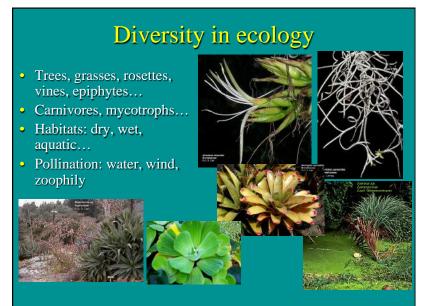



# Monocots!

- Large group: ~ 60,000 species!
- Old lineage: ~134 mya
- Great diversity: habit, habitat, pollination, morphology
- Adaptive radiations:
  - (orchids-21,950 spp; grasses-10,035 spp)
- Smallest & largest seeds: orchids; *Lodoicea maldivica*
- Largest inflorescences (titan arum, palms, bromeliads)
- Smallest fruit, flower & flowering plant (*Wolfia*)








# Monocots!

We will finish our survey of angiosperms by examining the **monocots** - a lineage of basal angiosperms

Basal angiosperm lineage, but is appearing to be **closer to eudicots** than most other basal angiosperms





# Diversity of aquatic habits



Emergent, floating, or submerged aquatic group of monocots

These are the first diverging monocots



submerged

# Monocot "trees"

No vascular cambium activity  $\Rightarrow$  no true secondary growth (wood) Anomalous secondary growth  $\Rightarrow$  "trees"



Dragon tree – a lily relative Woody palm

Monocot leaves



# Parallel venation (or derived forms) vs. pinnate or reticulate venation as in most dicots (more on this later)





# Diversity in pollination

Striking modifications & bracts: grasses, pulpits, orchids, spadices & more!





# Fossil record

Crown group radiation: ~134 mya [based on DNA evidence] Pollen & leaf: possible early Aptian (Early Cretaceous), 113-125 mya Oldest unambiguously assigned fossil: Araceae, 110-120 mya

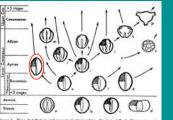



Figure 1 Time distribution and presented relationships of principal Early Cruziones and Committies angigues prior first etc.; which is and selecting pre-Consenso policy rays for adcommutation subpression policy first prior and selecting pre-Consenso policy rays for adbenitie memorilation. A second a levelar policy of Cogramocette and Corporopermateria etc. Consequentions, if A missional prior advances and Composition and an experimental effective etc. The consequence of the effective etc. The effe

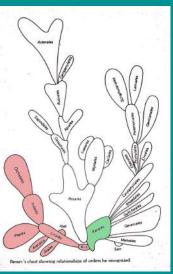



Figure 2 Principal Early Createous and Constains angiogene large as small passaday sense field of Valkamente (14)). Is realisoring, service at educationale, e Fouphy law, E Accesaphyllice, a possible monocot, g Johan Leven, be patient, activatedrosos, e oraste conter, j: prinandia Sagnologues /k arity plantanael, é composed a Sourdoyanu, m: later plantanelis, with registory organized for vention, re. Europhyllane, a dichetomoly composed, g: rescuelty simple Sagnologue derivative.

# **Monocot Origins**

Monocots have usually been considered as derived out of **basal angiosperms** - Ranales in the Bessey system or subclass Magnoliidae with Cronquist





# Cronquist's view

Classic idea of pre-monocot

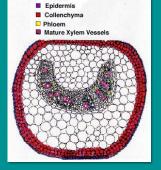
- 2. Aquatic
- 3. Perianth not specialized
- 4. Uni-apperturate pollen
- 5. Apocarpy
- 6. Laminar placentation



Nymphaeales

Only non-monocot order with all these characteristics

# Cronquist's view




• monocot leaf morphology due to aquatic ancestry

• aquatic  $\rightarrow$  terrestrial  $\rightarrow$  aquatic pathways

# Cronquist's view

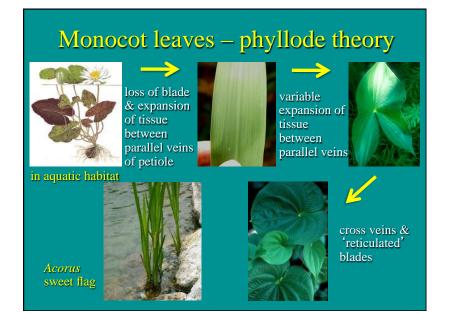




celery (left) and tomato (right) asterid petioles showing parallel vascular traces

• monocot leaf is derived from an expanded bladeless petiole

# Monocot leaves – phyllode theory

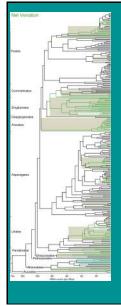



Phyllode theory: original monocot lacked a true leaf; only expanded petiole



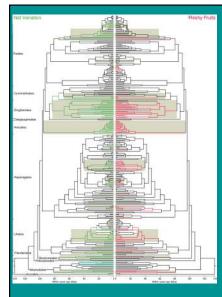
Phyllodes: expanded blade-less petioles best seen in arid adapted woody legumes such as






#### 

# Net venation & fleshy fruits


functional ecological arguments for evolution of **broad leaves** and **fleshy fruits** of monocots **in shady understory** conditions (T. Givnish, 1984, 1999, 2002)



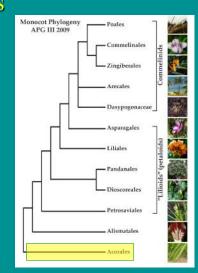


# Concerted convergence

Occurrences of net venation are overlain on this phylogeny



# Concerted convergence


Occurrences of net venation and fleshy fruits are overlain on this phylogeny

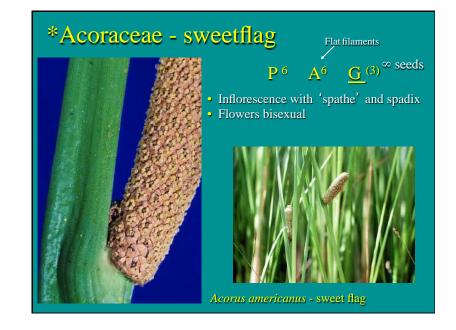
- Both features:
- arise multiple times
- are correlated with each other arise in understory clades

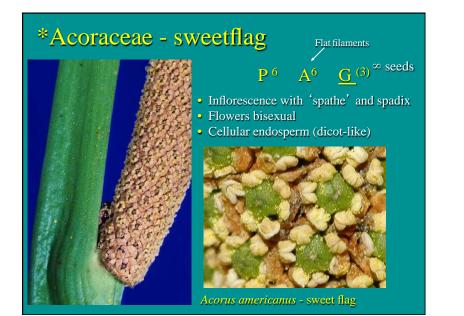
# Survey of monocots

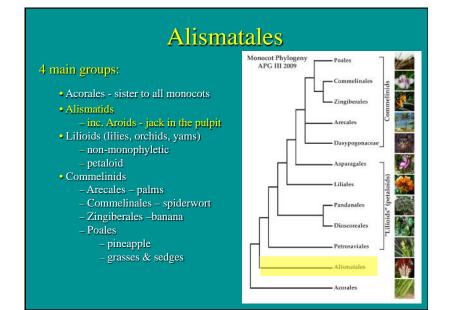
#### 4 main groups:

- Acorales sister to all monocots
- Alismatids
- inc. Aroids jack in the pulpit
- Lilioids (lilies, orchids, yams):
   non-monophyletic
- petaloid
- Commelinids
  - Arecales palms
  - Commelinales spiderwort
  - Zingiberales –banana
  - Poales
    - pineapple
    - grasses & sedges




# Acorales (\*Acoraceae - sweet flag)


• Emergent aquatic plants with ethereal oils and no raphides


2 species: Acorus calamus, Old World A. americanus, New World Both species in Wisconsin



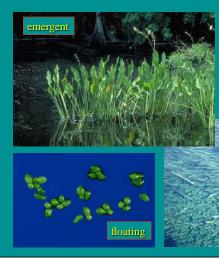








# Alismatales - aquatics


Recurring themes:

Aquatic  $\Rightarrow$  brackish  $\Rightarrow$  marine habitats

Insect  $\Rightarrow$  water pollination



# Alismatales - aquatics



Emergent, floating, or submerged aquatic group of monocots

# Alismatales - aquatics



Associated with the aquatic habit is the trend from insect-pollinated, showy flowers to water-pollinated, reduced flowers . . .

and increasing effort to vegetative rather than sexual reproduction

Showy flowers, insect-pollinated

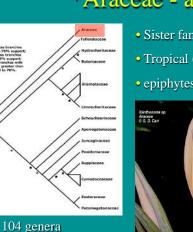
Reduced unisexual flowers, waterpollinated



# Alismatales - aquatics



Showy flowers, insect-pollinated


Reduced unisexua flowers, water pollinate



72% of Alismatales are unisexual -

132 species are hydrophilous (how many origins?) – answer later

monoecious or dioecious



2,550 species

# \*Araceae - aroids

Sister family to other AlismatalesTropical (to temperate)

• epiphytes, herbs, aquatic



# \*Araceae - aroids • raphides in vacuoles with mucilage



• defining characteristic is the inflorescence of spathe and spadix

• spathe (or bract) is common in monocots





Symplocarpus foetidus skunk cabbage

# \*Araceae - aroids Inflorescence a fleshy spadix,

\*Araceae - aroids

surrounded by bract called the spathe

#### CA0 CO0 A6- <u>G</u>(2-3)

Flowers unisexual or perfect Fruits berries clustered on spadix



Arisaema triphyllum - jack-in-the pulpit





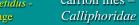
Symplocarpus foetidus - skunk cabbage



Cabbage-like leaves emerge later in the spring

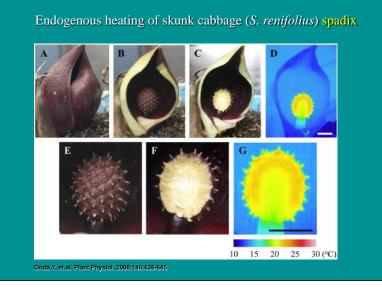
Foetid smelling spathe and spadix emerges early in spring or late winter; attracts carrion flies by heating up and volatizing off the odor

## \*Araceae - aroids

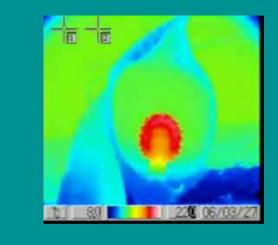





sapromyophily pollination


flesh flies – Sarcophagidae












#### Cyclical heating of the skunk cabbage **spadix** in the male phase





Only emergent aquatic member of the family in Great Lakes







## \*Araceae - aroids

other strange aroids:

Amorphophallus - titan arum

Pistia - water lettuce

"Lemnaceae" - duckweeds







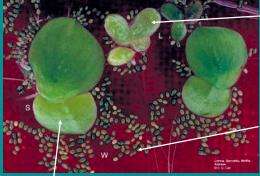
#### \*Araceae (Lemnaceae - duckweeds)



Floating or submersed aquatic \*family\* almost cosmopolitan in distribution; Vegetative reproduction primarily

Now known to be derived from within the Araceae

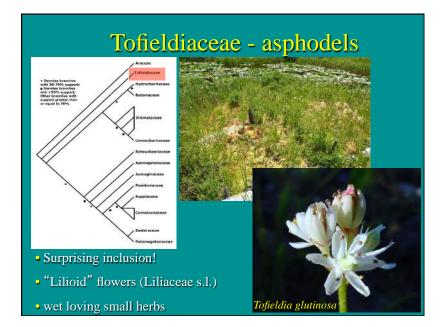
Lemna minor - small duckweed


Includes the smallest angiosperm, and the smallest flower

Inflorescence reduced to 1 female and 1-2 male flowers



Lemna turionifera - perennial duckweed


## \*Araceae (Lemnaceae - duckweeds)



Smallest member of the family and the angiosperms *Wolffia columbiana* water meal

# *Spirodela polyrhiza* great duckweed

Largest member of the family



# Butomaceae - flowering rush

emergent aquatic family
leaves show no obvious blade and petiole differentiation





# Butomaceae - flowering rush

• flowers in umbels

• unsealed carpels - follicles

• introduced - invasive

CA3 CO3 A9 <u>G</u>6





utomus umbellatus - flowering rush

# Alismataceae - water plantain

Aquatic or wetland family, especially in north temperate regions

Leaves long petioled, often with sagittateshaped leaves

Tubers starchy, often edible



# Alismataceae - water plantain Sagittaria - arrowhead CA3 CO3 A6-∞ <u>G</u>6-∞ Calyx of 3 green sepals, corolla

of 3 white petals

Apocarpic in a head or ring

Perfect, monoecious, dioecious



# Alismataceae - water plantain



CA3 CO3 A6-∞ <u>G</u>6-∞

Calyx of 3 green sepals, corolla of 3 white petals

Apocarpic in a head or ring

Achenes (head of achenes here)



# Alismataceae - water plantain

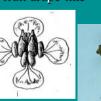




Similar to *Sagittaria*, but with carpels in one **ring** rather than globose head

Alisma plantago-aquatica - water plantain

# Potamogetonaceae - pondweed




Aquatic plants with dimorphic leaves, 25 species in Wisconsin difficult to identify, hybridize, and some are troublesome weeds



# Potamogetonaceae - pondweed





CA 0,4 CO 0 A 4 <u>G</u> 4

#### • perianth of 4 clawed segments if present

• gynoecium typically of 4 free, 1-ovuled carpels

• fruit drupe-like





# Potamogetonaceae - pondweed



# Hydrocharitaceae - frog bit



• submersed or floating aquatic plants

• various forms of water pollination present





# Hydrocharitaceae - frog bit



*Vallisneria* (tapegrasses, eelgrasses) are composed of two species, one New World, one Old World



Vallisneria americana - tapegrass

# Hydrocharitaceae - frog bit



Vallisneria spiralis - tapegrass (OW)

Note the floating male flowers and one large female with 3 stigmatic areas on a long peduncle

# • male flowers in clusters; female flower single

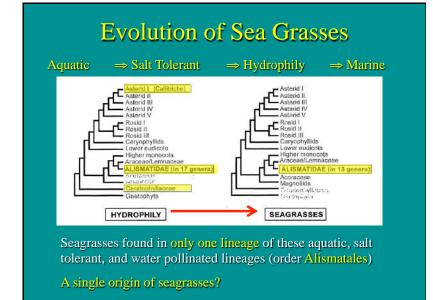
• pollen water boat floats and attaches to 3 broad stigma of the female flower

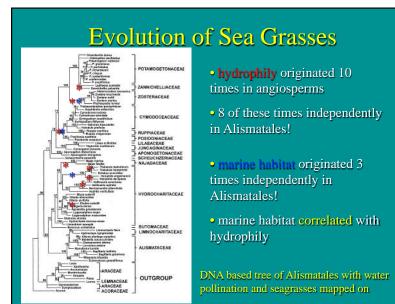
• flower retracts and forms fruit under water



# **Evolution of Sea Grasses**

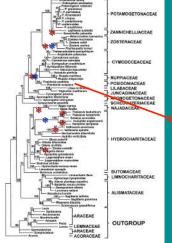



Don Les' story of plants going back to the oceans 450 million years later


... another story of convergence and divergence






# Description of Sea GrassesAquatic> Salt Tolerant> HydrophilyImage: Image: Image:







# Evolution of Sea Grasses



• oldest known clonal organism - 200,000 years old !



Posidonia oceanic L.