Solution
Week 81 (3/29/04)

Rainbows

Rainbows exist due to the fact that raindrops scatter light preferentially in certain
directions. The effect of this “focusing” is to make the sky appear brighter in a
certain region, as we will see in detail below. This brightness is the rainbow that
you see. The colors of the rainbow are caused by the different indexes of refraction
of the different colors; more on this below.

Primary rainbow: The preferred direction of the scattered light depends on how
many internal reflections the light ray undergoes in the raindrop. Let’s first consider
the case of one internal reflection, as shown below. The light ray refracts into the
raindrop, then reflects inside, and then refracts back out into the air. Let 8 and ¢
be defined as in the figure. Then the angles 23 and 28 — ¢ are shown.

What is ¢ as a function of 37 Snell’s law at the refraction points gives

sin(28 — ¢) = gsinﬁ. (1)

Solving for ¢ yields
4
¢ = 23 — arcsin (3 sin 6) . (2)

The plot of ¢ vs. (3 looks like the following.!

!Note that 8 cannot be greater than arcsin(3/4) ~ 48.6°, because this would yield the acrsin of
a number larger than 1. 48.6° is the critical angle for the air/water interface.
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We see that ¢ has a maximum of roughly ¢max ~ 20° at Bmax ~ 40°. To be more
precise, we can set d¢/df = 0. The result is
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Squaring and using cos? 3 = 1 — sin® § yields

. 3 o
sin Bmax = 5 — Bmax =~ 40.2°. (4)
Substituting this back into eq. (2) gives
Pmax ~ 21.0°. (5)

The significance of this maximum is not that it is the largest value of ¢, but rather
that the slope of the ¢(3) curve is zero, which means that there are many different
values of (3 that yield essentially the same value (= 21°) of ¢. The light therefore?
gets “focused” into the total angle of

2Pmax = 42°, (6)

so the sky appears brighter at this angle (relative to the line from the sun to you).
This brightness is the rainbow that you see. This reasoning is perhaps more clear if
we draw a diagram with the incoming angle of the rays constant (which is in fact the
case, because all of the sun’s rays are parallel). A rough diagram of this is shown
below. The bold line is the path with the maximum 2¢ angle of 42°. You can see
that the outgoing rays pile up at this angle.
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2See the fourth remark below for elaboration on this reasoning.



REMARKS:

1. The above reasoning explains why the rainbow is where it is. But why do we see the
different colors? The colors arise from the fact that different wavelengths of light have
different indexes of refraction at the air/water boundary. At one end of the visible
spectrum, violet light has an index of 1.344. And at the other end, red light has an
index of 1.332.3 If you go through the above calculation, but now with these indexes
in place of the “4/3” we used above, you will find that violet light appears at an angle
of 2¢violet ~ 40.5°, and red light appears at an angle of 2¢7% =~ 42.2°. Since red
occurs at the larger angle, it is therefore the color at the top of the rainbow. Violet
is at the bottom, and intermediate wavelengths are in between. The fact that red is

at the top can be traced to the fact that 21° is the mazimum value of ¢.

2. A rainbow is actually a little wider than the approximately 2° spread we just found,
because the sun isn’t a point source. It subtends an angle of about half a degree,
which adds half a degree to the rainbow’s spread. Also, the rainbow’s colors are
somewhat washed out on the scale of half a degree, so a rainbow isn’t as crisp as it
would be if the sun were a point source.

3. In addition to the ordering of the colors, there is another consequence of the fact that
21° is the mazimum value of ¢. It is possible for a raindrop to scatter light at 2¢
values smaller than 42° (for one internal reflection), but impossible for larger angles.
Therefore, the region in the sky below the rainbow appears brighter than the region
above it. Even though the focusing effect occurs only right at the rainbow, the simple
scattering of light through 2¢ values smaller than 42° makes the sky appear brighter
below the rainbow.

4. There is one slight subtlety in the above reasoning we should address, even though
turns out not to be important. We said above that if many different G values corre-
spond to a certain value of ¢, then there will be more light scattered into that value
of ¢. However, the important thing is not how many (3 values correspond to a certain
¢, but rather the “cross section” of light that corresponds to that ¢. Since the light
hits the raindrop at an angle 20 — ¢ with respect to the normal, the amount of light
that corresponds to a given df interval is decreased by a factor of cos(28 — ¢). What
we did in the above solution was basically note that the interval dg that corresponds
to a given interval d¢ is

do

de/dB’
which diverges at ¢max, because d¢/dS = 0 there. But since we are in fact concerned

with the number of light rays that correspond to the interval d¢, we now note that
this number is proportional to

dB = (7)

do
dB cos(20 — ¢) = cos(206 — ¢). 8
(28~ ¢) = o775 cos(28 — 9 (5)
But 28— ¢ # 90° at ¢pax, so this still diverges at ¢pax. Our answer therefore remains
the same.

Secondary rainbow: Now consider the secondary rainbow. This rainbow arises
from the fact that the light may undergo two reflections inside the raindrop before
it refracts back out. This scenario is shown below. With 3 defined as in the figure,
the 180° — 20 and 90° — 3 angles follow, and then the 33 — 90° angle follows.

3The ends of the visible spectrum are somewhat nebulous, but I think these values are roughly
correct.
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Snell’s law at the refraction points gives
. o 4 .
sin(33 —90° + ¢) = 3 sin . 9)

Solving for ¢ yields
4
¢ =90° — 33 + arcsin (3 sin ﬁ) . (10)
Taking the derivative to find the extremum (which is a minimum this time) gives

. 65 .
Sin Bmin = 198 — Bmin ~ 45.4°. (11)

Substituting this back into eq. (10) gives
Pmin ~ 25.4°. (12)

Using the same reasoning as above, we see that the light gets focused into the total
angle of 2¢max &~ 51°, so the the sky appears brighter at this angle.

The fact that ¢(/5) has a minimum instead of a maximum means that the rainbow
is inverted, with violet now on top. More precisely, if you go through the above
calculation, but now with the red and violet indexes of refraction in place of the
“4/3" used above, you will find that violet light appears at an angle of 53.8°, and
red light appears at an angle of 50.6°. The spread here is a little larger than that
for the primary rainbow above.

The secondary rainbow is fainter than the primary one for three reasons. First,
the larger spread means that the light is distributed over a larger area. Second,
additional light is lost at the second internal reflection. And third, the angle with
respect to the normal at which the light ray hits the raindrop is larger for the
secondary rainbow. For the primary rainbow it was 28 — ¢ &~ 59°, while for the
secondary rainbow it is 33 — 90° 4 ¢ =~ 72°.

Tertiary rainbow: Now consider the tertiary rainbow. This rainbow arises from
three reflections inside the raindrop, as shown below. With § defined as in the
figure, the two 180° — 25 angles follow, and then the 45 — 180° angle follows.



Snell’s law at the refraction points gives
. o 4 .
sin(48 — 180° + ¢) = 3 sin B. (13)

Solving for ¢ yields
4
¢ = 180° — 4 + arcsin <3 sin ﬁ) : (14)
Taking the derivative to find the extremum (which is a minimum) gives

: 8 .
S0 fmin = \/ 12 = Bmin = 46.9°. (15)

Substituting this back into eq. (10) gives
¢min ~ 69.2°. (16)

Using the same reasoning as above, we see that the light gets focused into the total
angle of 2¢ax &~ 138°, so the the sky appears brighter at this angle. The fact that
this angle is larger than 90° means that the rainbow is actually behind you (if you
are facing the primary and secondary rainbows), back towards the sun. It is a circle
around the sun, located at an angle of 180° — 138° = 42° relative to the line between
you and the sun.

This rainbow is much more difficult to see, in part because of the increased
effects of the three factors stated above in the secondary case, but also because you
are looking back toward the sun, which essentially drowns out the light from the
rainbow. Although I have never been able to seen this tertiary rainbow, it seems
quite possible under (highly improbable) ideal conditions, namely, having rain fall
generally all around you, except in a path between you and the sun, while at the
same time having the sun eclipsed by a properly sized cloud.

Nth-order rainbow: We can now see what happens in general, when the light
ray undergoes N reflections inside the raindrop.
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With § defined as in the figure, the light gets deflected clockwise by an angle of
180 — 23 at each reflection point. In addition, it gets deflected clockwise by an angle
of arcsin(% sin ) — 3 at the two refraction points. The total angle of deflection is
therefore

D=2 (arcsin (% sin 3) — ﬁ) + N(180° — 28). (17)

Taking the derivative to find the extremum gives?

o [oN+12-16
sin fo = \/16[(N 121 (18)

You can check that this agrees with the results in eqgs. (4), (11), and (15). Substi-
tuting this back into eq. (17) gives the total angle of deflection, ®, relative to the
direction from the sun to you. See the discussion below for an explanation on how
® relates to the angle ¢ we used above. A few values of ® are given in the following
table.

N| @ | ® (mod 360°) |
1 [138° 138°
2 | 231° 231°
3 | 318° 318°
4 | 404° 44°
5 | 488° 128°
6 | 572° 212°

If you take the second derivative of ®, you will find that it is always positive.
Therefore, the extremum is always a minimum. It takes a little thought, though, to
deduce the ordering of the colors from this fact. Since the red end of the spectrum
has the smallest index of refraction, it is bent the least at the refraction points.
Therefore, it has a smaller total angle of deflection than the other colors. The red
light will therefore be located (approximately) at the angles given in the above table,
while the other colors will occur at larger angles. The locations of the focusing angles

“Note that as N — oo, we have sin By — 3/4. Therefore, 3 approaches the critical angle, 48.6°,
which means that the light ray hits the raindrop at nearly 90° with respect to the normal. The
cross section of the relevant light rays is therefore very small, which contributes to the faintness of
the higher-order rainbows.



are shown below, where the arrows indicate the direction of the other colors relative
to the red. All the arrows point clockwise, because all the extrema are minima.
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Since the direction you see the light coming from is the opposite of the direction
in which the light travels, you see the light at the following angles. This diagram is
obtained by simply rotating the previous one by 180°.

to the sun \ o

We now note that in the figure preceding eq. (17), we could have had the light
ray hitting the bottom part of the raindrop instead of the top, in which case the
word “clockwise” would have been replaced with “counterclockwise”. This would
have the effect of turning ® into —®. The light is, of course, reflected in a whole
circle (as long as the ground doesn’t get in the way), and this circle is the rainbow
that you see; the angles ® and —® simply represent the intersection of the circle
with a vertical plane. We can therefore label each rainbow with an angle between 0
and 180°. This simply means taking the dots and arrows below the horizontal line
and reflecting them in the horizontal line. The result is the following figure, which
gives the locations and orientations (red on one end, violet on the other) of the first
six rainbows.
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Note that in the N — oo limit, the deflection angle in eq. (17) takes a simple form.
In this limit, eq. (18) gives § ~ 48.6°. Therefore, arcsin(% sin B) ~ 90°, and eq. (17)
gives

P

%

2(90° — 48.6%) + N (180° — 2 - 48.6°)
(N + 1)(180° — 2 - 48.6°)
(N +1)82.8°. (19)



