



5.1 A Primer on Model Results

This part of the thesis presents the complete pricing model of a single IRS or CCS contract

based on simulation on the underlying risk factors described in Section 2.3 and Section 3.4. The

multi-curve approach is used for the risk-neutral price as described in Section 2.2 and estimation

of the di�erent xVA terms are included with the setup described in Part IV, which extends the

model beyond the BS framework.

The �rst section discusses data input for the model and describes supplementary model

assumptions related to practical issues of setting up the model to market data and to limit

simulation time and complexity. Second section presents model results for respectively payer

and receiver IRS contracts or �xed-�xed CCS contracts. This includes the e�ect from market risk

hedges and collateral agreements on di�erent xVA terms and total xVA charge. Third section

analyze the model sensitivity towards crucial inputs and the calibration process and discuss

suitability of the model assumptions to ensure that these do not signi�cantly alter the model

results. Subsequently, the sensitivity analysis includes evaluation of the simulation precision.

5.2 Market Data and Model Input

The parameters of the underlying risk factor models are calibrated to market data achieved from

closing market prices on 2nd November 2015 from (Bloomberg, 2015). This section provides a

closer description of these data and discusses treatment of missing data issues. Successively,

computational assumptions are evaluated.

5.2.1 Interest Rates

The midpoint of quoted market prices of swap rates with semi-annual payments serve as input

for the interest rate model calibration. Hence, the CIR model parameters rely on the current

term structure of swap rates up to a maturity of 10 years. This thesis includes the OIS curve

as discount curve and uses either a 3-month or 6-month tenor nominated in EUR to forward

the �oating leg interest rates for IRS contracts. Valuation of �xed-�xed CCS contracts uses the

USD OIS rate, which along with the EONIA discount factors to determine the deterministic

EUR/USD FX rate. Hence, we need swap rates with the following reference rate:

- EONIA as the EUR OIS rate.

- Fed Funds as the USD OIS rate.

- EURIBOR 3-month and 6-months.

(Bloomberg, 2015) provides generic instruments for EONIA and Fed Funds, which eliminates

accrued interest issues. However, only few maturities of the EURIBOR swap rates have quotes

for generic market prices available. To resolve this issue, this thesis uses generic market quotes

for the basis swap spreads:

- EONIA against 3-month EURIBOR
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- 3-month EURIBOR against 6-month EURIBOR

added to the EONIA rates to provide the discrete term structure of swap rates for the two

respective EUROBOR reference rates. As described in Section 2.2.4 these spreads are only sta-

tistical approximations at the discrete maturities. However, using the rates calculated from the

spreads as input for a stochastic model provides dynamics of sensitivity to di�erent maturities.

Swap rate maturities with semi-annual interval up to 10 years provide the term structure

input for model calibration. However, for some of these maturities108, no quoted prices are

available. This thesis uses Nelson-Siegel parameterization described in Appendix A.3 to ap-

proximate109 missing quotes in the term structure. The CIR model110 is used to calculate the

OIS rate for discounting and the tenor curve for forwarding111, which allows calculation of swap

rates. Calibration optimize the input parameters for the CIR models for di�erent tenors to

provide the lowest squared sum of errors compared to the actual swap rates. The calibration

restricts α = 4θ·κ
β2 > 1 to avoid violation of the algorithms generating random χ2 variables for

the non-central χ2 discretization of the CIR model. Including the restriction β2 > 2ϕ ensures

that interest rates can only be positive112.

The use of the CIR model results in some practical challenges, as the current EUR tenor

rates at the low end of the term structure is currently negative, which violates the CIR model.

However, using other models like Vasicek would take out the relationship between current rate

and the volatility (Munk, 2011), which results in a less realistic model as described in Section

2.5.3. Hence, this thesis accepts the calibration e�ect of negative rates. To be able to model

negative rates, the simulation uses an interest rate of 0 to approximate the incremental change

while interest rates are negative. This incremental change is added to the negative rate, thus

eliminating the di�usion element of the CIR model until rt > 0.

Calibration of the CIR model to the di�erent EUR tenors and for the OIS in USD show

di�erent tenors and currencies accounts for the di�erence in dynamics between the di�erent

rate curves. Macroeconomic shocks a�ecting either the Gaussian variable or the drift113 should

be the same for all interest rates in the same currency, which only di�er by their sensitivity

determined by the model parameters. Hence, this thesis uses the same Gaussian variable and

same series of random number for the random χ2 variable in all models rather than creating

dependency through correlation. The di�erence in calibrated parameters still provides di�erent

dynamics of the process. Nevertheless, it is unlikely, that the US OIS will experience the same

macroeconomic shocks as the EUR interest rates. Hence, the Gaussian variable for the Fed

Funds rate is instead linearly correlated with the EONIA rate through Cholesky factorization

of the two independent Gaussian variables, which is evaluated further in Section 2.4.

108Maturities of 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 and 9.5 years.
109Nelson-Siegel parameterization with 4-parameters �tted by using the non-linear GRG method in Excel Solver
Tool as described in Section 2.5.2.
110See Section 2.5.3.
111See Section 2.2.
112This restriction is not required if rates can also take the value of 0 (Munk, 2011). However, the e�ect of this
restriction does not change the calibration outcome for any of the CIR models calibrated in this thesis.
113The drift is non-central χ2-distributed.
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5.2.2 Default Intensity

The credit risk of the counterparty is calculated under the assumption of a �xed LGD = 40%,

which should only have a minor e�ect on the overall result, as Section 2.5.4 shows, that default

intensity is adjusted to account for the assumption of LGD.

As mentioned in Section 2.5.4 default risk is calibrated to iTRAXX Europe Crossover Index,

as this provides a decent approximation for companies with credit rating levels below investment

grade. iTRAXX series exists for time horizon of 3, 5, 7, and 10 years (Markit, 2014b). But as

the JCIR model has six parameters the calibration problem would be underde�ned when using

generic instruments. Hence, this thesis uses the prices of actual iTRAXX series with 5 and 10

year maturity, which are issued semi-annually114. Therefore, such provide the entire credit risk

term structure. However, as the market quotes are not from the date of issue, quotes include

some accrued e�ects on the credit spreads, which are unaccounted for by the JCIR model using

semi-annual valuations of the quarterly payments115 To achieve cleaner input data, we assume

for simpli�cation that the accrued e�ect is a linear function of time. Hence, �tting credit spreads

to the payment date is a proportional adjustment of each single spread with the day di�erence

to the nearest payment date
k∗t
t
· Ti = k∗Ti

Furthermore, some iTRAXX series are not currently quoted in the market and inconsistencies

between the 5 to 10 year instruments result in a not completely smooth term structure. We

accept this incomplete and wavy term structure as simple parameterization like the Nelson-

Siegel used for the missing data in Section 5.2.1 uses only four parameters to describe the

term structure116. As the JCIR model includes six parameters to be estimated, Nelson Siegel

parameterization would turn calibration into an underde�ned problem, which would result in

an insigni�cant jump di�usion.

5.2.3 Risk Factor Correlation

As mentioned in Section 2.4, interest rates and default intensity have some negative correlation

creating wrong way risk. This correlation is captured with a linear correlation in the Gaussian

variable in the JCIR model using Cholesky factorization. Nevertheless, the correlation of credit

spread and interest rates is di�cult to estimate on market data (Gregory, 2015a). This thesis

estimates a simple correlation parameter using Pearson's ρ (Keller, 2009) based on quarterly117

data using a 10-year historical time horizon of the generic 5 year iTRAXX Europe Crossover

Index credit spread and the EONIA swap rate (Bloomberg, 2015). As expected, this results in

a minor negative correlation between the EONIA swap rates and European credit spreads.

In the same way Pearson's ρ is used as the linear correlation parameter on quarterly data

between the EONIA and Fed Funds rate using a historical time horizon of 10 years (Bloomberg,

2015). This reveals quite a strong positive correlation between the two OIS rates.

114March and September 20.
115iTRAXX indices have quarterly payments (Markit, 2014b).
116See Appendix A.3.
117Quarterly changes are used as this equals the time grid in the simulation model de�ned in Section 5.2.7.
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As this thesis assumes deterministic FX rates, no multivariate variables are required as

only two risk factors are stochastic. The assumption on the FX is that future FX rates can be

calculated under the interest rate parity118 based on forward OIS rates of the di�erent currencies

calculated from the CIR model with spot rates depending on one another.

5.2.4 Calibration Method

Section 2.5.2 explains that the GRG method of non-linear approximation used by Excel's Solver

tool has the weakness, that the reduced gradient algorithm only continues changing the model

parameters until an optimum is found without checking if this is just a local optimum or also

the global optimum. To ensure to achieve the optimal parameters, the calibration takes o� from

�xed starting values, found to achieve the best optimal of solution by trial and error.

5.2.5 Fixed Rates and Notional Value in Foreign Currency

The �xed leg interest rate of the swaps is set as input before taking xVA terms into consideration.

For an IRS contract the �xed leg must be set so that the present value of the swap at initiation

equals 0. This is done with the Microsoft Excel Goal Seek function, which iterates the �xed rate

input for the IRS contract to get a value as close as possible to 0. If the �xed rate set for the

hedge with the CCP is higher than the �xed rate set for the contract with the counterparty due

to di�erent �oating tenors, the counterparty is instead charged the �xed rate of the CCP to cover

additional costs of the market risk hedge. The Goal Seek function looks for the nearest local

optimum of a single variable without restrictions as the Solver function evaluated in Section

2.5.2 does for multiple variables. Hence, as also mentioned in Section 5.2.4 di�erent starting

values must be tried to ensure, that the global optimum is used as input for the �xed rate

(Brandewinder, 2009).

For CCS contracts, the �xed leg in domestic currency is set to 1% while the �xed leg in the

foreign currency is achieved iterative in the same manner as the �xed leg for an IRS contract.

The notional value of the foreign leg is set to be exact equal to the notional of the domestic leg

at the current spot FX rate, which is in practice often subject to some rounding (Hull, 2012).

5.2.6 Random Numbers

The simulation model generates di�erent random variables from algorithms described Section

3.4. These all use uniform random numbers, which are generated with the Microsoft Excel

VBA function rnd(). This function uses a linear congruential generator119 as described in

(Glasserman, 2003).

5.2.7 Time Grid and Cash Flows for the Simulation

At each point in time exposure for the xVA terms is estimated from the risk neutral value of the

swap using the multi-curve approach. The time grid for the simulation is �xed to τ = Ti−Ti−1 =

118See Section 2.2.5.
119With constants a = 1140671485 and c = 12820163 (Microsoft, 2015).
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0.25. This ensures that swaps with a rolling 3-month tenor rate can be priced at each �xing of

the �oating tenor rate. To account for the fact, that payments are only semi-annually, equation

2.2 is modi�ed to measure only payments at steps, where these occur

Vt =

m∑
i=1

1{Ti−1<CFi<Ti} ·Dd (t, Ti) ·H ·
(
E

QTid
t [(Fx)]− rfix

)

where CFi is time of the ith cash �ow. Hence, the model only values cash �ows in periods where

payments actually occur. For a 3-month tenor �oating rate swap with semi-annual payments,

the �oating rate payment is the simple average of the two 3-month rates set at each quarter.

Hence,

Vt =

m∑
i=1

1{Ti−1<CFi<Ti} ·Dd (t, Ti) ·H ·

EQ
Ti−1
d

t [(Fx)] + E
QTid
t [(Fx)]

2
− rfix


The model can price for all swap maturities, but should only be used for swaps with a maturity

up to 10 years, as this re�ects the time horizon used to calibrate the underlying risk factor

models used as input for the pricing formula.

5.3 Model Results

This section provides model results for both IRS contracts and �xed-�xed CCS contracts using

di�erent maturities. Subsequently follows examination of the e�ect of a market risk hedge with

a CCP and di�erent collateral agreements. The model provides the present value of the di�erent

xVA terms for swap contracts with the �xed leg set so that risk neutral value is set to 0120.

Apart for the present value, the simulation model also approximates the xVA charges in terms

of basis points to be added to the �xed interest rate. This makes a better comparable for the

magnitude of di�erent xVA terms of contracts with di�erent maturities and notional values. It is

possible to charge counterparties the costs of xVA along with coupons payments rather than up

front. Though the xVA charge added to the coupons must be higher than the net present value

used here to account for the management and risk of those payments (Ruiz, 2015). Hence, the

xVA charge provided in terms of basis points only serve as a comparable proxy between di�erent

types of swaps and maturities. All swaps have notional value of the domestic leg of 1,000,000

EUR. The hedge exposure volatility used as input for the MR charge has been estimated with

the model for each relevant case121 based on 10,000 simulations.

120Section 5.2.5 provides an exception to this.
121As the hedge exposure di�ers depending on swap maturity, �oating leg tenor, choice of market risk hedge,
and choice of collateral agreement.
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5.3.1 Swap Property Results

This subsection evaluates how xVA terms and exposure di�er for respectively payer IRS con-

tracts, receiver IRS contracts and �xed-�xed CCS contracts with di�erent maturities. All cases

are unhedged, uncollateralized contracts, and have semi-annual payments. Thus, no MVA or

CollVA. As mentioned in Section 4.2.1, Figure 5.1 illustrates that expected exposure consis-

tently increases for contracts with longer maturity. The expected exposure is also not constant

throughout the lifetime of the swap as cash �ows further from today yield higher uncertainty.

The amortizing e�ect of the swaps as time passes by provides a maximum exposure for IRS

contracts around 2/3 of the total maturity, which di�ers from the conclusions made by (Gre-

gory, 2015d). However, the results by (Gregory, 2015d) follow a simpli�ed assumption that

swap volatility follows a normal distribution and that the yield curve is upwards sloping with

strictly positive interest rates. This thesis shows the e�ect of the current negative EUR interest

rates and the model assumptions to deal with this evaluated in Section 5.2.1. When rates are

initially negative, only the drift determined by the χ2-variable controls interest rates in order

for the CIR model to work. With the current term structure, rates are not expected above 0

before after 3 years. Hence, up till that point no interest rate volatility through the Gaussian

variable exists for the exposure.

Figure 5.1: Expected Exposure Pro�les

Source: Author's own creation

The payer and the receiver swap contracts are mirrored cases of one another with the NEE

of the payer swap equal to the EE of the receiver swap with same maturity. Due to the upward

sloping term structure of interest rates, the NEE of the payer swap contract is lower than EE

and vice versa for the receiver swap contract. As mentioned in Section 2.2.3 the longer tenor on

the �oating leg of a payer IRS contract increases risk and thus exposure as can be seen when
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comparing A) and B) in Figure 5.1. For the CCS swap contracts the exposure pro�le is quite

di�erent. First of all, NEE is almost identical for di�erent maturities, while this is very di�erent

for the EE. Second, EE does not drop before maturity. Both of these issues relate to the FX

e�ect. As explained in Appendix A.2, the notional value of a CCS contract is exchanged at

maturity at the FX rate equal to the spot rate at initiation of the contract. Hence, increasing

EUR/USD FX rates increase the positive cash �ow from exchange of notional at maturity. The

calibrated parameters for respectively the EONIA rate and the Fed Funds rate result in a lower

long-term rate for EONIA, ϕ = θκ = 0.22%, than for Fed Funds, ϕ = θκ = 0.67%. Hence,

the deterministic model using the interest rate parity expects an increasing EUR/USD FX rate.

This explains the strongly increasing EE. NEE would possible be larger were it not for the

choice of a deterministic FX model, as this would allow for simulation scenarios with decreasing

EUR/USD exchange rates.

Table 5.1 provides the xVA estimates for the di�erent contracts mentioned above. For the

payer swaps, CVA, FVA, and KVA all increase with longer maturity for both �oating tenor rates,

which provides a higher xVA charge for longer maturities. The relative e�ect of KVA decreases

for both case 1-3 and 4-6 as maturity increase from 3 to 7 years, but becomes relative larger

for the 10-year maturity as KVA does not capture the actual exposure, but only approximates

it with standardized calculations. CVA, on the other hand increases relatively as time increase

for the 6-month �oating tenor, while however decreasing for the case 3 with a 6-month �oating

tenor. FVA increases relatively more than CVA with longer maturities. The reason for this is

that funding of the positive exposure for short maturities will more likely be at negative or low

interest rates due to the current negative short rates, which provide low average costs, while

these costs for longer term maturities will likely converge towards the long-term rate of EONIA,

ϕ = θ · κ = 0.22%, added the funding spread of 100 bp increasing funding costs for longer

tenors122.

Longer �oating tenor increase the xVA charge comparing case 1-3 with case 4-6 as a result

of the higher exposure, except when comparing case 1 to case 4, where the xVA charge is

signi�cantly higher for the shorter tenor. Though FVA is signi�cantly higher for case 1 than for

case 4 and CVA is borderline to be signi�cantly higher, the KVA charge of case 4 is higher for

the shorter term, as the average exposure of the shorter tenor is higher at the beginning of the

contract life time. KVA exposure is discounted with the d factor in Section 4.5.1 not following

actual term structure of discount rates. This likely overweighs the exposure in the short end of

the contract though actual discount rates do not. For longer �oating tenor rate, CVA and KVA

increase faster for longer maturities. HVA on the other hand increase slightly less as maturity

increases from case 4-6, as lower payment frequency is less sensitive to increasing maturity.

Examining case 7-9 with the receiver swap contracts with similar maturity, the current term

structure gives a much lower exposure, comparing C) with A) in Figure 5.1. As a logical result,

the total xVA charge is also lower for receiver swap contracts. Though, for case 7 with only 3-year

maturity the absolute xVA charge is above that of a similar payer swap. This is due to negative

interest rates in the short term, which result in cash in�ows for the receiver contract, however

122Section 5.4 examines model sensitivity towards choice of funding rate and calibrated input for the risk factor
models.
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accruing a negative interest rate so that FVA increases, while CVA is lower. The simple KVA

discount factor as mentioned above also overweighs positive the short term exposure compared

to case 1, which result in a higher KVA. However, case 8-9 with longer maturities have a much

lower xVA charge than their corresponding payer swap contracts. Case 8-9 have very small CVA

and FVA charge, so that KVA contributes most of the total xVA charge for those cases.

As in Section 4.5 it must be mentioned, that in reality KVA is calculated on a portfolio

base, hence the gain from netting trades provides a much lower exposure on a portfolio level for

the KVA, which is beyond the scope of this thesis to analyze. Looking at a single trade, KVA

clearly accounts for the largest part of the xVA charge in an uncollateralized case. KVA is not

completely linked to the current exposure, as EAD is prede�ned by (BCBS-279, 2014). This

is evident when comparing payer and receiver swap contracts as maturity increases. For both

types, the KVA charge increases as maturity increase, but represents relatively less of the total

xVA charge at higher maturities for payer swaps, which has an actual higher exposure increasing

CVA and FVA.

Case 10-12 reveal that the xVA charge for �xed-�xed CCS contracts increase more in pro-

portion with maturity than IRS contracts. This is a result of expecting an upward sloping

EUR/USD FX rate. The xVA charge is also multiple times bigger than for the IRS contracts

with a similar maturity due to the higher exposure from the FX risk with KVA accounting

for the largest part of the xVA charge. This high KVA charge is a result of the exposure to

FX added in the SA-CCR method and the CVA charge of calculating EAD rapidly increasing

exposure as the FX risk, SF , in Section 4.5.1 is weighted eight times higher than SF for interest

rates.

5.3.2 Market Hedge Results

This subsection evaluates how xVA charges for a 7-year payer IRS with semi-annual payments

change with respect to decisions on hedging market risk by entering a receiver swap contract

with a CCP. In the perfect hedge case, a 6-month tenor �oating leg IRS contract is hedged with

a similar receiver contract. However, such perfect hedge instruments are not always available or

liquid, especially when requiring a hedge of a customized swap contract with the counterparty.

For this reason, this subsection also presents a case where a payer IRS contract with a 3-

month rolling tenor �oating leg with semi-annual payments is hedged with a 3-month tenor

�oating leg swap with quarterly payments. Contracts with a CCP will always require a bilateral

collateralization for security including a dynamic initial margin to cover potential gap risk

between collateral margining. Calculation of the dynamic initial margin assumes a �xed 25%

swap volatility input. Collateral agreements with the CCP include rounding of collateral posts

to lot sizes of 100 and the MTA of 100.
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Figure 5.2: Hedge Pro�les

Source: Author's own creation

A) in Figure 5.2 shows the net exposure of the IRS contract with the counterparty and

the hedge with a CCP. The perfect hedge leaves no open exposure of market risk left, while

the quasi hedge still has some open exposure due to cash �ow mismatches between the two

contracts, which must be funded and therefore result in some HVA charge.

Table 5.2: Simulation Results for Market Hedging

Case: 5 : 6&6**, Payer, 7Y, No Hedge. 13 : 6&6**, Payer, 7Y, Hedge.

NPV σ CI∗∗∗α=5% bp NPV σ CI∗∗∗α=5% bp

xVA Total 3761.06 15779.70 [3577.53 ; 3944.60] 10.79 2585.76 7130.14 [2502.83 ; 2668.69] 7.42

CVA 1054.70 6777.48 [975.87 ; 1133.53] 3.03 781.89 3951.87 [735.92 ; 827.85] 2.24

CollVA 0.00 0.00 [0.00 ; 0.00] 0.00 120.21 52.93 [119.59 ; 120.83] 0.34

HVA 1023.44 6439.73 [948.54 ; 1098.34] 2.94 0.00 0.00 [0.00 ; 0.00] 0.00

FVA 1023.44 6439.73 [948.54 ; 1098.34] 2.94 120.21 52.93 [119.59 ; 120.83] 0.34

MVA 0.00 0.00 [0.00 ; 0.00] 0.00 59.59 143.07 [57.92 ; 61.25] 0.17

KVA 1682.92 3769.09 [1639.08 ; 1726.76] 4.83 1624.07 3623.20 [1581.93 ; 1666.22] 4.66

Case: 2 : 3&6*, Payer, 7Y. 14 : 3&6*, Payer, 7Y, Hedge.

NPV σ CI∗∗∗α=5% bp NPV σ CI∗∗∗α=5% bp

xVA Total 2826.86 10523.10 [2704.47 ; 2949.25] 8.09 1585.97 2842.33 [1552.91 ; 1619.03] 4.53

CVA 674.72 3763.77 [630.95 ; 718.50] 1.91 317.75 1459.30 [300.78 ; 334.72] 0.89

CollVA 0.00 0.00 [0.00 ; 0.00] 0.00 146.43 84.16 [145.45 ; 147.41] 0.40

HVA 769.71 4423.57 [718.26 ; 821.16] 2.19 -173.46 1117.90 [−186.47 ; −160.46] -0.25

FVA 769.71 4423.57 [718.26 ; 821.16] 2.19 -27.04 1140.03 [−40.30 ; −13.78] -0.04

MVA 0.00 0.00 [0.00 ; 0.00] 0.00 74.47 162.34 [72.58 ; 76.35] 0.19

KVA 1382.42 3105.16 [1346.31 ; 1418.54] 3.94 1220.79 2373.72 [1193.18 ; 1248.40] 3.48

* 3-month �oating tenor paid semi-annualy

** 6-month �oating tenor paid semi-annualy

*** Con�dence Interval

Source: Author's own creation

Table 5.2 shows the estimated xVA charge for the di�erent two hedging cases. The overall

xVA charge is signi�cantly lower for the quasi hedges than the perfect hedge, which is unrelated

to the hedge exposure, but is a result of two issues: First, the quasi hedge cash �ows mismatches

create funding issues. However, negative interest rates and a strong negative funding hedge

exposure from 3.5 years and 3 years forth123 provides a cash in�ow to be lend out at a positive

123The cash in�ow from the negative exposure occurring from initiation till 1.5 later will, however, be expected
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OIS rate from year 4 and forth. The lending gain outweighs funding costs of funding at a spread

to the OIS rate charged on cash out�ows from positive exposure mainly present at the last year

of the contract. B) in Figure 5.2 shows expected interest rates and hedge exposure of the quasi

hedge indicating the situation described above. Second, the KVA charge is higher for the perfect

hedge, though market risk is eliminated. But as shown in Section 5.3.1 exposure for 6-month

tenor is higher than for 3-month tenor, which is also strongly signi�cant when comparing case 2

and 5 without hedges. Table 5.3 shows the average capital charges on cases 13-14. The SA-CCR

charge on the CCP hedge is lower for the perfect hedge than for the quasi hedge and the MR

charge is 0. Nevertheless, the MR charge on the quasi hedge is still close to 0. The much lower

SA-CCR charge and regulatory CVA charge on the counterparty for case 14 makes the total

capital requirements of case 13 higher due to the higher tenor risk of the �oating leg. Hence, the

higher KVA charge does not relate to the choice between a perfect and a quasi hedge, but rather

the �oating tenor exposure. Comparing case 13 and 14, the perfect hedge would be preferred if

isolating the hedging e�ect from issue of a higher tenor and the current negative interest rates

providing a negative funding rate for shorter maturities.

Table 5.3: Average Regulatory Capital, Risk Weighted Assets
14 : 3&6*, Payer, 7Y, Hedge. 13 : 6&6**, Payer, 7Y, Hedge.

Quasi Hedge Perfect Hedge

Avg. RWACCRCounter Party 2912.78 4329.21

Avg. RWACCRCentral Clearing Party 61.26 50.26

Avg. CV ACharge 23401.96 31685.85

Avg. MRCharge 0.001 0.000

Source: Author's own creation

The CVA charge from Table 5.2 also shows, that the CVA is signi�cantly higher for case

13, while the costs of the collateral agreement with the CCP (CollVA and MVA) in case 14 are

slightly higher than case 13. This reduce the advantage for the quasi hedge in terms of the total

xVA charge. Collateral issues will be covered in the next subsection. Compared to case 2 and 5,

the total xVA charge for both case 13 and 14 is much lower. This provides a strong incentive to

hedge market risk to reduce the CVA and HVA signi�cantly124, KVA moderately (though only

borderline signi�cant for the perfect hedge), while accepting a small MVA and CollVA from the

collateral requirements of the CCP. The quasi hedge is cheaper under the current term structure

a�ecting the exposure pro�le and a funding rate �xed at OIS plus 100 bp, which provide a HVA

bene�t besides the lower CVA and KVA of the shorter tenor rate. This HVA bene�t would not

necessarily be present in case for changes in the interest rate dynamics or funding spread125.

Besides signi�cantly lower xVA charges, the volatility of the xVA terms is more than halved for

both �oating tenors compared to the unhedged cases, except for CollVA and MVA of course not

present for unhedged contracts.

to lend at negative interest rates.
124The perfect hedge eliminates HVA.
125Section 5.4.2 evaluates the e�ect of risk factor input parameters and funding spread.
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5.3.3 Collateralization Results

This subsection evaluates how collateral can substantially reduce the exposure of a contract

and how initial margin can cover some of the gap risk between margining. Subsequently, this

subsection evaluates e�ect on funding costs, if a market risk hedge with a CCP is added. This

subsection evaluates a 7-year payer swap contract with a 3-month �oating tenor and semi-annual

payments in 5 di�erent cases of CSA agreements for collateralization:

- Case 15: Unhedged contract with a unilateral CSA agreement

- Case 16: Unhedged contract with a bilateral CSA agreement

- Case 17: Unhedged contract with a bilateral CSA agreement allowing a threshold of

1,000 for both parties.

- Case 18: Unhedged contract with a bilateral CSA agreement and a �xed segregated

initial margin of 0.5% of the notional IRS value posted by both both parties.

- Case 19: Unhedged contract with a bilateral CSA agreement and a segregated dy-

namic initial margin assuming a �xed 25% swap exposure volatility posted both by

the counterparty and to the counterparty.

- Case 20: Contract with a quasi hedge (3-month �oating tenor and quarterly pay-

ments) with bilateral CSA agreement with both counterparty and with the CCP

including a dynamic initial margin with the same assumptions as in case 4 for the

counterparty, the �nancial intermediary, and to the CCP.

CSA agreements for all cases above include rounding of collateral posts to a lot size of 100. The

CSA agreement with the counterparty include a 200 MTA for both the �nancial intermediary

and the counterparty, while the MTA with the CCP hedge is 100 for both parties. The margin

period of collateral and initial margin is quarterly and there are no thresholds126. Funding of

payments or collateral is at the OIS rate plus a spread of 100 bp, while lending of excess cash and

rehypothecation of collateral earns the OIS rate. Collateral held accrues the OIS rate between

the �nancial intermediary and the corporate counterparty, while only OIS minus 25 bp between

the CCP and the �nancial intermediary.

126Except in case 17.
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Figure 5.3: Expected Positive Exposure

Source: Author's own creation

Figure 5.3 demonstrates how the exposure of a contract is strongly reduced as collateral is

posted against exposure. Some gap exposure remains open due to the discrete margin period,

minimum transfer amounts, and rounding conventions. If collateral is to be posted much more

frequently and for smaller amounts, this would require the model to take into account operational

costs of margining, which would then have signi�cant e�ect on the optimal margining period,

MTA, and rounding conventions. Including a threshold give slightly less exposure reduction, but

should also result in lower collateral costs. Unilateral collateralization is slightly more e�cient

than bilateral, as collateral posted at the counterparty at last collateral margining might also be

at risk, if the contract has turned to be in-the-money in the bilateral case. It might, however,

not be possible to convince counterparties to carry additional costs of posting collateral if the

same is not done by the �nancial institution issuing the contract, as this in fact increases their

exposure by their posted collateral, if such is not segregated (Gregory, 2015a). However, as

seen from case 15 and 16 in Table 5.4 bilateral agreements on the other hand further increases

the xVA charge. (Gregory, 2015a) compares the increase in xVA charge of a bilateral CSA

agreement against no CSA agreement from the counterparty point of view. (Gregory, 2015a)

concludes that the counterparty bene�ts signi�cantly more from receiving collateral than not

doing so. This indicates that rational counterparties should prefer bilateral CSA agreements

rather than accept a unilateral CSA agreement, though the former increase the xVA charge to

the counterparty, as this lower the total costs of the counterparty.

Adding either a �xed or dynamic initial margin to the contract terms further covers some or

all of the gap risk depending on the amount of initial margin. As seen in Figure 5.3 an initial

margin of 0.5% of the notional IRS value almost eliminates exposure. A dynamic initial margin

tries to avoid over- or underestimating the required initial margin, as 99% of additional exposure

should be covered127.

127Based on the assumption in Section 4.4.
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Table 5.4 shows the xVA charge and relationship between the di�erent xVA terms when

introducing collateralization. First examining the e�ect on CVA, it is clear that any form

of collateral agreement presented above strongly decrease the credit risk of the counterparty

contrary to case 2 with no CSA agreement. Case 15 has a slightly lower CVA than case 16 due

to the additional exposure reduction of unilateral CSA agreements as mentioned above. CVA

mitigation e�ect would expectedly be lower for case 17 allowing for thresholds compared to case

16, but is insigni�cant for the results in Table 5.4. Adding either dynamic or �xed initial margin

as in respectively case 19 and 18 further reduces CVA signi�cantly.

The di�erence in choosing between unilateral and bilateral CSA agreements favor the unilat-

eral in terms of KVA reduction as a result of risk on collateral posted at the counterparty, which

increases exposure of case 16 as mentioned above. Allowing for threshold increases KVA of case

17 compared to case 16 as the threshold is included in RC formula in the EAD calculation in

the SA-CCR and the CVA regulatory capital charge. Inclusion of an initial margin lowers KVA

signi�cantly when comparing case 18-19 to case 16-17. Throughout case 15-19 KVA is lower

than for case 2.

FVA is not signi�cantly di�erent from one another comparing case 15 and 16. This is the

same when allowing for threshold in case 17. Still, it must be considered that the uncertainty

on CollVA and HVA account for most of the uncertainty in the xVA charge of collateralized

contracts as can be seen from the standard deviation for case 15-20 in Table 5.4. Hence, one

should be careful to conclude on a small sample of simulations128.

Including initial margin comes at the costs of an MVA charge, which is signi�cantly higher

using a �xed initial margin as in case 18 than a dynamic initial margin adjusted to exposure as

in case 19. However, case 18-19 have signi�cantly lower KVA and CVA than case 16, with case

19 reducing CVA and KVA the most.

The overall xVA charge becomes lower for case 15 than case 16. This is mainly due to

the di�erence in KVA charge already evaluated. Allowing for a threshold in case 17 seems to

make the xVA charge even higher, as the KVA charge increase further without any signi�cant

decrease in CollVA from the less strict collateral agreement. The potential reduction of CVA is

limited as CVA is moderate due to the chosen proxy index. This makes the total xVA charge

higher for case 16-19 than for case 15. However, the xVA charge of case 15 is borderline to

be signi�cantly lower than case 2. For the bilateral CSA agreements, collateral posted at the

counterparty potentially increase NICAt in equation 4.28 and hence the estimated exposure for

KVA. Higher counterparty risk favors collateralization. Adding a dynamic initial margin does

not provide a signi�cant decrease in xVA, as the e�ect of CVA and KVA reduction, though very

signi�cant, are lower than the MVA charge for the initial margin. A �xed initial margin at 0.5%

of the notional IRS value in case 19 seems to be excessive given the expected exposure. Yet, this

depends on the maturity of the contract as seen in Section 5.3.1 and the default intensity129.

Section 6.2 evaluates this relationship further.

Case 20 combines the quasi hedge in case 14 from Section 5.3.2 with the bilateral CSA

agreement including a dynamic initial margin from case 19. Doing so further reduces CVA and

128See Section 5.4.3 for further discussion of this issue.
129See Section 5.4.2 for results on changing default intensity.
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even KVA130 (though the hedge with the CCP will require capital), as the total hedge exposure

becomes very small as described in Section 5.3.2.

Allowing for rehypothecation of the variation margin, collateral posted by the counterparty

can be passed on to the CCP, if the swap contract with the counterparty is in-the-money. If

the contract with the counterparty is out-of-the-money, the hedge contract is almost always

in-the-money131. Hence, collateral posted by the CCP can be passed to the counterparty. This

reduce collateral funding to depend only on the mismatch between the counterparty and the

CCP contract value and collateral agreement details, signi�cantly reducing CollVA. Yet, the

di�erence in the accrued interest rates on the di�erent collateral agreements still exist.

The hedge also partially covers cash �ow mismatches and make the HVA charge negative for

the same reasons as in Section 5.3.2. With a market quasi risk hedge, the xVA charge of case 20

is also signi�cantly lower than case 2 even with the credit risk only moderately high. The xVA

charge of case 20 is also only signi�cantly higher than case 14 in Section 5.3.2 by a landslide.

Case 20 indicates that adding a hedge provides a powerful advantage not only to the reduction

of HVA, but also to the cost of collateralization for the reasons provided above. Besides the

reduction in the xVA charge, adding the hedge reduces the volatility of all xVA terms as can be

seen from the standard deviation of case 20 in Table 5.4, which reduces the total volatility of

the xVA charge by 74% compared to case 16 and 68% compared to case 2.

5.4 Sensitivity Analysis

This section discusses backtest of the model and relevant test of sensitivities towards changes

in underlying risk factors or input assumptions for the model. It furthermore discusses the

precision and convergence of the simulations accounting for potential MC noise of the model.

5.4.1 Model Backtest

The model includes the �exibility to estimate xVAs for di�erent kinds of swap contracts with

di�erent �oating tenor and maturity. These can include a market risk hedge and allows for

both unilateral and bilateral CSA agreements with both the counterparty and the CCP. The

CSA agreements can have optionality on numerical parameters132 and the possibility to include

either a �xed or dynamic initial margin. Such �exibilities complicate the overall model, and it

must be tested thoroughly to ensure that implementation of such options work as intended. E.g.

that the e�ect of hedge and collateral produce the intended exposure reductions while increasing

funding costs captured by CollVA and MVA. The amount of strictness of the collateral agreement

through rounding issues, MTAs, and thresholds should be apparent on the positive exposure

and the cost of collateral. Section 5.3.3 illustrates that the e�ect of collateral requirements and

initial margin have a clear e�ect on the exposure reduction while on the other hand increasing

respectively CollVA and MVA. The choice of hedge also seems to work as expected, as positive

130Although the hedge with the CCP is subject to the SA-CCR capital charge.
131If e.g. tenor rate or other contract features are di�erent, the hedge is not an exact mirror of the contract
with the counterparty.
132See Section 4.2.1.
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exposure is greatly reduced with a quasi hedge, while eliminated completely with a perfect

hedge. These relationships should also hold, as the input for risk factors change. Testing this

will be one of the goals of the scenario analysis provided in Section 5.4.2.

As mentioned in Section 1.3, the main goal of the model in this thesis is to provide an

internal valid model for IRS contracts and �xed-�xed CCS contracts with maturity up to 10

years given the choices mentioned above. Model validity is highest for the IRS contracts, as the

one-factor model dynamics for interest rates are calibrated to IRS rates. Pricing with respect

to these underlying interest rates provides low external validity for other products as mentioned

in Section 2.5.3. Still, the �xed-�xed CCS contract, is somehow similar in structure, making

pricing with the same risk factor model for interest rates reasonable. One should, however,

acknowledge that the simplistic assumption of deterministic FX rates likely provides a less valid

result than that of the IRS contracts, as the CSS exposure clearly is much more sensitive to the

change in FX rates than interest rates, which can be seen in Section 5.3.1. The current interest

rate term structure should be evaluated as well.

The CIR model cannot describe a term structure with decreasing interest rates in the short

maturity reversing to increasing rates in the longer term. Hence, the term structure must be

strictly upward or downward sloping allowing for a hump changing direction (except of course

the hump from downward to upward sloping) as evaluated in Section 2.5.3.

Figure 5.4: Swap Rate Term Structure

Source: Author's own creation

Monitoring the current term structure in Figure 5.4 this seems to be slightly violated for

the EONIA and EURIBOR rates, which have a slight decrease up to a maturity of two years.

Besides the actual term structure includes two humps: One from decreasing to increasing, but

also one �attening the term structure at the longer maturity, which cannot be described by a

one-factor model as stated in Section 2.5.3. Hence, extending the CIR model to more factors

or time-varying parameters would circumvent this issue. However, extending the CIR model

changes the focus of this thesis, which rather focus on estimating the xVA charge, taking the

underlying risk factors as given. In reality, the xVA model of a �nancial institution should take

as input risk factor output from the models already developed in the organization to increase

consistence and sophistication of the xVA model and lower computational e�ort rather than

do the same simulations a second time for the xVA model (Ruiz, 2015). As mentioned in
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Section 2.3.2 adding a jump di�usion makes the model dynamics of credit spreads consistent

with empirical data. The prevalent issues for the default intensity input is respectively:

- The simpli�ed assumption of using the pricing function for a single-name CDS con-

tract to price an index CDS contract, which has a slightly di�erent payout structure

evaluated in Appendix B.3.

- The choice of a proxy, which at best captures the systematic credit risk of the

counterparty but not takes into account idiosyncratic risk as mentioned in Section

2.5.4 and Section 4.5.1.

- The rather wavy term structure described in Section 5.2.2, which makes it di�cult

to �t parameters to the model and results in a strong reversion speed of κ and a

strong jump di�usion e�ect as can be seen in Figure 5.5.

Figure 5.5: Credit Rate Term Structure

Source: Author's own creation

If internal models used to rate the speci�c counterparty is available, this can be used or

combined with the JCIR model to make a more sophisticated model for default intensity of the

counterparty. This would increase internal validity of the model if used by �nancial institution

estimating their xVA charge.

5.4.2 Scenario Analysis

Estimation of �rst-order and second order sensitivities increase the computational time of the

model manifold (Ruiz, 2015). (Kenyon and Green, 2015a) shows how such sensitivities can be

calculated using analytic measures or an algorithmic di�erentiation to optimize computational

time when requiring a large number of di�erent sensitivity measures. However, presenting

such methods is beyond the scope of this thesis. This section analyses the model sensitivity

with respect to some of the most critical input factors for two reasons: Firstly, it checks the

sensitivity of the results presented above towards realistic market changes. Secondly, it ensures
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that the model behaves as expected towards changes in such input factors. Table 5.5 shows the

5 di�erent cases tested against the base case equal to case 20 in Section 5.3.3.

Case 21 checks the e�ect of doubling the chosen MTA on the bilateral CSA agreement with

the counterparty keeping everything else equal. This case is not signi�cantly di�erent from case

20 for any of the xVA terms including the overall xVA charge, except for a signi�cant yet small

increase in the CVA charge. Hence, the increase in MTA would have to be higher to provide a

signi�cant di�erence on the costs of collateralization (CollVA) and potential gap risk increasing

the CVA charge further. The change would also e�ect EAD in the SA-CCR charge negatively

as can be seen from equation 4.27. Nevertheless, the minor MTA increase does not seem to

have signi�cant e�ect on KVA. It is worth noticing, that volatility increases slightly for all xVA

terms, which indicates possible higher variability of expected xVA charges.

Case 22 investigates the spread in accrual rate between the two collateral agreements. Hence,

it doubles the negative spread to the OIS rate to be accrued on collateral posted at or by the

CCP, while holding the accrual rate for the agreement with the counterparty constant at the

OIS rate. As for the case above this change does not have any signi�cant change on either the

total xVA charge or any of the xVA terms. However, it does seem to increase the volatility of

all di�erent xVA charges.

Case 23 looks at the e�ect of increased funding costs with a �xed 200 bp spread between

funding and lending rate133 instead of 100 bp as assumed in case 20. In reality, such a change

would follow as a consequence of a decline in the credit rating of the �nancial institution, though

a perfect parallel shift would be unlikely (Phoa and Shearer, 1997). Di�erent from case 21-22,

the change in case 23 a�ects the overall result with a signi�cant increase in the total xVA

charge caused by a signi�cant change in MVA and CollVA, as the costs of funding mismatch

in collateral and funding initial margin increase. It does, however not signi�cantly a�ect HVA,

which remains a bene�t for the reasons discussed in Section 5.3.2.

Case 24 evaluates the choice on return of capital. If the �nancial institution requires a higher

target return on the capital held due to regulatory demands, this would increase the costs of

such capital and thus the KVA charge. This is indeed the case even with the return rate only

increasing from 8.3% in case 20 to 10% in case 24. KVA increases signi�cantly leading to a

signi�cant increase the total xVA charge, while the other xVA terms do not change signi�cantly

as expected.

Cases 25-26 take a closer look at the underlying risk factors, which strongly depend on model

choice and the current market outlook for interest rates and credit risk. Hence, changing the

underlying assumption for calibration checks the robustness of the model assumptions, while

also indicating, how changes in market conditions would a�ect the xVA charge and the di�erent

xVA terms.

As mentioned in Section 5.4.1 the one-factor CIR model cannot perfectly describe the current

term structure with short term falling rates followed by an upward slope term structure and does

not accept negative interest rates. For this reason, case 25 provides results of a recalibration

of the stochastic interest rate models restricting the current short rate to be strictly positive.

133With the lending rate equal to the OIS rate.
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Hence, avoiding the issues of dealing with negative rates described in Section 5.2.1.

Table 5.5 shows how such a calibration result in a decreasing κ and β, while θ increases

considerably. This decreases the long run rate, κ · θ = ϕ, from 0.22% to 0.09%. Comparing

case 25 to case 20, the higher interest rate result in a signi�cant higher xVA charge driven by

signi�cant increase in KVA, CollVA, and MVA. Strictly positive rates clearly increase the costs

of both funding collateral and accruing interest on initial margin, while the higher KVA is an

indirect result of increased standardized EAD because of a higher swap exposure. Hence, the

simplicity of the regulatory framework results in a more critical change in exposure as value

increase compared to a smoother adjustment in the more sophisticated internal model taking

into account the actual underlying interest rates when discounting. Besides, a small borderline

signi�cant increase in CVA follows from the increased part of exposure not being hedged. The

volatility of all xVA charges except KVA increase as a result of this change in the parameters

of the underlying interest rate models.

Lastly, case 25 evaluates the sensitivity towards calibration of model parameters for the

JCIR model providing the default intensity. Section 5.4.1 evaluates that using iTRAXX Europe

Crossover Index as proxy for a counterparty might not be a perfect �t. Nevertheless, not having

speci�ed a genuine counterparty, it makes more sense to focus on the issue of a wavy term

structure of the default rates resulting a jump in the term structure from 5-year to 10-year

iTRAXX series, which might be a result of illiquidity of 10-year series or segmented markets134.

To try see, how this might a�ect results, Table 5.5 provides a recalibration of the JCIR input

parameters only based on the 5-year iTRAXX series, acknowledging that longer maturities

are not as well described by the new parameters. κ, β, and γ decrease considerable, while

α increases slightly and θ increases signi�cantly. Though the variation both β and the jump

di�usion decrease signi�cantly, the long-run default intensity, θ̃ = θ+ α·γ
κ , increases greatly from

4.68% to 36.78% as reversion speed, κ, of the calibration for case 25 is only a fraction of that in

the calibration for case 20. However, jump e�ects lose most of their magnitude as a result of γ

dropping.

Table 5.5 indicates that the higher long run default intensity e�ect outweighs the lower

volatility through β and the jump di�usion. As expected such a di�erence creates a signi�cantly

higher CVA and KVA charge. Higher default intensity drives up KVA being the logic conse-

quence of a higher expected default intensity entering the calculation of the RW in equation

4.26, while CVA is directly linked to default probability of exposure in equation 4.24. Volatility

of CVA increases, while the more stable default intensity with less jump e�ect reduce KVA

volatility. The result furthermore indicates higher volatility on funding issues (FVA and MVA),

while the CollVA and HVA charge respectively are borderline signi�cantly higher and lower for

case 26 than case 20. Yet, these should not depend on change in default intensity, as this has no

e�ect on exposure and collateral. It is quite likely, that these changes prove insigni�cant when

increasing the amount of simulations. These changes become insigni�cant when increasing the

amount of simulations.

Based on the di�erent scenario analyses of sensitivity, the results indicate that the model

134(Choudhry et al., 2012) discuss the segmented market hypothesis and liquidity preference theory.
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responds as expected to changes made, though minor changes in the collateral agreements might

not be signi�cant. Potentially, a much larger amount of simulations or more extreme changes

in those scenarios are needed to provide a signi�cant result. Nevertheless, the volatility remains

high for a great number of simulations, which might indicate heavy tails rather than just MC

noise evaluated below.

5.4.3 Simulation Precision

All results presented in Section 5.3 and Section 5.4 are achieved using 20,000 simulations. The

con�dence intervals in the model output tables are calculated as (Hull, 2012)

µ̂± ρ−1 (0.95) · σ̂√
M

where µ̂ is the estimated value with σ̂ standard deviation using M simulations. Reducing

the spread of the con�dence intervals further would require a great increase in the number

of simulations, as the e�ect of more simulations decrease with the square root. Extending the

model of this thesis to achieve more precise estimates at potentially less computational e�ort can

be done with several variance reduction methods as observation sampling, antithetic variables

or control variables as described by (Glasserman, 2003). Furthermore, using quasi MC methods

moves away from generating completely random numbers and instead use low-discrepancies

sequences to ensures a more even distribution, making convergence nearly proportional with

M (Glasserman, 2003). Such an extension is possible to use if using another algorithm than

(Marsaglia and Bray, 1964) to determine the random Gaussian variables (Glasserman, 2003).

Equation 3.17 in Section 3.2 provides an approximate measure of MC noise in terms of a

standard normal distribution with mean 0. Isolating the standard deviation makes

σ̂MC =
σ̂√
M

Table 5.6 provides measurement of the MC noise for the case 20 in Section 5.3.3.

Table 5.6: Monte Carlo Noise

Case: 2 : 3&6*, Payer, 7Y.

NPV σ σ̂MC

xVA Total 1733.21 3372.83 23.85

CVA 17.75 46.23 0.33

CollVA 905.56 3319.68 23.47

HVA -167.70 976.85 6.91

FVA 737.86 2351.11 16.62

MVA 186.60 570.44 4.03

KVA 790.99 556.88 3.94

Source: Author's own creation

Interestingly, though the volatility of xVA remains quite high at 20,000 simulations, only
σ̂MC
σ̂ = 0.71% of this variation is approximately a result of the MC noise. It seems reasonable
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that conclusions drawn using a 95% con�dence intervals on 20,000 simulations provides a result

only marginally blurred by the MC noise. To half the current MC noise, M must equal 80,000.

With each simulation of a contract with 7-year maturity equal to 15-20 milliseconds, using

20,000 simulation takes approximately one hour. If using some of the methods described above

to increase convergence of the simulation, this is to be compared against a case with n =
[
s
t

]
simulations135 in order to measure the MC e�ciency.

As mentioned in Section 3.3 one should be careful interpreting insigni�cant changes, as these

might as well be a result of the MC noise and does not ensure a 95% signi�cance. Furthermore,

the assumption by (Glasserman, 2003) that the MC noise follows a normal distribution with a

0 mean might be very misguiding. The distribution of the the xVA charge simulations forming

the results in Table 5.6 presented in Figure 5.6 reveals that the distribution has very heavy right

tale. One potential cause can be that the model has a relative �at default intensity with a strong

downwards reversion from the CIR part of the JCIR as discussed in Section 5.4.2. However, the

jump e�ect does in rare cases provide extremely high jumps in default intensity, hence, CVA

and KVA will explode in extreme cases compared to their average value. In extreme cases of

the interest rate model, this can increase FVA and MVA radically.

Figure 5.6: Simulation Distribution of Total xVA Charge

Source: Authors own creation

If adding to the model the option to select a seed for the simulation process, this gives a

�xed MC noise. Such an adjustment to the model would require seed input for each path, which

would complicate the simple structure of adding simulations. Hence, such an extension is left

to further research.

135See Section 3.2.
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Part VI

Managing xVAs



6.1 Introducing xVA Management

This part uses the conclusions from the model results presented in Section 5.3 to evaluate

optimization the overall xVA charge and methods to hedge and manage xVA risk. There are

strong overlaps and interdependences between the di�erent xVA terms. As a results, �nancial

institutions have moved towards centralization of xVA management at a xVA desk (Carver,

2013). Section 5.3 demonstrated how the relative importance of di�erent xVA terms changed

with choices of hedging and collateral agreements and potentially lowered the total xVA charge.

Hence, depending on the type of derivative contract it is possible to optimize the contract terms

to reduce the total xVA charge. First section discuss optimization of the total xVA charge as the

price competitiveness of the �nancial institution, does not care about the size of each xVA, but

the overall xVA charge (Ruiz, 2015). This includes model results on setting an optimal initial

marging. Second section discusses hedging possibilities besides the market risk hedge included

in the model. Last section accounts for more general risk management approaches by the xVA

desk, combining hedging and optimal xVA charge with further risk management strategies.

6.2 xVA Optimzation

For the purpose of approximating an optimal choice of contract terms minimizing the total xVA

charge, this thesis focus on a payer IRS contract with 3-month tenor on the �oating leg paid

semi-annually having a quasi hedge.

As mentioned in Section 5.3.2, the perfect hedge would be a more optimal choice of hedge in

eliminating market risk, though this cannot be seen from the results, as the longer tenor e�ect

of the �oating leg is larger than the market risk reduction. However, if a 3-month tenor �oating

leg paid semi-annually is available or can be replicated with FRA contracts136 at costs below

that of the quasi hedge instrument and the additional xVA reduction from having a perfect

hedge, using such as hedge instead, would lower the total xVA charge further.

It is quite clear from Section 5.3.3 that unilateral CSA agreements with the counterparty

is favorable, but also slightly unrealistic to achieve when assuming a rational counterparty.

Hence, we focus on bilateral CSA agreements with the same �xed MTA and rounding as case

16-20 in Section 5.3.3 to avoid conclusions on these two options, as they will de�nitely be

sensitive to introducing operational costs of transferring collateral, which is left out of the

model. Furthermore, minor changes in these collateral options do not signi�cantly change the

total xVA charge as demonstrated in Section 5.4.2.

Still outstanding is determination of an optimal initial margin or threshold in terms of the

overall xVA costs. To analyze this issue and provide approximate indications, Figure 6.1 pro-

vides the overall xVA charge as a discrete function of threshold or initial margin requirements.

No threshold and a dynamic initial margin is assumed for the CCP while thresholds and initial

margins are held equal for both counterparty and the �nancial institution. Otherwise, it would

logically be optimal to allow a huge threshold for the �nancial institution, which in the limit

reduces the bilateral CSA agreement to a unilateral agreement. As mentioned in Section 4.2.1,

136Forward rate agreements.
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thresholds and initial margin are the exact reverse things of one another, meaning that a thresh-

old can be seen as a negative initial margin and vice versa. For this reason, it makes no sense

to include them both simultaneously. Hence, the negative initial margin in Figure 6.1 means

that initial margin equals 0, but threshold instead is positive with that amount of the notional

swap value. The optimal initial margin is an approximation found by a trial and error process

of simulating the total xVA charge for di�erent amounts of initial margin and thresholds for the

payer IRS contracts with respectively 3, 7, and 10 years to maturity. The resulting xVA charge

is indexed to 100 for IM = 0.00% to allow for comparison across maturities.

Figure 6.1: xVA Charge

Source: Author's own creation

Figure 6.1 shows that including an initial margin reduces the total xVA charge compared to

not doing so or allowing for a threshold. Comparing similar contracts with di�erent maturity,

the expected exposure is logically smaller for shorter maturities due to less uncertainty and

potential variation, which is a function of time to maturity. This results in a lower optimal

level of initial margin for contracts with shorter maturity. For a contract with only 3-year

maturity, the optimal initial margin is only slightly above 0 given the current term structure

of interest rates and the default intensity providing a low gap risk of exposure. However, in

all cases some amount of initial margin is still more optimal than including no initial margin

or allowing for a threshold. The optimal xVA charge for the 7-year payer IRS contract is 4.93

bp, which is not signi�cantly di�erent from case 20, which includes a dynamic initial margin.

Hence, a dynamic initial margin seems to capture an optimal level of initial margin quite well.

(Gregory, 2015a) provides similar results as above for the optimal choice of �xed initial margin

with respect to contract maturity, while also providing an increasing relationship with lower

credit quality of the counterparty. Knowing this, it might be possible to create an approximate

xVA optimization of initial margin based on maturity of the contract and credit quality of the

counterparty. However, as shown in Section 5.3 many other factors like hedge choice, �oating

leg tenor, collateral agreement details, and current term structure of interest rates a�ect the
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exposure and xVA charge. Thus, these alter the optimal choice of initial margin. However,

using a dynamic initial marging would account for all of the above issues, if the swap exposure

volatility used to estimate intitial marging requirments is time-inhomogeneous.

6.3 Hedging xVA

If a perfect xVA hedge existed, this would allow the trading desk to simply use the traditional

risk-neutral price under the multi-curve pricing approach while adding the costs to set up the

xVA hedge (Ruiz, 2015). Hence, the xVA charge represents the cost of di�erent risks not included

in traditional pricing, which the xVA desk can use for hedging purpose. These costs can be seen

as the premium of an exotic option with a complex payo� structure determined by the underlying

exposures. However, replicating such an option is impossible due to the enormous complexity

of the payo� a�ected by many underlying risk factors also displaying interdependencies. Hence,

such a replication is computationally impossible to model exactly. Besides, issues as future

changes in regulations includes a great deal of uncertainty, which also cannot be accurately

quanti�ed (Gregory, 2015a). Acknowledging these issues, this section suggests di�erent hedge

strategies to mitigate some of the xVA risk, accepting that not all xVA risk can be completely

covered. Hedging of market risk has already been covered in Section 5.3.2, while Section 4.5.1

explains how such hedge instruments incur a KVA charge, which reduces the hedge e�ciency as

capital rules are not perfectly risk sensitive (Gregory, 2015a).

The CVA represents the credit risk of the counterparty given the exposure of the contract.

If a CDS contract would be available on the counterparty such can be used to hedge the default

risk. However, CDS contracts have a �xed notional value, while the CVA risk is contingent on

the exposure of the contract, which as shown in Section 5.3.1 changes over time. There have

been issued contingent CDS contracts, where the notional value is indexed to the value of a

contract or an index, but these are highly illiquid (Gregory, 2015a).

(Ruiz, 2015) instead suggests an approximate static hedging strategy with CDS contracts,

which approximately replicates a contingent CDS contract. This is a backward hedging process

dividing the expected exposure pro�le into a discrete number of intervals and calculating their

average exposure, EE∗i , as in Section 4.2.2. Starting with the last time interval, which ends at

time Ti, the required notional CDS protection, HH
i , with maturity, Ti, equals EE

∗
i . Moving

backwards to the discrete interval ending at Ti−1, H
H
i−1 = EE∗i notional value of CDS protection

with maturity Ti−1 is either bought or sold short depending on the sign of HH
i−1. Continuing

backward until T0, this approximately hedges the expected exposure at initiation of the contract.

However, CVA sensitivity to the underlying market risk factors like the interest and FX rate

must also be hedged to try lock in the expected exposure pro�le. Otherwise, the CVA hedge

might be completely o�, as changes in underlying risk factors change the actual exposure pro�le

and hence CVA. Creating such a market risk hedge is far from easy. (Ruiz, 2015) suggests �rst

hedging gamma137 and vega sensitivities138 of CVA towards the underlying risk factors with

137Including cross-gamma e�ects between interdependent underlying risk factors.
138I.e. the second-order sensitivities.
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options and use future or swap contracts to hedge the delta sensitivities139. However, such

hedges must be with a CCP140 or based on exchange instruments as these will otherwise carry

counterparty risk themselves. Still, OTC hedges carry other xVA costs as CollVA, MVA, and

HVA.

Taking into account the illiquidity of the CDS protection, this produce transaction costs

making the approximate static hedges less attractive. Besides, this thesis focus on minor cor-

porate counterparties, for which single-name CDS protection is not available. Hence, an index

CDS like an iTRAXX index can provide a proxy hedge for the systematic risk as mentioned

in Section 4.5.1, but cannot protect against actual default and hence results in a less e�cient

hedge than when using a single name CDS contract. In addition, the iTRAXX index contracts

are OTC-trades (Markit, 2014b) leading to an xVA charge itself141 (Ruiz, 2015).

Hedging of other xVA terms is even more di�cult, as hedge instruments seem even less

obvious than for CVA. In theory, FVA can be hedged approximately by borrowing forward

expected funding needs from the expected positive hedge exposure pro�le in the same way as

the approximate static CVA hedge on the expected exposure pro�le. However, this also requires

hedging of market risks as for CVA, but with respect to FVA sensitivities toward underlying

risk factors. Even with this being possible, it requires the possibility to borrow forward from the

treasure department of the �nancial institution, which usually only provides short-term funding

of liquidity needs (Ruiz, 2015). Leaving FVA unhedged results in liquidity risk on funding as

described in Section 4.3.1 measured through the spread between bond yield and credit rates.

This risk might lead to much higher funding costs as Section 5.4 indicates in a simple case of

parallel increase in the funding spread. These funding issues would a�ect the funding of initial

margin equivalently. Hence, hedging the MVA charge based on the expected initial margin held,

would use the same approach as FVA.

As already mentioned, some of the KVA charge is possible to partially hedge by hedging

CVA with CDS or Index CDS hedges as mentioned above to achieve partial relief on the CVA

regulatory capital charge (Gregory, 2015a). The rather simplistic Basel framework to calculate

exposure provided in Section 4.5.1 does not capture exposure as precisely as CVA. Hence, KVA

exposure to the underlying risk factors is slightly di�erent than CVA exposure. On top of

counterparty risk hedges, achieving capital relief in the CVA capital charge by setting up a

market risk hedge, minimizes the exposure and lowers the SA-CCR charge142 and MR charge as

evaluated in Section 5.3.2. Yet, the most di�cult issue of KVA still remains. Namely, hedging

the risk of changes in the regulatory framework, which is next to impossible to predict at a long

time horizon, when thinking of the numerous changes in regulations presented just in the past

decade.

139I.e. the �rst-order sensitivities.
140Hedge instruments at a CCP are still subject to SA-CCR capital charge resulting in KVA costs.
141Mainly costs of collateral if traded with a CCP, as low gap exposure and default risk makes CVA negligible,
while KVA only occurs from the SA-CCR charge.
142Even though the CCP hedge is subject to SA-CCR charge as evaluated in Section 5.3.2.
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6.4 xVA Risk Management

The hedging strategies provided in Section 6.3 are only approximations. Trying to make a

precise hedge might result in higher transaction costs than the value at risk. It is, hence a

strategic decision to what extend the xVA desk should actively try hedging the xVA risk or

instead set aside the xVA charge as a capital bu�er to cover losses and accept the full xVA

volatility. Between these two extremes, the xVA desk can act as a pro�t center like trading

desks, potentially pro�ting from open exposure, but ensuring appropriate risk management

(Ruiz, 2015).

Besides hedging the xVA exposure, risk management at the xVA desk includes negotiation

of optimal collateral agreements with the counterparties and ensuring market risk hedges with

a CCP to optimize the overall xVA charge as covered in Section 6.2 (Gregory, 2015a). However,

such must be done with respect to the hedging alternatives of the xVA exposure as described in

Section 6.3.

Managing more counterparties, the choice of central clearing of such contracts at a CCP in

the same way as the market risk hedges eliminates counterparty risk and allows for compression

of all trades. Compression works in the same way as netting trades on a per counterparty basis,

though possible across original counterparties when contracts are centrally cleared (Gregory,

2015a). However, clearing fees and costs of compression must be held against the bene�t from

elimination of counterparty risk.

Besides the analytical mitigation of xVA exposure, risk management can set di�erent limits

for the trading desk regarding

- total xVA exposure

- individual limits on the credit risk on di�erent counterparties

- exposure limits towards di�erent underlying risk factors

The xVA desk is responsible to enforce such limits (Ruiz, 2015). Managing the combination of

exposure and xVA risk limits, hedging strategies, and optimization of the xVA charge through

market risk hedges and collateral agreements becomes an extremely complex matter, which in

practice is still under development at the xVA desks of �nancial institutions.
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Part VII

Conclusion



In this thesis, we have presented expansions of the basic risk neutral pricing method of

OTC �xed income derivatives, which emerged as a consequence of the �nancial crisis of 2008.

These extensions have been exempli�ed with a model framework to price single IRS contracts

nominated in EUR or �xed-�xed CCS contracts nominated in respectively EUR and USD. The

model takes the point of view of a medium-sized �nancial institution pricing a swap contract

with a minor corporate counterparty with credit quality below investment grade. Hence, the

counterparty perceives the �nancial institution to be risk free relative to themselves. While

this is the case for the counterparty the �nancial institution is not risk free from the point of

view of �nancial markets. Therefore, the �nancial institution can only achieve funding at a risk

premium.

This model extends basic pricing of swaps to a multi-curve framework recognizing the ex-

istence of a basis spread between di�erent �oating tenors due to non-negligible credit risk and

liquidity risk on the interbank market. We further present, how basic assumptions for the risk

neutral pricing framework of OTC derivatives have been abandoned as a result of acknowledg-

ing counterparty credit risk, funding costs, and regulatory capital requirements. These issues

became apparent with the �nancial crisis and resulted in the rise of xVAs to adjust the risk

neutral price.

Counterparty credit risk of OTC derivatives must be taken into account. But such exhibits

dependency with interest rates. Hence, appropriate inclusion of counterparty credit risk results

in model dependency, which is only feasible through numerical pricing, even for plain vanilla

interest rate derivatives. The numerical pricing problem includes high dimensionality most

e�ciently solved with Monte Carlo simulation of the underlying risk factors with dynamics

described by stochastic models. A simulation approach furthermore makes it possible to model

collateral directly. This thesis examines a CIR model to describe the dynamics of interest rates

and a JCIR model to describe the default intensity dynamics of the counterparty as a simple and

tractable way to model the underlying risk factors. Dependency modelling of interest rates and

default intensity is achieved through Cholesky factorization of the Gaussian variables based on

historical correlation. Furthermore, this thesis provides the framework to calibrate the interest

rate models to market quotes of swap rates and the default intensity model to quoted credit

spreads of the iTRAXX Europe Crossover Index as proxy for counterparty credit risk. Model

parameters are �tted using the generalized reduced gradient non-linear optimization method.

Suitable discretization schemes are de�ned for the stochastic risk factor models for simulation

purpose to ensure convergence towards the true value.

The stochastic underlying risk factors provide the necessary input to estimate exposure of the

swap contract throughout its lifetime, which allows for estimation of the xVA charge divided into

di�erent components. CVA measures expected losses on the swap contract due to counterparty

default risk. FVA evaluates the costs of funding cash �ow mismatches of the contract (HVA)

and funding costs of collateral posted (CollVA) to mitigate counterparty exposure and hence

CVA. MVA accounts for funding costs of segregated initial margin posted to cover potential gaps

between contract exposure and collateral posted. KVA relates to the costs of the capital bu�er

required by regulatory authorities to be held against unexpected losses. Regulatory capital is
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determined as the CCR-SA charge and the regulatory CVA charge for counterparty risk following

the Basel framework and an internal model to estimate regulatory capital for market risk.

The simulation model based on the above inputs demonstrate that the di�erent estimates

of xVA terms depend on swap contract properties. The expected exposure and the total xVA

charge increases for swap contracts with longer maturities as these yield higher uncertainty. The

current upward sloping EUR interest rate term structures generally result in larger exposure

for payer than receiver IRS contracts, which furthermore increases CVA, FVA (through HVA),

and KVA for the payer relative to the receiver IRS contracts. Longer tenor on the �oating leg

does not surprisingly also result in a higher exposure and total xVA charge. Exposure and xVA

charge of Fixed-Fixed CCS contracts yield similar relation to the contract maturity, but are

much higher than for IRS contracts as it is also sensitive to the FX rate, which for simplicity is

assumed to follow the interest rate parity. This makes the FX rate a deterministic function of

the stochastic spot interest rates. This upward FX rate term structure overweighs the positive

exposure of the �xed-�xed CCS contracts and results in almost negligible negative exposure.

Introducing the option to hedge market risk with an identical or similar reverse swap contract

with a CCP greatly reduces exposure and the total xVA charge, though the collateral agreement

and initial margin requirements related to the hedge with the CCP result in a CollVA and MVA

charge. Mitigating counterparty exposure through a collateral agreement and initial margin

requirements further increase respectively CollVA and MVA. Yet, the JCIR model based on the

iTRAXX index CDS provides a rather modest level of credit risk. Hence, the funding costs of

collateral and initial margin, outweigh the reduction in CVA, HVA, and KVA for the bilateral

CSA agreements. This makes the collateralized xVA charge higher than the uncollateralized

case, except for unilateral CSA agreements with the counterparty posting collateral. However,

combining collateral agreements with a market risk hedge reduces CollVA signi�cantly due

to rehypothecation of collateral, which reduce funding requirements to emerge from negative

mismatches in collateral between the counterparty and the CCP and hence CollVA. As the

hedge also further reduces CVA and KVA, while also providing a HVA bene�t as a consequence

of the current interest rate term structure, collateral agreements including a market risk hedge

result in a much lower xVA charge, even at a low level of credit risk.

The optimal total xVA charge depends on counterparty credit risk, funding costs, capital

requirements, and many other issues. Hence, the choice of hedge and collateral might di�er

much depending on these issues. This thesis demonstrates how an optimal amount of initial

margin can be set to minimize the total xVA charge with respect to maturity of the contract,

knowing that changes in counterparty credit risk, �oating tenor and other features also a�ect

the optimal initial margin post. Such issues can potentially be covered by setting a dynamic

initial margin. It is possible to establish di�erent proxy hedges for the risk of the di�erent

xVA terms based on the expected exposure pro�le and xVA sensitivities to di�erent underlying

market risk factors. Yet, a perfect hedge is next to impossible to establish as there is a limited

access to necessary hedge instruments and as transaction costs of hedge instruments limit the

extent to which hedging is e�cient. Furthermore, such hedge instruments might carry xVA risk

themselves. The xVA desk of a �nancial institution might enforce overall limits on the xVA risk
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allowed to account for risks uncovered by collateral and hedging strategies.

Sensitivity analysis of the model includes a back test of the model with a discussion of the

input factors and scenario analyses verifying model robustness and internal validity when cru-

cial assumptions change. Subsequently, the scenario analysis evaluates the xVA sensitivities to

changes in �xed input assumptions. The model estimates of the di�erent xVA terms in the dif-

ferent scenarios change as anticipated for the most crucial input changes, namely funding costs,

target return on capital, and recalibrated parameters for the underlying stochastic risk factor

models. On the other hand, minor adjustments of the collateral agreement lack signi�cance in

the model estimates. An evaluation of the simulation precision indicates a low MC noise from

using 20,000 simulations in the pricing model. Heavy tails in the distribution of simulations

have a large impact on the average xVA charge, which might result in a slightly higher MC

noise than those estimated.

Though the pricing model presented in this thesis is a simpli�ed version of reality, it proves to

be extremely complex and requires a great computational e�ort. This illustrates the magnitude

of the quantitative challenge faced by �nancial institutions requiring models capable of pricing a

tremendous quantity of di�erent OTC derivatives simultaneously to include marginal e�ects and

interdependencies. Sophisticated xVA models must also include a wide arrange of sensitivity

measures with respect to underlying risk factors and cross-gamma e�ects between these to

provide a reasonable foundation for risk management. However, an appropriate xVA model must

be able to achieve such estimates at a high level of precision without accelerating the computation

time. Hence, derivative pricing with inclusion of xVAs still remains a complex matter for �nancial

institutions. Meanwhile the likelihood of additional value adjustments emerging remains, which

will increase the complexity of derivative pricing further.
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Appendix A

Appendix: Fundamentals of Swap

Contracts

This appendix introduces di�erent kinds of simple swap contracts and the fundamentals of swap

properties and valuation.

A swap is a �nancial contract where two parties exchange a stream of cash �ows for a

predetermined period of time with one another (Munk, 2011). The simplest example is the

plain vanilla interest rate swap (IRS) where the exchange of cash �ows is de�ned as interest

rates on an agreed notional value. As can be seen in Figure A.1, Party A pays a �xed interest

rate throughout the life of the swap contract and receives a �oating rate from the counterparty,

B, linked to a �oating reference rate (e.g. EURIBOR and LIBOR) in exchange1. The two

di�erent sides of the contract are called the legs. Thus, an IRS has a �xed and a �oating leg.

In a plain vanilla IRS, the �oating rate can be quoted on a day-to-day basis as the overnight

indexed swap rate (OIS). Some other very common quotes are the 3-month, 6-month and 1-year

reference rate (Wilmott, 2007). The �oating payment is based on the prevailing reference rate

for the period in the vanilla contracts. If payments are less frequent than the quoted �oating

rate, it will be rolled over up to the next payment being an average of those rolls. Usually, the

�xed rate is set so, that the present value of the swap contract is close to 0.

Figure A.1: Interest Rate Swap Contracts

Source: Author's own creation

Swaps is an OTC product, which means that it is not traded on an exchange and thus not

standardized. This makes it possible to design payments, notional, maturity and other features

to �t the parties entering the contract. This has given a variety of more or less exotic swap

1This is called a payer swap
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types, which besides interest rates also can be based on currencies, equity, credit, commodities

ect. (Hull, 2012).

Financial institutions are mainly used as intermediaries between two parties by entering

two o�setting swap contracts with two di�erent counterparties to hedge away the interest rate

market risk on the cash �ows, as can be seen in Figure A.2. This provides a liquid market place

for swap contracts as �nancial institutions act as market maker on swaps quoting a bid-ask

spread to account for the risk on their matched swaps contracts, which have to be hedged.

Figure A.2: Interest Rate Swap Contracts through an Intermediary

Source: Author's own creation

Table A.1 and Table A.2 indicate that the swap market have become more liquid over the

years. Hence, total notional amount and the total market value have increased, due to the

positive development in both interest rate swaps and cross-currency swaps outstanding. In

addtion the market share for interest rate swaps and cross-currency swaps has increased quit a

lot over the years.

Table A.1: Notional Amounts Outstanding
07 08 09 10 11 12 13 14

Total derivative contracts 585.932 598.147 603.899 601.046 647.810 635.684 710.632 630.149

Cross-Currency swaps 14.346 14.940 16.509 19.271 22.791 25.420 25.447 24.203

Interest rate swaps 309.588 341.127 349.287 364.377 402.610 372.293 456.725 381.027

Source: (BCBS, 2015)

Table A.2: Gross Market Value
07 08 09 10 11 12 13 14

Total derivative contracts 15.802 35.280 21.541 21.298 27.296 24.953 18.825 20.880

Cross-Currency swaps 817 1.633 1.042 1.234 1.324 1.258 1.186 1.350

Interest rate swaps 6.182 18.157 12.575 13.138 18.045 17.284 12.918 13.946

Source: (BCBS, 2015)

A.1 Interest Rate Swaps

The plain vanilla IRS is as mentioned above a contract exchanging �xed interest payments for

payments determined by a quoted reference rate. The use of IRS contracts is quite popular, as it

can be used to hedge or speculate against changing interest rates. An IRS can also transform the

payment stream of an asset or a liability, so that a �xed or �oating return is reversed, without

having to change the asset or liability itself. This can often be done cheaper than replacing an

asset or a liability, which explains the popularity of IRS contracts. This is called the competitive
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advantage argument (Hull, 2012). This theory argues that some companies have a comparative

advantage in borrowing money on the �oating-rate market, while others have a comparative

advantage borrowing in the �xed-rate market. By entering a swap contract, a company is able

to borrow at a �xed rate by borrowing in the �oating-rate market and convert to a �xed rate

using a plain vanilla IRS. Vice versa being the case for the counterpart company, which will in

total give a lower interest rate for both (Wilmott, 2007).

This theory has been facing a lot of critique. One can argue, that the �oating loan being

cheaper for company would only be because the credit risk of a company is smaller for a shorter

period of time. Increasing credit risk as time go by would make the lender refuse to roll over

the �oating rate for the next period without an additional spread to the reference rate (Hull,

2012). If the comparative advantage would still exist taking the credit risk into account for the

�oating rate, then the gain should disappear due to the rule of no arbitrage.

However, the swap market remains huge, which has in itself given an advantage of being

more liquid than many of the bond markets (Wilmott, 2007). From Table A.1 and Table A.2,

the IRS market did in December 2014 account for 60.5% of the total derivatives market with a

total notional amount of USD 381 trillion and with a market value of almost USD 14 trillion

outstanding.

Besides the plain vanilla IRS, the basis swap has also become an important single currency

swap.This swap contract exchanges cash �ows given by a �oating rate for both parties. However,

this will be di�erent quoted reference rates, e.g. paying 3 month EURIBOR versus receiving 6

month EURIBOR or paying 3 month EURIBOR versus receiving 3 month LIBOR. Because the

di�erent types of reference rates or di�erent quoted maturities carry di�erent credit risk, there

will be higher rate on one of the legs. To even this di�erence, the leg with the least risk will

be added a spread. This basis swap spread has become very important to measure the risk of a

certain tenor rate.

The OTC-market has developed many types of IRS contracts more complex than the plain

vanilla swap IRS. Some like the step-up swaps and the amortizing swaps does not have a constant

notional value. Some swaps only exchange cash �ows at maturity or pays the observed �oating

rate for each period rather than the prevailing �oating rate. The �oating rate might be set to

many di�erent reference rates and some cash �ows might only be exchanged when the �oating

rate is within a prede�ned bound. It is also possible to make swap contracts with embedded

options, so that the contract can be cancelled or terminated before the maturity date (Hull,

2012).

A.2 Cross-Currency Swaps

A plain vanilla �xed-�xed cross-currency swap (CCS) is an exchange of �xed interest rate cash

�ows and the notional at initiation and maturity, where the two legs of the contract are nomi-

nated in di�erent currencies, which can be seen from Figure A.3.
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Figure A.3: Cross-Currency Swap Contracts

Source: Author's own creation

Using the spot exchange rate the notional values are set so that they approximately are

equal. The interest rates are set so that the initial value of the contract is close to 0. Just as

for IRS contracts, CCS contracts can be used for speculating and hedging purpose. This will be

towards changes in the exchange rate. A CCS contract can also be used to transform liabilities

and assets from one currency to another without changing the underlying position. As for IRS,

some argue for a comparative advantage from doing so, e.g. if one company pays more for a

loan in one currency than in another. Even though some might argue, that such an advantage

should disappear in an e�cient market the liquidity of the CCS market makes it a cheap way

to make transformation of assets and liabilities (Hull, 2012).

Besides the plain vanilla CCS contract, it is possible to enter a basis CCS contract, which

exchanges two �oating legs. It is also possible to enter Cross-currency IRS contracts combining

the feature of a �xed and a �oating leg but in two di�erent currencies.

The CCS market did in December 2014 account for 3.8% of the total derivatives markets

with a total notional amount of USD 24.2 trillion and a market value of USD 1.35 trillion

outstanding, taking from Tables A.1 and Table A.22.

A.3 Bootstrapping of the Interest Rate Term Structure

Traditionally when evaluating swap contracts the assumption was that they could be hedged

completely and that the discounting curve was the same as the forwarding curve for the �oating

leg, meaning that there was no basis swap spread on di�erent quoted rate maturities, because

the �oating tenor rate was risk free. If such was possible, one could price the �oating leg simply

by calculating the expected future cash �ows determined from the forward rates and discount

these cash �ows back using the same rates (Bianchetti, 2008). Only the �oating payment �xed

for the next period will be priced, as it might di�er from the current risk free rate, which might

have moved since last prevailing rate was set. Also the cash �ows from the �xed leg can be

discounted with the same discount rates. Thus, the present value of the two legs is the value of

the swap contract (Hull, 2012).

2FX Swaps are not included as CCS, as only the principal is exchanged and the domestic returned at maturity
equals the forward price at initiation F0X and not the spot price STX (Amatatsu and Baba, 2008). In that
sense (BCBS, 2015) categorize FX swaps in group with FX Forwards.
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To construct the interest rate term structure or zero swap curve, liquid instruments for

di�erent maturities are used to derive a single discount rate at each maturity. These instruments

could e.g. be deposits for the short-term maturities, interest rate futures for the medium-term

and IRS on the long-term (Ametrano and Bianchetti, 2009). We need to �nd generic instruments

or instruments with maturity �tting the relevant maturities for which we want to �nd rates for

our curve or alternatively strip instruments with non-�tting maturities from accrued interest

(Kenyon and Stamm, 2012). If using bonds for constructing the curve, coupon bonds remain

liquid at longer maturities which is often also the case for IRS contracts. However, we need to

turn this into synthetic zero-coupon bonds to obtain one single rate (Munk, 2011).

If we need discount rates �tting the maturities quoted in the market, we can use interpolation

to �t term structure between the di�erent rates derived. This can e.g. be done with simple

linear interpolation, cubic splines or Nelson-Siegel parametrization (Munk, 2011). The latter

approach has become rather popular, as it provides a smooth, but still �exible curve with the

same constants for all maturities (Munk, 2011). Term structure formulae for zero-coupon rates

with Nelson-Siegel parameterization is given by

ȳ (τ) = β0 + β1 ·
1− e−τ/θ

τ/θ
+ β2 ·

(
1− e−τ/θ

τ/θ
− e−τ/θ

)
where β0, β1, β2 and θ are constants, which is to be calibrated. β0 re�ects the long-term forward

rates, where β1e
−τ/θ re�ects the e�ect on the short-term forward rates and β2 (τ/θ) e−τ/θ re�ects

the medium-term forward rates. The parameter θ gives the impact of the maturity interval for

τ (Munk, 2011).

However, though Nelson-Siegel parameters now have the quasi interpretation of the di�erent

parameters, the parameterization is not based on economic arguments, but simply on �nding

a good �t to the current term structure (Munk, 2011). Hence, interpolated rates are not con-

strained to follow the rule of no arbitrage, as the only concern is to create the best �t across

the entire term structure. (Christensen et al., 2011) however, provide a�ned modi�cations of

Nelson-Siegel, which abide to the rule of no arbitrage. Another shortcoming is that param-

eterization does not necessarily show consistency with dynamic short rate models, meaning

that interpolation for the sake of dynamics short rate model calibration might be inconsistent.

(Bjork and Christensen, 1999) demonstrate that only augmented versions of the Nelson-Siegel

parameterization are consistent with the Hull-White Model and Ho-Lee model. (Filipovic, 1999)

generalizes this to conclude that no simple interest rate models show consistency with the general

Nelson-Siegel.

A.4 Traditional Swap Valuation

As mentioned above the value of a swap contract is determined as the sum of discounted cash

�ows of the swap over the entire lifetime of the contract (including the cash �ows of notional

exchange on CCS contract at maturity). (Hull, 2012) discusses two basic approaches to value

both IRS and CCS contracts.
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Eventhough the principal is not exchanged at maturity for an IRS contract, the cash �ows

stream of interest payments of each of the legs and a �nal notional looks similar to a coupon

bond. Valuing the �xed and the �oating leg separately as respectively a �xed-rate
(
Bfixt

)
and

a �oating-rate
(
Bflt

)
coupon bond and subtract them from each other the similar notional will

cancel out and the di�erence in the value of the cash �ows will give the value of the IRS
(
V IRSt

)
.

Hence,

V IRSt = Bfixt −Bflt (A.1)

Depending on which cash �ow is larger, the value of the swap contract will be either negative

or positive. Note that as mentioned in Appendix A.3, the �oating bond would only consist of

next payment and principal as all other payments discounted and forwarded at the same rate

gives a present value of 0. For the value of a CCS contract
(
V CCSt

)
a similar approach applies:

V CCSt = BDt − S(t) ·BFt (A.2)

where the spot rate (S(t)) is multiplied to the foreign currency bond
(
BFt
)
measured in foreign

currency and the domestic currency bond
(
BDt
)
.

The other valuation approach follows that described in A.3. Here each cash �ow can be seen

as a Forward Rate Agreement (FRA) and thus the whole swap can be seen as a portfolio of

FRA contracts. The value of each FRA contracts
(
V FRAi

)
is given by:

V IRSi = H ·
(
rfix − rfl(ti+1−ti)

)
·D(ti+1−ti)

where D is the discount factor, H is the notional value, rfix is the �xed interest rate, rfli is the

�oating rate from time ti to ti+1, equal to the time between each payment. Thus the value of

an IRS contract would be:

V IRSt =

n∑
i=1

V FRAi

where n is the number of i cash �ows. For a �xed-�xed CCS the same applies, and each cash

�ow can be seen as an FX forward contract:

V FX Forward
i = fi,τ ·H ·

(
r − rf

)
·D(ti+1−ti)

where fi,τ is the forward exchange rate for period i with length τ = ti − ti−1. The value of the

CCS contract would be:

V CCSt = S0 ·H − fn,τ ·H ·D(ti+1−ti) +

n∑
i=1

V FX Forward
i
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A.5 Swap Valuation in Details

As mentioned in Appendix A.4, the value of a payer swap equals the value of a �xed bond minus

the value of a �oating bond as in equation A.1. The �xed rate bond value is

Bfixt = τ ·H · rfix·
∑n

i=i(t)
D (t, Ti) (A.3)

where τ is the length of each cash �ow period3 and D (t, Ti) the spot discount rate
4. The �oating

rate bond value

Bflt = τ ·H ·
∑n

i=1
D (t, Ti) · F (t, Ti, Ti+1) (A.4)

which follows the approach in Section 2.2.3 valuing the present value of the forward interest

payments, F (t, Ti, Ti+1) for a �xed cash �ow window of τ on the notional H. However, this is

the price of the �oating bond at time 0. At t > 0 the interest payment at the end of the current

period is known, and can thus be quoted as the spot rate, which changes equation A.4 to

Bflt = τ ·H ·

[
D
(
t, Ti(t)

)
r
Ti(t)
Ti(t)−τ

+

n∑
i=1+1

D (t, Ti) · F (t, Ti, Ti+1)

]

With r
Ti(t)
Ti(t)−τ

being the current �oating spot rate. Assuming pricing at t = 0, this can be

ignored. Then inserting the value formula for the �oating and the �xed bond gives the value of

the swap. Here the value of a payer swap from equation A.1 by inserting A.3 and A.4 is

V Payer0 = τ ·H ·
∑n

i=1
D (t, Ti) · F (t, Ti, Ti+1)− τ ·H · rfix ·

∑n

i=1
D (t, Ti) (A.5)

Rearranging gives

V Payer0 = H ·
(

(1−D(0, Tn)− τ · rfix ·
∑n

i=1
D (0, Ti)

)
(A.6)

For a CCS contract with two �xed legs as in Appendix A.4 equation A.3 can be substituted into

equation A.2

V CCS0 = τ · r ·
∑n

i=1
D (0, Ti)− S (0) · τ · rf ·

∑n

i=1
Df (t, Ti) (A.7)

where rf is the foreign �xed interest rate and Df (0, Ti) the discount factor with a foreign

rate. Note that in order to abide the no-arbitrage condition for two currencies in Section 2.2.5,

discounting the foreign leg must be with discount rates of that currency in order to convert as

the spot rate at t = 0 as given above.

3From Tito Ti+1
4From t to Ti+1.
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A.6 Deriving Swap Rates

The swap rate is the equilibrium �xed rate, which the market is willing to pay for receiving a

certain �oating tenor rate in exchange over a certain period of time (Hull, 2012). Thus, the

swap rate is the �xed interest rate making the value of the swap contract equal to 0, which

ensures no arbitrage (Munk, 2011). IRS contracts are often issued at the swap rate, so that the

contract has no initial value.

(Munk, 2011), shows that the swap rate can be derived as a weighted average of the present

value forward rates determining the cash �ows of the �oating leg, which comes from setting the

value of equation A.5 equal to 0 and rearrange for the �xed rate

r∗t =

∑n

i=1
F (t, Ti−1, Ti) ·D (t, Ti)

τ ·
∑n

i=1
D (t, Ti)

Note that τ is the time between each coupon5. Pricing at time 0 and similarly rearranging

equation A.6, the swap rate can be simpli�ed to

r∗t =
1−D (0, Tn)

τ ·
∑n

i=1
D (0, Ti)

Following the logic for IRS contracts, setting equation A.7 to equal 0 and rearrange for r, the

swap rate for CCS contracts must equal

r∗t =
rf0 · S (0) ·

∑n

i=1
Df (t, Ti)

τ ·
∑n

i=1
D (t, Ti)

5E.g. semi-annual coupons would mean that τ = 0.5.
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Appendix B

Appendix: Fundamentals of CDS

Contracts

Credit default swaps are the most used credit derivatives. It is a contract written on an un-

derlying company, and can be seen as an insurance for the buyer against credit events of the

underlying company as e.g. default (Hull, 2012). The buyer of the payer leg pays a predeter-

mined premium, which is a �xed interest rate on the notional value of the CDS contract. If a

credit event occurs for the underlying company of the CDS contract, then the holder receives

coverage of the LGD times the notional value of the contract. Settlement is either in cash or

physical delivery. Physical delivery gives the holder of the CDS contract the right to sell bonds

of underlying company of the CDS contract at face value to the counterparty (Munk, 2011).

Even though the market for CDS contracts was rapid increasing up until the �nancial crisis of

2008 (BCBS, 2015), it has been very constant ever since and does to a great extend lack liquidity

(Brigo and Mercurio, 2007). This appendix presents a way to value single-name CDS contracts

and �nd the fair CDS spread. It also introduces iTRAXX index as a proxy measure of default

risk for companies, on which no single-name CDS contract are available.

B.1 Valuation of Single-name CDS Contracts

A single-name CDS contract is written on one underlying �rm. Thus, CDS contracts are mainly

available on the largest �rms. (Munk, 2011) provides a framework for pricing single-name CDS

contracts

V CDSt = V Prott − V Premt − V Accrt

Here V Premt is the value at time t given no default up till time t and without any recovery of

value at default. V Premt is expressed as

V Premt = τ · k ·H ·
n∑

i=i(t)

EQ
t

[
e−
´ u
t

(rτ+λτ )dτ
]
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with τ = Ti−Ti−1, k the �xed rate payment for the CDS, H the notional value, rτ the dynamic

interest rate and λτ the dynamic default intensity.

V Prott takes into account potential recovery of the notional at default. Assuming a �xed

recovery rate over time, which gives the a �xed LGD

V Prott = H · LGD
ˆ Tn

t

EQ
t

[
e−
´ u
t

(rτ+λτ )dτλu

]
du

V Accrt takes into account accrual costs of k to be paid by the buyer of the CDS contract, if

default does not happen at τ∗ which is Ti < τ∗ < Ti+1. These accrual costs are
[
τ∗ − Ti(τ)−1

]
k ·

H. Thus,

V Accrt = k ·H
ˆ Tn

t

EQ
t

[
e−
´ u
t

(rτ+λτ )dτλu

] [
u− Ti(u)−1

]
du

B.2 Derivation of the CDS Spread

The fair CDS spread is the �xed rate, k∗t , which makes V CDSt = 0. It is possible to derive the

spread as a weighted average of the present value default probabilities with respect to LGD
τ .

However, this requires the assumption that LGD is constant for all default times, and that rτ

and λτ follow stochastic dynamic models (Munk, 2011). Then

k∗t =
LGD·

∑n

i=1
Q (Ti−1 < τ∗ ≤ Ti | τ > t) ·D (t, Ti)

τ ·
∑n

i=1
Q (τ∗ > Ti | τ > t) ·D (t, Ti)

Where Q (Ti−1 < τ∗ ≤ Ti | τ > t) = λ (Ti−1, Ti) is the probability of default between Ti−1 and Ti

while Q (τ∗ > Ti | τ > t) = λ (t, Ti) is the accumulated default probability from t to T . Hence,

k∗t =
LGD·

∑n

i=1
λ (Ti−1, Ti) ·D (t, Ti)

τ ·
∑n

i=1
λ (t, Ti) ·D (t, Ti)

(B.1)

B.3 Index CDS

An index CDS contract gives the buyer an insurance against default on a portfolio of companies.

The buyer receive payment as for single-name CDS contracts each time one of the underlying

companies experience a credit event1 (Munk, 2011). The iTRAXX indices provide portfolio

protection for an interval of defaults de�ned by the contract as a percentage of the notional

value, H. The intervals of default are called tranches. If an iTRAXX has a tranche of 3%− 6%

this means that losses are covered fully up to 6% of the notional has defaulted. An iTRAXX

Index includes 125 companies, and thus each is equally weighted 0.8%2 of the notional. Each

default accounts for 0.8% ·LGD ·H. When
∑n

i=1
0.8% ·LGD ·H < 3% ·H the default payments

1Note that default payment must exceed a threshold to be paid, which is described for the iTRAXX indices
below.

2 1
125

= 0.8%.
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accumulate, but are not paid out. At
∑n

i=1
0.8% · LGD ·H ≥ 3% ·H, then 3% ·H is paid out

to the CDS protection buyer by the seller. The following defaults payment are made for each

default up to
∑n

i=1
0.8% · LGD ·H ≥ 6% ·H At this point, default payments only up to the

limit of 6% of H are paid. The contract is afterwards unwinded (Brigo and Mercurio, 2007).

iTRAXX contracts exists on di�erent sectors, geographic areas and are available with 3, 5, 7,

and 10-year maturity (Bloomberg, 2004).

Di�erent CDS indices provide possible proxies for companies without their own single-name

CDS available or can be a proxy for a portfolio hedge instrument. To model the actual default

intensity accurately is quite complex and would for e.g. iTRAXX indices involve 125 correlated

intensity models. The roughly fair index CDS spread should be the average fair CDS spread on

the companies included in the underlying index of the index CDS (Munk, 2011). The iTRAXX

index spread is fair the coupon to be paid quarterly for the insurance, if the value of this Index

CDS should equal 0 (Markit, 2014a).

109



Appendix C

Appendix: The Nature of

Stochastic Calculus

This appendix is a short review on fundamental stochastic calculus used as background to

understand this thesis. Stochastic calculus is the modelling of uncertainty, which is used for

derivative pricing. A stochastic process can be in either discrete or continuous time. This

appendix describes the most important steps to get to the geometric Brownian motion from

the Brownian motion, assumptions, stochastic integrals, Itô's Lemma and partial di�erential

equations. Derivation of di�erent properties and proof of the di�erent processes are excluded.

The most important assumptions derived from the assumptions of a rational investor, perfect

capital markets and full information is the well-know no-arbitrage assumption, which is essential

for derivation of the partial di�erential equation Wilmott (2007).

C.1 Properties of Stochastic Processes

Stochastic processes have three main properties: The Markov property, the Martingale property

and the property of quadratic variation.

Having the Markov property, past movements of the process has no e�ect on the future

movements, which means that these are not possible to predict (Hull, 2012). This complies

with the e�cient market hypothesis. Thus, the conditional distribution of the process does only

depend on the current information available and not past information.

Having a Martingale property, the stochastic process does not have any trend relative to

the chosen numeraire. This mean that the expected value of the process one incremental step

into the future would equal that of today (Wilmott, 2007). This should, however, be seen in

the light of the used probability measure i.e. the choice of numeraire. When using a risk-

neutral probability measure the expected value of a process only evolves at the risk free rate

(r (ti − ti−1)) · Pt = P̄te
r dt is a Q-martingale. Thus, Pt = EQ

t

[
Pte

r(ti−ti−1)
]
(Munk, 2011).

The property of quadratic variation ensures that moving from discrete time steps in a process

to a continuous time, the sum of the quadratic variations becomes a linear function of time and
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do not explode or collapse (Wilmott, 2007).

C.2 Brownian Motion

The Brownian motion is a random process, which is used as the element of randomness in other

processes like e.g. the geometric Brownian motion. The Brownian motion for a discrete process

can be described as:

∆Z = ε
√

∆t

where ∆ is the change in time (ti+1 − ti) and ε is a standard normal distribution, N (0, 1)

(Munk, 2011). The continuous process for the Brownian motion is expressed as dz = ε
√
dt.

C.3 Di�usion Processes

A very general di�usion process is what we call an one-dimensional Itô process. This could e.g.

be:

dx = µ(t)dt+ σ(t)dzt (C.1)

Where µ(t)dt is the drift of the process and σ(t)dzt is the di�usion of the process. µ(t) and σ(t)

can be time-inhomogeneous or constant given as µ and σ. dt is the continuous time and dzt is

a Brownian motion in continuous time (Munk, 2011). If we want to describe the price of an

asset like a stock, it is more reasonable to make the drift and the di�usion proportional to the

price of the asset. Then returns are determined relatively to the stock price. Thus, we scale the

process dx with the current value xt (Hull, 2012):

dx = µ(t)xtdt+ σ(t)xtdzt

Holding both the drift and the di�usion constant we obtain the geometric Brownian motion:

dx = µxtdt+ σxtdzt

C.4 Stochastic Integrals

The stochastic integral is the integral of a stochastic process. For a process in discrete time

the sum of the process will converge to the stochastic integral as the number of time steps, n,

increase and the process converge to continuous time (Wilmott, 2007).

ˆ T

t

f (τ) dxτ = lim
n→∞

n∑
i=1

f (ti−1)
(
xti − xti−1

)
For the Brownian motion this will be explained as

ˆ T

t

σ (u) dzu = lim
n→∞

n∑
i=1

σ (ti−1)
(
zti − zti−1

)
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The main point is that the sum of randomness must converge to one randomness, which is

called the mean-square convergence. Thus, the stochastic integral is the limit of the discrete ap-

proximation of the continuous process (Munk, 2011). From this we can show, that the expected

value is 0 and the variance

V art

[ˆ T

t

σ(u)dzu

]
=

ˆ T

t

Et
[
σ(u)2

]
dzu

For a process with a drift included the stochastic integral is given by the function

xT = xt +

ˆ T

t

µ(τ)dτ +

ˆ T

t

σ(τ)dzτ

If a stochastic process has a stochastic integral the process can be integrated as one step with one

randomness. If this is not possible, the process can only be described by an Euler Discretization

(Wilmott, 2007).

C.5 Itô's Lemma

Equation C.1 is a one-dimensional Itô process. If we want to describe a process, which depends

on time, but also of the dynamics of the process in equation C.1

yt = f (xt, t)

then we use, what is called Itô's Lemma, which is a Taylor expansion of the function f (xt, t):

dyt =
∂f

∂t
dt+

∂f

∂x
dx+

1

2
b2(xt, t)

∂2f

∂x2
dt

Note that di�erent from a normal Taylor expansion this includes the second derivative of x, as

this has �rst order of t, and will then not be negligible, which is the case for normal calculus

(Hull, 2012). As Itô's Lemma presents the dynamics of a process of time and the dynamics of

another process, which is also stochastic, it can be used to describe the dynamics of derivatives,

as these takes values based on underlying assets. Itô's of a geometric Brownian motion is given

by:

df(xt, t) =
∂f

∂t
dt+

∂f

∂x
dx+

1

2
σ2x2

t

∂2f

∂x2
dt

If we want to express the function as a logarithmic function in order to ensure lognormal returns

often, which is often assumed for stochastic processes, this will a�ect the drift, which must be

adjusted with subtraction of half the variance of the process in continuous time (Hull, 2012).

For the geometric Brownian motion, taking Itô's of the function yt = ln(x) gives the dynamics

(Wilmott, 2007)

dxt = xt

(
µ− 1

2
σ2

)
dt+ σdz
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C.6 Partial Di�erential Equations

A partial di�erential equation (PDE) is the art of constructing a risk free portfolio of a derivative

and the underlying asset. By shorting the right fraction of underlying assets per long derivative

contract in the portfolio, which equals the �rst order sensitivity of the derivative, ∆, then the

portfolio payo� will be the same no matter how the di�usion part of the stochastic processes

changes in continuous time. This does of course only work, if the underlying hedge of the

derivative can be traded in continuous time as well and if we assume that fraction of an asset

can be sold short without any margin costs. Assuming this, then as the portfolio payo� will not

be a�ected by randomness the payo� is risk free. Thus, the payo� must equal the risk free rate

by the assumption of no arbitrage (Hull, 2012). For the geometric Brownian motion the PDE

is given as
∂V

∂t
+ r(t)xt

∂V

∂x
dx+

1

2
σ2x2

t

∂2V

∂x2
− r(t)Vt = 0

where r(t) is the risk free rate and Vt is the value of the derivative. The PDE proves two

important properties:

1. If an analytical pricing formula can be derived, then it must ful�ll the condition set by

the PDE.

2. Even more important: If all risk is eliminated by the construction of a portfolio, then

the value of a derivative is not a�ected by risk and risk preferences. Hence, one can �nd

the value of the derivative under the simple assumption of a risk neutral world, where

the expected return equals the risk free rate for all underlying assets. The value of the

derivatives in such a scenario would also hold as the value in the real world. Otherwise,

one could make an arbitrage, as all risk can be eliminated with the PDE hedge portfolio.
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Appendix D

Appendix: Mean Reverting

Di�usion Processes

The geometric Brownian motion described in Appendix C.3 is a widely accepted di�usion process

to describe the dynamics of stock prices, as these have an expected rate of return and a volatility

relative to the stock price (Hull, 2012). The dynamics of interest rates do, however, seem to

behave di�erently. They tend to exhibit mean-reversion back to a certain level rather than

continuously grow with a �xed expected drift. The mean-reversion feature is not well described

by the geometric Brownian motion, but is captured in a number of interest rate di�usion models

categorized as Ornstein-Uhlenbeck processes and Square-root processes.

D.1 Ornstein-Uhlenbeck Processes

Stochastic processes categorized as Ornstein-Uhlenbeck processes have the time-inhomogeneous

dynamics

dxt = κ [θ(t)− xt] dt+ β(t)dzt

where θ(t) = ϕ(t)
κ . β(t) describes the volatility of the process, but not proportional to the

current level of xt as for the geometric Brownian motion. The drift of the process has now

become mean-reverting by introducing the two parameters ϕ(t) and κ. ϕ(t) represents the long

term level, which the mean-reversion will drive the di�usion process towards, while κ represents

the adjustment speed of the reversion e�ect. There are also versions of Ornstein-Uhlenbeck

processes with κ being time-inhomogeneous. θ(t) determines the direction of the drift. If

xt > θ(t) then the drift will be negative, whereas xt < θ(t) will make the drift positive. As the

process is a random process, the di�usion might drive the xt further away from θ(t) in the short

run. But as will be shown below through Itô's Lemma and the stochastic integral, the di�usion

is (just as for the geometric Brownian motion) normal distributed with mean zero, so that the

mean-reversion will converge the process in the long run (Munk, 2011).
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(Munk, 2011) illustrates with Itô's lemma for yt = f (xt, t) with f (x, t) = eκtx

dyt =
∂f

∂t
dt+

∂f

∂x
dx+

1

2
b2(xt, t)

∂2f

∂x2
dt

dyt = (x, t)
∂f

∂t
dt+ (x, t)(ϕ(t)− κxt)

∂f

∂x
dt+

1

2
β(t)2(xt, t)

∂2f

∂x2
dt+

∂f

∂x
(xt, t)β(t)dzt

dyt = ϕ(t)eκtxtdt+ β(t)eκtdzt

The stochastic integral for the Itô dynamics is given as

yT = yt +

ˆ T

t

β(u)eκudzu

which by substitution for y and modi�cations gives

xT = e−κTxt +

ˆ T

t

ϕ(u)e−κ(T−u)du+

ˆ T

t

β(u)e−κ(T−u)dzu

This prove that the di�usion is normal distributed with mean zero and a variance of

V art [xT ] =

ˆ T

t

β2(u)e−2κ(T−u)du

The expected value of the entire process is given by

Et [xt] = e−κτxt +

ˆ T

t

ϕ(u)e−κ(T−u)du (D.1)

Examples of Ornstein-Uhlenbeck processes is the Vasicek model, the Hull-White model, and the

BDT-model1 (Hull, 2012).

D.2 Square-root Processes

A category of interest rate term structure models, which di�er from the Ornstein-Uhlenbeck

processes is the square-root processes. These have the dynamics

dxt = κ [θ(t)− xt] dt+ β(t)
√
xtdzt

which di�er from the Ornstein-Uhlenbeck processes in that the di�usion is scaled by
√
xt. This

ensures that the process cannot take a negative value, as the di�usion will completely disappear

if the process hits a value of 0, so that the drift term will force the process back to a positive

value. If the variance variable restriction β2(t) ≤ 2ϕ holds2, then the process cannot reach a

value of 0 either, as the positive drift will be stronger than the volatility at low values of xt.

As for the Ornstein-Uhlenbeck processes, we can derive the Itô dynamics and the stochastic

1Black-Derman-Toy model.
2As in the Ornstein-Uhlenbeck process θ(t) =

ϕ(t)
κ
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integral as done by (Munk, 2011), which shows that the expected value does not change. Thus,

Et [xt] = e−κτxt +

ˆ T

t

ϕ (u) e−κ(T−u)du

The variance is given as

V art [xT ] =

ˆ T

t

β2(u)e−2κ(T−u)Et [xu] du

Because of the inclusion of the
√
xt in the square-root process the variance is a bit more complex.

As shown by (Munk, 2011) the process will not be normal distributed with mean and variance

as given above. Instead, the process follows a non-central χ2(a, b(τ))-distribution with

a =
4ϕ(t)

β(t)2
, b(τ) = xtc(τ)e−κτ , c(τ) =

4κ

β(t)2(1− e−κτ )
(D.2)

with mean and variance as given above. a is the degrees of freedom, while b is a non-centrality

parameter. (Munk, 2011) argues that the square-root processes, though more complex, are more

suitable to describe the short-term interest rates, as there is empirical evidence that the variance

of the interest rate is correlated with the interest rate itself.

Examples of square-root processes is e.g. the Cox-Ingersoll-Ross model (CIR) and the

Longsta�-Schwartz model.

116



Appendix E

Appendix: Debit Valuation

Adjustment

CVA is also known as unilateral CVA, as it only takes the credit risk of the counterparty into

consideration. In the bilateral case, own credit risk is included as the Debit Value Adjustment

(DVA).

This thesis take the assumption that the �nancial institution issuing the swaps considers

itself default free. Hence, �nancial institutions can charge CVA based on the credit risk of the

counterparty, while the counterparty must accept the �nancial institution as risk free. Before

the �nancial crisis, counterparties seemed to perceive this assumption to be fair. However, the

Lehmann collapse in 2008 made it clear, that this was obviously not the case (Kenyon and

Stamm, 2012), (Gregory, 2015a). Besides the disputes with the corporate counterparties, DVA

is clearly also an issue for interbank trades, as both �nancial institutions would charge the other

party a CVA charge, but ignore their own risk of default. Thus, there would be an asymmetry

in the pricing from the point of view of the two di�erent parties (Brigo et al., 2013). Hence,

there could never be a price agreement without inclusion of DVA meaning no trades would be

made (Gregory, 2015a).

This appendix brie�y introduces DVA. First section provides the model framework for es-

timating DVA. Second section discusses the controversy of DVA and provides arguments for

and against inclusion of DVA. This thesis takes the opinion of (BCBS-214, 2011), which base

its opinion on a pricing perspective rather than an accounting perspective (Gregory, 2015a).

Further arguments follow at the end of Appendix E.2.

E.1 Estimating DVA

To avoid the asymmetry of pricing, DVA takes into consideration the risk of own default. Hence,

the exposure for the counterparty will be the market value, which will be lost in case of default
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by the �nancial institution. Thus, the negative expected exposure (Gregory, 2015a)

NEEt = [Vt, 0]
−

Compared to EEt, NEEt focus on cases, where the contract is in-the-money for the counter-

party. Hence, the contract has a negative market value for the �nancial institution. Market

value calculations and collateral calculations can be made in the same way as for CVA in Section

4.2.1 and Section 4.2.1. However, in this case, it would seem more normal to use a bilateral

collateral agreements, except if the credit risk of the two parties are very di�erent, as we do

not assume any of the parties to be relatively risk free compared to the other. Similar to the

estimation of CVA in Section 4.2.2, (Brigo et al., 2013) provides the formula for DVA, which

are the present value of the expectations to the exposure at the time of default under the risk

neutral measure, Q:

DV At = Et
[
LGDb · 1{t<u1=ub<T}D (t, u)NEEt

]
(E.1)

However, note that the indicator function now includes an additional condition. As default can

happen to both parties, the loss of one party will only happen, if the other party has not yet

defaulted. Hence, when the �rst party defaults, the e�ect of default of the other party is irrele-

vant, as the contract has already ceased to exist (Gregory, 2015a). The discrete approximation1

of equation E.1 is (Brigo et al., 2013)

DV At = LGDb

m∑
i=1

Et
[
1{t<u1=ub<T}D (t, u)NEEt

]
As we need to know which party defaults �rst, it is not possible to use the default probability.

The model must �nd the actual time of default of the �rst counterparty, which is the stopping

time. To model default time structured default models can be used (Munk, 2011). Depending

on who defaults �rst, and whether the exposure is positive for the counterparty, this would be

the contribution to DVA or CVA. After this, the contract ceases to exist, and there will not

be further exposure. Hence, the possible default of the surviving party has no e�ect on the

CVA and DVA (Brigo et al., 2013). In case neither defaults, there will be no contribution to

either CVA or DVA. Achieving these results is clearly model dependent. Besides the correlation

between the interest rates and the risk of default for the counterparty needed in the model in

Section 4.2.2, the risk model of own default must also have model dependency on both interest

rates and the default model for the counterparty (Brigo et al., 2013).

If the counterparty defaults, then this would in principal give them a gain on their own DVA

up to the original maturity. The e�ect of this will, however, be di�cult to claim, as it would

be a subjective measure, equal to the DVA estimate at the time of counterparty default. In

principle, this is addable to the close-out price, if priced into the default case, hence reducing

both CVA and DVA. However, there is no easy way to do this correctly for contracts like swaps,

which have opposing cash �ows (Gregory, 2015a).

1This discretization is precise as m
T

increases.

118



E.2 The DVA Controversy

Whether or not to include DVA in pricing of derivatives has raised many arguments. Some of

these come from an accounting point of view omitted here, as this thesis concerns the derivative

pricing and hedging aspects of xVA charges. The critique of DVA from a pricing and hedging

perspective occurred from issues of companies pro�ting from falling credit quality.

DVA accounts for the risk of own default. If the credit rating drops this would mean, that

the risk of own default increases, hence the liability of the cash �ows will decrease, as these cash

�ows are zero in case of default (Brigo et al., 2013). For this reason, and for the complexity of

DVA on derivative contracts, the Bank of International Settlements requires DVA be excluded

from the price when measuring regulatory capital on a unilateral estimation of credit VaR,

meaning disregarding or deducting2 the DVA:

�Therefore, after considering various alternatives, the Basel Committee is of the

view that all DVAs for derivatives should be fully deducted in the calculation of CET1.

The deduction of DVAs is to occur at each reporting date, and requires deducting the

spread premium over the risk free rate for derivative liabilities.� - (BCBS-214, 2011)

Regulatory capital relieves resulting from lower credit rating, would indeed be very counterin-

tuitive with the purpose of regulatory capital trying to reduce the overall risk.

The question then is, whether this DVA gain is realizable as cash pro�t, or whether it is only

senseless paper money. The easiest way to realize the DVA bene�t would be by defaulting, but

this is outright stupid. As mentioned in Appendix E.1, a positive DVA claim could be made

at close-out, but this would be di�cult. The DVA claim is a subjective model estimate and

counterparties might not recognize the claim, as was the case for many counterparties after the

bankruptcy of Lehmann Brothers (Gregory, 2015a). (Ruiz, 2015) does not agree that DVA is

next to impossible to realize. (Ruiz, 2015) exempli�es this with a company having a signi�cant

drop in their credit rating. Here the counterparty would be willing to pay a premium to this

company to unwind the derivative contract between them. The reason being, that this would

circumvent a larger loss in case of the very likely default of the company. This premium received

by the company is a pro�t from increasing DVA that the counterparties pay willingly to decrease

their CVA. However, (Gregory, 2015a) argues that such cases only occur in case of a great default

risk, which would be close to the case of bene�tting from own bankruptcy as �rst stated. Besides

(Gregory, 2015a) points out, that when such contracts are unwound, replacement is necessary.

For such replacements, the CVA charge by the counterparty would be much larger than this

DVA bene�t.

A last way to realize the DVA gain, but also for the CVA or xVA desk to manage the DVA

risk, would be to create a hedge. For the CVA side such a hedge would likely be with CDS

contracts on the counterparty, if such instruments exist or with short positions in bonds of the

counterparty. Reversing these methods to hedge of own DVA, it seems far from reality, that

any sane counterparty would buy CDS protection on the same company o�ering such protection

agreement. Buying back own bonds would be possible, but they cannot be traded freely (Kenyon

2If a bilateral estimation of default risk has been used.
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and Stamm, 2012). Besides, at an actual default, the bond hedge would not hedge losses. Neither

would selling CDS protection on similar counterparties and indices as proxy for own credit risk

(Gregory, 2015a). Hence, the hedging might lower the credit volatility, but not have any e�ect

in case of default or against any �rm speci�c shocks to the credit ratings of the company.

The perspective of this thesis is on derivative pricing and hedging rather than accounting.

The pricing takes the viewpoint of a medium-sized �nancial institution pricing a swap contract

with a minor corporate counterparty3. Hence, the �nancial institution might have default risk

relative to counterparties on interbank trades or to large corporate clients. However, the credit

risk of the �nancial institution might be as good as risk free relative to a minor corporate

counterparty. Considering the issues described in this section, it seems reasonable to disregard

DVA from the pricing model. It is also important to note, that FVA covers some of the issues

of DVA4.

3See Section 1.3.5
4See Section 4.3.
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