Fracking and Land Productivity: The Effects of Hydraulic Fracturing on Agriculture

Naima Farah

University of Calgary

IWREC Annual Meeting The World Bank, Washington, DC September 2016

Introduction

• Can unconventional oil and gas drilling (UOGD)/ hydraulic fracturing harm other sectors?

Research Question

Can hydraulic fracturing harm agriculture?

Evidence from Alberta

Why Agriculture?

- Agriculture- shares many inputs.
- Agriculture major water user in many jurisdictions.

Hydraulic Fracturing

Why this Question is Important?

Which ways hydraulic fracturing can affect agriculture?

- Water use
- Effects on soil/ agricultural land from sediment run-off
- Labor movement

Externalities of hydraulic fracturing -

• Economic effects (property value, employment, crime), Groundwater & Surface Water contamination, Health effects

Neglected: Externalities on other sectors through input competition, absence of price/ market

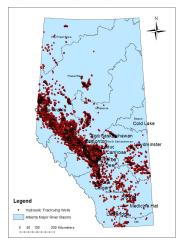
Contribution:

- First study to empirically examine the effects of unconventional oil & gas drilling (UGD) on agricultural productivity, in the context of Western Canada/ Alberta
 - Uses a novel dataset

Methodology and Summary

• Difference-in-differences: time series variation in the count of wells, cross-sectional variation in the water-dependency of crops.

Summary of Findings:


- One well within 11-20 km of the township, drilled during farming months, April-September: ↓ irrigated crop's productivity by 5.7%.
- No effect is observed >30 km.
- Alberta lost approximately \$14.8 million in 2014, 11% of the average revenue earned from irrigated crop production.

Province with both unconventional oil and gas and agriculture

- Alberta: second largest shale gas producer, after BC. 41% of the total shale gas in-place reserve of Canada.
- Second highest agricultural producer province, after ON.
- Two irrigation methods: irrigation and dryland.
- Alberta's current water allocation system: Prior appropriation. License holders pay for water access not on volume.

Alberta's Water Allocation


Hydraulic Fracturing Wells, Alberta, 2000-2014

Figure 1: HF Well Locations, 2000-2014

Farah (UCalgary)

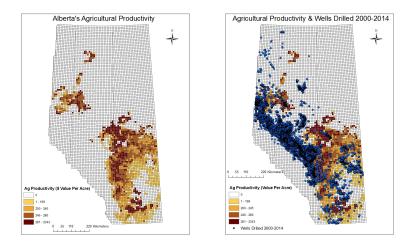

Hydraulic Fracturing and Agriculture

Figure 2: Hydraulic Fractruing Wells and Agricultural Townships

Irrigation Districts Oil Sands

Farah (UCalgary)

Figure 3: Agricultural Productivity and Well Locations

Farah (UCalgary)

Hydraulic Fracturing and Agriculture

Hydraulic Fracturing and Agriculture

Hydraulic fracturing water usage

- Per well water use (2014): 4000 m³.
- Per well daily water: 1800 m^3 .
- Average fracking days: 3 to 4.

Irrigation water use

- Per farm yearly water use (2010): approximately 216,000 m^3 .
- Per farm daily water use (2010): approximately 1200 m^3

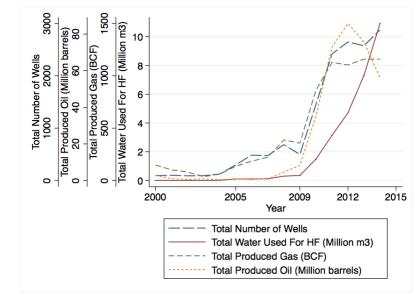


Figure 4: Number of Wells, Water Use and Production, 2000-2014

Farah (UCalgary)

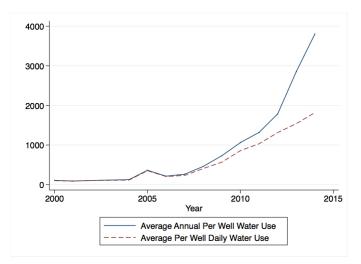


Figure 5: Per Well Water Use, Alberta, 2000-2014

Farah (UCalgary)

Hydraulic Fracturing and Crop Yield

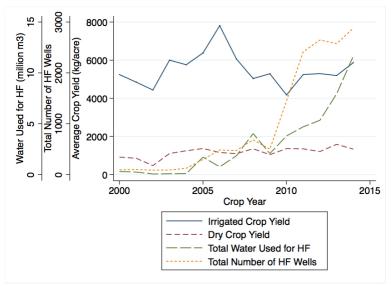
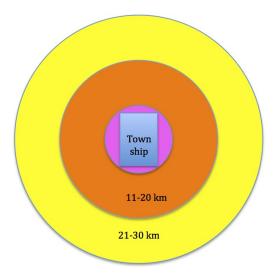


Figure 6: Average Crop Yield, Irrigated vs. Dry and HF Wells

Model


$$\begin{split} &\log \left(\mathsf{Crop Yield} \right)_{ict} = \alpha_0 + \sum_{d \ \epsilon \ B} \alpha_d (\mathsf{Count of Wells in year t}_d) \\ &+ \alpha_1 (\mathsf{Global Climate Index}_{it}) + \mu_{ic} + q_{ct} + \epsilon_{it}, \\ &B = \{ 0\text{-}10 \text{ km}, \ 11\text{-}20 \text{ km}, \dots, 40\text{-}50 \text{ km} \}, \end{split}$$

> 50 km = Omitted Category $t = (2000, 2001, \dots 2014)$

Where, i = township, c = crop, t = year

Also, (Total Water Used by the Wells in year t) used, instead of (Count of Wells in year t), to test the water competition channel.

(1)

Figure 7: Sample Township

- Agricultural crop yield, crop price, acres cultivated: Agricultural Financial Services Corp. (AFSC)
- Hydraulic Fracturing Well details of Alberta: Canadian Discovery's Well Completion and Frac Database (WCFD)
- Township level data, panel, years: 2000-2014.
- 25 types of crops: 12 irrigated, 13 dryland

Summary Statistics

Table 1: Effect of Hydraulic Fracturing Proximity on log(Crop Yield)*100

	Panel A: Wells Drilled Any Month	Panel B: Wells Drilled April- September
	(1)	(2)
	Irrigated	Irrigated
Count of Hydraulic Fracturing Wells		
0- 10 km (Within Township)	0.735	1.736
	(0.783)	(1.625)
11-20 km	***-1.735	***-5.729
	(0.520)	(2.085)
21-30 km	***-1.021	-0.292
	(0.388)	(0.782)
31-40 km	0.154	0.374
	(0.275)	(0.735)
41-50 km	0.0108	-0.0664
	(0.257)	(0.572)
Observations	2015	2015
R^2	0.31	0.31

Notes: Dependent variable: log (Crop Yield)*100. Crop yield is measured as kg per acre. All specifications include Township-Crop FE, Crop-Year FE, and Global Climate Index. Standard Errors (in parentheses) are clustered by township. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

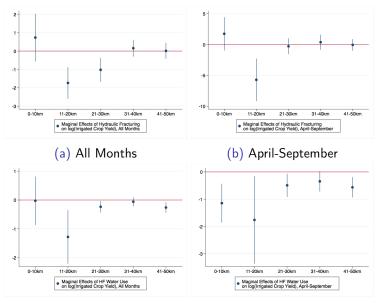


Table 2: Effect of Hydraulic Fracturing Water Use on log(Crop Yield)

	Panel A: Wells Drilled Any Month	Panel B: Wells Drilled April- September
	(1)	(2)
	Irrigated	Irrigated
Total HF Water Use (1000 m^3)		
0- 10 km or Within Township	-0.0260 (0.507)	***-1.148 (0.430)
11-20 km	**-1.282 (0.559)	*-1.763 (0.969)
21-30 km	*-0.236 (0.120)	*-0.492 (0.257)
31-40 km	-0.0610 (0.0961)	-0.346 (0.226)
41-50 km	**-0.261 (0.111)	**-0.565 (0.225)
Observations R^2	2015 0.308	2015 0.286

Notes: Dependent variable: log (crop yield)*100. Crop yield is measured as kg per acre. All specifications include Township-Crop FE, Crop-Year FE, and Global Climate Index. Standard Errors (in parentheses) are clustered by township. Significance levels: ** p < 0.01, ** p < 0.05, * p < 0.1.

(c) All Months

(d) April-September

Figure 8: UOGD Effects on Irrigated Crops

Farah (UCalgary)

Hydraulic Fracturing and Agriculture

1 well drilled within 11-20 km:

- April-September: \downarrow irrigated crop's productivity by 5.7%.
- Any month: \downarrow irrigated crop's productivity by 1.7%.
- Effects disappear >30 km
- Within township: direct positive spillover effects counterbalance indirect negative effect

1000 m^3 water use \uparrow

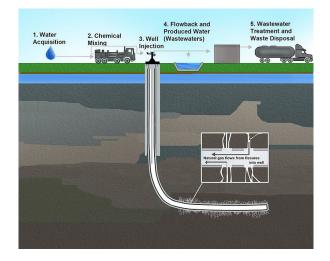
- April-September: ↓ irrigated crop's productivity by 1.1% within 0-10 km. ↓ irrigated crop's productivity by 1.7% within 11-20 km.
- Any month: \downarrow irrigated crop's productivity by 1.3% within 11-20 km.

Implication of the Results

Aggregating the effects of wells drilled during irrigation months April-September (Table 1, Column 2)

- In 2014, total loss of revenue due to irrigated crops' productivity \downarrow : \$14.8 million.
- Alberta lost approximately 11% of the average revenue earned from irrigated crop production only in 2014.

- Land use compensation paid to farmers (entry fee 500\$ per acre) for within farmland/ within township drilling.
- No compensation for distant indirect negative spillover effects.


Conclusion

- Close proximity to hydraulic fracturing wells can reduce irrigated crops' land productivity.
- Compensation to the farmers (possible water tax)

Thank you Questions/ Comments?

Job Market Candidate 2016-17 email: nfarah@ucalgary.ca https://sites.google.com/site/naimafarah/

Hydraulic Fracturing

Alberta's Water Allocation System: Summary

- Prior appropriation
 - Older licensees- more priority than recent licensees.
 - During scarcity, older license holders have first right.
- Use of fresh water (both surface and ground water) requires a license issued by either Alberta Environment or Alberta Energy Regulator (AER).
- Licenses can be issued as temporary diversion licenses (maximum duration: 1 year, no priority) or term licenses (example: 5 years term).
- Different water basins: different features. For example: water scarcity in South Saskatchewan river basin, no water scarcity in Peace river basin.

Back

Data

Table 3: Summary Statistics

Variable	Observations	Mean	Std. Dev.	Min	Max
Crop Yield (kg/acre)	46,608	1351.5	1933.4	0	32380
Irrigated Crop Yield (kg/acre)	2,015	5484.5	7703.9	42	32380
Dry Crop Yield (kg/acre)	44,593	1164.7	647.8	0	11578
Price per Kg	46608	0.25	0.13	0.03	1.1
Acres Cultivated	46,608	2611.3	1771.8	53	13373
Irrigated Acres Cultivated	2,015	1250.1	840.03	133	6303
Dry Acres Cultivated	44,593	2672.8	1778.1	53	13373
Hydraulic Fracturing Days	14740	3.5	25.2	1	1827
Per Well Total Water Used for Hydraulic Fracturing (m^3)	14631	1952.01	4094.9	0.8	84405.6
Per Well Daily Water Use (m^3)	14474	1171	1557.7	0.16	58740
Count of Hydraulic Fracturing Wells in township (0-10 km)	46608	0.39	2.6	0	65
Count of Hydraulic Fracturing Wells in township (11-20 km)	46608	1.4	5.5	0	96
Count of Hydraulic Fracturing Wells in township (21-30 km)	46608	2.3	7.5	0	108
Count of Hydraulic Fracturing Wells in township (31-40 km)	46608	3.2	9.4	0	130
Count of Hydraulic Fracturing Wells in township (41-50 km)	46608	4.2	11.3	0	135
Global Climate Index (Precipitation (millimeter))	46,591	421.1	41.7	308	566.5

Back

		Panel B: Wells Drilled April- September
	(1)	(2)
	Dryland	Dryland
Count of Hydraulic Fracturing Wells		
0- 10 km or Within Township	0.118 (0.116)	-0.0500 (0.358)
11-20 km	0.0810	0.111
21-30 km	(0.0580) 0.00901	(0.175) -0.218
21-30 KM	(0.0459)	-0.216 (0.148)
31-40 km	-0.0215 (0.0408)	-0.160 (0.124)
41-50 km	***-0.110	***-0.368
	(0.0302)	(0.0837)
Observations	44523	44523
R ²	0.507	0.508

Table 4: Effect of Hydraulic Fracturing Proximity on log(Crop Yield)

Notes: Dependent variable: log (Crop Yield)*100. Crop yield is measured as kg per acre. All specifications include Township-Crop FE, Year FE, Crop-Year FE. Standard Errors (in parentheses) are clustered by township. Significance levels: **** p < 0.01, ** p < 0.05, * p < 0.1.

	Panel A: Wells Drilled Any Month	Panel B: Wells Drilled April- September
	(1)	(2)
	Dryland	Dryland
Total Water Use (1000 m^3)		
0- 10 km or Within Township	*0.0546 (0.0322)	0.0474 (0.0563)
11-20 km	0.00470 (0.0232)	-0.0262 (0.0383)
21-30 km	-0.0249 (0.0250)	-0.0815 (0.0529)
31-40 km	0.00164 (0.0172)	-0.0121 (0.0252)
41-50 km	**-0.0286 (0.0125)	**-0.0439 (0.0218)
Observations R ²	44523 0.507	44523 0.485

Table 5: Effect of Hydraulic Fracturing Water Use on log(Crop Yield)

Notes: Dependent variable: log (crop yield)*100. Crop yield is measured as kg per acre. All specifications include Township-Crop FE, Year FE, Crop-Year FE. Standard Errors (in parentheses) are clustered by township. Significance levels: *** p < 0.01, ** p < 0.05, ** p < 0.1.

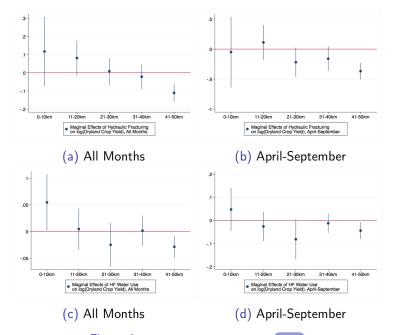


Figure 9: UOGD Effects on Dryland Crops Back

Farah (UCalgary)

Hydraulic Fracturing and Agriculture

Crop Composition

Table 6: Effect of Proximity to Wells on Fraction of Acres Irrigated

	Fraction Irrigated
Count of Hydraulic Fracturing Wells	
0-10km (Within Township)	-0.00824
	(0.0117)
11-20km	0.00675
	(0.0115)
21-30km	0.00274
	(0.00632)
31-40km	0.00407
	(0.00632)
41-50km	0.000143
	(0.00454)
Observations	2015
R^2	0.290

Notes: Dependent variable: Fraction of Acres Planted. All specifications include Township-Crop FE, Crop-Year FE, and Global Climate Index. Standard Errors (in parentheses) are clustered by township. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Back