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1. Arithmetical Functions

Definition: An arithmetical function is a function f : Z+ → C.

Truth be told, this definition is a bit embarrassing. It would mean that taking any
function from calculus whose domain contains [1,+∞) and restricting it to positive
integer values, we get an arithmetical function. For instance, e−3x

cos2 x+(17 log(x+1)) is
an arithmetical function according to this definition, although it is, at best, dubious
whether this function holds any significance in number theory.

If we were honest, the definition we would like to make is that an arithmetical
function is a real or complex-valued function defined for positive integer arguments
which is of some arithmetic significance, but of course this is not a formal definition
at all. Probably it is best to give examples:

Example AΩ: The prime counting function n 7→ π(n), the number of prime num-
bers p, 1 ≤ p ≤ n.

This is the example par excellence of an arithmetical function: approximately half
of number theory is devoted to understanding its behavior. This function really
deserves a whole unit all to itself, and it will get one: we put it aside for now and
consider some other examples.

Example 1: The function ω(n), which counts the number of distinct prime di-
visors of n.

Example 2: The function ϕ(n), which counts the number of integers k, 1 ≤ k ≤ n,
with gcd(k, n) = 1. Properly speaking this function is called the totient func-
tion, but its fame inevitably precedes it and modern times it is usually called just
“the phi function” or “Euler’s phi function.” Since a congruence class k modulo
n is invertible in the ring Z/nZ iff its representative k is relatively prime to n, an
equivalent definition is

ϕ(n) := #(Z/nZ)×,

the cardinality of the unit group of the finite ring Z/nZ.

Example 3: The function n 7→ d(n), the number of positive divisors of n.
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Example 4: For any integer k, the function σk(n), defined as

σk(n) =
∑

d | n

dk,

the sum of the kth powers of the positive divisors of n. Note that σ0(n) = d(n).

Example 5: The Möbius function µ(n), defined as follows: µ(1) = 1, µ(n) = 0
if n is not squarefree; µ(p1 · · · pr) = (−1)r, when p1, . . . , pr are distinct primes.

Example 6: For a positive integer k, the function rk(n) which counts the num-
ber of representations of n as a sum of k integral squares:

rk(n) = #{(a1, . . . , ak) | a2
1 + . . . + a2

k = n}.
These examples already suggest many others. Notably, all our examples but Ex-
ample 5 are special cases of the following general construction: if we have on hand,
for any positive integer n, a finite set Sn of arithmetic objects, then we can define
an arithmetic function by defining n 7→ #Sn. This shows the link between number
theory and combinatorics. In fact the Möbius function µ is a yet more purely com-
binatorial gadget, whose purpose we shall learn presently. In general we have lots
of choices as to what sets Sn we want to count: the first few examples are “elemen-
tary” in the sense that the sets counted are defined directly in terms of such things
as divisibility, primality, and coprimality: as we shall, see, they are also elementary
in the sense that we can write down exact formulas for them. The example rk(n)
is more fundamentally Diophantine in character: we have a polynomial in several
variables – here P (x1, . . . , xk) = x2

1 + . . . + x2
k, and the sets we are conunting are

just the number of times the value n is taken by this polynomial. This could clearly
be much generalized, with the obvious proviso that there should be some suitable
restrictions so as to make the number of solutions finite in number (e.g. we would
not want to count the number of integer solutions to ax + by = N , for that is
infinite; however we could restrict x and y to taking non-negative values). Ide-
ally we would like to express these “Diophantine” arithmetical functions like rk in
terms of more elementary arithmetical functions like the divisor sum functions σk.
Very roughly, this is the arithmetic analogue of the analytical problem expressing
a real-valued function f(x) as a combination of simple functions like xk or cos(nx),
sin(nx). Of course in analysis most interesting functions are not just polynomials
(or trigonometric polynomials), at least not exactly: rather, one either needs to
consider approximations to f by elementary functions, or to express f as some sort
of limit (e.g. an infinite sum) of elementary functions (or both, of course). A similar
philosophy applies here, with a notable exception: even the “elementary” functions
like d(n) and ϕ(n) are not really so elementary as they first appear!

2. Multiplicative Functions

2.1. Definition and basic properties. An important property shared by many
“arithmetically significant” functions is multiplicativity.

Definition: An arithmetical function f is said to be multiplicative if:
(M1) f(1) 6= 0.
(M2) For all relatively prime positive integers n1, n2, f(n1n2) = f(n1) · f(n2).
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Lemma 1. If f is multiplicative, then f(1) = 1.

Proof: Taking n1 = n2 = 1, we have, using (M2)

f(1) = f(1 · 1) = f(1) · f(1) = f(1)2.

Now by (M1), f(1) 6= 0, so that we may cancel f(1)’s to get f(1) = 1.

Exercise: Suppose an arithmetical function f satisfies (M2) but not (M1). Show
that f ≡ 0: i.e., f(n) = 0 for all n ∈ Z+.

The following is a nice characterization of multiplicative functions:

Proposition 2. For an arithmetical function f , the following are equivalent:
a) f is multiplicative;
b) f is not identically zero, and for all n = pa1

1 · · · pak

k (the standard form factor-
ization of n), we have f(n) =

∏k
i=1 f(pai

i ).

Remark: Here we are using the convention that for n = 1, k = 0, and a product
extending over zero terms is automatically equal to 1 (just as a sum extending over
zero terms is automatically equal to 0). (If this is not to your taste, just insert in
part b) the condition that f(1) = 1!)

Proof: Exercise.

In other words, a multiplicative function f is completely determined by the val-
ues it takes on all prime powers pk. Thus, in trying to understand a function
known to be multiplicative, one needs only to “see what it is” on prime power
values of n. Note that, conversely, any function f defined only on prime powers pk

– and satisfying f(1) = 1 – extends to a unique multiplicative function.

2.2. Completely multiplicative functions. If you have never seen this defini-
tion before, then something has been bothering you the whole time, and I will now
respond to this worry. Namely, wouldn’t it make more sense to say that a function
f is multiplicative if f(n1 · · ·n2) = f(n1) · f(n2) for all integers n1 and n2?

In a purely algebraic sense the answer is yes: the stronger condition (together
with f(1) 6= 0) says precisely that f is a homomorphism from the monoid Z+ to
the monoid C×. This is certainly a very nice property for f to have, and it has a
name as well: complete multiplicativity. But in practice complete multiplica-
tivity is too nice: only very special functions satisfy this property, whereas the class
of multiplicative functions is large enough to contain many of our “arithmetically
significant functions.” For instance, neither σk (for any k) nor ϕ is completely
multiplicative, but, as we are about to see, all of these functions are multiplicative.

2.3. Multiplicativity of the σk’s.

Theorem 3. The functions σk (for all k ∈ N) are multiplicative.

Proof: It is almost obvious that the Möbius function is multiplicative. Indeed its
value at a prime power pa is: 1 if a = 0, −1 if a = 1, and 0 if a ≥ 2. Now there is a
unique multiplicative function with these values, and it is easy to see that µ is that
function: we have µ(pa1

1 · · · pak

k ) = 0 unless ai = 1 for all i – as we should – and
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otherwise µ(p1 · · · pk) = (−1)k = µ(p1) · · ·µ(pk). In other words, µ is essentially
multiplicative by construction.

Now let us see that σk is multiplicative. Observe that – since gcd(n1, n2) = 1! –
every divisor d of n1 ·n2 can be expressed uniquely as a product d1 ·d2 with di | ni.
So

σk(n1n2) =
∑

d | n1n2

dk =
∑

d1 | n1, d2 | n2

(d1d2)k = (
∑

d1 | n1

dk
1)(

∑

d2 | n2

dk
2) = σk(n1)σk(n2).

2.4. CRT and the multiplicativity of the totient. The multiplicativity of ϕ is
closely connected to the Chinese Remainder Theorem, as we now review. Namely,
for coprime n1 and n2, consider the map Φ : Z/(n1n2) → Z/(n1)×Z/(n2) given by

k (mod n1n2) 7→ (k (mod n1), k (mod n2)).

This map is a well-defined homomorphism of rings, since if k1 ≡ k2 (mod n)i,
then k1 ≡ k2 (mod n)1n2. Because the source and target have the same, finite,
cardinality n1n2, in order for it to be an isomorphism it suffices to show either
that it is injective or that it is surjective. Note that the standard, elementary
form of the Chinese Remainder Theorem addresses the surjectivity: given any pair
of congruence classes i (mod n1)and j (mod n2) the standard proof provides an
explicit formula for a class p(i, j) (mod n1n2) which maps via Φ onto this pair of
classes. However, writing down this formula requires at least a certain amount of
cleverness, whereas it is trivial to show the injectivity: as usual, we need only show
that the kernel is 0. Well, if Φ(k) = 0, then k is 0 mod n1 and 0 mod n2, meaning
that n1 | k and n2 | k. In other words, k is a common multiple of n1 and n2, so, as
we’ve shown, k is a multiple of the least common multiple of n1 and n2. Since n1

and n2 are coprime, this means that n1n2 | k, i.e., that k ≡ 0 (mod n1n2)!

Theorem 4. There is a (canonical) isomorphism of groups

(Z/(n1n2))× → (Z/(n1))× × (Z/(n2))×.

Proof: This follows from the isomorphism of rings discussed above, together with
two almost immediate facts of pure algebra. First, if Φ : R → S is an isomorphism
of rings, then the restriction of Φ to the unit group R× of R is an isomorphism
onto the unit group S× of S. Second, if S = S1 × S2 is a product of rings, then
S× = S×1 × S×2 , i.e., the units of the product is the product of the units. We leave
it to the reader to verify these two facts.

Corollary 5. The function ϕ is multiplicative.

Proof: Since ϕ(n) = #(Z/(n))×, this follows immediately.

Now let us use the “philosophy of multiplicativity” to give exact formulas for σk(n)
and ϕ(n). In other words, we have reduced to the case of evaluating at prime
power values of n, but this is much easier. Indeed, the positive divisors of pa are
1, p, . . . , pa, so the sum of the kth powers of these divisors is a + 1 when k = 0
and is otherwise

σk(pa) = 1 + pk + p2k + . . . + pak =
1− (pk)a+1

1− pk
=

1− p(a+1)k

1− pk
.
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Similarly, the only numbers 1 ≤ i ≤ pa which are not coprime to pa are the multiples
of p, of which there are pa−1: 1 · p, 2 · p, . . . pa−1p = pa. So

ϕ(pa) = pa − pa−1 = pa−1(p− 1) = pa(1− 1
p
).

Corollary 6. Suppose n = pa1
1 · · · pak

k . Then:
a) d(n) =

∏k
i=1(ai + 1).

b) For k > 0, σk(n) =
∏k

i=1
1−p(a+1)k

1−pk .

c) ϕ(n) =
∏k

i=1 pa−1(p− 1).

The last formula is often rewritten as

(1)
ϕ(n)

n
=

∏

p | n

(1− 1
p
).

While we are here, we quote the following more general form of the CRT, which is
often useful:

Theorem 7. (Generalized Chinese Remainder Theorem) Let n1, . . . , nr be any r
positive integers. Consider the natural map

Φ : Z→ Z/n1Z× Z/n2Z× . . .× Z/nrZ
which sends an integer k to (k (mod n1), . . . , k (mod nr)).
a) The kernel of Φ is the ideal (lcm(n1, . . . , nr)).
b) The following are equivalent:
(i) Φ is surjective;
(ii) lcm(n1, . . . , nr) = n1 · · ·nr.
(iii) The integers n1, . . . , nr are pairwise relatively prime.

The proof is a good exercise. In fact the result holds essentially verbatim for
elements x1, . . . , xr in a PID R, and, in some form, in more general commutative
rings.

2.5. Additive functions. The function ω is not multiplicative: e.g. ω(1) = 0 and
ω(2) = 1. However it satisfies a property which is “just as good” as multiplicativity:
ω(n1n2) = ω(n1)+ω(n2) when gcd(n1, n2) = 1. Such functions are called additive.
Finally, we have the notion of complete additivity: f(n1n2) = f(n1) + f(n2) for
all n1, n2 ∈ Z+; i.e., f is a homomorphism from the positive integers under multi-
plication to the complex numbers under addition. We have seen some completely
additive functions, namely, ordp for a prime p.

Proposition 8. Fix any real number a > 1 (e.g. a = e, a = 2). A function f
is additive (respectively, completely additive) iff af is multiplicative (respectively,
completely multiplicative).

Proof: An easy exercise.

2.6. Sums of squares. The functions rk are not multiplicative: to represent 1 as
a sum of k squares we must take all but one of the xi equal to 0 and the other
equal to ±1. This amounts to rk(1) = 2k > 1. However, we should not give up so
easily! Put r′k = rk

2k . We can now quote a beautiful theorem, parts of which may
be proved later.

Theorem 9. The function r′k is multiplicative iff k = 1, 2, 4 or 8.
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2.7. Perfect numbers. The ancient Greeks regarded a positive integer n as per-
fect if it is equal to the sum of its proper divisors (“aliquot parts”). They knew
some examples, e.g. 6, 28, 496, 8128.

In modern language a perfect number is a solution n of the equation σ(n)−n = n,
or σ(n) = 2n. Aha, but we have an exact formula for the σ function: perhaps we
can use it to write down all perfect numbers? The answer is a resounding “sort of.”

Best, as usual, is to examine some data to try to figure out what is going on.
Since our formula for σ takes into account the standard form factorization of n, we
should probably look at these factorizations of our sample perfect numbers. We
find:

6 = 2 · 3
28 = 22 · 7

496 = 24 · 31
8128 = 26 · 127.

As exercises in pattern recognition go, this is a pretty easy one. We have a power of
2 multiplied by an odd prime. But not just any odd prime, mind you, an odd prime
which happens to be exactly one less than a power of 2. And not just any power of
2...anyway, we soon guess the pattern 2n−1 ·2n−1. But we’re still not done: in our
first four examples, n was 2, 3, 5, 7, all primes. Finally we have a precise conjecture
that our knowledge of σ can help us prove:

Proposition 10. (Euclid) Let p be a prime such that 2p − 1 is also prime. Then
Np = 2p−1(2p − 1) is a perfect number.

Proof: Since 2p − 1 is odd, it is coprime to 2p−1. So

σ(Np) = σ(2p−1(2p − 1)) = σ(2p−1)σ(2p − 1).

But these are both prime power arguments, so are easy to evaluate, as above. We
get σ(2p−1) = 2p − 1 and σ(2p − 1) = 2p, so overall σ(Np) = 2p · (2p − 1) = 2Np.

This is a nice little calculation, but it raises more questions than it answers. The
first question is: are there infinitely many primes p such that 2p− 1 is prime? Such
primes are called Mersenne primes after Father Marin Mersenne, a penpal of
Fermat. It would be appropriate to make any number of historical remarks about
Mersenne and/or his primes, but we refer the reader to Wikipedia for this. Suffice
it to say that, in theory, it is a wide open problem to show that there exist infin-
itely many Mersenne primes, but in practice, we do keep finding successively larger
Mersenne primes (at a rate of several a year), meaning that new and ridiculously
large perfect numbers are being discovered all the time.

Ah, but the second question: is every perfect number of the form Np for a
Mersenne prime p? Euler was able to show that every even perfect number is of
this form. The argument is a well-known one (and is found in Silverman’s book) so
we omit it here. Whether or not there exist any odd perfect numbers is one of the
notorious open problems of number theory. At least you should not go searching
for odd perfect numbers by hand: it is known that there are no odd perfect num-
bers N < 10300, and that any odd perfect number must satisfy a slew of restrictive
conditions (e.g. on the shape of its standard form factorization).


