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THE MICROCOMPUTER
------------------------------ ------------
The WF/PC uses an 8-bit, RCA 1801 microprocessor, which is rather slow compared to
today’s microprocessing speeds. Before 3 got involved with space instruments, I always
asked myself what would people do if some part of the memory fails, or what if they
decided to change the program while the space craft is way up there in space?

As 1 will explain shortly, the way WF/PC does this is by setting break points at different
parts of the program. The way a microprocessor works is like someone following your
instructions, written on pages of a book called memory. In the WF/PC processor as well
as your IBM-XThome computer, these instructions are written as an eight digit binary
number (or one byte) such as 1100,0000, or 0111,0001, etc. These numbers can be
easily represented in the form “CO”, or “71”, known as a hexadecimal representation.

The book that memorizes all this even when the computer is off, is called ROM or read
only memory. The 6K ROM in WF/PC is like a book with 6144 pages. There is also a 4k
RAM or random access memory, which is like a diary book with 4096 pages (only half of
the available RAM is normally used). The diary book can be erased by either writing over
it or by shutting off the computer.

The so called computer brain refers to the guy reading the cards (Fig. 10), and doing
exactly what they say. For example, “CO” means to jump to some other page in the book,
and do what it says in that page, “F8” means to read from some location of memory.
When the computer is turned on, it starts reading location 0000 (Fig. 10, under ROM), and
executes the program one by one. To do this, he uses a chalk board (REGISTERS), a
hand calculator (Arithmetic and Logic Unit), and a place on the board where the results
from ALU are displayed (D register).

In home computers, programs are loaded into RAM, and changed if necessary. But in
spacecraft applications, the programs are usually executed from the ROM book, and no
new page can be added to the book, or taken out. A way out of this is to divide the book
into chapters (Fig. 10), and at the end of each chapter (break point), tell the processor to
jump to a page in the RAM book (the first break point is at ROM location O1OB). This
page of RAM (for the first break point, this would be RAM location 4100) would simply tell
the processor to go back to the beginning of next chapter in ROM, and continue with the
program until the next break point (ROM location 012D, etc.).

The advantage of this is that if you decide to change the program within any of the
chapters, you can change the page in RAM to tell the processor to skip any chapter, and
continue with a new program loaded in RAM, For example, if you decide to do some
changes in the program that resides within ROM locations 012E and O 17A, a substitute
program can be transmitted to the spacecraft, and written to any RAM location between
4800, and 41TF (spare RAM).

13



When the processor reaches the second break point, it jumps to RAM location 4103, and
then jumps to the beginning of the new program in RAM, and continues the rest of the
program in ROM (pages 4104 and 4105 have a new jump address). So instead of having
to transmit an entire new program, you have the convenience of changing only a part of
it. Of course, if there is a short power failure in the space craft, the RAM contents are
destroyed, and the computer starts running the same old program stored in ROM, and
you have to upgrade the RAM once again.

In the real world, a single memory chip is not big enough to contain all the program. Each
pair of WF/PC’s ROM chips (books) contains
If any of the memory chips would fail, break
locations. In case of primary RAM failure, the

THE CHARGE COUPLED DEVICE (CCD)
---------------------------------------------------------

256 pages, making an array of 48 chips.
points are useful to go around bad ROM
microcomputer uses the spare RAM.

Next time you have dinner, pick up three forks, and orient them at 90 degree angles on
the table. Now slide the two forks that are facing each other so that their teeth interlace
together, then place the third one on top of the next two (Fig. 11 ), Imagine connecting any
of the two perpendicular forks to a negative potential (let’s say -8 volts), and the third one
to a positive (or less negative) potential (let’s say +2 volts). You have just constructed a
model for a two phase CCD device with 12 pixels!

The way a CCD works, is by trapping tiny elements of an image in a matrix array of
storing elements called pixels. In simple electronic terms, projecting an image on a CCD
is like pouring a hand full of electrons on the square area interlaced by the three forks:
The electrons will be collected only on nine different locations, with the +2V potential.

The idea is that each pixel encloses electrons in both vertical and horizontal directions by
the two perpendicular forks connected to -8 volts. The electrons, having a negative
charge, will only be attracted to the teeth of the fork connected to +2 volts.

The number of electrons in each pixel would describe the brightness in that area of the
image: The more the number of electrons, the brighter the image, and vice versa. CCD’S
then, behave similar to photographic film, they require a shutter, and should get the right
amount of exposure. If over exposed, the electron capacity of the pixels are exceeded,
and the electrons would overflow to the neighboring pixels. But the light itself consists of
photons, how is a “photon image” converted to an “electron image”?

The way this works is like how photo transistors convert light into an electronic signal.
Inside a photo transistor is a layer of silicon, and when a photon enters this layer, it
generates one or more electrons, provided that it is powerful enough to release this
electron from the outer layer of Silicon atoms. The energy of this photon is determined
by its wave length. In the ultra-violet region, photons have a much higher energy, and
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interact immediately after entering the Silicon layer. In the infrared region, photons have
less energy, and penetrate deeper into the Silicon to release an electron.

Figure 13 shows the schematic of a WF/PC-11 CCD, with the number of pixels reduced
to an array of 4 (vertical) by 9 (horizontal). The actual CCD contains an 800 x 800 pixel
array, produced by four interlacing structures that resemble forks with 800 teeth! These
CCD’S come in a 40-pin package. You can think of pins 10, 11, and 12 as the handles
of the forks sticking out of the chip (this is a 3-phase CCD device)!

The teeth of these three forks run horizontally across the active area of the device, and
are labeled 1, 2, and 3. For example, if you trace the wire from pin 10 under a
microscope, you ’11 reach a vertical bar, which is connected to every other three horizontal
running traces (labeled “2” in Fig. 13). All the horizontal traces 1, 2, and 3 are separated
by running over a series of vertical barriers, labeled “B”. In CCD terminology, forks are
called phases (i.e. PI, P2, and P3), and the charge Barriers (labeled “B’’) are equivalent
to the vertical fork in Fig. 11.

In reality, these fork structures are thin implants on the surface of a substrate, which is
a stack of several Silicon layers. When the light strikes the Silicon layer, it releases
electrons, which are then collected in the pixels. During the exposure, phases 1 and 3 are
held low by applying -9 volts to pins 12 and 13, and Phase 2 is held high by applying
+3.5 volts to pin 14. This makes phase 2 to be the electron collecting phase of the CCD,
creating a total of 36 “charge buckets” (640,000 pixels in the real device).

Let’s say an star image falls on any given area of the CCD, and forms an image the size
of a pixel. The light photons would penetrate into the silicon substrate, and release a
number of electrons depending on the brightness of the star (and its wave length). The
generated electrons would be attracted to the closest phase with the highest potential,
or the closest phase 2. Each pixel in WF/PC CCD’s has an area of 15X 15 microns (1 mic.
= 1 millionth of a meter), and can collect up to 50,000 electrons. The exposure time must
be chosen such that the brightest area of interest would not generate over 50,000
electrons.
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READING OUT THE CCD IMAGE
------------------------- --------------------------- ---

Figure 12 shows the basic read out scheme ofa
of the pixels. A single parallel shift, dumps every

CCD, using parallel and serial shifting
row of the CCD to its lower row, and

dumps the very bo~om  - row to a horizon~l  shift register, The horizontal array is then” read
out one by one, and the number of electrons in each pixel is measured (six horizontal
shifts for every one vertical shift).

To understand the shifting operation, consider switching the voltages between phases 2
and 3 in figure 13. For the same reason the charges were collected under phase 1, they
will now migrate to phase 3. Now switch the voltages between phases 3 and 1: The
charges would be collected under phase 1. Finally, by switching the voltages between 1
and 2, the charges end up on a new phase 2, at a higher row.

To visualize this, consider a series of mechanical pistons that go up and down by a
common crank shaft (Fig. 14), which moves each two neighboring pistons 120 degrees
out of phase. Similar to the CCD, phase 1 is lower than the rest of the pistons, so all the
electrons end up in phase 1. Switching the voltages between phases 1 and 2, is like
turning the crank shaft 120 degrees (Fig. 14).

The barrier columns separate the vertical pixels in the horizontal direction (Fig. 13, 16).
With a complete rotation of the crank shaft, the electrons from the bottom pixels are fed
to a serial register (the electrons from the parallel registers can either go to phase 2 or
3 of the serial register). Before the serial register can start shifting out the electrons, it has
to be first isolated from the parallel (or vertical) registers. This is the job of the transfer
register (Fig. 13, 16, 17).

The serial shifting operation is the same as the parallel register, but it is made longer to
provide more information about the exposure, I willexplain this later in more detail. The
job of the output well is similar to the role of the transfer phase (Fig. 17). The contents of
each pixel are dumped into a measuring system, which measures the voltage generated
by the number of electrons. The PC (pre charge) is synchronized with the serial shifting
register, so that it dumps out the previous content of the measuring device, while the
serial register is shifting the contents of the next pixel (Fig. 17). The output of the
measuring device is the video signal (a single voltage value between .003 to 12.228
millivolts).

If you now go back to the CCD schematic (Fig, 13), you know the job of every pin in the
device. There are in fact two ways to read this CCD, from the top, or from the button.
This is similar to rotating the crank shaft in the opposite direction. The pin names followed
by letter “L’’correspond to control pins for the Lower register, and those followed by “U”
correspond to the lower register.
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CONVERTING THE NUMBER OF ELECTRONS TO A DIGITALNUMBER

Considering the possible number ofel~trons ina given pixel, we may have any number
of electrons ranging from zero to 50,000 (Fig. 15). In order to transmit this information to
a ground station through a radio antenna, it first has to be converted to a digital number.
The WF/PC analog to digital converter does this ecmversion with 12 bits of resolution.
This translates to 7.5 electrons per digital number, or 4094 different shades of gray.

In simpler terms, ifa pixel is empty, the A/D converter would assign a number to it which
would read 0000,0000,0000 (Fig, 15). If the pixel is full, the A/D converter would assign
the value 1111,1111,1111 to it, and there are 4096 different possible combinations in
between. Dividing 50,000 by 4095, you’ll get 7.5 electrons. Increasing the resolution of the
A/D converter from 12 bits to 16 bits means going from a 35mm camera to a Hasselblad!

SENDING DOWN THE IMAGES

The camera heads are read out one at a time, and it takes about 20 seconds to read one
CCD. Since the instrument has only 2K memory, it transmits every pixel immediately after
the A/D conversion (except the 17th pixel in every line). Because the logic board sends
the data out in a 16 bit format (Fig. 18), the 12 bits out of the A/D converter are copied
twice in the middle of the 16 bit slot (bits 4,5,6, and 7 are the same as 8,9,10, and 11).

In addition to the video signal, there are many engineering information, such as which
camera took the picture, the temperature of the CCD during the time of exposure, the
shutter speed, what filters where used, and hundreds of other information (Fig. 18).

The result is a block of data 800 by 813, and 16 bits deep. This is only the WF/PC data.
There is also the Standard Header Packet (SHP),  which contains the time, date, user
scientist’s name, pointing and orientation of the telescope, and the status of the rest of
its many instruments, and so on. The final raw data stored for a single image (four CCDS)
is over six Megabytes. Three of Hubble images would be enough data to fillthe hard disc
capacity inside an ordinary PC!

The telescope images are relayed through the TDRS (Tracking and Data Relay Satellite)
positioned in a geosynchronous orbit, to White Sands radio telescopes, and then to the
Goddard Space Flight Center via another
finally sent to the STSI (Space Telescope
less than a 3 second delay,

communication satellite (Fig. 19). The image is
Science Institute) at maryland.  All this causes
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