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If only the L values Ro through RL_1 are required, then it can be
seen by comparing (15) and (11) that the new algorithm will require
fewer multiplications than the FFT method if

L < 11.2 (1 + log2 N) (16a)

and will require fewer additions if

L < 5.6 (1 + log2 N). (16b)

Therefore, we conclude that the new algorithm will generally be more
efficient than the FFT method if

N < 128 (17a)

or

L < 10(1 + log2 N). (17b)

CONCLUSION

A new algorithm for computing the correlation of a block of sampled
data has been presented. It is a direct method which trades an in-
creased number of additions for a decreased number of multiplications.
For applications where the "cost" (e.g., the time) of a multiplication is
greater than that of an addition, the new algorithm is always more com-
putationally efficient than direct evaluation of the correlation, and it is
generally more efficient than FFT methods for processing 128 or fewer
data points, or for calculating only the first L "lags" for L < 10 log2 2N.
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In discrete Wiener filtering applications, the filter is represented by an

(M X M) matrix G. The estimate X of data vector X is given by GZ,
where Z = X + N and N is the noise vector. This implies that approxi-
2Amately 2M arithmetic operations are required to compute X. Use of

orthogonal transforms yields a G in which a substantial number of
elements are relatively small in magnitude, and hence can be set equal
to zero. Thus a significant reduction in computation load is realized at
the expense of a small increase in the mean-square estimation error.
The Walsh-Hadamard transform (WHT), discrete Fourier transform

(DFT), the Haar transform (HT), and the slant transform (ST), have
been considered for various applications [ 1 ], [ 2], [4] - [ 9 since these
are orthogonal transforms that can be computed using fast algorithms.
The performance of these transforms is generally compared with that
of the Karhunen-Loeve transform (KLT) which is known to be optimal
with respect to the following performance measures: variance distribu-
tion [1 ], estimation using the mean-square error criterion [ 2], [4], and
the rate-distortion function [5]. Although the KLT is optimal, there is
no general algorithm that enables its fast computation [ 1]
In this correspondence, a discrete cosine transform (DCT) is intro-

duced along with an algorithm that enables its fast computation. It is
shown that the performance of the DCT compares more closely to that
of the KLT relative to the performances of the DFT, WHT, and HT.

DISCRETE COSINE TRANSFORM

The DCT of a data sequence X(m), m = 0, 1, * *, (M - 1) is defmed
as

/2M-i
Gx(O)"Z X(m)

m=o
2 M-i (2m+1)kn

Gx(k)=- X(m)Cos
Mm0 2M
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Abstract-A discrete cosine transform (DCT) is defined and an algo-
rithm to compute it using the fast Fourier transform is developed. It is
shown that the discrete cosine transform can be used in the area of
digital processing for the purposes of pattern recognition and Wiener
filtering. Its performance is compared with that of a class of orthogonal
transforms and is found to compare closely to that of the Karhunen-
Lo'eve transform, which is known to be optimal. The performances of
the Karhunen-Lo'eve and discrete cosine transforms are also found to
compare closely with respect to the rate-distortion criterion.

Index Terms-Discrete cosine transform, discrete Fourier transform,
feature selection, Haar transform, Karhunen-Loeve transform, rate dis-
tortion, Walsh-Hadamard transform, Wiener vector and scalar filtering.

INTRODUCTION

In recent years there has been an increasing interest with respect to
using a class of orthogonal transforms in the general area of digital
signal processing. This correspondence addresses itself towards two
problems associated with image processing, namely, pattem recogni-
tion [1] and Wiener filtering [ 2].
In pattern recognition, orthogonal transforms enable a noninvertible

transformation from the pattern space to a reduced dimensionality
feature space. This allows a classification scheme to be implemented
with substantially less features, with only a small increase in classifica-
tion error.
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where Gx(k) is the kth DCT coefficient. It is worthwhile noting that
the set of basis vectors {1/12, cos ((2m + 1) kfl)I(2AM)} is actually a
class of discrete Chebyshev polynomials. This can be seen by recalling
that Chebyshev polynomials can be defined as [ 3]

1
To(Qp) =-

TkQp) = cos (k cos-1 p), k, p = 1, 2, ,M (2)

where Tk(Qp) is the kth Chebyshev polynomial.
Now, in (2), tp is chosen to be the pth zero of TM(t), which is given

by [31

(3)

Substituting (3) in (2), one obtains the set of Chebyshev polynomials

A 1

To(P) = _

A (2p- l)kFI
Tk(p) = cos k,p= 1, 2,"* ,M. (4)

From (4) it follows that the Tk(p) can equivalently be defmed as

1

(2m + l)krI
Tk(m) = cos 2M k = 1, 2, * - *, (M- 1),

m=0,1,--1,M-l. (5)

Comparing (5) with (1) we conclude that the basis member cos ((2m +
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CORRESPONDENCE

1)kll)/(2M) is the kth Chebyshev polynomial Tk() evaluated at the
mth zero of TM{t).
Again, the inverse cosine discrete transform (ICDT) is defined as

1 M-1 (2m + 1)kfl
X(m) = >2 Gx(°) + Gx(k) cos

2 k=1 2M

m=0,1,** ,(M-1). (6)

We note that applying the orthogonal property [ 3]

k=l=M-1 M/2, k =I= O

22 Tk(m) Tj (m) = ^ M/2, k =I O0
m=o 0, kM* I

(7)

to (6) yields the DCT in (1).
If (6) is written in matrix forn and A is the (M X M) matrix that de-

notes the cosine transformation, then the orthogonal property can be
expressed as Fig. 1. Eigenvectors of (8 X 8) Toeplitz matrix (p = 0.9) and basis

vectors of the DCT.
T MA A= 2[I] (8)

where AT is the transpose of A and [I] is the (M X Al) identity matrix.

MOTIVATION

The motivation for defining the DCT is that it can be demonstrated
that its basis set provides a good approximation to the eigenvectors
of the class of Toeplitz matrices defined as

[1 p

p 1

'p =

IM-1i-
p

2
p

p

M-i
p
M-2* * p

. .

J

O<p<1. (9)

For the purposes of illustration, the eigenvectors of 'p for M = 8 and
p = 0.9 are plotted (see Fig. 1) against

,cos(2m+1)k, k= 1,2,--,7,m=0, 1 7 (10)

which constitute the basis set for the DCT. The close resemblance
(aside from the 1800 phase shift) between the eigenvectors and the set
defined in (10) is apparent.

ALGORITHMS

It can be shown that (1) can be expressed as

Gx(O) = 2 X(m)
m=o

2 [(q-knl)/2Mn 2M-1
kGx(k) =-Re je'") '2E X(m) wkm}

k=1, 2, ,(M-l) (11)

where

W =e-e21/2M i=ji/j

X(m) = 0, m =M, (M+ 1), ,(2M - 1)

and Re {-} implies the real part of the term enclosed. From (11) it
follows that all the M DCT coefficients can be computed using a 2M-
point fast Fourier transform (FFT). Since (1) and (6) are of the same
form, FFT can also be used to compute the IDCT. Similarly, if a dis-
crete sine transform were defined, then the Re {- I in (1 1) would be re-
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Fig. 2. Transform domain variance;M = 16, p = 0.95.

placed by Im { * }, which denotes the imaginary part of the term
enclosed.

COMPUTATIONAL RESULTS

In image processing applications, ' in (9) provides a useful model for
the data covariance matrix corresponding to the rows and columns of
an image matrix [61, [7]. The covariance matrix in the transform
domain is denoted by I and is given by

T=A'pA*T (12)

where A is the matrix representation of an orthogonal transformation
and A* is the complex conjugate of A. From (12) it follows that T
can be computed as a two-dimensional transform of 'p.

Feature Selection

A criterion for eliminating features (i.e., components of a transform
vector), which are least useful for classification purposes, was developed
by Andrews [1]. It states that features whose variances (i.e., main
diagonal elements of I) are relatively large should be retained. (Fig. 2
should be retained.) Fig. 2 shows the various variances ranked in de-
creasing order of magnitude. From the information in Fig. 2 it is
apparent that relative to the set of orthogonal transforms shown, the
DCT compares most closely to the KLT.

Wiener Filtering
The role of orthogonal transforms played in filtering applications is

illustrated in Fig. 3 [2]. Z is an (M X 1) vector which is the sum of a
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Fig. 3. Wiener filtering model.

TABLE I
MEAN-SQUARE ERROR PEFORMANCE OF VARIOUS TRANSFORMS FOR SCALAR WIENER FILTERING; P = 0.9

M
Transform 2 4 8 16 32 64

Karhunen-Loeve 0.3730 0.2915 0.2533 0.2356 0.2268 0.2224
Discrete cosine 0.3730 0.2920 0.2546 0.2374 0.2282 0.2232
Discrete Fourier 0.3730 0.2964 0.2706 0.2592 0.2441 0.2320
Walsh-Hadamard 0.3730 0.2942 0.2649 0.2582 0.2582 0.2559
Haar 0.3730 0.2942 0.2650 0.2589 0.2582 0.2581

0a

:
cr

cE

:D
z
4Lhi

SIZE OF 0 f

Fig. 4. Mean-square error performance of various transforms for scalar Wiener filtering; p = 0.9.

vector X and a noise vector N. X is considered to belong to a random
process whose covariance matrix is given by i) which is defined in (9).
The Wiener filter G is in the form of an (M X M) matrix. A and A-'
represent an orthonormal transform and its inverse, respectively, while
X denotes the estimate of X, using the mean-square error criterion.
We restrict our attention to the case when G is constrained to be a

diagonal matrix Q. This class of Wiener filters is referred to as scalar
filters while the more general class (denoted by G) is referred to as
vector filters. The additive noise (see Fig. 3) is considered to be white,
zero mean, and uncorrelated with the data. If the mean-square estima-
tion error due to scalar filtering is denoted by eQ, then e( can be
expressed as [4]

1 M 'Ix(s, s)
e=1E x(s, S) + In(s, s) (13)

where 'Vx and Tn denote the transform domain covariance matrices of
the data and noise, respectively. Table I lists the values of eQ for differ-

ent values of M for the case p = 0.9 and a signal-to-noise ratio of unity.
From Table I it is evident that the DCT comes closest to the KLT
which is optimal. This information is presented in terms of a set of
performance curves in Fig. 4.

ADDITIONAL CONSIDERATIONS

In conclusion, we compare the performance of the DCT with KLT,
DFT, and the identity transforms, using the rate-distortion criterion
[51. This performance criterion provides a measure of the information
rate R that can be achieved while still maintaining a fixed distortion D,
for encoding purposes. Considering Gaussian sources along with the
mean-square error criterion, the rate-distortion performance measure
is given by [5]

1 MD (/{ I l

2M i=1
(14a)
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CORRESPONDENCE

4a]

Fig. 5. Rate versus distortion for M = 16 and p = 0.9.

1 M
D = - min (0, ai)mj= )

(14b)

where A denotes the orthogonal transformation and the aj are the
main diagonal terms of the transform domain covariance matrix '1
in (12).
The rate-distortion pertaining to M = 16 and p = 0.9 is shown in

Fig. 5, from which it is evident that the KLT and DCT compare more
closely than the KLT and DFT.

SUMMARY

It has been shown that the DCT can be used in the area of image
processing for the purposes of feature selection in pattern recognition;
and scalar-type Wiener filtering. Its performance compares closely with
that of the KLT, which is considered to be optimal. The performances
of the KLT and DCT are also found to compare closely, with respect
to the rate-distortion criterion.
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Minimization of Linear Sequential Machines

CHI-TSONG CHEN

Abstract-An algorithm is presented to minimize linear sequential
machines to reduced form.

Index Terms-Algorithm, linear machine, minimization, reduced ma-
chine, reduction, sequential machine.

I. INTRODUCTION

The minimization of a linear sequential machine to a reduced form is
an important topic and is discussed in many texts [1 -[4] . The mini-
mization procedure presented in [ 1] -[4] is as follows. Let {A, B, C, D}
be an n-dimensional linear machine over GF(p), and let r, with r < n,
be the rank of the diagnostic matrix K A [C'A'C' * * * (A')1n- C'T,
where the prime stands for the transpose. Define an r X n matrix T
consisting of the first r linearly independent rows of K, and an n X r
matrix R denoting the right inverse of T so that TR = L Then the linear
machine {TAR, TB, CR, D} is a reduced form of {A, B, C, D}. In this
correspondence, an algorithm will be introduced to find a special set of
r linearly independent rows in K. A reduced machine can then be read
out from this algorithm without the need of inverting any matrix.
Furthermore, the reduced machine will be in a canonical form.

II. ALGORITHM

Let C be a q X n matrix, and let ci be the ith row of C. The diagnostic
matrix of {A, B, C, D} will be arranged in the following order:

An-1

Cq

cqA

cqAn-1

(1)

Now an algorithm will be introduced to find the first r linearly indepen-
dent rows in P. This is achieved by a series of elementary transforma-
tions. Let

KrKrl . .. K2K1PAKP (2)

where Ki are lower triangular matrices with all diagonal elements unity,
and are obtained in the following manner. Let pi (j) be the first non-
zero element from the left in the first row of P, where / denotes the
position. Then K1 is chosen so that all, except the first, elements of the
jth column of K1P are zero. Let p2(1) be the first nonzero element
from the left of the second row of KIP. Then K2 is chosen so that all,
except the first two, elements of the Ith column of K2K1P are zero.
Proceed in this manner until all linearly independent rows of P are
found. Note that in this process, if one row is identically zero, then
proceed to the next nonzero row. By multiplying these Ki, we obtain
K = KrKril ... K2KA. Note that KP will be finally of form
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