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XXIX

Caminate, son tus huellas
el camino, y nada más;

caminate, no hay camino,
se hace camino al andar.

Al andar se hace camino
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.

Caminante, no hay camino,
sino estelas en la mar.

A. Machado: Proverbios y Cantares

In Memory of My Mother





Abstract

If equator-to-pole energy transfer by heat diffusion is taken into account, En-
ergy Balance Models turn into reaction-diffusion equations, whose prototype is
the (deterministic) Chafee-Infante equation. Its solution has two stable states and
several unstable ones on the separating manifold (separatrix) of the stable domains
of attraction. We show, that on appropriately reduced domains of attraction of
a minimal distance to the separatrix the solution relaxes in time scales increasing
only logarithmically in it. Motivated by the statistical evidence from Greenland
ice core time series, we consider this partial differential equation perturbed by an
infinite-dimensional Hilbert space-valued regularly varying (pure jump) Lévy noise
of index alpha and intensity epsilon. A proto-type of this noise is alpha-stable noise
in the Hilbert space.

Extending a method developed by Imkeller and Pavlyukevich to the SPDE set-
ting we prove under mild conditions that in contrast to Gaussian perturbations
the expected exit and transition times between the domains of attraction increase
polynomially in the inverse intensity. In Chapter 6 we introduce an additional
natural separatrix hypothesis on the jump measure that implies an upper bound
on the exit time of a neighborhood of the separatrix. This allows to obtain an
upper bound for the asymptotic exit time uniform for the initial positions inside
the entire domain of attraction. It is followed by two localization results. Finally
we prove that the solution exhibits metastable behavior. Under the separatrix
hypothesis we can extend this to a result that holds uniformly in space.
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Zusammenfassung

Wird der Äquator-Pol-Energietransfer als Wärmediffusion berücksichtigt, so ge-
hen Energiebilanzmodelle in Reaktions-Diffusionsgleichungen über, deren Modell-
fall die (deterministische) Chafee-Infante-Gleichung darstellt. Ihre Lösung besitzt
zwei stabile Zustände und mehrere instabile auf der separierenden Mannigfaltigkeit
(Separatrix) der stabilen Anziehungsgebiete. Es wird bewiesen, dass die Lösung auf
geeignet verkleinerten Anziehungsgebieten mit Minimalabstand zur Separatrix in-
nerhalb von Zeitskalen relaxiert, die höchstens logarithmisch darin anwachsen. Mo-
tiviert durch statistische Belege aus grönländischen Zeitreihen wird diese partiel-
le Differentialgleichung unter Störung mit unendlichdimensionalem, Hilbertraum-
wertigen, regulär variierenden Lévy’schen reinen Sprungrauschen mit index alpha
und Intensität epsilon untersucht. Ein kanonisches Beispiel dieses Rauschens ist
alpha-stabiles Rauschen im Hilbertraum.

Durch Erweiterung einer Methode von Imkeller und Pavlyukevich auf stochasti-
sche partielle Differentialgleichungen wird unter milden Bedingungen bewiesen,
dass im Gegensatz zu Gauß’schem Rauschen die erwarteten Austritts- und Über-
trittszeiten zwischen Anziehungsgebieten polynomiell mit Ordnung in der inversen
Intensität für kleine Rauschintensität anwachsen. In Kapitel 6 wird eine zusätz-
liche natürliche ”Separatrixhypothese“ über das Sprungmaß eingeführt, die eine
obere Schranke für die Austrittszeiten aus einer Umgebung der Separatrix impli-
ziert. Dies ermöglicht den Nachweis einer oberen Schranke für die Austrittszeiten,
welche gleichmäßig für Anfangsbedingungen in dem ganzen Anziehungsgebiet gilt.
Es folgen zwei Lokalisierungsergebnisse. Schließlich wird gezeigt, dass die Lösung
metastabiles Verhalten aufweist. Unter der ”Separatrixhypothese“ wird dies auf
ein Ergebnis erweitert, welches gleichmäßig im Raum gilt.
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List of frequently used Notation
Important constants

• α ∈ (0, 2), index of the noise, see ν and L

• ρ ∈ ( 1
2 , 1), see 1

ερ , ε > 0

• Γ > 0, large geometric constant

• γ > 0, appropriately small exponent

The spaces

• (L2(0, 1), | · |), Lebesgue space of equivalence classes of square integrable functions
on (0, 1) with the usual norm

• H = H1
0 (0, 1), (H, ‖ · ‖), space of weakly differentiable elements of L2(0, 1) with

Dirichlet boundary conditions with ∇x ∈ L2(0, 1) for x ∈ H and with the norm
‖x‖2 =

∫ 1
0 (∇x(ζ))2dζ, x ∈ H.

• (C0(0, 1), | · |∞), space of continuous functions on [0, 1] with x(0) = x(1) = 0 with
the supremum norm.

The deterministic Chafee-Infante equation

• (S(t))t>0, heat semigroup on H

• λ > π2, with λ 6= (kπ)2, k ∈ N, Chafee-Infante parameter

• u = (u(t;x)) t>0
x∈H

, solution of the deterministic Chafee-Infante equation at time
t > 0 with initial value x ∈ H for fixed parameter λ

• φ±, one of the two stable states {φ+, φ−} of u for fixed λ

• Aλ, global attractor of the dynamical system t 7→ u(t; ·) in H

Domains of attraction Let δi > 0, i = 1, 2, 3 and ε > 0.

• D±, domain of attraction of φ± under the flow t 7→ u(t;x), x ∈ H

• S = H \ (D+ ∪D−), smooth manifold separating D+ and D−, called separatrix

• D±(δ1), positive invariant set of elements x ∈ D± such that dist(u(t;x),S) > δ1
for all t > 0

1



List of frequently used Notation

• D±(δ1, δ2), positive invariant set of elements x ∈ D±(δ1) with dist(u(t;x),S) >
δ1 + δ2 for all t > 0

• D̃±(δ1) = D±(δ1, δ2
1)

• D±(δ1, δ2, δ3), set of elements x ∈ D±(δ1, δ2) such that dist(u(t),S) > δ1 + δ2 + δ3
for all t > 0

• D0(δ1) = H \ (D+(δ1) ∪D−(δ1))

• D̃0(δ1) = H \ (D̃+(δ1) ∪ D̃−(δ1))

• D̃±0(δ1) = D̃±(δ1) ∪ D̃0(δ1)

• Trec + κγ| ln ε|, upper bound for u(t;x), x ∈ D±(εγ), to enter B(1/2)ε2γ (φ±)

Shifted domains of attraction Let δi > 0, i = 1, 2, 3.

• D±0 = D± − φ±

• D±0 (δ1) = D±(δ1)− φ±

• D±0 (δ1, δ2) = D±(δ1, δ2)− φ±

• D̃±0 (δ1) = D̃±(δ1)− φ±

• D±0 (δ1, δ2, δ3) = D±(δ1, δ2, δ3)− φ±

The stochastic Chafee-Infante equation

• ε > 0, noise intensity

• ν, symmetric, regularly varying Lévy measure on B(H) of index α ∈ (0, 2)

• L = (L(t))t>0, symmetric pure jump Lévy process in H with Lévy measure ν

• Xε = (Xε(t;x))t>0, solution of the stochastic Chafee-Infante equation driven by
εdL at time t > 0 with initial value x ∈ H

• ∆tL = L(t)− L(t−), jump of L at time t > 0

• 1
ερ

, for ε > 0, ρ ∈ (0, 1), critical jump height of L beween “small” and “large”
jumps

• ηε = (ηε(t))t>0, compound Poisson process consisting of all jumps of L with
‖∆tL‖ > 1

ερ

• (Ti)i∈N, jump times of ηε

• ti = Ti − Ti−1, i ∈ N, inter-jump periods between jumps the of ηε

• Wi = ∆TiL, i ∈ N, i-th jump (increment) of ηε

2



List of frequently used Notation

• ξε = (ξε(t))t>0, where ξε(t) = L(t)− ηε(t), t > 0, small jump process

• ξ∗ = (ξ∗(t))t>0, where ξ∗(t) =
∫ t

0 S(t− s)dξε(s), small jumps convolution

• Y ε = (Y ε(t;x)) t>0
x∈H

, solution of the stochastic Chafee-Infante equation driven by
εdξε at time t > 0 and initial value x ∈ H

Time scales Let ε > 0, ρ ∈ ( 1
2 , 1), α ∈ (0, 2).

• λ±(ε) = ν

(
1
ε

(D±0 )c
)

= εα `(1/ε) µ
(
(D±0 )c

)
, characteristic rate of the first exit

time

• βε = ν

(
1
ερ
(
B1(0)

)c) = εαρ `(1/ερ) µ (Bc1(0)), intensity of ηε

• λ0(ε) = ν

(
1
ε
B1(0)c

)
= εα `(1/ε) µ (Bc1(0)), characteristic rate of the metasta-

bility

• ` : (0,∞)→ (0,∞), slowly varying function associated to ν

• µ, limit measure of ν on B(H)

Exit times and transition times Let ε > 0, γ ∈ (0, 1).

• τ±x (ε), first exit time of Xε(·;x), x ∈ D̃±(εγ), from the reduced domain of attrac-
tion D±(εγ)

• τ̂±x (ε), first exit time of Xε(·;x), x ∈ D± from the entire domain of attraction D±

• τ±0
x (ε), first exit time of Xε(·;x), x ∈ D̃±(εγ) from the enhanced domain of at-
traction D̃±0(εγ)

• σ±x (ε), first entrance time of Xε(·;x), x ∈ D̃±(εγ) in Bε2γ (φ∓)

• τ0
x(ε), first exit time from the neighborhood of the separatrix D̃0(εγ)
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1. Introduction

Human mind is limited. Whenever it is confronted with an overwhelmingly complex
collection of objects it tries to identify patterns or structures in it and interpret them in
concepts concentrated in models. Mathematics develops a language that serves to make
those complex collections of objects of reality tractable to our mind by skillfully combin-
ing concepts that produce statements and predictions about reality’s model counterpart:
virtual reality.

On this level, assisted by modern computing power, it has - besides theory and ex-
periment - in recent years created a third column of human acquisition of knowledge:
(numerical) simulation, dealing with the outcomes of experiments with virtual reality.
Especially if a model is expected to approximate reality very accurately, (simulation)
experiments with virtual reality and observation of true reality share one typical feature:
they are of comparable levels of complexity. A major example here is the modeling of
terrestrial climate.

The variability of global climate patterns for the last decades has received overwhelm-
ing interest during the last years. The impact human activities might have on the current
terrestrial climate balance underlines the need for reliable climate modeling and simu-
lation. The mathematical models underlying modern simulations are very complex and
high dimensional. The closer to reality the resulting virtual pictures are, the closer our
understanding of their contents is to our understanding of real climate. This possibly
just means that it is equally poor. In addition, climatology is a science without exper-
iments or empirical inference in the usual sense, apart from the reproduction of past
climate patterns by statistical inference from paleoclimatic data. The cross-validation
of simulation output with these data is usually rather difficult. As a consequence, there
certainly is the danger of too much confidence in the simulation output from the models,
and the virtual world they create. And it is certainly wrong to consider computer ex-
periments as acceptable compensation for lack of real experiments and empirical data.
Therefore a physical or analytical understanding of the phenomena both in the real as
in the virtual world of model simulations through conceptual insight is of central impor-
tance. It can be provided by considering conceptual, analytically accessible stochastic
reductions of the complex models. Accordingly, stochastic model reduction in climate
dynamics is of paramount importance.

5



1. Introduction

1.1. A Conceptual Approach to Low-Dimensional
Climate Dynamics

One of the main obstacles of climate modeling is the substantial variability on spatial
and temporal scales ranging over many orders of magnitude. It reaches from turbulent
eddies in the ocean surface due to breaking waves, through mid-latitude cyclonic storms
hundreds of kilometers in extent and lasting for days, to millennial scale shifts in ice cover
and ocean circulation. The low-lying physical description behind imposes important
mutual dependencies of quantities on these highly different time scales, which in general
cannot be resolved entirely. This spread poses major challenges for any quantitatively
accurate and computationally feasible representation.
To account for this variety of effects on very different scales, the community of cli-

matology developed a big collection of models which are commonly classified into three
groups. On the top level of quantitative accuracy are the comprehensive General Cir-
culation Models (GCMs). These are the quantitatively most ambitious models, which
attempt to represent the climate system in as much detail as computational resources
and conceptional reasoning allow. Earth System Models of Intermediate Complexity
(EMICs) instead are models of a more restrained resolution, which attempt to repre-
sent some subsystem of Earth’s climate in detail, such as the ocean, the land surface or
the atmosphere, while the interaction with other subsystems as well as external forcing
remains parametrized. At the bottom of the model hierarchy according to Claussen
et al. [2002] are low dimensional ones such as for instance energy balance models, that
ignore almost all quantities and their interactions, except for a few. They are studied
under highly idealized conditions, such that they are hardly of quantitative relevance.
Their interest lies in their accessibility for mathematical analysis. Very often they are
completely solvable and entirely understandable. They may predict phenomena encoun-
tered in more complex models. Their reduced complexity can help to develop conceptual
qualitative paradigms capable to interpret and understand simulations obtained on the
basis of EMICs or GCMs. Classical examples of this are the prediction of multiple states
of the thermohaline circulation by Stommel [1961], of the phenomenon of sensitivity to
initial conditions by Lorenz [1963], and of glacial metastability.
In the lower levels of climate modeling it is crucial to decide which processes to

represent explicitly, which to parametrize, and how to justify or even construct the
parametrization. Following Imkeller and Monahan [2002], in an updated version of
the traditional approach an analogy with thermodynamic limit theorems is used: by
taking the proportion of scales to an infinite limit, a complete separation of micro and
macro scales is obtained. In a first step, averaging of small scale processes produces
deterministic dynamics for the large scale processes. In a second step, the fluctuation
of the large scale variables around the averaged values of the small scale quantities is
expressed by stochastic differential or partial differential equations, in which the large
scale variables are driven by random processes representing the small scale components.
The mathematically rigorous derivation of such equations by Khasminskii [1966] leads
to linear systems, however.

6



1.1. A Conceptual Approach to Low-Dimensional Climate Dynamics

1.1.1. Hasselmann’s Unfinished Program
There have been serious attempts to derive simple non-linear climate models with
stochastic forcing from idealized GCMs. This project is labeled “Hasselmann’s pro-
gram” after an article by Arnold [2001], in which the ideas by the climatologist Hassel-
mann [1976] dating back to the mid-seventies are translated into modern mathematical
language. Hasselmann’s work is explicitly aimed at increasing the mathematical and
physical understanding of more resolved climate models.
We shall briefly sketch the main ideas. In a first step an idealized GCM is considered

as a large system of coupled ordinary (or partial) differential equations, in which for
0 < ε � 1 the climate state z = (xε, yε) can be separated into “slow” xε(t, yε) and
“fast” variables yε( 1

ε t, x
ε). Such a system can be formally described by

ẋε = f(xε, yε),

ẏε = 1
ε
g(xε, yε).

The scale separation should be described by a small parameter ε corresponding to the
“response time“ of the scales of slow and fast variables. Now define in physical jargon
uε(t) := 〈xε(t, ·)〉, t > 0, as an “average” of the slow variables with respect to an invariant
measure of the subsystem of the fast ones. This should lead to an averaged ordinary or
partial differential equation

u̇ε = F (uε),

where F (uε) := 〈f(xε, ·)〉. The first mathematically rigorous proof of such a procedure
was given by Bogolyubov and Mitropolskii [1961], establishing that under appropriate
assumptions limε→0+ x

ε(t) = u0(t).
In a second step, the fluctuation xε(t)−u0(t) of the solution around the averaged one

is studied. Khasminskii [1966] discovered that for t ∈ [0, T ]

Lε(t) = 1√
ε

(
xε(t)− u0(t)

)
has a limiting Gaussian law as ε→ 0+. This way, he obtains linear differential equations
for the slow variables with a stochastic term replacing the fast ones on finite intervals. In
the framework of diffusion limits, deviations from averaged behavior produce non-linear
(partial) differential equations with stochastic forcing (see Arnold and Kifer [2001] and
Majda et al. [1999]). In this reduction, an assumption is crucial that is usually very
hard to rigorously establish: mixing properties of the fast components, which lead to a
decay of correlations viewed by an equilibrium measure. Even in simple ocean models
studied in Maas [1994] coupled to a Lorenz equation as atmospheric component, different
regimes of the fast motion that are only partially chaotic, complicate the mathematical
treatment.
Yet many qualitative phenomena could not be captured by these methods, since they

happen on ε-dependent time scales, that tend to be large for small ε, i.e. on intervals
[0, T (ε)], where T (ε) → ∞, ε → 0+. Among these are for example the Markovian

7



1. Introduction

transitions between stable states of the deterministic system that become metastable
by the action of noise.
The systematic mathematical deduction of these stochastically forced equations from

deterministic models remains a challenge some 35 years after their heuristic derivation
by Hasselmann.

1.1.2. Energy Balance Models perturbed by Noise of Small Intensity
An alternative approach for obtaining relevant conceptual models in climate dynamics
short-circuits the derivation according to Hasselmann’s program. It consists in the
explicit study of given paleoclimatic time series, and the selection of the best fitting
dynamical model through statistical inference. Assume that the data in the time series
are realized by one of a family of deterministic dynamical systems perturbed by additive
stochastic noise. Assume further that the noise is parametrized by a parameter located
in a set in Euclidean space. To choose the best fitting one among the dynamical models,
one has to develop a statistical test for instance for the noise parameter - often a rather
hard task.

Figure 1.1.: Greenland ice core δ18O temperature proxies (NGRIP [2004] core data,
black line), 50 year average, from 120.000 years before present until now.
The higher the values the warmer the average temperature.

For a paleoclimatic time series from the Greenland ice shelf (Figure 1.1) providing
proxies for the yearly average temperatures of the last glacial period, climatologists
around Ditlevsen [1999] proposed an energy balance model perturbed by heavy-tailed
α-stable noise of small intensity. A statistical analysis on a physical level of rigor was
used to estimate the best fitting α.
Recently this conclusion has been supported strongly by a mathematical study. In

Hein et al. [2009] the model selection problem for the Greenland temperature time series
was carried out successfully. The class of models considered is given by a dynamical
system driven by a one dimensional additive α-stable process. Based on a path-wise
roughness analysis using the power variations of trajectories they establish an estimator

8



1.1. A Conceptual Approach to Low-Dimensional Climate Dynamics

Figure 1.2.: Temperature proxy for the last 5 million years, Lisiecki and Raymo [2005]

for α ∈ (0, 2). The good convergence of this method to a unique parameter gives at
least a good indication that such a signal is observed in the time series. Very recent
developments in the thesis work by Gairing [2010] will most probably allow a detailed
goodness of fit estimate with confidence intervals for α.

1.1.3. The Motivating Phenomenon: Paleoclimatic Warming Events
In the literature the term “ice age“ has different meanings. In this part we adopt the
following convention. Ice age denotes a period of lower temperature of Earth’s surface
and atmosphere on a scale corresponding roughly to Earth’s age, i.e. on a billion to
hundred million year scale. During an ice age, frequent expansions and retreats of
continental ice sheets, polar ice caps and alpine glaciers are observed. These episodes
of extra cold climate are called glacial periods. See IPCC-Report [2010].
Since the estimated formation of Earth about 4.5 billion years ago, five major ice

ages are accounted for. The first well-established one, the Huronian Ice Age, happened
during the period between 2.4 and 2.1 billion years before present. During the last
billion years there is scientific evidence for four distinguishable ice ages. During the
Cryogenian Ice Age, considered as the most severe one, around 850-630 million years
before present, earth was completely covered by ice (“snowball earth”). It is followed
by the minor Andean-Saharan Ice Age, around 460-430 million years before present.
The Karroo Ice Age (350-260 million years b.p) is suspected to have been caused by
the reduction of CO2 due to intense vegetation before. Between these periods the land
surface seems to have been mostly ice-free. Since 2.58 million years before present polar
ice shields appear to reemerge, resulting in the current Quaternary Ice Age, during
which around 47 glacial periods have taken place so far (See Figure 1.2).
The eventual causes for the onset of an ice age are not very clear yet. Instead, the

succession of glaciation periods at least during the current ice age is closely linked to
the periodic behavior of some of Earth’s orbital parameters, the so-called Milankovich
cycles.
The theory of climate variability due to the change in planetary orbital parameters

goes back to the Serbian civil engineer M. Milankovich (1879-1958). In collaboration
with W. Köppen, a German meteorologist, he recognized that the decrease of summer

9



1. Introduction

insolation at high latitudes may be responsible for the growth of glaciers. He expresses
Earth’s incoming solar radiation at a given point on the surface and time as a function
of the orbital parameters, but is unsure about the critical latitude to trigger a glaciation
period.
If we suppose that Earth’s orbit around the sun lies approximately in a plane, it can

be decomposed into three major components. The eccentricity of the elliptic annual
trajectories of Earth around the sun vary regularly over time with periodic components
of about 100.000 years.
Earth’s axis of rotation has an inclination with respect to the normal of the orbital

plane, the angle of which varies between 22.1◦ and 24.5◦ with an approximate period
of 41.000 years. It influences the solar radiation influx at high latitudes, see Hartmann
[1994]. A third component is contributed by the periodic precession of the equinoxes,
i.e. the gyration of Earth’s rotation axis around the normal of the orbital plane with
major periods of 19.000 and 23.000 years.

Figure 1.3.: 420.000 years of ice core data from Petit et al. [1997, 1999], Antarctica
research station, From Bottom to top: Solar variation at 65◦ due to
Milankovich cycles (connected to 18O), 18O isotope of oxygen, levels of
methane, relative temperature

The combined effect of these three components accounts for up to 30% of incoming
solar radiation at high latitudes. The diagram of Figure 1.3 exhibits a fairly good
correspondence of the summer insolation at 65◦ North calculated on the basis of this
orbital forcing.
In the long-range data plot in Figure 1.2 one recognizes the dominant periodicity of

41.000 years until one million years ago which is replaced by the 100.000 year periodicity

10



1.1. A Conceptual Approach to Low-Dimensional Climate Dynamics

since then. For a recent discussion of this phenomenon see Ditlevsen [2009].
The present work is motivated by a phenomenon observed during the last glacial pe-

riod, about 100.000-10.000 years before present. Temperature proxies in the Greenland
ice core indicate that the orbital forcing discussed above does not have a major effect
within this period, and temperatures do not stay uniformly low. Instead one can recog-
nize at least 21 major spikes, indicating abrupt extraordinary increases by more than 8◦
degrees within less than 30 years, followed by a gradual decline during several centuries
(see IPCC-Report [2010]). The distribution of the spikes in Figure 1.1 is rather regular
over the whole period.
The origin of these patterns is not quite clear. In the literature the spikes are classified

into two categories. The first one consists of so-called Heinrich events. They are thought
to be caused by ice sheet instabilities with a huge discharge of icebergs, i.e. enormous
fresh water influx into the Atlantic. Between three and six rapid warmings are consid-
ered to be of Heinrich type. The remaining ones are named Dansgaard-Oeschger events
after their discoverers. There is so far no good explanation for their emergence. Some
authors, for instance Ganopolski and Rahmstorf [2001], Rahmstorf [2003] and Ditlevsen
et al. [2006], suggest a superposition of short periodic signals of solar radiation, leading
to temperature evolutions periodic intervals of which determine the Dansgaard-Oeschger
and Heinrich events. They are separated by temperature thresholds that may be crossed
by random perturbation.

11
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1.2. The Mathematical Model

1.2.1. The Derivation of the Problem

In this work we shall consider a process Xε(t, ζ) that may describe the (annually av-
eraged) temperature evolution in space ζ during a period of time t, subject to spatial-
temporal noise of (small) intensity ε > 0. We wish to resolve longitudinally averaged
temperatures depending on global latitudes. Therefore the spatial variable ζ takes its
values in the interval of latitudes between the poles, normalized to the unit interval
[0, 1]. From a mathematical point of view the underlying description of the evolution of
temperature distributions on this interval involves random processes taking their values
in sets of functions on compact domains. This leads directly to equations in infinite-
dimensional spaces, infinite-dimensional models of noise and eventually from SDEs to
SPDEs.
The dynamics of our processes is determined by three components.

1. A reaction term f of the evolution equation expresses a deterministic forcing of
temperature that can be derived heuristically from simple assumptions on the
balance between absorbed and emitted solar radiation energy as a function of
time (see Imkeller [2001]). Temperature being a one-dimensional quantity, we
may assume that the resulting reaction term is described by the negative gradient
of a potential function f = −U ′ with two local minima, which may be interpreted
as a cold “ground” state and a warmer “Dansgaard-Oeschger” state.

-λ/4

1-1- 2

U(y)

Figure 1.4.: Chafee-Infante potential for λ = 12

2. A spatial diffusion term ∂2

∂ζ2X
ε models heat diffusion between equator and poles

which is caused by different rates of insolation due to different angles of incidence
for solar radiation. The diffusive character of heat transport is a first approxi-
mation, but for the time scales under consideration a well-accepted hypothesis.
The simplest idealized semi-linear reaction-diffusion equation compatible with our

12



1.2. The Mathematical Model

climate dynamics requirements is the Chafee-Infante equation. Its reaction term
is related to a symmetric double-well potential over a bounded interval.
In this work will denote the solution of the deterministic Chafee-Infante equation
by u = X0. It satisfies formally

∂

∂t
u(t, ζ) = ∂2

∂ζ2u(t, ζ) + f(u(t, ζ)) ζ ∈ [0, 1], t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,
u(0, ζ) = x(ζ), ζ ∈ [0, 1],

(1.1)

where U(y) = (λ/4)y4 − (λ/2)y2 for λ > 0 fixed, and f = −U ′.
The solution takes values in an infinite-dimensional function space, as for example
L2(0, 1), H1

0 (0, 1) or C(0, 1), where also the initial state x is taken (see Temam
[1992] or Sell and You [2002]). Since its pure reaction term f has two zeros given
by the minima of U , apart from singular values of λ, the Chafee-Infante equation
possesses two hyperbolic stable states φ+, φ− ∈ C∞(0, 1). Nevertheless, there may
be several unstable saddles, depending on the value of the parameter λ.

0 1

ϕ(ζ)

ϕ(ζ)

x(ζ)

ζ

+

-

1

-1

Figure 1.5.: Sketch of a typical element in H and the stable states φ+ and φ−

3. According to our discussion of Hasselmann’s approach in Subsection 1.1.1 and
the model selection problem in Subsection 1.1.3 for paleoclimatic time series we
assume that the two deterministic components of the energy balance determined
evolution at the right hand side of equation (1.1) are perturbed by an additive
stochastic process L of small intensity ε > 0 taking values in the corresponding
function space. We follow the suggestion in Hein et al. [2009] according to which
the noise is of Lévy type with jump measure tails of polynomial order. The most
prominent example is the case of α-stable noise.

13
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Following these heuristic assumptions, for ε > 0 the process is supposed to satisfy the
equation

∂

∂t
Xε(t, ζ) = ∂2

∂ζ2X
ε(t, ζ) + f(Xε(t, ζ)) + εL̇(t, ζ) ζ ∈ [0, 1], t > 0,

Xε(t, 0) = Xε(t, 1) = 0, t > 0,

Xε(0, ζ) = x(ζ), ζ ∈ [0, 1],

(1.2)

where λ > 0 and f = −U ′. The noise term L̇ formally represents the generalized
derivative of a pure jump Levy process in the Sobolev space H = H1

0 (0, 1) with Dirichlet
boundary conditions, regularly varying Lévy measure of index α ∈ (0, 2) and initial value
x ∈ H. Since the focus of our mathematical work will be the metastable behavior of
Xε, the periodic orbital forcing effects related to Milankovich cycles are not taken into
account in the reaction term at this stage.
For the one-dimensional counterpart of equation (1.2) without diffusion Imkeller and

Pavlyukevich investigate the asymptotic behavior of exit and transition times in the
small noise limit in Imkeller and Pavlyukevich [2006a], Imkeller and Pavlyukevich [2008]
and Imkeller and Pavlyukevich [2006b]. In contrast to the Wiener case, for which
exponential growth with respect to the noise intensity is observed (Freidlin and Ventsell
[1998]), these models feature exit rates with polynomial growth in the limit of small
noise. Accordingly, the critical time scale in which the global metastable behavior of
the jump diffusion can be reduced to a finite state Markov chain jumping between
the metastable states (see also Bovier et al. [2004]) is equally polynomial in the noise
intensity.
To which extent do these results still hold true if a diffusive heat transport from the

equator to the poles and infinite-dimensional noise is taken into account?
To find answers to this natural question will be the main objective of this work. We

shall show in Theorem 2.18 that the expected exit time from (reduced) domains of
attraction of the metastable states φ+, φ− increases polynomially of order ε−α in the
noise intensity ε, and characterize the exit scenarios. We shall also show in Theorem 2.24
that for this time scale of ε the jump diffusion system reduces to a finite state Markov
chain with values in the set of stable states {φ+, φ−}.
Of course this treatment of the metastability of SPDE with Lévy jump noise can be

seen independent of the climate dynamics context in which we embed it following the
introductory remarks. So our analysis can be considered as a starting point for study-
ing metastable behavior of dynamical systems induced by reaction-diffusion equations
perturbed by Lévy jump noise on a more general basis.

1.2.2. The Basic Idea: Noise Decomposition by the Intensity
Parameter

Extending Imkeller and Pavlyukevich [2008] for dimension 1, we next explain the heuris-
tics of the method to determine the expected first exit time for a domain of attraction

14



1.2. The Mathematical Model

of the stable states φ± in the asymptotics of small noise intensity. It proceeds along the
following lines.

1. For t > 0 and a process Y let us write ∆tY := Y (t) − Y (t−). We fix a certain
threshold, say c > 0, and consider the sequence of jump times of the driving Lévy
noise L in H exceeding c

Ti+1 := inf{t > Ti | ‖∆tL‖ > c}, T0 = 0.

If (S(t))t≥0 is the Markovian semigroup associated with the diffusion operator
on (0, 1), and we use the mild solution formulation following Peszat and Zabczyk
[2007] the jumps of Xε are just the jumps of L, i.e.

∆TiX
ε = ∆Ti

·∫
0

S(· − s)dL(s) = ∆TiL. (1.3)

2. The domain of attraction D± of the stable solution φ± can be reduced appropri-
ately toD±(εγ) ⊂ D± such that the solution u(t;x) of the Chafee-Infante equation
starting in x ∈ D±(εγ) find itself within a small neighborhood Bε2γ (φ±) at times
t exceeding Trec + κγ| ln ε|, where Trec is a global relaxation time and κ > 0 a
global constant, formally

u(t;x) ∈ Bε2γ (φ±) for all t > Trec + κγ| ln ε| and x ∈ D±(εγ). (1.4)

3. We now let the threshold c depend on ε, and choose c = c(ε) = 1
ερ for ρ ∈ (0, 1)

to split L(t) = ξε(t) + ηε(t) into a small jump part ξε, with

ε‖∆tξ
ε‖ 6 ε

1
ερ
→ 0, ε→ 0+

and a large jump part ηε, with ηε(t) =
∑
i:Ti6t ∆TiL, t ≥ 0. Between two large

jump times Ti and Ti+1, the strong Markov property allows us to consider Xε

as being driven by the small jump component εξε alone. Denote this process
by Y ε. In finite dimensions Y ε is directly seen to deviate negligibly from the
deterministic solution u uniformly in time intervals of the order of its inter-jump
times ti+1 = Ti+1 − Ti, formally

sup
x∈D±(εγ)

sup
Ti≤t≤Ti+1

‖Y ε(t)− u(t)‖ → 0 for ε→ 0+ (1.5)

in probability. Since we solve our equation in a mild sense we establish instead
that (1.5) is implied by

εξ∗(t)→ 0, ε→ 0+, for t ≥ 0

where ξ∗(t) =
∫ t

0 S(t − s) dξε(s) the stochastic convolution with respect to ξε.
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(see Appendix A.3).

4. The inter-jump times of ηε are all independent and with exponential law of pa-
rameter βε,

βε := ν

(
1
ερ
Bc1(0)

)
≈ εαρ,

where ν is the jump measure of L for which we assume that it varies regularly
of index α. They are therefore expected to be of order 1

εα , which for small ε is
much bigger than the relaxation time Trec + κγ| ln ε| of u to Bε2γ (φ±). We can
now combine (1.3),(1.4) and (1.5). This implies that for small ε exit events start
in Bε2γ (φ±) and are most probably triggered by the large jump part εηε. Hence
the first exit time τ(ε) from D± is expected to be roughly

τ(ε) ≈ inf{Ti =
i∑

j=1
tj | φ± + ε∆tiL /∈ D±}.

5. Using the regular variation of the Lévy measure ν of L we obtain for the probability
of large jumps high enough to trigger exits

P
(
φ± + ε∆tiL /∈ D±

)
= P

(
∆t1L ∈

1
ε

(
(D±)c − φ±

))
=
ν
( 1
ε ((D±)c − φ±) ∩ 1

ερB
c
1(0)

)
ν
( 1
ερB

c
1(0)

) ≈ εα(1−ρ).

Therefore

E [τ(ε)] ≈
∞∑
i=1

E [Ti]P
(
φ± + ε∆tiL /∈ D±

)
≈ E [t1]P

(
φ± + ε∆t1L /∈ D±

) ∞∑
i=1

i
(
1− P

(
φ± + ε∆t1L /∈ D±

))i−1

≈ 1
εαρ

εα(1−ρ)
(

1
εα(1−ρ)

)2
= 1
εα

1.2.3. A Glance at Related Literature
Since to our knowledge the method of this work sketched in Subsection 1.2.2 has not
been used in the context of SPDEs so far we shall only give an overview over parts of
the literature to which our attention had been drawn on the course of these studies. We
do not claim completeness.
The Chafee-Infante equation has been extensively studied, starting with the article

by Chafee and Infante [1974]. Its most interesting feature is a bifurcation in the system
parameter representing the steepness of the potential, which considerably changes the
dynamics in comparison to the finite dimensional case, see for example Carr and Pego
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[1989]. Other classical references are the books by Henry [1983] and Hale [1983]. Exis-
tence and regularity of its solutions have been investigated, as well as the fine structure
of the attractor. We refer to the books Temam [1992], Cazenave and Haraux [1998],
Robinson [2001], Chueshov [2002] and references therein.
SPDE with Gaussian noise go back to the seventies with early works by Pardoux

[1975], Krylov and Rozovskii [2007] and Walsh [1981], Walsh [1986]. Since then the field
has expanded enormously in depth and variety, as is impressively documented recently
for example in Khoshnevisan et al. [2008]. More recent treatments can be found among
others for instance in the books DaPrato and Zabczyk [1992], Chow [2007], Prevot and
Röckner [2007], Kotelenez [2008] and references therein.
The treatment of the asymptotic dynamical behavior for finite dimensional Gaussian

diffusions mainly by techniques related to large deviations was developed in Freidlin and
Ventsell [1970, 1998]. In Faris and Jona-Lasinio [1982b], the authors use methods based
on large deviations in order to analyze the stochastic dynamics for SPDE with Gaussian
noise. The tunneling effects they discover interpret the phenomenon of metastable be-
havior of solutions switching between stable equilibria at time scales exponential in the
noise intensity. Additionally they show that the transitions asymptotically take place
at the saddle points, the number of which varies according to the bifurcation scenar-
ios of the deterministic part. Martinelli et al. [1989] show that suitably renormalized
exit times are asymptotically exponential. Brassesco [1991] shows that the process is
asymptotically concentrated in balls around the stable states and that the average along
trajectories remains close to the stable state before the switching time.
SPDEs with jump noise have been studied since the late eighties, see for example

Chojnowska-Michalik [1987] and Kallianpur and Perez-Abreu [1988]. At the end of
the nineties the subject is picked up again with a rich series of articles for example by
Albeverio et al. [1998], Mueller [1998], Bie [1998], Applebaum and Wu [2000], Fuhrmann
and Röckner [2000], Fournier [2000], Fournier [2001], Mytnik [2002], Knoche [2004],
Stolze [2005], Hausenblas [2005], Hausenblas [2006], Bo and Wang [2006], Peszat and
Zabczyk [2006], Röckner and Zhang [2007], Marinelli et al. [2010], Filipović et al. [2008],
Filipović et al. [2010]. We refer to the monograph Peszat and Zabczyk [2007] for a more
comprising view on SPDEs with Lévy noise and the bibliography therein.

1.2.4. Organization of the Work

In Section 2.1 we set up of the mathematical framework. We split our driving noise
process into “small” and “large” jump components, in dependence on the noise intensity
ε > 0. In the sequel we establish properties of the stochastically perturbed Chafee-
Infante and characterize the crucial feature of the noise, i.e. its asymptotic polynomial
decay of order εα, α ∈ (0, 2). We discuss the dynamics of the deterministic equation, its
attractor and its domains of attraction.
In Section 2.2 we state the main results of this thesis precisely.
Chapter 3 justifies the distinction between “small” and “large” jumps. We show that

between two “large” jumps the deterministic system perturbed by only the “small”
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jumps will deviate only moderately from the deterministic trajectories, hence will cause
an exit only with asymptotically vanishing probability.
Chapter 4 is devoted to the main part of the derivation of the asymptotic behavior of

the first exit time from a reduced domain of attraction of the deterministic system. In
this rather technical part we extend the methods developed in Imkeller and Pavlyukevich
[2008] to regularly varying jump measures. To overcome the lack of moments due to
the heavy-tailed noise, the crucial tool lies in precise asymptotic estimates of critical
events, obtained by using the strong Markov property and the continuous dependence
of the solution on the noise.
In Chapter 5 we exploit this result in order to determine the asymptotics of the

transition times between small balls around the stable state.
Chapter 6 starts with a detailed discussion of an additional hypothesis, which implies

an upper bound for the time to leave neighborhoods of the separating manifold between
domains of attraction. In Section 6.2 we prove an upper bound for the asymptotic
first exit time of the entire domain of attraction D±. In Section 6.3 we derive two
localization results for the solution on subcritical and critical time scales. Section 6.4 is
devoted to the main result of this work, the description of metastable behavior of the
stochastic Chafee-Infante equation. It states the convergence on a critical time scale
of the solution of the stochastic Chafee-Infante equation to a continuous time Markov
chain switching between the stable states φ±. Its switching rates are directly related to
the mass of the reshifted domain of attraction with respect to the limiting measure of
the regularly varying Lévy jump measure ν.
The Appendices cover the material which is needed for the Chapters in the main part.

Since many results in the literature are not exactly in a useful form for our purposes we
fill this gap here.
Appendix A mainly collects all the properties needed for stochastic Chafee-Infante

equation and provides in particular the sketch for the proof of the strong Markov prop-
erty. It ends with a short Section A.6 containing results about regularly and slowly
varying functions, which we shall use useful for the tails of our Lévy noise.
Appendix B concentrates on fine properties of the dynamics of the deterministic

Chafee-Infante equation. We start with a consistency result for reduced domains of
attraction. In the sequel we show the existence of constants Trec, κ > 0 such that
for any γ > 0 the deterministic solution of the Chafee-Infante equation is confined to
a ball of radius ε2γ around φ± for times after Trec + κγ| ln ε| initial values x in an
appropriate, reduced domain of attraction D±(εγ) in the small noise limit ε → 0+.
Due to the bifurcation of the attractor of the Chafee-Infante equation this argument
needs some care, and exploits for instance the hyperbolicity of the equilibrium points
and the transversality of their respective local stable and unstable manifold. We prove
very useful uniform (in x, T ) boundedness properties of

∫ T
0 |u(t;x)|p∞ dt <∞ for p > 1.
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2. The Main Results

2.1. The Mathematical Framework
In this work the natural numbers N do not contain 0.

The Spaces: For p > 1, the norm on the Banach space Lp(0, 1) of equivalence classes
of functions on the unit interval Lebesgue integrable in the p-th power will be denoted by
|·|p. In the case of the Hilbert space L2(0, 1), we drop the subscript and simply write |·|,
and denote the corresponding scalar product by 〈·, ·〉. Our processes usually will be sup-
posed to take their values on the separable Hilbert space H = H1

0 (0, 1) := C∞c (0, 1)
‖·‖

,
normed by

||u|| := (
1∫

0

(∇u(ζ))2dζ) 1
2 = |∇u| = 〈∇u,∇u〉 1

2 , u ∈ H,

where ∇u is written for the derivative of u ∈ H in the sense of generalized functions. We
further use the uniform norm for functions usually in the space C0(0, 1) of continuous
functions with Dirichlet boundary conditions on the unit interval, and denote it by | · |∞.
The norms can be compared through Poincaré’s inequality |u| 6 ||u||, u ∈ H, (see e.g.
Brezis [1983]) and |u|∞ 6 ||u||, u ∈ H, which follows from the easiest version of Gauss
theorem: For u ∈ C∞c (0, 1) and s ∈ (0, 1)

u(s) = u(s)− u(0) =
s∫

0

∇u(ζ) dζ 6 s (
s∫

0

(∇u(ζ))2 dζ) 1
2 6 ‖u‖.

Hence we can take the supremum on the left-hand side. The latter just expresses the
one-dimensional Sobolev embedding

(H, ‖ · ‖) ∼= (H1
0 (0, 1), | · |H1

0
) ↪→ (C0(0, 1), | · |∞).

The driving Lévy Process, “Small” and “Large” Jumps: Let (L(t))t>0 be the càdlàg
(continue à droite avec limites à gauche, that is right continuous and with limits from
the left) version of a pure jump Lévy process with values in H with a symmetric Lévy
measure ν on its Borel σ–algebra B(H) satisfying∫

H

(1 ∧ ‖y‖2)ν(dy) <∞.
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For definitions and properties see Appendix A.1. We denote the jump increment of L
at time t > 0 by ∆tL := L(t) − L(t−) and decompose the process L = ηε + ξε for
ρ ∈ (0, 1) and ε > 0 in the following way. Denote by ηε the compound Poisson process
with intensity

βε := ν

(
1
ερ
Bc1(0)

)
and the jump probability measure as ν outside the ball 1

ερB1(0) by

ν

(
· ∩ 1

ερ
Bc1(0)

)
/βε. (2.1)

We further define the complimentary process

ξε := L− ηε. (2.2)

The process ξε will be referred to as “small jumps” process, and ηε as “large jumps” pro-
cess respectively. Note that for any ε > 0 the processes ξε and ηε are independent càdlàg
Lévy processes with the respective Lévy measures ν(·∩Bε−ρ(0)) and ν(· ∩Bcε−ρ(0)) but
in general of very different properties. ξε is a mean zero martingale in H thanks to the
symmetry of ν and possesses finite exponential moments.
Since the process ηε is a compound Poisson process we can define its jump times. We
set recursively

T0 := 0, Tk := inf
{
t > Tk−1

∣∣ ‖∆tL‖ > ε−ρ
}
, k > 1,

and the periods between successive large jumps of ηεt as

t0 = 0, tk := Tk − Tk−1, k > 1.

These waiting times are exponentially distributed, formally L(tk) = EXP (βε). We shall
denote the k-th large jump by

W0 = 0, Wk = ∆TkL, k > 1,

with the jump distribution (2.1).

Càdlàg Mild Solutions of (1.2): Fix for the moment ε > 0. Consider the formal
system (1.2) driven by (ξε(t))t>0 instead of L

∂

∂t
Y ε(t, ζ) = ∂2

∂ζ2Y
ε(t, ζ) + f(Y ε(t, ζ)) + εξ̇ε(t, ζ) ζ ∈ [0, 1], t > 0,

Y ε(t, 0) = Y ε(t, 1) = 0, t > 0,

Y ε(0, ζ) = x(ζ), ζ ∈ [0, 1].

(2.3)

Definition 2.1. Denote by (S(t))t>0 the C0-semigroup generated by the second deriva-
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tive ∆ = ∂2

∂ζ2 over (0, 1) with Dirichlet boundary conditions in H. Then for any time
horizon T > 0 and x ∈ H a mild solution of equation (2.3) is a progressively measurable
process (Y ε(t))t∈[0,T ] in H fulfilling for all t ∈ [0, T ] the integral equation

Y ε(t) = S(t)x+
t∫

0

S(t− s)f(Y ε(s)) ds+ ε

t∫
0

S(t− s)dξε(s) dζ ⊗ P-a.s. (2.4)

Theorem 2.2. Let the preceding assumptions for (S(t)t>0) and f be fulfilled. Then
for any mean zero L2(P;H)-martingale (ξε(t))t>0, T > 0 and initial value x ∈ H there
exists a unique càdlàg mild solution (Y ε(t;x))t∈[0,T ] of equation (2.3). The solution
process induces a homogeneous Markov family with the Feller property.

A proof can be found in Peszat and Zabczyk [2007] Chapter 10. In order to precisely
describe solutions of (1.2) we shall need the following localization argument.

Definition 2.3. We consider an increasing exhaustion (Vk)k>1 of H by symmetric sets
Vk ∈ B(H), and define a monotone localizing sequence τ1 6 τ2 6 . . . of stopping times
by

τ0 = 0 τk := inf{t > τk−1 | ∆tL ∈ Vk}, k > 1.

The mild solution for the original system (1.2) is a progressively measurable process
(Xε,k(t))t∈[0,T ] fulfilling for each k ∈ N and t ∈ [0, τk]

Xε,k(t) = S(t)x+
t∫

0

S(t− s)f(Xε,k(s)) ds+
t∫

0

S(t− s)dξε(s) +
t∫

0

S(t− s)dηε,k(s),

if we define ηε,k as the compound Poisson process with intensity

βkε := ν(Vk \Bε−ρ(0)),

and jump probability measure

ν ((Vk \Bε−ρ(0)) ∩ ·)
βεk

.

For ξε,k := ξε + ηε,k and t ∈ [0, τk] this is equivalent to

Xε,k(t) = S(t)x−
t∫

0

S(t− s)f(Xε,k(s)) ds+
t∫

0

S(t− s)dξε,k(s).

where ξε,k is also a mean zero L2(P;H)-martingale.

We can summarize these facts in the following Corollary.

Corollary 2.4. For x ∈ H equation (1.2) has a càdlàg mild solution (Xε(t;x))t>0,
which satisfies the strong Markov property.
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The lack of moment regularity for heavy tailed noise L will give us numerous occasions
to exploit the strong Markov property. We refer to Appendix A.5 for a sketch of the
proof.

The Regularly Varying Jump Measure ν: So far we did not make any assumption on
ν besides symmetry. From now on we shall concentrate on ν for which the tail decays
asymptotically in the order of r−α, α ∈ (0, 2), for r →∞. This is a natural generalization
of α-stable processes with values in H. In order to describe the asymptotic polynomial
increase in ε of the large jumps we introduce the following notions (see Bingham et al.
[1987], Hult and Lindskog [2006] and Appendix A.6).

Definition 2.5. A regularly varying function with index −β for β > 0, is a nonnegative,
measurable function v : (0,∞)→ (0,∞) with the property that for any y > 0

lim
x→∞

v(xy)
v(x) = y−β .

Let us extend the notion of regular variation to measures on a Hilbert space H.

Definition 2.6. 1. Let H be a separable Hilbert space. Denote by M0(H) the class
of all Radon measures ν : B(H)→ [0,∞) with the property

µ(A) <∞ ⇔ A ∈ B(H), 0 /∈ Ā,

where Ā stands for the closure of a set A in a topological space.

2. A measure ν ∈ M0(H) is called regularly varying with index −β if there exists a
non-zero measure µ ∈M0(H) and a regularly varying function v of index −β such
that

lim
t→∞

v(t)ν(tA) = µ(A) for A ∈ B(H), 0 /∈ Ā.

For properties of regularly and slowly varying functions we refer to Appendix A.6.

We fix from now on

• a symmetric, regularly varying measure ν ∈ M0(H) with index α = −β ∈ (0, 2)
and limiting measure µ ∈M0(H).

By Theorem A.41 this means that there is a slowly varying function ` : (0,∞)→ (0,∞)
such that for all A ∈ B(H)

ν (tA) = t−α`(t)µ(A).

In particular

βε = ν

(
1
ερ
Bc1(0)

)
= εαρ`

(
1
ερ

)
µ(Bc1(0)). (2.5)
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Example 2.7. The Lévy measure ν for an α-stable process in a Hilbert space H is
introduced via spherical coordinates and has the shape

ν(dx) = σ(ds) dr
r1+α ,

where s = x/‖x‖ and r = ‖x‖, and σ is an arbitrary finite measure on the unit sphere
(see e.g. Araujo and Giné [1979]). It is regularly varying with index −α with α ∈ (0, 2).
For t > 0 and A ∈ B(H) with 0 /∈ Ā we may calculate by substitution

ν(tA) =
∫
tA

ν(dy) =
∫
tA

σ(s) dr
r1+α =

∫
A

σ(s′) tdr′

(tr′)1+α = ν(A)t−α.

Hence in this case µ = ν and ` = 1.

Crucial Features of the Deterministic System: A main feature of our system is the
continuous dependence on individual “large” jumps of the noise. This means that “large”
jumps of the noise can be treated as “large” jumps of the solution, while “small” ones
do not perturb the deterministic solution by much. This interplay between large jumps
and the behavior of the deterministic solution will be seen to provide the key for under-
standing the dynamics of our system. Existence, uniqueness and regularity results for a
large class of deterministic reaction-diffusion equations are well known for a long time.
We summarize them quoting Temam [1992], p.84. The deterministic Chafee-Infante
equation is given by

∂u

∂t
− ∂2u

∂ζ2 + λ(u3 − u) = 0, t > 0, ζ ∈ [0, 1], (2.6)

u(t, 0) = u(t, 1) = 0, t > 0,
u(0, ζ) = x(ζ), ζ ∈ [0, 1].

For its solutions we write u = (u(t))t>0 resp. (u(t;x))t>0 if we wish to emphasize the
initial state x ∈ H. For convenience of notation, integrating a function v ∈ L1(0, 1) in
ζ ∈ [0, 1] we often write

∫ 1
0 vdζ, omitting the integration parameter ζ.

It is well-known that the solution flow (t, x) 7→ u(t;x) is continuous in t and x and
defines a dynamical system in H. Furthermore the solutions are extremely regular for
any positive time, i.e. u(t) ∈ C∞(0, 1) for t > 0. The (compact) attractor of the Chafee-
Infante equation is explicitly known to be contained in the unit ball with respect to the
norm | · |∞ (see for instance Eden et al. [1994], Chapter 5.6 and Temam [1992]). Since
the attractor is absorbing for bounded sets, we obtain the following result.

Proposition 2.8. For any Chafee-Infante parameter λ > 0 and any r > 0 there is a
uniform time T rrec(λ) > 0, such that for all t > T rrec(λ)

sup
x∈H
|u(t;x)|∞ 6 1 + r. (2.7)
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In Eden et al. [1994], the weaker boundedness result

sup
x∈H
|u(t;x)|∞ <

√
2

for any t > Trec(λ) > 0 is proved, see a more detailed discussion in Appendix B.2.
The proof of this result will be of particular importance to us, since it will provide an
argument to find uniform bounds on

∫ t
0 |u(s;x)|2∞ds, see Chapter 3 and Appendix B.3.

This property implies that the polynomial nonlinearity becomes uniformly Lipschitz in
finite time. Let us next give a more precise description of the global attractor Aλ of the
Chafee-Infante equation. Its shape depends on the parameter λ and has the following
structure

Aλ = Eλ ∪
⋃
v∈Eλ

Mu(v), (2.8)

where Eλ is the set of fixed points and Mu(v) the unstable manifold of v ∈ Eλ. We
define for v, w ∈ Eλ the set of complete connecting orbits

C(v, w) := {x ∈ H | ∃ (u(t))t∈R solution of equation (2.6) in H such that
∃ t0 ∈ R : x = u(t0) and lim

t→∞
u(t;x) = w and lim

t→−∞
u(t;x) = v}, (2.9)

unless it is non-empty. If such an orbit does not exist we set C(v, w) = ∅. For conve-
nience we introduce the notation for v, w ∈ Eλ, v 6= w

v → w :⇐⇒ C(v, w) 6= ∅.

In addition, for any v ∈ Eλ we have

Mu(v) =
⋃
w∈Eλ
v→w

C(v, w).

Proposition 2.9. For any λ > 0 and initial value x ∈ H there exists a stationary state
ψ ∈ Eλ of the system (2.6) such that

lim
t→∞

u(t;x) = ψ.

This relies on the fact that there is an energy functional, which may serve as a Lyapunov
function for the system. A proof can be found in Faris and Jona-Lasinio [1982b] and
Henry [1983].

Proposition 2.10 (Morse-Smale property of fixed points). For the Chafee-Infante equa-
tion with π2 < λ 6= (kπ)2, k ∈ N, all fixed points in Eλ are hyperbolic, and the stable
and the unstable manifolds of any unstable fixed point ψ ∈ Eλ intersect transversally.

A proof is given in Henry [1985]. See also Appendix B.2.1.
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Figure 2.1.: Sketch of Aλ for λ ∈ (π2, (2π)2), λ ∈ ((2π)2, (3π)2), λ ∈ ((3π)2, (4π)2)

Definition 2.11. For λ > π2 the solution of system (2.6) has two stable stationary so-
lutions, which we shall denote throughout by φ+ and φ−. The full domains of attraction
are denoted by

D± := {x ∈ H | lim
t→∞

u(t;x) = φ±},

and the separatrix by
S := H \

(
D+ ∪D−

)
.

We use the symbol ± whenever we can choose simultaneously for all those symbols
either + or −. In this sense we define the reshifted domains by

D±0 := D± − φ±.

Due to the Morse-Smale property the separatrix is a closed C1-manifold without bound-
ary in H of dimension 1 separating D+ from D−. All unstable fixed points lie in S. See
Raugel [2002].

We fix from now on

• the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N in equation (2.6).

Definition 2.12. Writing Bδ(x) for the ball of radius δ > 0 in H with respect to the
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2. The Main Results

| · |∞–norm centered at x, denote for δ1, δ2, δ3 ∈ (0, 1)

D±(δ1) :={x ∈ D± | ∪t>0 Bδ1(u(t;x)) ⊂ D±},
D±(δ1, δ2) :={x ∈ D± | ∪t>0 Bδ2(u(t;x)) ⊂ D±(δ1)},

D±(δ1, δ2, δ3) :={x ∈ D± | ∪t>0 Bδ3(u(t;x)) ⊂ D±(δ1, δ2)}. (2.10)

For γ ∈ (0, 1) the sets D̃±(εγ) := D±(εγ , ε2γ) and D±(εγ , ε2γ , ε2γ) will be of particular
importance to our analysis.
Analogously we define the reshifted domains of attraction

D±0 (δ1) :=D±(δ1)− φ±,
D±0 (δ1, δ2) :=D±(δ1, δ2)− φ±,

D±0 (δ1, δ2, δ3) :=D±(δ1, δ2, δ3)− φ±,

with the particularly important D̃±0 (εγ) = D±0 (εγ , ε2γ), and D±0 (εγ , ε2γ , ε2γ), and the
following neighborhood of the separatrix S

D̃0(εγ) := H \
(
D̃+(εγ) ∪ D̃−(εγ)

)
.

x

εγ
εγ

D(  )εγ

D(  )εγ
+

-0

ϕ
+

ϕ
-

ϕ+

1

ϕ
-

1

S

Figure 2.2.: The reduced domains of attraction D±(εγ)

For consistency we need the following elementary but non-trivial lemma.

Lemma 2.13. For any γ ∈ (0, 1) we have

1. D± =
⋃
ε>0D

±(εγ),

2. D± =
⋃
ε>0 D̃

±(εγ),

3. D± =
⋃
ε>0D

±(εγ , ε2γ , ε2γ).
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The proof is given in Appendix B.1. The crucial property of D̃±(εγ) is related to the
positive invariance under the deterministic solution flow.

Lemma 2.14. The reduced domains of attraction D±(εγ) and D±(εγ , ε2γ) are positively
invariant under the deterministic flow, and the following relations are valid with respect
to the | · |∞-norm in H:

D̃±(εγ) +Bε2γ (0) ⊂ D±(εγ),
D±(εγ , ε2γ , ε2γ) +Bε2γ (0) ⊂ D̃±(εγ).

Proof. 1. If x ∈ D±(εγ), by definition ∪t>0Bεγ (u(t, x)) ⊂ D±. Hence for s > 0

∪t>0Bεγ (u(t, u(s, x)) = ∪t>0Bεγ (u(s+ t, x)) = ∪t>sBεγ (u(t, x)) ⊂ D±.

This proves that u(s, x) ∈ D±(εγ), hence that D±(εγ) is positively invariant.

2. If x ∈ D±(εγ , ε2γ), again by definition ∪t>0Bε2γ (u(t, x)) ⊂ D±(εγ). Hence for
s > 0

∪t>0Bε2γ (u(t, u(s, x)) = ∪t>0Bε2γ (u(s+ t, x)) = ∪t>sBε2γ (u(t, x)) ⊂ D±(εγ).

This proves that u(s, x) ∈ D±(εγ , ε2γ), and therefore thatD±(εγ , ε2γ) is positively
invariant as well.

3. If x ∈ D±(εγ , ε2γ) and y ∈ Bε2γ (0), then by definition

Bε2γ (x) = Bε2γ (u(0, x)) ⊂ ∪t>0Bε2γ (u(t, x)) ⊂ D±(eγ).

4. Again by definition D±(εγ , ε2γ , ε2γ) +Bε2γ (0) ⊂ D±(εγ , ε2γ).

The following theorem about the deterministic dynamics on the reduced domain of
attraction is fundamental for our purposes.

Proposition 2.15. Let the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be
given. Then there exists an independent finite time Trec > 0 and a constant κ > 0
such that for each γ > 0 there is ε0 = ε0(γ) > 0, such that for all 0 < ε 6 ε0,
t > Trec + κγ| ln ε| and x ∈ D±(εγ)

|u(t;x)− φ±|∞ 6 (1/2)ε2γ .

This means roughly, that as long as the system does not start in an εγ-neighborhood
of the separatrix, it takes a time of only logarithmic order of magnitude in ε > 0 to
reach a very small neighborhood of a stable state. In Appendix B.2.2 we prove a slightly
stronger version of this result.
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2.2. The Main Results
We shall now define our principal object of study, exit times from domains of attraction
of the dynamical system generated by the Chafee-Infante equation of the preceding
Section.

Definition 2.16. Let the conventions of the Section 2.1 be valid. For γ ∈ (0, 1), ε > 0
and Xε(·;x) the càdlàg mild solution of (1.2), with initial position x ∈ D̃±(εγ) we define
the first exit time from the reduced domain of attraction

τ±x (ε) := inf{t > 0 | Xε(t;x) /∈ D±(εγ)}.

For x ∈ D± we define the first exit time from the entire domain of attraction

τ̂±x (ε) := inf{t > 0 | Xε(t;x) /∈ D±}.

For x ∈ D̃±(εγ) we define the first entrance time of a neighborhood of the opposite stable
state φ±

σ±x (ε) := inf{t > 0 | Xε(t;x) ∈ Bε2γ (φ∓)}.

For ε > 0 and x ∈ D̃0(εγ) let

τ0
x(ε) := inf{t > 0 | Xε(t;x) /∈ D̃0(εγ)}

be the first exit time from the neighborhood of the separatrix D̃0(εγ).

In order to obtain non-trivial and non-degenerate exit and transition behavior of our
system we have to impose the following hypothesis on the limiting jump measure µ of
the regularly varying Lévy measure ν defined in the previous Section.

Hypotheses: Let the conventions of the Section 2.1 be valid.

(H.1) Non-trivial transitions:

µ
((
D±0
)c)

> 0.

This condition excludes that the system remains in one domain of attraction.

(H.2) Non-degenerate limiting measure: For α ∈ (0, 2) and Γ > 0 chosen large
enough according to Proposition 3.1 and Remark 4.5 let

0 < Θ <
2− α

2α , ρ ∈ (1
2 ,

2− α
2− (1−Θ)α ), 0 < γ <

(2− α)(1− ρ)−Θαρ
2(Γ + 2) . (2.11)

For each k = ± and any η > 0 we can choose ε0 > 0 small enough such that for
all 0 < ε 6 ε0

µ
(
H \

(
(D+(εγ , ε2γ , ε2γ) ∪D−(εγ , ε2γ , ε2γ)) +Bε2γ (0)

)
− φk

)
< η. (2.12)
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This property expresses that the limiting measure µ centered at the stable points
does not have too much of its mass concentrated near the separatrix. Hypoth-
esis (H.2) implies a sequence of more sophisticated, but slightly less restrictive
estimates of similar type. They can be found in Lemma 4.3.

(H.3) Restriction on large jumps close to the separatrix: Let γ be given ac-
cording to (2.11). There is γ/2 < γ̃ 6 γ and r > 0 such that

lim
ε→0+

sup
x∈B1+r(0)∩D̃0(εγ)

ν
( 1
ε1−γ̃B

c
1(0) ∩ 1

ε

(
D̃0(εγ)− x

))
ν
( 1
ε1−γ̃B

c
1(0)

) = 0.

This condition stipulates that the probability for large jumps from positions inside
D̃0(εγ) bounded by 1+r to D̃0(εγ) tends to zero with ε for some parameter r > 0.
A detailed discussion of Hypothesis (H.3) with the explanation of the precise choice
of γ̃ will be given in Section 6.1.

The solution Xε of equation (1.2) defines a process in the state space H. Before we
state our main results on the asymptotic behavior of its exit times and its metastable
behavior, let us define the relevant ε–dependent rates.

Definition 2.17. We define the asymptotic weight the tail of the jump measure at-
tributes to the reshifted domains of attraction by

λ±(ε) := ν

(
1
ε

(
D±0
)c)

, ε > 0,

and the critical time scale for metastable behavior by

λ0(ε) := ν

(
1
ε
Bc1(0)

)
, ε > 0.

Recall the closely related scale of the intensity of the large jumps

βε = ν

(
1
ερ
Bc1(0)

)
, ε > 0.

The scales thus defined increase polynomially in ε in the limit ε → 0+, since ν is
regularly varying. More precisely, according to Theorem A.41 with a slowly varying `
for any ε > 0 we have

λ±(ε) = εα `(1/ε) µ
(
(D±0 )c

)
,

λ0(ε) = εα `(1/ε) µ (Bc1(0)) ,

βε = εαρ `(1/ερ) µ (Bc1(0)) . (2.13)

29



2. The Main Results

1. Asymptotic Exit Times: The first group of results describes the asymptotic
behavior of the first exit times from reduced and the entire domains of attraction of the
stable states of our system.

Theorem 2.18 (Exponential convergence of first exit times from D±(εγ)). Let the
Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and suppose Hypotheses
(H.1) and (H.2) are satisfied. Then there is family of random variables (τ̄(ε))ε>0 with
exponential law of parameter 1 such that for all θ < 1

lim
ε→0+

E
[

sup
x∈D̃±(εγ)

| exp
(
θλ±(ε)τ±x (ε)

)
− exp (θτ̄(ε)) |

]
= 0.

This implies that the first exit times are of asymptotic order 1/λ±(ε) ≈ 1/εα and there-
fore increase polynomially in the noise parameter as ε → 0+. This strongly contrasts
the behavior known for the Wiener case from Brassesco [1991] and Faris and Jona-
Lasinio [1982b], and extends the results of Imkeller and Pavlyukevich [2006a], Imkeller
and Pavlyukevich [2006b] and Imkeller and Pavlyukevich [2008] to the case of infinite
dimensional systems. The Theorem will be shown in Chapter 4.
If we assume in addition Hypothesis (H.3), we obtain even uniformity for all initial

values in x ∈ D± for the first exit time τ̂±x (ε) of the entire domain of attraction D±.
This result does not refer to the reduced domains of attraction D±(εγ) or D̃±(εγ).

Theorem 2.19 (Asymptotic estimate for the first exit time from D±). Let the Chafee-
Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and assume that Hypotheses
(H.1), (H.2) and (H.3) are satisfied. Then there is a family of exponentially distributed
random variables (τ̄(ε))ε>0 such that for all h > 0

lim
ε→0+

sup
x∈D+

P(λ±(ε)τ̂±x (ε) > τ̄(ε) + h) = 0.

It is natural that we only obtain an inequality, since by Hypothesis (H.3) the system is
forced to leave the region around the separatrix and hence the boundary of the domains
of attraction at most at a shorter rate, than the exit times of the reduced domain of
Theorem 2.18. But it is not clear whether this happens inside or out of the reduced
domain of attraction. In the first case the regime of Theorem 2.18 is attained, in the
latter case the exit time equals the time to leave the boundary region at to the shorter
rate (than λ±(ε)). The Theorem is shown in Section 6.2.

2. Asymptotic Transition Times: We are next interested in times needed to transit
from small neighborhoods of stable states φ± to small neighborhoods of the opposite
stable state φ∓. A consequence of the Theorem 2.18 is that, starting in a small ball
around φ±, the time needed to enter a small ball around the opposite stable state is of
the order of the first exit time. Since the result in Proposition 3.1 contains a statement
that holds only in probability, we cannot expect a convergence result for transition times
as strong as the result of Theorem 2.18 for exit times. Since asymptotically transitions
are caused by “large” ups we only need Hypothesis (H.1) and (H.2) but not (H.3).

30



2.2. The Main Results

Instead, since the result in Proposition 3.1 is only in probability we cannot expect
anything stronger.

Theorem 2.20 (Asymptotic transitions between balls around the stable states). Let
the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and assume that
Hypotheses (H.1) and (H.2) are satisfied. Then there is a family of exponentially
distributed random variables (τ̄(ε))ε>0 with parameter 1 and h0 > 0 such that for 0 <
h 6 h0

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
1{|λ±(ε)σ±x (ε)− τ̄(ε)| > h}

]
= 0.

The Theorem is shown in Chapter 5.

3. Localization on Subcritical and Critical Time Scales: If 0 < δ < α and we
consider the entire process (Xε(t/εδ))t∈[0,T ] for fixed T > 0 it should converge for
ε→ 0+ to the process taking the constant value given by the stable state in the domain
of attraction where it started. This can be justified, since the relaxation time of order
Trec + κγ| ln ε| of the small jump solution Y ε of (2.3) to the stable state is clearly
dominated by 1

εδ
, but the first exit time τ±x (ε) of expected order 1

λ±(ε) ≈
1

λ0(ε) ≈
1
εα

is not yet reached. However, this is only true if we avoid initial values close to the
separatrix S. This is the infinite-dimensional analogon to a result of Imkeller and
Pavlyukevich [2008].

Theorem 2.21 (Localization on subcritical time scales in D̃±(εγ)). Let the Chafee-
Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given, Trec, κ > 0 given by Proposition
2.15 and assume that Hypotheses (H.1) and (H.2) are satisfied. Fix 0 < δ < α. Then
there is h0 > 0 such that for 0 < h 6 h0 and for any T > 0

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
sup

t∈[Trec+κγ| ln ε|,T/εδ]
1{|Xε(t;x)− φ±|∞ > h}

]
= 0. (2.14)

If we assume in addition that Hypothesis (H.3) is fulfilled, the process leaves the
separatrix with high probability before times of the order T

εα(1−γ/2) . Then we obtain a
result of the type of Theorem 2.21 uniformly for all initial values in H and time scales
including the critical time scale T

λ0(ε) . Close to the separatrix we cannot decide to
which domain of attraction the process tends while apart from it the previous reasoning
of Theorem 2.21 continues to hold. The result is a uniform localization theorem in
space.

Theorem 2.22 (Uniform localization on subcritical and critical time scales in H). Let
the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and assume that
Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then there is h0 > 0 such that for
all T > 0 and 0 < h ≤ h0

lim
ε→0+

sup
x∈H

E

 sup
t∈[ T

εα(1−γ/2) ,
T

λ0(ε)
]
1{Xε(t;x) ∈ Bh(φ+) ∪Bh(φ−)}

 = 1.
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The Theorems 2.21 and 2.22 will be shown in Section 6.3.

4. Metastable Behavior: We shall exploit Theorem 2.22 in order to obtain the follow-
ing principal result of this thesis. It claims a convergence of Xε running in the critical
time scale 1

λ0(ε) in terms of finite dimensional distributions to the reduced dynamics of
a Markov chain jumping between the stable states φ+ and φ− back and forth.

Definition 2.23. For T > 0 we shall denote a (finite) partition of [0, T ] into n ∈ N time
points as a finite family π = (t1, . . . , tn) of points in [0, T ], with 0 < t1 < · · · < tn = T ,
and write |π| = n. We denote by Π[0, T ] the collection of all finite partitions in [0, T ].
For convenience we write

Xε(π; ·) := (Xε(t1, ·), . . . , Xε(tn; ·))

for π ∈ Π[0, T ] and ε > 0, and respectively for a process (Y (t; ·))t>0 defined below

Y (π; ·) = (Y (t1; ·), . . . , Y (tn; ·)).

For h > 0 and v̄ = (v1, . . . , vn) ∈ {φ+, φ−}|π| let

Bh(v̄) = Bh(v1)× · · · ×Bh(vn).

Theorem 2.24 (Metastability). Let the Chafee-Infante parameter π2 < λ 6= (kπ)2 for
k ∈ N be given and denote by µ the limiting measure of ν according to Definition (2.6).
Assume that Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then there exists a
continuous time Markov chain (Y (t))t>0 switching between the elements of {φ+, φ−}
with generating matrix

Q = 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c) )

which satisfies the following. There is h0 > 0 such that for all T > 0, Π[0, T ] and
0 < h 6 h0

lim
ε→0+

sup
x∈D̃±(εγ)

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π, x) = v̄

)∣∣ = 0.

This is an analogous result to Imkeller and Pavlyukevich [2008]. We can extend this
slightly for uniform initial values, but we have to pay a price in terms of a “flip” close
to the separatrix, which determines asymptotically to which side solutions, that start
on the separatrix will tend.

Theorem 2.25 (Uniform Metastability). Suppose for k ∈ N the Chafee-Infante param-
eter π2 < λ 6= (kπ)2 being given and denote by µ the limiting measure of ν according to
Definition (2.6). Assume that Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then
there exists a continuous time Markov chain (Y (t;x))t>0 starting in φ± if x ∈ D± and

32



2.2. The Main Results

switching between the elements of {φ+, φ−} with generating matrix

Q = 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c) )

and random intial condition

Φε(x) = φ±,

{
φ+ if x ∈ D+ or x ∈ S with Xε(τ0

x(ε);x) ∈ D+

φ− if x ∈ D− or x ∈ S with Xε(τ0
x(ε);x) ∈ D−

and h0 > 0 such that for all T > 0, π ∈ Π[0, T ], v̄ ∈ {φ+, φ−}|π| and 0 < h ≤ h0

lim
ε→0+

sup
x∈H

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π,Φε(x)) = v̄

)∣∣ = 0.

The Theorems 2.24 and 2.25 will be proved in Section 6.4.
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3. The Small Deviation of the Small
Noise Solution

In this Chapter we shall consider the solution Y ε of the SPDE (2.3), consisting of the
deterministic Chafee-Infante equation perturbed by just the small jump part ξε of our
Lévy process L. We will show that with probability converging to 1 as ε → 0+ the
maximal deviation of Y ε from the deterministic solution u on the time interval before
the first big jump T1, given by |Y ε(t) − u(t)|∞ is at most of order ε to some positive
power. This result is crucial for determining the asymptotic behavior of the first exit
time in Chapter 4, since it basically states that exits can arise only from big jumps.

Proposition 3.1. There is a constant Γ > 0 such that for

0 < Θ <
2− α
α

, ρ ∈ (1
2 ,

2− α
2− (1−Θ)α ) 0 < γ <

(2− α)(1− ρ)−Θαρ
2(Γ + 2)

there exists ϑ = ϑ(Θ, ρ, γ, α) > α(1−ρ), Cϑ > 0 and ε0 > 0, such that for all 0 < ε 6 ε0

P

(
∃ x ∈ D±(εγ) : sup

s∈[0,T1]
|Y ε(s;x)− u(s;x)|∞ > (1/2)ε2γ

)
6 Cϑε

ϑ.

The proof is done in two steps. First we prove the result for maximal deviations on a
time interval bounded by a finite deterministic time horizon T > 0 in a series of Lemmas.
In a second step we generalize it to the random first big jump time T1 replacing T .

3.1. Small Deviation on Deterministic Time Intervals
Our uniform deviation estimate on deterministic time intervals is given by the following
technical Proposition.

Proposition 3.2. There is a constant Γ > 0 such that for 0 < α < 2,

0 < Θ <
2− α
α

, ρ ∈ (1/2, 2− α
2− (1−Θ)α ) 0 < γ <

(2− α)(1− ρ)−Θαρ
2(Γ + 2)

there exist ε0 > 0 and C > 0 such that for any T > 0, 0 < ε 6 ε0 and x ∈ D±(εγ)

P

(
sup

s∈[0,T ]
|Y ε(s;x)− u(s;x)|∞ > (1/2)ε2γ

)
6 C T ε2−2(Γ+2)γ−(2−(1−Θ)α)ρ. (3.1)
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3. The Small Deviation of the Small Noise Solution

The proof will be a consequence of the combination of a number of Lemmas. Recalling
our notation for the small jump part we define its stochastic convolution ξ∗ by

ξ∗(t) =
t∫

0

S(t− s)dξε(s), t > 0. (3.2)

For further details consult Appendix A.3.

3.1.1. Small Deviation with Controlled Small Noise Convolution

In this Subsection we shall show in a series of Lemmas that the deviation of the small
noise mild solution from the solution of the deterministic Chafee-Infante equation is
small if the convolution of the small noise is uniformly controlled on finite deterministic
time intervals.

Lemma 3.3. For any Trec > 0, κ > 0 there is a constant Γ = Γ(κ) > 0 such that
for ρ ∈ (1/2, 1), K > 0 and γ > 0 there exists ε0 = ε0(K,Trec, γ, κ) > 0 such that
for 0 < ε 6 ε0, x ∈ D±(εγ), and 0 6 T 6 Trec + κγ| ln ε|, the remainder process
Rε(·;x) := Y ε(·;x)− u(·;x)− εξ∗(·) satisfies

sup
t∈[0,T ]

|Rε(t;x)|∞ 6
1
K
ε2γ

on the event ET (ε(Γ+2)γ) := {supr∈[0,T ] ||εξ∗(r)|| < ε(Γ+2)γ}.

Proof. Let x ∈ D±(εγ). The process Rε(·;x) := Y ε(·;x)− u(·;x)− εξ∗(·) for which we
note briefly Rε in the sequel satisfies the equation

dRε

dt = ∆Rε + f(Y ε)− f(u).

We first aim at getting an estimate in L2(0, 1). Multiplication with Rε and integration
by part yields 1

1
2

d
dt |R

ε|2 + |∇Rε|2 = 〈f(Y ε)− f(u), Rε〉.

We may assume ε0 6 1. Using the scalar identity

f(w)− f(z) = λ(w2 + wz + z2 − 1)(w − z),

we obtain for 0 < t < t∞ := inf{t > 0 | |Rε(t;x)|∞ > 1} and Γ > 0 to be specified later

1Here and below, computations are done in a formal way. They can be easily justified by Galerkin or
Yosida approximations.
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3.1. Small Deviation on Deterministic Time Intervals

on ET (1) ⊃ ET (ε(Γ+2)γ) the estimate

d
dt |R

ε|2 6 2λ
1∫

0

(
(Y ε)2 + Y εu+ u2 − 1

)
(Rε + εξ∗)Rε dζ

= 2λ
1∫

0

(
(Rε + u+ εξ∗)2 + (Rε + u+ εξ∗)u+ u2 − 1

)
(Rε + εξ∗)Rε dζ

6 12λ
1∫

0

(
(Rε)2 + u2 + (εξ∗)2 − 1

) (
(Rε)2 + εξ∗Rε

)
dζ

6 24λ
1∫

0

(
(Rε)2 + u2 + (εξ∗)2 − 1

) (
(Rε)2 + (εξ∗)2) dζ

6 24λ
(
|Rε|2∞ − 1 + |u|2∞ + |εξ∗|2∞

) 1∫
0

(
(Rε)2 + (εξ∗)2) dζ

6 24λ
(
|u|2∞ + 1

) (
|Rε|2 + ‖εξ∗‖2

)
. (3.3)

With C1 = 24λ, Gronwall’s Lemma for t ∈ [0, t∞], Corollary B.11 and the fact that
Rε(0) = 0 lead to

|Rε(t)|2 6 C1

t∫
0

(
|u(r)|2∞ + 1

)
‖εξ∗(r)‖2 exp

(
C1(t− r) + C1

t∫
r

|u(τ)|2∞ dτ
)

dr

6 C1

t∫
0

(
|u(r)|2∞ + 1

)
‖εξ∗(r)‖2 exp

(
K̄ + 3C1(t− r)

)
dr

6 sup
r∈[0,t]

‖εξ∗(r)‖2 C2 (K̄ + 3t) exp (3C1t) , (3.4)

where we set C2 = C1e
C1K . In the mild solution representation of Rε

Rε(t) =
t∫

0

S(t− s) (f(Y ε(r))− f(u(r))) dr

we can use the regularizing effect of S = (S(t))t>0, the semigroup of the heat equation
on [0, 1], formally ||Sth|| 6 C3√

t
|h|, h ∈ L2(0, 1), t > 0, Hölder’s inequality and Corollary

B.12 for n = 12 to obtain with further universal constants C3, · · · , C6
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3. The Small Deviation of the Small Noise Solution

‖Rε(t)‖

6 6λC3

t∫
0

1
(t− s)1/2

∣∣(Rε)2(s) + u2(s) + (εξ∗)2(s)− 1
∣∣ (|Rε(s)|+ |εξ∗(s)|) ds

6 6λC3

t∫
0

1
(t− s)1/2

(
2 + |u(s)|2∞

)
(|Rε(s)|+ |εξ∗(s)|) ds

6 6λC3

( t∫
0

1
(t− s)3/4 ds

) 2
3
( t∫

0

(2+ |u(s)|2∞)6 ds
) 1

6

·
( t∫

0

(|Rε(s)|+ |εξ∗(s)|)6 ds
) 1

6

6 C4

(
(K̄12 + 64t)1/6

)( t∫
0

(|Rε(s)|+ |εξ∗(s)|)6 ds
) 1

6

.

Hence we may insert (3.4) in the preceding expression and obtain

‖Rε(t)‖ 6 C4

(
(K̄12 + 64t)1/6

)

·
( t∫

0

(
sup
r∈[0,s]

‖εξε(r)‖C1/2
2 (K̄ + 3s)1/2 exp

(
C1

3
2s
)

+ sup
r∈[0,s]

‖εξε(r)‖
)6

ds
)1/6

6 C4

(
(K̄12 + 64t)1/6

)(
C

1/2
2 (K̄ + 3t)1/2 exp

(
C1

3
2 t
)

+ 1
)
t1/6 sup

s∈[0,t]
‖εξε(r)‖

6 C5(1 + t)1/6(1 + t)1/2(1 + t)1/6 exp
(
C1

3
2 t
)

sup
s∈[0,t]

‖εξε(r)‖

6 sup
r∈[0,t]

‖εξ∗(r)‖C6 (1 + t) exp
(

3
2C1t

)
.

Hence for κ > 0 and 0 6 T 6 t∞ ∧ (Trec + κγ| ln ε|) we obtain

|Rε(T )|∞ 6 sup
r∈[0,T ]

‖εξ∗(r)‖C6 (Trec + κγ| ln ε|+ 1) exp
(

3
2C1Trec

)
ε−

3
2 C1κγ .

Let Γ :=
( 3

2C1κ+ 1
)
and fix K > 0. Then there exists ε0 > 0 sufficiently small, such

that for 0 < ε 6 ε0 on the event ET (ε(Γ+2)γ) we have t∞ > T and

sup
t∈[0,T ]

|Rε(t)|∞ 6
1
K
ε2γ .

Note that the result stays true for any Γ̃ > Γ.
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3.1. Small Deviation on Deterministic Time Intervals

For a stable fixed point by v ∈ {φ+, φ−} denote the exponent of stability Λ > 0 by the
minimal number Λ̃ such that for all w ∈ H

〈(∆ + f ′(v))w,w〉 6 −Λ̃|w|2. (3.5)

There is a universal δ0 > 0 such that for v ∈ {φ+, φ−} we have Bδ(v) is positively
invariant in L∞(0, 1) for all δ < δ0 under the flow of the Chafee-Infante equation,
see Lemma B.3 in Appendix B.2.3, or with a different method Matano [1979]. In the
following Lemma we shall see that the remainder process Rε can be controlled by the
small noise part uniformly on finite deterministic time intervals, if the initial value is
chosen inside these positive invariant sets.

Lemma 3.4. Let Λ be the exponent of stability of the Chafee-Infante equation with
parameter λ, v ∈ {φ+, φ−}, and 0 < δ < δ0 ∧ 1

3

(√
|v|2∞ + Λ

24λ − |v|∞
)
. Then there is

a constant C > 0 such that for all ρ ∈ (1/2, 1), x ∈ Bδ(v), 0 < ε 6 1 and 0 6 T we
obtain

sup
t∈[0,T ]

|Rε(t;x)|∞ 6 C sup
r∈[0,T ]

‖εξ∗(r)‖

on ET
(

1
3C

(√
|v|2∞ + Λ

24λ − |v|∞
))

.

Proof. The proof has three parts.

1. Fix η > 0 and x ∈ Bδ(v) and denote t∗η := inf{t > 0 | |Rε(t;x)|∞ > η}. In this
first part of the proof we shall show that there is a constant C2 depending only on the

geometric parameters Λ, λ, |v|∞ such that for η ≤ 1
3

(√
|v|2∞ + Λ

24λ − |v|∞
)

and t 6 t∗η

we have
sup
s∈[0,t]

|Rε(s)| 6 C2 sup
s∈[0,t]

‖εξ∗(s)‖ (3.6)

on Et(η). In fact, using the mean value theorem in Hilbert spaces we calculate

dRε

dt = ∆Rε + (f(Y ε)− f(u))

= ∆Rε +
( 1∫

0

f ′(u+ θ1(Rε + εξ∗)) dθ1

)
(Rε + εξ∗)

= ∆Rε + f ′(v)Rε +
( 1∫

0

f ′(u+ θ1(Rε + εξ∗))− f ′(v) dθ1

)
Rε

+
( 1∫

0

f ′(u+ θ1(Rε + εξ∗)) dθ1

)
εξ∗. (3.7)
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3. The Small Deviation of the Small Noise Solution

We can continue using it a second time

dRε

dt = ∆Rε + f ′(v)Rε

+
( 1∫∫

0

f ′′(v + θ2u+ θ2θ1(Rε + εξ∗)) (u− v + θ1R
ε + εξ∗) dθ2dθ1

)
Rε

+
( 1∫

0

f ′(u+ θ1(Rε + εξ∗)) dθ1

)
εξ∗. (3.8)

Multiplying by Rε and integrating in ζ we obtain

1
2

d
dt |R

ε|2 + Λ|Rε|2 6

( 1∫∫
0

|f ′′(v + θ2u+ θ2θ1(Rε + εξ∗))|∞ dθ2 dθ1

)

·
1∫

0

(|u− v|∞ + |Rε|∞ + ‖εξ∗‖) (Rε)2 dζ

+
( 1∫

0

|f ′(u+ θ1(Rε + εξ∗))|∞ dθ1

) 1∫
0

|εξ∗|R|Rε|R dζ.

Using now the stability of v which ensures that 〈∆w + f ′(v)w,w〉 6 −Λ|w|2 for
w ∈ L2(0, 1), we obtain for 0 6 t 6 t∗η and a > 0 to be chosen below

1
2

d
dt |R

ε|2 + Λ|Rε|2

6 6λ
(
|v|∞ + |u|∞ + |Rε|∞ + sup

r∈[0,t]
‖εξ∗‖

)(
δ + η + sup

r∈[0,t]
‖εξ∗(r)‖

)
|Rε|2

+ 3λ
((
|u|∞ + |Rε|∞ + sup

r∈[0,t]
‖εξ∗‖

)2
+ 1
)(

1
a

sup
r∈[0,t]

‖εξ∗‖2 + a|Rε|2
)
.

For the second inequality above we employ the positive invariance of Bδ(v). Further
using this property with respect to the L∞-norm we can write
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3.1. Small Deviation on Deterministic Time Intervals

1
2

d
dt |R

ε|2 + Λ|Rε|2

6 6λ
(

(2|v|∞ + δ + η + sup
r∈[0,t]

‖εξ∗‖
)(

δ + η + sup
r∈[0,t]

‖εξ∗(r)‖
)
|Rε|2

+ 18λ
(

(|v|∞ + δ)2 + η2 + sup
r∈[0,t]

‖εξ∗‖2 + 1
)
a|Rε|2

+ 18λ
(

(|v|∞ + δ)2 + η2 + sup
r∈[0,t]

‖εξ∗‖2 + 1
)

1
a

sup
r∈[0,t]

‖εξ∗‖2.

By the choice of δ and η it follows

δ + η + sup
r∈[0,t]

||εξ∗(r)|| 6
√
|v|2∞ + Λ

24λ − |v|∞.

If we choose in addition

a = Λ
2

1
36λ

(
(|v|∞ + δ)2 + η2 + supr∈[0,t] ‖εξ∗‖2 + 1

) ,
we obtain

d
dt |R

ε|2

6 −2Λ|Rε|2 + 1
2Λ|Rε|2 + 1

2Λ|Rε|2

+ 72λ
Λ

(
(|v|∞ + δ)2 + η2 + sup

r∈[0,t]
‖εξ∗‖2 + 1

)2
sup
r∈[0,t]

‖εξ∗‖2

6 −Λ|Rε|2 + C1 sup
r∈[0,t]

‖εξ∗‖2.

Here C1 = C1(|v|∞,Λ, λ) can be chosen as a constant depending on |v|∞,Λ, and λ if
also both

δ ∨ η 6
1
3

(√
|v|2∞ + Λ

24λ − |v|∞

)
(3.9)

sup
r∈[0,t]

||εξ∗(r)|| 6 1
3

(√
|v|2∞ + Λ

24λ − |v|∞

)
(3.10)

as is the case on Et( 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞)).

Gronwall’s Lemma and Rε(0) = 0 imply under these conditions for times t 6 t∗η, with

η ≤ 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞) that

41



3. The Small Deviation of the Small Noise Solution

sup
s∈[0,t]

|Rε(s;x)|2 6

t∫
0

C1 sup
τ∈[0,r]

‖εξ∗(τ)‖2e−Λ(t−r) dr 6 C2 sup
s∈[0,t]

‖εξ∗(s)‖2

on Et( 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞)), with C2 = C1
Λ .

2. We next sharpen the estimate obtained in the first part to an estimate in the
‖ · ‖–norm. To this end, we again use the regularizing effect of the semigroup of the
heat equation on [0, 1], this time taking into account its smallest (positive) eigenvalue
c0. Similarly to Step 1 above we get estimates for t 6 t∗η with some constants C3, C4
depending only on Λ, λ, |v|∞. For convenience we drop the dependence on x ∈ Bδ(v).

‖Rε(t)‖

6 C3

t∫
0

e−(c0/2)(t−r)

(t− r)1/2 |f(Y ε(r))− f(u(r))| dr

6 C3

t∫
0

e−(c0/2)(t−r)

(t− r)1/2

1∫
0

|f ′(u(r) + θ(Rε(r) + εξ∗(r)))(Rε(r) + εξ∗(r))| dθ dr

6 C3

t∫
0

e−(c0/2)(t−r)

(t− r)1/2 3λ
(

(|v|∞ + δ + η + sup
τ∈[0,r]

‖εξ∗(τ)‖)2 + 1
)(
|Rε|+ |εξ∗|

)
dr

6 C33λ
(
|v|2∞ + Λ

24λ + 1
)( t∫

0

e−(c0/2)(t−r)

(t− r)1/2 dr
)(

sup
r∈[0,t]

|Rε(r)|+ sup
r∈[0,t]

‖εξ∗(r)‖
)

6 C4 sup
r∈[0,t]

‖εξ∗(r)‖.

For the last inequality in the preceding chain we make use of Part 1 (3.6) of the proof.
Hence we also have

sup
r∈[0,t]

‖Rε(r;x)‖ 6 C4 sup
r∈[0,t]

‖εξ∗(r)‖, t 6 t∗η, x ∈ Bδ(v),

on Et( 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞)), with η ≤ 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞).

3. For the last Part of the proof, observe first that by Sobolev embedding we can infer
from Part 2 that

sup
r∈[0,t]

|Rε(r)|∞ 6 C4 sup
r∈[0,t]

‖εξ∗(r)‖, t 6 t∗η, x ∈ Bδ(v),
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3.1. Small Deviation on Deterministic Time Intervals

on the event Et( 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞)), with η ≤ 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞). We fix now

η = 1
3 (
√
|v|2∞ + Λ

24λ − |v|∞), and let T > 0 be given. Then on the set ET ( 1
C4
η) we will

have supr∈[0,T ] ‖Rε(r)‖∞ 6 η, hence t∗η > T . This completes the proof.

We finally combine the results of the preceding two Lemmas to obtain a uniform estimate
for the remainder process Rε.

Lemma 3.5. There is a constant Γ > 0 such that for ρ ∈ (1/2, 1), γ > 0, there exists
ε0 > 0 such that for 0 < ε 6 ε0, T > 0, x ∈ D±(εγ) on the event ET (ε(Γ+2)γ) we have
the estimate

sup
t∈[0,T ]

|Rε(t;x)|∞ 6
1
4ε

2γ .

Proof. Let κ > 0 be fixed, and Γ = Γ(κ) be given according to Lemma 3.3. Let γ, T > 0
be given, choose δ according to Lemma 3.4, and let K > 0 be the global Lipschitz
constant of x 7→ u(t, x) on Bδ(v) uniformly in t > 0. We apply Lemma 3.3 with the
constant 16(1 +K) to find ε0 such that for 0 < ε 6 ε0, x ∈ D±(εγ) on ET (ε(Γ+2)γ) the
estimate

sup
t∈[0,T ]

|Rε(t;x)|∞ 6 sup
t∈[0,Trec+κγ| ln ε|]

|Rε(t;x)|∞ + sup
t>Trec+κγ| ln ε|

|Rε(t;x)|∞

6
1

16(K + 1) ε
2γ + sup

t>Trec+κγ| ln ε|
|Rε(t;x)|∞ (3.11)

holds. For T > t > Trec + κγ| ln ε| we can write, using the flow property

|Rε(t;x)|∞ = |Y ε(t;x)− u(t;x)− εξ∗(t)|∞

= |Y ε (t− Trec − κγ| ln ε|; Y ε(Trec + κγ| ln ε|;x))

− u (t− Trec − κγ| ln ε|; Y ε(Trec + κγ| ln ε|;x))− εξ∗(t)|∞

+ |u (t− Trec − κγ| ln ε|; Y ε(Trec + κγ| ln ε|;x))

− u (t− Trec − κγ| ln ε|; u(Trec + κγ| ln ε|;x))|∞ = I1 + I2.

By eventually reducing it, assume that ε0 is such that 2ε2γ
0 6 δ is satisfied. By

Lemma 3.3 and Proposition 2.15 we know that for 0 < ε 6 ε0

|Y ε(Trec + κγ| ln ε|;x)− v|∞

= |Rε(Trec + κγ| ln ε|;x) + (u(Trec + κγ| ln ε|;x)− v) + εξ∗(Trec + κγ| ln ε|)|∞

6
1

16(K + 1) ε
2γ + (1/2)ε2γ + ε(Γ+2)γ 6 2ε2γ (3.12)

on the event ETrec+κγ| ln ε|(ε(Γ+2)γ). Hence according to Lemma 3.4 there is a constant
C depending only on the geometric parameters of the Chafee-Infante equation such that
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3. The Small Deviation of the Small Noise Solution

for T > t > Trec + κγ| ln ε| on ET (ε(Γ+2)γ) we have

I1 6 sup
s>0

sup
y∈Bδ(v)

|Y ε(s; y)− u(s; y)− εξ∗(s+ Trec + κγ| ln ε|)|∞

= sup
s>0

sup
y∈Bδ(v)

|Rε(s; y) + ε ξ∗(s)− εξ∗(s+ Trec + κγ| ln ε|)|∞ 6 (C + 2)ε(Γ+2)γ .

To estimate I2, we recall the Lipschitz continuity of x 7→ u(t;x) uniformly in t > 0
with Lipschitz constant K to get with the constants ε0,Γ > 0 already chosen on the
event ET (ε(Γ+2)γ) and Lemma 3.3 with prefactor 1

16(K+1)

I2 6 K|Y ε(Trec + κγ| ln ε|; y)− u(Trec + κγ| ln ε|; y)|∞

6
K

16(K + 1)ε
2γ + ε(Γ+2)γ 6

1
16ε

2γ + ε(Γ+2)γ .

Therefore by eventually reducing ε0 > 0 once again we can get for 0 < ε 6 ε0

sup
t>Trec+κγ| ln ε|

|Rε(t;x)|∞ 6 (C + 3)ε(Γ+2)γ + 1
16ε

2γ 6
1
8ε

2γ

and finally

sup
t∈[0,T ]

|Rε(t;x)|∞ 6

(
1

16(K + 1) + 1
8

)
ε2γ 6

1
4ε

2γ .

3.1.2. Control of the Small Noise Convolution

In this Subsection we shall deal with estimating the convolution of small noise with the
semigroup of the heat equation on the unit interval, uniformly on finite deterministic
time intervals. Note that in the statement of the following Lemma neither ρ nor γ are
restricted within their ranges.

Lemma 3.6. For ρ ∈ (0, 1), p > 0 and 0 < Θ < 1 there are constants C > 0 and ε0 > 0
such that for 0 < ε 6 ε0 and T > 0

P

(
sup
t∈[0,T ]

‖εξ∗t ‖ > εp
)

6 C T ε2−2p−(2−(1−Θ)α)ρ.

Proof. 1. We first show that there exists C1 > 0 such that for any ρ ∈ (0, 1), p > 0,
ε > 0

P

(
sup
t∈[0,T ]

‖εξ∗(t)‖ > εp
)

6 C1 ε
−2(p−1) T

( ∫
{0<‖y‖6 1

ερ
}

‖y‖2 ν(dy)
)
. (3.13)
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3.1. Small Deviation on Deterministic Time Intervals

We start by applying Kolmogorov’s inequality, to get

P

(
sup
t∈[0,T ]

‖εξ∗(t)‖ > εp
)

6 (εp−1)−2
E

[
sup
t∈[0,T ]

‖ξ∗(t)‖2
]
.

Now consider the stochastic convolution equation

dξ∗ = ∆ξ∗ dt+ dξε, ξ∗(0) = 0.

For t > 0 we denote by ∆tX = X(t) −X(t−) the jump of a càdlàg process X at time
t, and remark that by definition ∆tξ

∗ = ∆tξ
ε. By Itô’s formula we can write for T > 0

‖ξ∗(T )‖2 = 2
T∫

0

〈ξ∗(s−),dξ∗(s)〉H +
∑
s6T

(
‖ξ∗(s)‖2 − ‖ξ∗(s−)‖2 − 2〈ξ∗(s−),∆sξ

ε〉H
)

= 2
T∫

0

〈ξ∗(s−),∆ξ∗(s−)〉H ds+ 2
T∫

0

〈ξ∗(s−),dξε(s)〉H

+
∑
s6T

(
‖ξ∗(s)‖2 − ‖ξ∗(s−)‖2 − 2〈ξ∗(s−),∆sξ

ε〉H
)
.

By the non-positivity of
∫ T

0 〈ξ
∗(s−),∆ξε(s−)〉H ds we may continue to estimate

‖ξ∗(T )‖2 6 2
T∫

0

〈ξ∗(s−),dξ∗(s)〉H

+
∑
s6T

(
‖ξ∗(s)‖2 − ‖ξ∗(s−)‖2 − 2〈ξ∗(s−),∆sξ

ε〉H
)
.

Note that for s 6 T

‖ξ∗(s)‖2 − ‖ξ∗(s−)‖2 − 2〈ξ∗(s−),∆sξ
ε〉H = ‖∆sξ

∗‖2 = ‖∆sξ
ε‖2,

and therefore

‖ξ∗(T )‖2 6

T∫
0

〈ξ∗(s−),dξ∗(s)〉H +
∑
s6T

‖∆sξ
ε‖2.

For t > 0 let us denote by [[X]]t the quadratic variation of a process X on [0, t].
Then Burkholder’s inequality yields a universal constant C2 > 0 such that by Young’s
inequality for any a > 0 we have
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3. The Small Deviation of the Small Noise Solution

E

[
sup

s∈[0,T ]
‖ξ∗(s)‖2

]

6 2E
[

sup
s∈[0,T ]

∣∣∣∣
s∫

0

〈ξ∗(r−),dξε(r)〉H
∣∣∣∣]+ E

[∑
r6T

‖δrξ∗‖2
]

6 2C2 E

[
[[
·∫

0

〈ξ∗(r−),dξε(r)〉H ]]1/2T

]
+ T

∫
{0<‖y‖61/ερ}

‖y‖2 dν(dy)

= 2C2 E

[(
sup

s∈[0,T ]
‖ξ∗(s)‖2

T∫
0

d[[ξ∗]](s)
)1/2]

+ T

∫
{0<‖y‖61/ερ}

‖y‖2 dν(dy)

6 2C2

(
aE

[
sup

s∈[0,T ]
‖ξ∗(s)‖2

]
+ 1

4aE
[ T∫

0

d[[ξ∗]](s)
])

+ T

∫
{0<‖y‖61/ερ}

‖y‖2 dν(dy)

= 2aC2 E

[
sup

s∈[0,T ]
‖ξ∗(s)‖2

]
+ C2 T

2a

∫
{0<‖y‖6 1

ερ
}

‖y‖2 ν(dy)

+ T

∫
{0<‖y‖61/ερ}

‖y‖2 dν(dy).

Choosing now a = 1/(4C2) we obtain

E

[
sup

s∈[0,T ]
‖ξ∗(s)‖2

]
6
(
4C2

2 + 2
)
T

∫
{0<‖y‖6 1

ερ
}

‖y‖2 ν(dy).

Now take C1 = 4C2
2 + 2 to finish our argument.

2. In the second part of the proof it remains to determine the asymptotic behavior of
the last factor for small 0 < ε < 1. We first write∫

{0<‖y‖6 1
ερ
}

‖y‖2 ν(dy) 6
∫

{0<‖y‖61}

‖y‖2 ν(dy) +
∫

{1<‖y‖6 1
ερ
}

‖y‖2 ν(dy),

and remark that by part 1 of the proof it remains to estimate the asymptotic behavior
of the function ε 7→

∫
{1<‖y‖6 1

ερ
} ‖y‖

2 ν(dy) for small 0 < ε < 1. To do this, we use the
regular variation of t 7→ ν(tBc1(0)) = t−α `(t) µ(Bc1(0)) with a slowly varying function `
and limiting measure µ (see Definition 2.6). We also use Proposition A.43 which implies
that for any slowly varying function ` and 1 > Θ > 0 there exists C3 > 0, such that
`(t) 6 C3 + t−Θα. This results in the following chain of inequalities
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3.1. Small Deviation on Deterministic Time Intervals

∫
{1<‖y‖6 1

ερ
}

‖y‖2 ν(dy) =
∫
H

‖y‖∫
0

1{1 < ‖y‖ 6 1
ερ
}2t dt ν(dy)

6 2

1
ερ∫

0

t ν ((1 ∨ t)Bc1(0)) dt 6 1 + 2µ(Bc1(0))

1
ερ∫

1

t1−α
(
C3 + t−Θα) dt

= C4 + 2 C3µ(Bc1(0))
2− α ε−ρ(2−α) + 2µ(Bc1(0))

2− (1 + Θ)αε
−ρ(2−(1−Θ)α),

with another universal constant C4. Therefore there exists C5 > 0 such that for ε > 0
sufficiently small ∫

{1<‖y‖6 1
ερ
}

‖y‖2 ν(dy) 6 C5ε
−ρ(2−(1−Θ)α).

Inserting this into inequality (3.13) we obtain the desired result.

3.1.3. The Small Deviation Estimate on Deterministic Time Intervals

In this Subsection we combine the results of the preceding two to complete the proof of
Proposition 3.2 for deterministic time intervals [0, T ], T > 0.

Proof. (of Proposition 3.2)
By Lemma 3.5, we find Γ > 0 such that given ρ ∈ (1/2, 1), γ > 0, there exists ε0 > 0
such that for 0 < ε 6 ε0, T > 0, and x ∈ D±(εγ) we have by definition of ET (ε(Γ+2)γ)

{ sup
t∈[0,T ]

|Y ε(t;x)− u(t;x)|∞ > (1/2)ε2γ}

= { sup
t∈[0,T ]

|Rε(t;x) + εξ∗(t)|∞ > (1/2)ε2γ}

⊆ { sup
t∈[0,T ]

|Rε(t;x)|∞ > (1/4)ε2γ} ∪ { sup
t∈[0,T ]

‖εξ∗(t)‖ > (1/4)ε2γ}

⊆ { sup
t∈[0,T ]

‖εξ∗(t)‖ > ε(Γ+2)γ} ∪ { sup
t∈[0,T ]

‖εξ∗(t)‖ > (1/4)ε2γ}

⊆ { sup
t∈[0,T ]

‖εξ∗(t)‖ > ε(Γ+2)γ}. (3.14)

Therefore we can infer from Lemma 3.6 with p = (Γ + 2)γ and 0 < Θ < 1 by eventually
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3. The Small Deviation of the Small Noise Solution

reducing ε0 a bit

P

(
∃ x ∈ D±(εγ) : sup

t∈[0,T ]
|Y ε(t;x)− u(t;x)|∞ > (1/2)ε2γ

)

6 P

(
sup
t∈[0,T ]

‖εξ∗t ‖ > ε(Γ+2)γ

)
6 C T ε2−2(Γ+2)γ−(2−(1−Θ)α)ρ.
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3.2. Small Deviation before the First Large Jump (Proof of Proposition 3.1)

3.2. Small Deviation before the First Large Jump (Proof
of Proposition 3.1)

In this Section we apply the results from the previous one to finally obtain the small
deviation estimate on the stochastic interval between 0 and the first big jump T1. Since
we know the law of T1, an integration of the estimate just obtained is necessary. This
will complete the proof of Proposition 3.1 for the time interval [0, T1].

Proof. (of Proposition 3.1). We use the inequality derived in the preceding Subsection,
as well as the asymptotic behavior of the large jump rate βε given in (2.13). We conclude
that we can find Γ > 0 such that for given ρ ∈ (1/2, 1), γ > 0, and 0 < Θ < 1 there
exist constants C1, C2 and ε0 > 0 such that for 0 < ε 6 ε0

P

(
∃ x ∈ D±(εγ) : sup

s∈[0,T1]
|Y ε(s;x)− u(s;x)|∞ > (1/2)ε2γ

)

6

∞∫
0

P

(
∃ x ∈ D±(εγ) : sup

s∈[0,t]
|Y ε(s;x)− u(s;x)|∞ > (1/2)ε2γ

)
βεe
−βεt dt

6 C1 ε
2−2(Γ+2)γ−(2−(1−Θ)α)ρ

∞∫
0

tβεe
−βεt dt

6 C1 ε
2−2(Γ+2)γ−(2−(1−Θ)α)ρ (β−1

ε Γ(2)
)

6 C2 ε
2−2(Γ+2)γ−(2−(1−Θ)α)ρ−αρ,

where Γ is the classical Gamma function Γ(z) =
∫∞

0 tz−1e−tdt, z > 0. Let now ϑ =
2 − 2(Γ + 2)γ − (2 − (1 − Θ)α)ρ − αρ. Upon setting Cϑ = C2 it remains to check the
conditions under which ϑ > α(1− ρ). We have

ϑ− α(1− ρ) = 2− 2(Γ + 2)γ − (2− (1−Θ)α)ρ− αρ− α(1− ρ)
= 2− α− 2(Γ + 2)γ − (2− (1−Θ)α)ρ
= (2− α)(1− ρ)︸ ︷︷ ︸

>0

−Θαρ− 2(Γ + 2)γ > 0

if and only if
0 < γ <

(2− α)(1− ρ)−Θαρ
2(Γ + 2) .

The right-hand side of the last inequality is positive if

(2− α)(1− ρ)−Θαρ > 0 and thus iff ρ <
2− α

2− (1−Θ)α.
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3. The Small Deviation of the Small Noise Solution

Since ρ > 1/2, the last inequality forces us to restrict Θ > 0 to fulfill

1
2 <

2− α
2− (1−Θ)α which is equivalent to Θ <

2− α
α

.

Under these assumptions, identical to the ones formulated in the statement of Proposi-
tion 3.1, we have ϑ > α(1− ρ). This completes the proof.

In the next Chapter we shall need a slightly modified form of Proposition 3.1, which
we derive in the rest of this Chapter.
For x ∈ D±(εγ) define

Ex := { sup
s∈[0,T1]

|Y ε(s;x)− u(s;x)|∞ 6 (1/2)ε2γ}.

Corollary 3.1. Under the assumptions of Proposition 3.1 there is ϑ = ϑ(α,Θ, γ, ρ) with
ϑ > α(1− ρ), Cϑ > 0, and ε0 > 0 such that for all 0 < ε 6 ε0

E

[
sup

x∈D±(εγ)
1(Ecx)

]
6 Cϑε

ϑ.

With the following Corollary, we prepare an auxiliary statement to be used in Chap-
ter 4 in the estimate for the Laplace transform of the exit time from reduced domains
of attraction.

Corollary 3.2. Let C > 0, and let the assumptions of Proposition 3.1 hold. Then there
is ε0 > 0 such that for all 0 < ε 6 ε0, θ > −1

E

[
e−θλ

±(ε)T1 sup
x∈D±(εγ)

1(Ecx)
]
6 C

(
βε

βε + θλ±(ε)

)
λ±(ε)
βε

. (3.15)

Proof. 1. First note that for ϑ > α(1 − ρ) and Cϑ according to the preceding Corol-
lary 3.1, by the asymptotic properties of the functions βε and λ±(ε) stated in (2.13) we
may conclude that there exists ε0 > 0 such that for 0 < ε 6 ε0 we have

Cϑe
ϑ 6 C

(
βε

βε + θλ±(ε)

)
λ±(ε)
βε

,

and also
Cϑε

ϑ+αρ

βε + θλ±(ε) 6 C

(
βε

βε + θλ±(ε)

)
λ±(ε)
βε

.

2. For θ > 0 Corollary 3.1 provides ϑ > α(1− ρ) such that

E

[
e−θλ

±(ε)T1 sup
x∈D±(εγ)

1(Ecx)
]
6 E

[
sup

x∈D±(εγ)
1(Ecx)

]
6 cϑε

ϑ

Now apply the first inequality of Part 1.
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3.2. Small Deviation before the First Large Jump (Proof of Proposition 3.1)

For θ ∈ (−1, 0), recalling from the proof of Theorem 3.1 that the exponent had the
shape ϑ = 2− 2(2 + Γ)γ − (2− (1−Θ)α)ρ > α(1− ρ) we get

E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1(Ec(y))

]

6 E

[
e−θλ(ε)T11{ sup

s∈[0,T ]
‖εξ∗(s)‖ > ε(Γ+2)γ}

]

6

∞∫
0

e−θλ(ε)t
P

(
sup
s∈[0,t]

‖εξ∗(s)‖ > ε(Γ+2)γ

)
βεe
−βεt dt

6 Cϑε
2−2(2+Γ)γ−(2−(1+Θ)α)ρ

∞∫
0

e−(θλ(ε)+βε)tβεt dt

6

(
βε

βε + θλ(ε)

)2
Cϑ
βε
εϑ+αρ. (3.16)

Now apply the second inequality in Part 1 to conclude.
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4. Asymptotic Exit Times

We shall now use the small deviations estimates of Chapter 3 to give a precise account
of the exit times of the system described by our Chafee-Infante equation with small
Lévy noise in H of the reduced domains of attraction of the stable states φ± defined in
Chapter 2. Our main line of reasoning will be based on the splitting of small and large
jumps proposed there. In fact, the Chafee-Infante equation perturbed by small jumps
being subject to only small deviations from the solution of the deterministic system,
uniformly before the first big jump, as shown in Chapter 3, and the time needed for
relaxation in a small neighborhood of φ± being only of logarithmic order in ε, exits
will happen at times of big jumps that are big enough to leave the reduced domains of
attraction. To characterize the asymptotic law of the exit time, we shall compute its
Laplace transform. Making these heuristic arguments mathematically rigorous will be
the main task of this Chapter.

4.1. Estimates of Exit Events by Large Jump and
Perturbation Events

In this Section we shall exploit the Markov property of our process to rigorously define
events that are capable of capturing the successive big jumps linked by periods of relax-
ation during which only small deviations from the deterministic solutions are possible.
The strong Markov property allows us to represent Xε recursively in the following way.
Recall the notation used for the big jump compound Poisson part of our Lévy noise
process from Section 2.1, and denote the shift by time t on the space of trajectories by
θt, t > 0. For any k ∈ N, t ∈ [0, tk], x ∈ H we have

Xε(t+ Tk−1;x) = Y ε(t;Xε(0;x)) ◦ θTk−1 + εWk1{t = tk}. (4.1)

In the following two lemmas we estimate certain events connecting the behaviour of Xε

in the domains of type D±(εγ) with the large jumps ηε in the reshifted domains of type
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4. Asymptotic Exit Times

D±0 (εγ). We introduce for ε > 0 and x ∈ D̃±(εγ) the major events

Ax :={Y ε(s;x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1;x) + εW1 ∈ D±(εγ)},
Bx :={Y ε(s;x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1;x) + εW1 /∈ D±(εγ)},
A−x :={Y ε(s;x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1;x) + εW1 ∈ D̃±(εγ)},
Cx :={Y ε(s;x) ∈ D±(εγ) f. s ∈ [0, T1] a. Y ε(T1;x) + εW1 ∈ D±(εγ) \ D̃±(εγ)},
A� :={εW1 ∈ D±0 },
B� :={εW1 /∈ D±0 },
Ex :={ sup

s∈[0,T1]
|Y ε(s;x)− u(s;x)|∞ 6 (1/2)ε2γ}. (4.2)

We can now exploit the precise definitions of the reduced domains of attraction in order
to obtain partial estimates of solution path events by events only depending on the
driving noise. For simplicity of notation we abbreviate

D∗0(εγ) :=
(
D±0 (ε) \D0(εγ , ε2γ)

)
+Bε2γ (0).

The three following lemmas are proved in Section 4.3. The first one is concerned with
events on which only small deviations from the deterministic trajectory are possible
before the first big jump time.

x

ε

γ

D(  )εγ

D(  )εγ
+

-

0

ϕ+

ϕ
-

ϕ+

1

ϕ
-

1

S

 

ε /2

γε /2

εW

εW

1

 
D(  )εγ
+

~

D(  )εγ-~

2

Figure 4.1.: Sketch of a typical first exit event from a reduced domain of attraction

Lemma 4.1 (Partial estimates of the major events).
Let Trec, κ > 0 given by Proposition 2.15 and assume that Hypotheses (H.1) and (H.2)
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4.1. Estimates of Exit Events by Large Jump and Perturbation Events

are satisfied. For ρ ∈
( 1

2 , 1
)
, γ ∈ (0, 1 − ρ) there exists ε0 > 0 so that the following

inequalities hold true for all 0 < ε 6 ε0 > 0 and x ∈ D±(εγ)

i) 1(Ax)1(Ex)1{T1 > Trec + κγ| ln ε|} 6 1{εW1 ∈ D±0 }, (4.3)
ii) 1(Bx)1(Ex)1{T1 > Trec + κγ| ln ε|} 6 1{εW1 /∈ D±0 (εγ , ε2γ)}, (4.4)
iii) 1(Cx)1(Ex)1{T1 > Trec + κγ| ln ε|} 6 1{εW1 ∈ D∗0(εγ)}. (4.5)

Additionally, for x ∈ D±(εγ) we have

iv) 1(Bx)1(Ex)1{‖εW1‖ 6 (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|} = 0, (4.6)
v) 1(Cx)1(Ex)1{‖εW1‖ 6 (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|} = 0. (4.7)

In the opposite sense for x ∈ D̃±(εγ)

vi) 1(Ex)1{T1 > Trec + κγ| ln ε|}1{εW1 /∈ D±0 } 6 1(Bx), (4.8)
vii) 1(Ex)1{T1 > Trec + κγ| ln ε|}1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} 6 1(A−x ). (4.9)

The estimates presented in the preceding Lemma can be readily combined to provide
full estimates of the events in terms of the first large jump time T1, the large jump
height W1 and the perturbation event Ecy on which deviations obtained from the small
jump part are big.

Lemma 4.2 (Full estimates of the major events). Let Trec, κ > 0 given by Proposition
2.15 and assume that Hypotheses (H.1) and (H.2) are satisfied. Let us denote the shift by
time t on the path space for our Markov process by θt, t > 0. For ρ ∈

( 1
2 , 1
)
, γ ∈ (0, 1−ρ)

there exists ε0 > 0 such that the following inequalities hold true for all 0 < ε 6 ε0, κ > 0
and x ∈ D±(εγ)

ix) 1(Ax) 6 1{εW1 ∈ D±0 }+ 1{‖εW1‖ >
1
2ε

2γ}1{T1 < Trec + κγ| ln ε|}+ 1(Ecx),

x) 1(Bx) 6 1{εW1 /∈ D±0 (εγ , ε2γ)}+ 1{T1 < Trec + κγ| ln ε|}+ 1(Ecx),

xi) sup
y∈D̃±(εγ)

1{Y ε(s; y) /∈ D±(εγ) for some s ∈ (0, T1)} 6 sup
y∈D̃±(εγ)

1(Ecy),

xii) 1(Ax)1{Y ε(s;Xε(0, x)) ◦ θT1 /∈ D±(εγ) for some s ∈ (0, T1)}
6 1 {εW1 ∈ D∗0(εγ)}+ 1{T1 < Trec + κγ| ln ε|}+ sup

y∈D̃±(εγ)
1(Ecy) ◦ θT1 + 1(Ecx).

In the opposite sense for x ∈ D̃±(εγ)

xiii) 1(A−x ) > 1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} − 1{T1 < Trec + κγ| ln ε|} − 2 1(Ecx),
xiv) 1(Bx) > 1{εW1 /∈ D±0 }(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecx).
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In particular for x ∈ D̃±(εγ)

xv) 1(A−x ∩A�) > 1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} − 1{T1 < Trec + κγ| ln ε|} − 2 1(Ecx),
xvi) 1(Bx ∩B�) > 1{εW1 /∈ D±0 }(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecx).

In order to make the previous estimates fertile to our analysis we show that Hypthesis
(H.2) implies a sequence of similar slightly less restrictive inequalities.

Lemma 4.3. Assume that Hypthesis (H.2) with (2.11) is true. Then for any η > 0 we
can choose ε0 > 0 small enough such that for all 0 < ε 6 ε0

i) µ
((
D±0 (εγ , ε2γ)

)c \ (D±0 )c) < η,

ii) µ
((
D±0 (εγ) \D±0 (εγ , ε2γ)

)
+Bε2γ (0)

)
< η,

iii) µ
(
D±0 \D

±
0 (εγ , ε2γ , ε2γ)

)
< η,

iv) µ
(
(D±)c \D∓(εγ , ε2γ)− φ±

)
< η.

(4.10)

The claims follow from simple set inclusions.
Equipped with estimates of the major events by analytically accessible handy ones

containing only information about the time and height of the first big jump and the
deviations of the small jump part from the deterministic solution before the first big
jump time, we can study their asymptotic behavior. It will turn out that only the large
jump event stipulating W1 to leave D±0 or its reduced versions will be asymptotically
relevant. This is rigorously stated in the following Lemma.

Lemma 4.4 (Asymptotic behavior of large jump events).
Assume that Hypotheses (H.1) and (H.2) are satisfied and let 1/2 < ρ < 1 − 2γ fixed.
Then for any C > 0 there is ε0 = ε0(C) > 0 such that for all 0 < ε 6 ε0

I)
(
µ
(
(D±0 )c

)
µ(Bc1(0)) − C

)
εα(1−ρ) 6

λ±(ε)
βε

6

(
µ((D±0 )c)
µ(Bc1(0)) + C

)
εα(1−ρ),

II) P
(
‖εW1‖ > (1/2)ε2γ) 6 4εα(1−ρ−2γ),

III) P
(
εW1 ∈ (D̃±0 (εγ))c

)
6 (1 + C) λ

±(ε)
βε

,

IV ) P (εW1 ∈ D∗0(εγ)) 6 C
λ±(ε)
βε

,

V ) P(εW1 ∈ Dc
0(εγ , ε2γ , ε2γ)) 6 (1 + C)λ

±(ε)
βε

.

The proof is given in Section 4.3.
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4.2. Asymptotic Exit Times from Reduced Domains of
Attraction

In this Section we shall state and prove our main result about the asymptotic behavior
of the exit time from the reduced domains of attraction of the equilibria of the Chafee-
Infante equation. It will essentially describe the asymptotic behavior of the exit time’s
Laplace transform. Let us start with a remark concerning the constants appearing in
the small deviations estimates in Chapter 3.

Remark 4.5. Recall from Proposition 3.1 that for α ∈ (0, 2) there exists Γ > 0 such
that the constants ρ ∈ (1/2, 1), γ > 0, 0 < Θ < 1 can be chosen according to

0 < Θ <
2− α

2α , ρ ∈ (1
2 ,

2− α
2− (1−Θ)α ) 0 < γ <

(2− α)(1− ρ)−Θαρ
2(Γ + 2)

such that the statement of the Proposition holds true. Also recall that Proposition 3.1
stays true for any constant Γ̃ > Γ and Θ < 2−α

2α . This justifies the choice of constants
(2.11) in Hypothesis (H.2).
Claim: We stipulate that additionally to the inequalities stated and the validity of

Proposition 3.1 the inequalities

2γ < ρ < 1− 2γ (4.11)

hold true. In fact, the first one is evident since ρ > 1/2. For the second inequality we
calculate

ρ+ 2γ < ρ+ (2− α)(1− ρ)
Γ + 2 6 ρ+ 1− ρ = 1.

The following main Theorem states that for all θ > −1 the Laplace transform
̂λ(ε)τ±x (ε)(θ) of the normalized first exit time λ(ε)τ±x (ε) from the reduced domain of

attraction D± converges to 1
1+θ as ε → 0+. This establishes its convergence in law to

an exponentially distributed random variable.

Theorem 4.6 (Asymptotic first exit time law). Assume that Hypotheses (H.1) and
(H.2) are satisfied. Then for all θ > −1 and C ∈ (0, 1 + θ) there exists ε0 = ε0(θ) > 0
such that for all 0 < ε 6 ε0

1− C
1 + θ + C

6 E

[
inf

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
6 E

[
sup

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
6

1 + C

1 + θ − C
.

This theorem is proved in Subsection 4.2.1 and 4.2.2. The result of Theorem 4.6
implies a statement about the asymptotic behavior of the expected first exit time.
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Corollary 4.7. Under the assumptions of Theorem 4.6 we have

lim
ε→0+

E

[
inf

x∈D̃±(εγ)
λ±(ε)τ±x (ε)

]
= lim
ε→0+

E

[
sup

x∈D̃±(εγ)
λ±(ε)τ±x (ε)

]
= 1. (4.12)

Proof. By Theorem 4.6 which holds for θ > −1, we know that λ±(ε)τx(ε) converges
in law to τ as ε → 0, and τ has an exponential law with parameter 1. In addition,
for θ < 0

E

[
e−θ(infx∈D̃±(εγ ) λ

±(ε)τ±x (ε))
]

6 E

[
e−θ(supx∈D̃±(εγ ) λ

±(ε)τ±x (ε))
]

= E

[
sup

x∈D̃±(εγ)
e−θλ

±(ε)τ±x (ε)

]
6

1 + C

1 + θ − C
<∞

and hence (infx∈D̃±(εγ) λ
±(ε)τ±x (ε))0<ε6ε0 and (supx∈D̃±(εγ) λ

±(ε)τ±x (ε))0<ε6ε0 are uni-
formly integrable. For nonnegative random variables, convergence in law and uniform
integrability implies convergence in expectation (see Kallenberg [1997], Lemma 4.11).
This implies the formula (4.12).

In the sequel we construct a family of random variables, (τ̄(ε))ε>0, such that in proba-
bility τ±x (ε)λ±(ε)− τ̄(ε)→ 0 for ε→ 0+.

Theorem 4.8 (Asymptotic first exit times in probability). Assume that Hypotheses
(H.1) and (H.2) are satisfied. Then there is a family of random variables (τ̄(ε))ε>0 with
exponential law of parameter 1 (on the same probability space (Ω,F ,P) as the driving
Lévy noise (L(t))t>0) such that in probability

lim
ε→0+

inf
y∈D̃±(εγ)

|λ±(ε)τ±y − τ̄(ε)| = lim
ε→0+

inf
y∈D̃±(εγ)

|λ±(ε)τ±y − τ̄(ε)| = 0.

This theorem is proved in Subsection 4.2.3. Combining these two results, we obtain
the announced Theorem 2.18, which we restate for convenience.

Theorem 4.9 (Exponential convergence of first exit times from D±(εγ)). Let the
Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and suppose Hypothe-
ses (H.1) and (H.2) are satisfied. Then there is a family of random variables (τ̄(ε))ε>0
with exponential law of parameter 1 such that for all θ < 1

lim
ε→0+

E
[

sup
x∈D̃±(εγ)

| exp
(
θλ±(ε)τ±x (ε)

)
− exp (θτ̄(ε)) |

]
= 0.

Proof. By Theorem 4.6 for each θ > −1 and C ∈ (0, 1− θ) there is ε0 > 0 such that for
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all 0 < ε 6 ε0

1
1 + θ

− C1 6 E

[
inf

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
6 E

[
sup

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
6

1
1 + θ

+ C2.

where C1 = 1+C
1+θ−C −

1
1+θ > 0 and C2 = 1

11 + θ − 1−C
1+θ+C > 0. Clearly C1, C2 → 0

for C → 0+. By Theorem 4.8 there is a family of random variables (τ̄(ε))ε>0 with
exponential law of parameter 1 such that for all θ < 1

E

[
e−θτ̄(ε)

]
= 1

1 + θ
.

Hence for all θ < 1

E

[
sup

x∈D̃±(εγ)

∣∣∣ exp
(
θλ±(ε)τ±x (ε)

)
− exp (θτ̄(ε))

∣∣∣] 6 max{C1, C2}.

4.2.1. The Upper Estimate of the Laplace Transform
In this Subsection we shall establish the upper estimate part of Theorem 2.18.

Proposition 4.10 (The upper estimate). Assume that Hypotheses (H.1) and (H.2) are
satisfied. Then for all θ > −1 and C ∈ (0, 1 + θ) there exists ε0 = ε0(θ) > 0 such that
for all 0 < ε 6 ε0

E

[
sup

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
6

1 + C

1 + θ − C
.

Proof. Fix Γ > 0 such that Proposition 3.1 and inequality (4.11) are true and let
C be given as stated. For convenience we drop the superscript ±. As the jumps of the
noise process L exceed any fixed barrier P-a.s., i.e. τx(ε) is P-a.s. finite, we can rewrite
the Laplace transform of τx(ε) in the following way for ε > 0:

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)

]
=
∞∑
k=1

(
E

[
e−θλ(ε)Tk sup

x∈D̃(εγ)
1{τx(ε) = Tk}

]
+ E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (Tk−1, Tk)}

])
(4.13)

We shall estimate the first and second sums in (4.13) separately. As (4.13) indicates,
our arguments will be based on the separation of a large jump compound Poisson part,
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and a small jump part which does not deviate from the rapidly relaxing deterministic
solution trajectories of the Chafee-Infante equation by much.

Estimate of the first sum of (4.13): For k ∈ N we can decompose the large jump exit
by writing

E

[
e−θλ(ε)Tk sup

supx∈D̃(εγ )

1{τx(ε) = Tk}

]

= E

[
e−θλ(ε)Tk sup

x∈D̃(εγ)
1{Xε(s;x) ∈ D(εγ) for s ∈ [0, Tk) and Xε(Tk;x) /∈ D(εγ)}

]

= E

[
e−θλ(ε)Tk sup

x∈D̃(εγ)
1
(
k−1⋂
i=1

AXε(0;x) ◦ θTi−1 ∩BXε(0;x) ◦ θTk−1

)]

= E

[
e−θλ(ε)Tk sup

x∈D̃±(εγ)

k−1∏
i=1

1
(
AXε(0;x) ◦ θTi−1

)
1
(
BXε(0;x) ◦ θTk−1

)]
.

Note that Tk = Tk−1 + T1 ◦ θTk−1 . We use the strong Markov property, conditioning
on the past of Tk−1, and then estimate from above by the supremum over all values
X(Tk−1;x) can take. This gives

E

[
e−θλ(ε)Tk sup

x∈D̃±(εγ)

k−1∏
i=1

1
(
AXε(0;x) ◦ θTi−1

)
1
(
BXε(0;x) ◦ θTk−1

)]

= E

[
E

[
e−θλ(ε)Tk sup

x∈D̃±(εγ)

k−1∏
i=1

1
(
AXε(0;x) ◦ θTi−1

)
1
(
BXε(0;x) ◦ θTk−1

)
|FTk−1

]]

6 E

[
e−θλ(ε)Tk−1 sup

x∈D̃±(εγ)

k−2∏
i=1

1
(
AXε(0;x) ◦ θTi−1

)
1
(
AXε(0;x) ◦ θTk−2

)]

· E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1 (By)

]
.

By k − 1-fold iteration of this argument we obtain for k ∈ N

E

[
sup

x∈D̃(εγ)
e−θλ(ε)Tk1{τx(ε) = Tk}

]

6

(
E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1 (Ay)

])k−1

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1 (By)

]
.

Now we have to estimate the individual terms corresponding to Ay and By, y ∈ D(εγ)
by exploiting Lemma 4.2.
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Claim 1: There exists ε0 > 0 such that for all 0 < ε 6 ε0

Ex

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)

]
6

βε
βε + θλ(ε)

(
1− λ(ε)

βε
(1− C

5 )
)
.

In the inequality of Lemma 4.2 ix) we can pass to the supremum in y ∈ D(εγ), and
integrate to obtain, using the independence of jump times and heights

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)

]
6 E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

]
P
(
ε‖W1‖ > (1/2)ε2γ)

+ E

[
e−θλ(ε)T1

]
P (εW1 ∈ D0) + E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ecy)

]
=: K1K2 +K3K4 +K5.

Let us estimate K1, . . . ,K5 separately, in the order of increasing complexity. We shall
see that the asymptotic behavior of the aggregate is dominated by the second summand.

1. Clearly

K3 =
∞∫

0

e−θλ(ε)sβεe
−βεs ds = βε

βε + θλ(ε) . (4.14)

2. By definition of λ(ε) we know

K4 = P (W1 ∈ (1/ε)D0) = 1− λ(ε)/βε. (4.15)

3. The recurrence time of logarithmic order in ε enters into the calculation of K1.
Remember that κ is fixed along with Γ. We have

K1 =
Trec+κγ| ln ε|∫

0

e−θλ(ε)sβεe
−βεs ds

= βε
θλ(ε) + βε

[
1− exp (−(θλ(ε) + βε)(Trec + κγ| ln ε|))

]
.

4. For the estimation of K2 = P
(
‖εW1‖ > (1/2)ε2γ) we use Lemma 4.4 II), provid-

ing ε0 > 0 such that for 0 < ε 6 ε0

K2 6 4εα(1−2γ−ρ). (4.16)

5. For K5 we refer to Proposition 3.1 and its Corollary 3.2 ensuring that for ε0 small

61



4. Asymptotic Exit Times

enough we have for 0 < ε 6 ε0

K5 6
C

10
βε

βε + θλ(ε)
λ(ε)
βε

. (4.17)

Inserting the estimates we obtained for K1, . . . ,K5 into our original inequality we can
write for ε0 small enough and 0 < ε ≤ ε0

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)

]

6
βε

βε + θλ(ε)
[
1− exp (−(θλ(ε) + βε)(Trec + κγ| ln ε|))

]
4εα(1−2γ−ρ)+

βε
βε + θλ(ε)

(
1− λ(ε)

βε

)
+ C

10
βε

βε + θλ(ε)
λ(ε)
βε

= βε
βε + θλ(ε)

[
1− λ(ε)

βε
(1− C

10)
]

+ βε
βε + θλ(ε)

[
1− exp (−(θλ(ε) + βε)(Trec + κγ| ln ε|))

]
4εα(1−2γ−ρ)

= βε
βε + θλ(ε)

[
1− λ(ε)

βε

(
1− C

10 −K6

)]
,

where
K6 = βε

λ(ε)
[
1− exp (−(θλ(ε) + βε)(Trec + κγ| ln ε|))

]
4εα(1−2γ−ρ).

To estimate K6, recall that by (2.5) and (2.13) and Lemma 4.4 I) there exists ε0 > 0
such that for 0 < ε 6 ε0

βε
λ(ε) 6 ε−α(1−ρ). (4.18)

By (4.18) and 2γ < ρ we know that by eventually choosing ε0 smaller we may obtain
for 0 < ε 6 ε0

K6 6 4(θλ(ε) + βε)(Trec + κγ| ln ε|)ε−2αγ 6
C

10 .

We can summarize our findings in stating that there exists ε0 > 0 such that for
0 < ε 6 ε0

E

[
e−θλ(ε)T1 sup

x∈D(εγ)
1 (Ax)

]
6

βε
βε + θλ(ε)

(
1− λ(ε)

βε

(
1− C

5

))
. (4.19)

Claim 2: There is ε0 > 0 such that for all 0 < ε 6 ε0

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1 (B(y))

]
6 (1 + C) βε

βε + θλ(ε)
λ(ε)
βε

.

In the inequality of Lemma 4.2 x) we again pass to the supremum in y ∈ D(εγ), and
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integrate to obtain, using the independence of jump times and heights

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1
(
B1
y

) ]
6 E

[
e−θλ(ε)T1

]
P

(
εW1 /∈ D0(εγ , ε2γ)

)
+ E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

]
+ E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ecy)

]
=: K3(1−K8) +K1 +K5. (4.20)

Examining K1 more closely, we recognize by Lemma 4.4 I) and by ρ > 1/2 that there
exists ε0 > 0 such that for 0 < ε 6 ε0 we have

K1 = βε
θλ(ε) + βε

[1− exp (−(θλ(ε) + βε)(Trec + κγ| ln ε|))]

6
βε

θλ(ε) + βε
(θλ(ε) + βε)(Trec + κγ| ln ε|)

6
βε

θλ(ε) + βε

λ(ε)
βε

(
βε
λ(ε) (θλ(ε) + βε)(Trec + κγ| ln ε|)

)
6

βε
θλ(ε) + βε

λ(ε)
βε

C

10 . (4.21)

In order to estimate K8 we use Lemma 4.4 III). It yields that there is ε0 > 0 such that
for 0 < ε 6 ε0

K8 6 (1 + C

5 )λ(ε)
βε

.

Recalling the estimates for K3 and K5 from the preceding part, we find ε0 such that
for 0 < ε 6 ε0

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1 (B(y))

]
6 (1 + C) βε

βε + θλ(ε)
λ(ε)
βε

.

Estimate of the second sum of (4.13): In order to treat the summands

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (Tk−1, Tk)}

]

for k ∈ N we have to distinguish the cases θ > 0 and θ ∈ (−1, 0). More precisely, for
k ∈ N we start with the inequality
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E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (Tk−1, Tk)}

]

6

E
[
e−θλ(ε)Tk−1 supx∈D̃(εγ) 1{τx(ε) ∈ (Tk−1, Tk)}

]
, if 0 6 θ,

E

[
e−θλ(ε)Tk supx∈D̃(εγ) 1{τx(ε) ∈ (Tk−1, Tk)}

]
, if − 1 < θ < 0.

We have to argue separately for the cases k = 1 and k > 2.

Claim 3: There is ε0 > 0 such that for all 0 < ε 6 ε0

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (0, T1)}

]
6
C

5

(
βε

βε + θλ(ε)

)
λ(ε)
βε

.

1. First consider the case θ > 0. With T0 = 0 we see

E

[
sup

x∈D̃(εγ)
e−θλ(ε)T01{τx(ε) ∈ (0, T1)}

]

6 E

[
sup

x∈D̃(εγ)
1{Xε(s;x) /∈ D(εγ) for some s ∈ (0, T1)}

]

= E

[
sup

y∈D̃(εγ)
1{Y ε(s; y) /∈ D(εγ) for some s ∈ (0, T1)}

]
.

We apply Lemma 4.2 xi) for the event under the expectation and the first part
of the proof of Corollary 3.1 which guarantees that there is ε0 > 0 such that for
0 < ε 6 ε0

E

[
sup

x∈D̃(εγ)
e−θλ(ε)T01{τx(ε) ∈ (T0, T1)}

]
6
C

5
βε

βε + θλ(ε)
λ(ε)
βε

.

2. In case θ ∈ (−1, 0) we may write

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (0, T1)}

]

6 E

[
e−θλ(ε)T1 sup

x∈D̃(εγ)
1{Xε(s;x) /∈ D(εγ) for some s ∈ (0, T1)}

]

= E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1{Y ε(s; y) /∈ D(εγ) for some s ∈ (0, T1)}

]
.
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Using Lemma 4.2 xi) and Corollary 3.2, we obtain for sufficiently small ε > 0 an
analogous inequality

E

[
sup

x∈D̃(εγ)
e−θλ(ε)T11{τx(ε) ∈ (0, T1)}

]

6 E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1(Ec(y))

]
=
(

βε
βε + θλ(ε)

)
λ(ε)
βε

C

5 . (4.22)

We continue for the case k > 2.

Claim 4: There exists ε0 > 0 such that for any k > 2 and 0 < ε 6 ε0

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)1{τx(ε) ∈ (Tk−1, Tk)}

]

6

(
βε

βε + θλ(ε)

(
1− λ(ε)

βε

(
1− C

5

)))k−2
C

5
βε

βε + θλ(ε)
λ(ε)
βε

.

1. For θ > 0 we use the strong Markov property as in the estimate for the first
summand to get for k > 2

E

[
sup

x∈D̃(εγ)
e−θλ(ε)Tk−11{τx(ε) ∈ (Tk−1, Tk)}

]

=
(
E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)

])k−2

· E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)1{Y ε(s;Xε(0; y)) ◦ θT1 /∈ D(εγ) f. s. s ∈ (0, T1)}

]
(4.23)

The event appearing in the last integral is estimated in Lemma 4.2 xii). With
this in mind we obtain

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)1{Y ε(s,Xε(0;x)) ◦ θT1 /∈ D(εγ) f. s. s ∈ (0, T1)}

]
6 E

[
e−θλ(ε)T1

]
P (εW1 ∈ D∗0(εγ)) + E

[
e−θλ(ε)T11{T1 6 Trec + κγ| ln ε|}

]
+ 2 E

[
sup

y∈D(εγ)
1(Ec(y))

]
=: K3K9 +K1 + 2K5.
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Lemma 4.4 IV ) provides ε0 > 0 such that for 0 < ε 6 ε0

K9 = P (εW1 ∈ D∗0(εγ)) 6 C

20
λ(ε)
βε

.

The asymptotic behavior of K3, K5 and K1 as ε → 0 is known from previous
parts of the proof. We may therefore deduce that there is ε0 > 0 such that for all
0 < ε 6 ε0

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)1{Y ε(s,Xε(0;x)) ◦ θT1 /∈ D(εγ) for s. s ∈ (0, T1)}

]

6
C

5
βε

βε + θλ(ε)
λ(ε)
βε

. (4.24)

An estimate for the first factor is known from Claim 1 in (4.19). This completes
the proof of the inequality of Claim 4 for θ > 0 .

2. Let us consider the case θ ∈ (−1, 0). With arguments as before employing the
strong Markov property we obtain this time the estimate

E

[
e−θλ(ε)Tk−1 sup

x∈D̃(εγ)
1{τx(ε) ∈ (Tk−1, Tk)}

]

6

(
E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ay)

])k−2

· E
[
e−θλ(ε)(T1+t2◦θT1 )

sup
y∈D(εγ)

1(Ay)1{Y ε(Xε(0, y)) ◦ θT1 /∈ D(εγ) for some s ∈ (0, T1)}
]
.

To estimate the last factor in the previous expression, we use the strong Markov property
once again, and then Claim 1 and the previous result, keeping in mind Lemma 4.2. We
conclude that there is ε0 > 0 such that for all 0 < ε 6 ε0

E

[
e−θλ(ε)(T1+t2◦θT1 ) sup

y∈D(εγ)
1(Ay)1{Y ε(Xε(0, y)) ◦ θT1 /∈ D(εγ) for s. s ∈ (0, T1)}

]

6
C

5
βε

βε + θλ(ε)
λ(ε)
βε

.

This provides the same estimate (4.24) as in the case θ > 0 and completes the proof of
Claim 4.
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Combined estimate of (4.13): Combining the estimates for the first and second sum-
mands in (4.13) by Claims 1-4 we find ε0 > 0 such that for all 0 < ε 6 ε0

E

[
sup

x∈D̃(εγ)
e−θλ(ε)τx(ε)

]

6
∞∑
k=1

(
βε

βε + θλ(ε)

)k−1(
1− λ(ε)

βε
(1− C

5 )
)k−1

βε
βε + θλ(ε)

λ(ε)
βε

(1 + C

5 )

+
(C5 )βε

βε + θλ(ε)
λ(ε)
βε

+
∞∑
k=2

(
βε

βε + θλ(ε)

)k−2(
1− λ(ε)

βε
(1− C

5 )
)k−2 (C5 )βε

βε + θλ(ε)
λ(ε)
βε

6 (1 + (2/5)C) λ(ε)
βε

βε
βε + θλ(ε)

∞∑
k=0

(
βε

βε + θλ(ε)

(
1− λ(ε)

βε
(1− C

5 )
))k

6
1 + C

θ + (1− C) .

The sum obviously converges if and only if C < θ + 1.

4.2.2. The Lower Estimate of the Laplace Transform

The lower estimate is easier to obtain since we can neglect the non-negative second sum
in equation (4.13). The tedious reasoning concerning small deviations of the small noise
part from the deterministic solution trajectories of the Chafee-Infante equation is not
needed.

Proposition 4.11 (The lower estimate). Assume that Hypothesis (H.1) and (H.2) are
satisfied. Then for all θ > −1 and C ∈ (0, 1 + θ) there is ε0 = ε0(θ) > 0 such that for
all 0 < ε 6 ε0

E

[
inf

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±x (ε)

)]
>

1 + C

1 + θ − C
.

Proof. Again we omit the superscript± and fix Γ > 0 large enough such that Proposition
3.1 and inequality (4.11) are true. Reducing equation (4.13) in the way indicated, and
applying the strong Markov property in the usual way we obtain the estimate
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E

[
inf

x∈D̃(εγ)
e−θλ(ε)τx(ε)

]
>
∞∑
k=1

E

[
inf

x∈D̃(εγ)
e−θλ(ε)Tk1{τx(ε) = Tk}

]

=
∞∑
k=1

E

[
e−θλ(ε)Tk inf

x∈D̃(εγ)
1{Xε(s;x) ∈ D(εγ) f. s ∈ [0, Tk).Xε(Tk;x) /∈ D(εγ)}

]

>
∞∑
k=1

E

[
e−θλ(ε)Tk inf

x∈D̃(εγ)
1
(
k−1⋂
i=1

A−Xε(0;x)) ◦ θTi−1 ∩BXε(0;x)) ◦ θTk−1

)]

>
∞∑
k=1

(
E

[
e−θλ(ε)T1 inf

y∈D̃(εγ)
1(A−y )

])k−1
E

[
e−θλ(ε)T1 inf

y∈D̃(εγ)
1(By)

]
. (4.25)

Let us treat the terms appearing in (4.25) in a similar way as for the upper estimate.

Claim 1: There is ε0 > 0 such that for all 0 < ε 6 ε0

E

[
e−θλ(ε)T1 inf

x∈D̃(εγ)
1(A−x )

]
>

βε
βε + θλ(ε)

(
1− (1 + C)λ(ε)

βε

)
.

First we apply Lemma 4.1 xiii) and take the infimum over y ∈ D̃(εγ) and integrate, to
obtain

E

[
e−θλ(ε)T1 inf

y∈D̃(εγ)
1(A−y )

]
> E

[
ε−θλ(ε)T1

]
P
(
εW1 ∈ D0(εγ , ε2γ , ε2γ)

)
− E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

]
− 2E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1(Ec(y))

]
= K3

(
1− P(W1 ∈ (1/ε)Dc

0(εγ , ε2γ , ε2γ))
)
−K1 − 2K5.

By Lemma 4.4 V ) there exists ε0 > 0 such that for 0 < ε 6 ε0

P(εW1 ∈ Dc
0(εγ , ε2γ , ε2γ)) 6 (1 + C

5 )λ(ε)
βε

.

Using the estimates for K1,K3,K5 derived in the proof of the upper estimate, we finally
find ε0 > 0 such that for 0 < ε 6 ε0
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E

[
e−θλ(ε)T1 inf

x∈D̃(εγ)
1(A−x )

]
>

βε
βε + θλ(ε)

(
1− (1 + C

5 )λ(ε)
βε

)
− C

5
βε

βε + θλ(ε)
λ(ε)
βε

− C

5
βε

βε + θλ(ε)
λ(ε)
βε
− 2C5

βε
θλ(ε) + βε

λ(ε)
βε

>
βε

βε + θλ(ε)

(
1− (1 + C)λ(ε)

βε

)
.

Claim 2: There is ε0 > 0 such that for 0 < ε 6 ε0

E

[
e−θλ(ε)T1 inf

y∈D̃0(εγ)
1(By)

]
>

βε
θλ(ε) + βε

(
(1− C)λ(ε)

βε

)
.

Using Lemma 4.2 xiv) we can infer that for sufficiently small ε

E

[
e−θλ(ε)T1 inf

y∈D̃0(εγ)
1(By)

]
> P (εW1 /∈ D0)

(
E

[
e−θλ(ε)T1

]
− E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

])
− E

[
e−θλ(ε)T1 sup

y∈D̃(εγ)
1(Ec(y))

]

>
λ(ε)
βε

(
βε

θλ(ε) + βε
− C

5
βε

θλ(ε) + βε

λ(ε)
βε
− C

5
βε

θλ(ε) + βε

λ(ε)
βε

)
>

βε
θλ(ε) + βε

(
(1− C)λ(ε)

βε

)
.

Combined estimate of (4.25): Combining the estimates just obtained in Claim 1 and
Claim 2 we finally get a lower estimate by a geometric series, leading to

E

[
inf

x∈D̃(εγ)
e−θλ(ε)τx(ε)

]
≥

>
∞∑
k=1

(
βε

βε + θλ(ε)

(
1− (1 + C)λ(ε)

βε

))k−1
βε

θλ(ε) + βε

(
(1− C)λ(ε)

βε

)
= λ(ε)(1− C)
θλ(ε)− (1 + C)λ(ε) = 1− C

θ + 1 + C
.

The series converges if and only if −(1 +C) < θ. This completes the proof of our main
theorem.
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4.2.3. Asymptotic Exit Times in Probability

In this subsection we construct explicit an explicit family (s±(ε))ε>0 of random variables
exponential law with parameter λ±(ε), to which the first exit times (τ±x (ε))ε>0 converge
in probability.

Definition 4.12. Recall that Wk = ∆Tkη
ε, k ∈ N the k-th “large“ jump of (L(t))t>0

in the sense of Section 2.1. For the event B�k(ε) := {εWk /∈ D±0 }, k ∈ N, ε > 0 we define
the random variable

s±(ε) :=
∞∑
k=1

Tk

k−1∏
j=1

(1− 1B�
j
(ε))1B�

k
(ε), ε > 0. (4.26)

Lemma 4.13. (Thinning lemma)
For 0 < ε < 1 the random variable s±(ε) is exponentially distributed with parame-
ter λ±(ε), λ±(ε) = ν

( 1
εD
±
0
)
, where ν is the Lévy jump measure of the noise process

(L(t))t>0 driving Xε.

Proof. Let θ > 0. We can calculate the Laplace transform of s±(ε) directly

E

[
e−θs

±(ε)
]

= E

[
e
−θ
∑∞

k=1
Tk
∏k−1

j=1
(1−1(B�j ))1(B�k)

]
= E

[ ∞∏
k=1

e
−θTk

∏k−1
j=1

(1−1(B�j ))1(B�k)
]

=
∞∑
k=1

E

e−θTk k−1∏
j=1

(1− 1(B�j ))1(B�k)


=

∞∑
k=1

E

k−1∏
j=1

e−θtj (1− 1(B�j ))e−θtk1(B�k)

 .

Exploiting the independence of (Wk)k∈N and (Tk)k∈N as well as the stationarity of
(Wk)k∈N each summand takes the form
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E

k−1∏
j=1

e−θtj (1− 1(B�j ))e−θtk1(B�k)


=
k−1∏
j=1

E
[
e−θtj (1− 1(B�j ))

]
E
[
e−θtk1(B�k)

]
= E

[
e−θt1(1− 1(B�1))

]k−1
E
[
e−θt11(B�1)

]
=
(
E
[
e−θt1

]
(1− P(B�1))

)k−1
E
[
e−θt1

]
P(B�1)

=
(

βε
θ + βε

(1− λ±(ε)
βε

)
)k−1

βε
θ + βε

λ±(ε)
βε

.

Hence

E

[
e−θσ

±(ε)
]

=
∞∑
k=1

(
βε

θ + βε
(1− λ±(ε)

βε
)
)k−1

βε
θ + βε

λ±(ε)
βε

= βε
θ + βε

λ±(ε)
βε

1
1− βε

θ+βε (1− λ±(ε)
βε

)
= λ±(ε)

βε

1
θ+βε
βε
− (1− λ±(ε)

βε
)

= λ±(ε)
θ + λ±(ε) .

Theorem 4.14. Let the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given
and suppose Hypotheses (H.1) and (H.2) are satisfied. Then the random variable s±(ε)
satisfies that for any θ > 0 and C > 0 there is ε0 > 0 such that for 0 < ε ≤ ε0

E

[
inf

x∈D̃±(εγ)
e−θ|τ

±
x (ε)−s±(ε)|

]
> 1− C. (4.27)

Corollary 4.15. Under the assumptions of Theorem 4.15 there is a family of exponen-
tially distributed random variables (τ̄(ε))ε>0 with parameter 1 on the same probability
space (Ω,F ,P) as the driving Lévy noise (L(t))t>0 such that in probability

lim
ε→0+

inf
y∈D̃±(εγ)

|λ±(ε)τ±y (ε)− τ̄(ε)| = lim
ε→0+

sup
y∈D̃±(εγ)

|λ±(ε)τ±y (ε)− τ̄(ε)| = 0.

Proof. By Lemma 4.13 the random variable s±(ε), ε > 0 defined by (4.26) is an expo-
nentially distributed random variable with parameter λ±(ε). Hence τ̄(ε) := λ±(ε)s±(ε),
ε > 0, is exponentially distributed with parameter 1. Theorem 4.14 shows that for any
θ > 0 and C > 0 there is ε0 > 0 such that for 0 < ε ≤ ε0 and θ > 0 we have

1− C 6 E

[
inf

y∈D̃±(εγ)
e
−θ|τ±y (ε)− τ̄(ε)

λ±(ε)
|
]
6 E

[
sup

y∈D̃±(εγ)
e
−θ|τ±y (ε)− τ̄(ε)

λ±(ε)
|
]
6 1. (4.28)
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Since 0 < λ±(ε) = εα`
( 1
ε

)
µ
(
(D±0 )c

)
↘ 0 for ε → 0+, we may fix ε0 > 0 such that

λ±(ε) < 1 for 0 < ε ≤ ε0. By monotonicity we obtain for this ε0 > 0 and the same
C > 0, θ > 0 as before that

1− C 6 E

[
inf

y∈D̃±(εγ)
e−θ|λ

±(ε)τ±y (ε)−τ̄(ε)|
]
6 E

[
sup

y∈D̃±(εγ)
e−θ|λ

±(ε)τ±y (ε)−τ̄(ε)|

]
6 1

(4.29)
for 0 < ε ≤ ε0. Hence

lim
ε→0+

L( inf
y∈D̃±(εγ)

|λ±(ε)τ±y (ε)− τ̄(ε)|) = lim
ε→0+

L( sup
y∈D̃±(εγ)

|λ±(ε)τ±y (ε)− τ̄(ε)|) = δ0

in the weak sense. Due to the equivalence of weak convergence and convergence in
probability for constant limits we obtain the desired result.

Proof. (of Theorem 4.14):
Step 1: Reduction to incremental events
Define for ε > 0 the events

A�j :=
(
B�j
)c = {εWj ∈ D±0 }, for j ∈ N.

In this step we follow the lines of the first part of the proof of Theorem 2.18. Exploiting
the strong Markov property of Xε and Y ε respectively and the Lévy property of L we
may estimate the exit first exit time from below by probabilities of exit events A−x , Bx,
A�1 and B�1 in the following way

E

[
inf

x∈D̃±(εγ)
e−θ|τ

±
x (ε)−s±(ε)|

]
>

∞∑
k=1

E

[
inf

x∈D̃±(εγ)
e−θ|τ

±
x (ε)−s±(ε)|1{τ±x =Tk}∩

⋂k−1
j=1

A�
j−1∩B

�
k

]

=
∞∑
k=1

E

[
inf

x∈D̃±(εγ)
1{τ±x =Tk}∩

⋂k−1
j=1

A�
j−1∩B

�
k

]

>
∞∑
k=1

E

[
inf

x∈D̃±(εγ)
1⋂k−1

j=1
A−
Xε(0;x)◦θTj−1∩BXε(0;x)◦θTk−1∩

⋂k−1
j=1

A�
j−1∩B

�
k

]

>
∞∑
k=1

E

 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1BXε(0;x)◦θTk−1∩B

�
k

 .

With the help of the strong Markov property of Xε we obtain for k ∈ N that
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E

 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1BXε(0;x)◦θTk−1∩B

�
k


> E

E
 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1BXε(0;x)◦θTk−1∩B

�
k
| FTk−1


> E

 inf
x∈D̃±(εγ)

k−2∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1A−

Xε(0;x)◦θTk−2∩A
�
k−1

E [ inf
y∈D̃±(εγ)

1By∩B�1

]
.

By k − 1-fold iteration of this argument we obtain for k ∈ N

E

 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1BXε(0;x)◦θTk−1∩B

�
k


> E

[
inf

y∈D̃±(εγ)
1A−y ∩A�1

]k−1
E

[
inf

y∈D̃±(εγ)
1By∩B�1

]
. (4.30)

Step 2: Inspection of the incremental events
This step consists in the estimate of the events A−y ∩ A�1 and By ∩ B�1 by the small
deviation event Ex, the relaxation event {T1 > Trec + κγ| ln ε|} and the pure jump
events {εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} and A�1. By Lemma 4.2 xv) and xvi) we know for
x ∈ D̃±(εγ)

1(A−x ∩A�1) > 1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} − 1{T1 < Trec + κγ| ln ε|} − 2 · 1(Ecx),

(4.31)

1(Bx ∩B�1) > 1{εW1 /∈ D±0 }(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecx). (4.32)

Step 3: Lower estimate of the first factor
In this step we exploit Lemma 4.4 V) and Corollary 3.2 in order to estimate the first
factor in the summands of the right-hand side of (4.13)

E

[
inf

y∈D̃±(εγ)
1A−y ∩A�1

]
> P

(
εW1 ∈ D±0 (εγ , ε2γ , ε2γ)

)
− P (T1 < Trec + κγ| ln ε|)− 2E

[
inf

y∈D̃±(εγ)
1(Ecy)

]
.

By Lemma 4.4 V ) for any C1 > 0 given there is ε1 > 0 such that such that for 0 < ε ≤ ε1

P(εW1 ∈ Dc
0(εγ , ε2γ , ε2γ)) 6 (1 + C1)λ

±(ε)
βε

.
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Furthermore for any C2 > 0 there is ε2 > 0 such that for 0 < ε ≤ ε2

P (T1 < Trec + κγ| ln ε|) =
Trec+κγ| ln ε|∫

0

βεe
−βεsds = 1− e−βε(Trec+κγ| ln ε|)

6 (1 + C2)βε(Trec + κγ| ln ε|)

and there is ϑ > α(1 − ρ) such that for any C3 > 0 there is ε3 > 0 such that for
0 < ε 6 ε3

E

[
inf

y∈D̃±(εγ)
1(Ecy)

]
6 C3ε

ϑ.

This means if Ci ≤ J1
4 , i = 1, 2, 3 that for 0 < ε 6 min{ε1, ε2, ε3} respectively

E

[
inf

y∈D̃±(εγ)
1A−y ∩A�1

]
> 1− (1 + C1)λ

±(ε)
βε

− (1 + C2)βε(Trec + κγ| ln ε|)− 2C3ε
ϑ

> 1− (1 + J1)λ
±(ε)
βε

. (4.33)

Step 4: Lower estimate of the second factor
Since ρ > 1

2 , we know βε
λ±(ε)βε(Trec + κγ| ln ε|) → 0+, ε → 0+. Hence for given

C4 > 0 there is ε4 > 0 with βε
λ±(ε)βε(Trec + κγ| ln ε|) ≤ C4 for 0 < ε 6 ε4. Thus for

Ci ≤ J2
3 , i = 3, 4 and 0 < ε 6 min{ε4, ε5}

E

[
inf

y∈D̃±(εγ)
1(By ∩B�1)

]
> P(εW1 /∈ D±0 )− P (T1 < Trec + κγ| ln ε|)− E

[
inf

y∈D̃±(εγ)
1(Ecy)

]
>

λ±(ε)
βε

− (1 + C4)βε(Trec + κγ| ln ε|)− C3ε
ϑ > (1− J2)λ

±(ε)
βε

.

Step 5: The asymptotic geometric series
We can now combine Step 4 and 5 with estimate (4.13) for 0 < ε 6 min{ε1, ε2, ε3, ε4},
such that

∞∑
k=1

(
1− (1 + J1)λ

±(ε)
βε

)k−1

(1− J2)λ
±(ε)
βε

>
1− J2

1 + J1
> 1− C

if J1 > 0 and J2 > 0 are chosen to satisfy 0 6 J2 6 C + (1− C)J1.
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4.3. Proofs of the Estimates for the Exit Events

4.3.1. Partial Estimates (Proof of Lemma 4.1)
Proof. 1. On the event {T1 > Trec + κγ| ln ε|} we have u(T1;x) ∈ B(1/2)ε2γ (φ±).

Hence on Ex∩{T1 ≥ Trec+κγ| ln ε|} the relationship Y ε(T1;x) ∈ Bε2γ (φ±) holds.

2. On the event Ax, on which Y ε(T1;x)+εW1 ∈ D±(εγ), we can infer that necessarily
εW1 ∈ D±0 (εγ) +Bε2γ (0) ⊂ D±0 in order to obtain i).

3. On Bx we have
Y ε(T1;x) + εW1 /∈ D±(εγ).

Hence by Part 1, on Bx ∩Ex ∩{T1 > Trec +κγ| ln ε|} we have εW1 /∈ D±0 (εγ , ε2γ),
proving ii).

4. On Cx, we have
Y ε(T1;x) + εW1 ∈ D±(εγ) \ D̃±(εγ).

Therefore on Cx ∩ Ex ∩ {T1 > Trec + κγ| ln ε|} the relationship

εW1 ∈
(
D±0 (εγ) \D±0 (εγ)

)
+Bε2γ (0)

follows, proving iii).

5. On Bx, we know that Y (T1, x) + εW1 /∈ D±(εγ). But T1 > Trec + κγ| ln ε| and
‖εW1‖ 6 (1/2)ε2γ additionally entail that

Y (T1, x) + εW1 ∈ B(3/2)ε2γ (φ±) ∩
(
D±(εγ)

)c
.

This set is empty for sufficiently small ε > 0, proving iv).

6. On Cx, Y (T1, x) + εW1 ∈ D±(εγ) \ D̃±(εγ) holds. Imposing T1 > Trec + κγ| ln ε|
and ‖εW1‖ 6 (1/2)ε2γ additionally leads to the intersection(

D±(εγ) \ D̃±(εγ)
)
∩B(3/2)ε2γ (0)

which is empty for sufficiently small ε > 0. This proves v).

7. By the positive invariance of D̃±(εγ), for x ∈ D̃±(εγ) we know u(t;x) ∈ D̃±(εγ)
for all t > 0. Hence on the event Ex we have Y ε(t;x) ∈ D̃±(εγ) + Bε2γ (0) for all
t ∈ [0, T1]. Lemma 2.14 guarantees that D̃±(εγ) + Bε2γ (0) ⊂ D±(εγ). Part 1 of
the proof shows Y ε(T1;x) ∈ Bε2γ (φ±) on Ex ∩ {T1 > Trec + κγ| ln ε|}. Hence on
this set, if Y ε(T1;x) + εW1 ∈ D±(εγ) then

εW1 = Y ε(T1;x) + εW1 − Y ε(T1;x) ∈ D±0 .

This proves vi) by contraposition.
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8. By Part 1 of the proof, Y ε(T1;x) ∈ Bε2γ (φ±) on Ex ∩ {T1 > Trec + κγ| ln ε|}.
The positive invariance of D̃±(εγ) implies for x ∈ D̃±(εγ) that u(t;x) ∈ D̃±(εγ)
for t ∈ [0, T1]. On Ex consequently Y ε(t;x) ∈ D̃±(εγ) + Bε2γ (φ±) for t ∈ [0, T1].
Lemma 2.14 guarantees that D̃±(εγ) + Bε2γ (0) ⊂ D±(εγ). Thus on the event
Ex ∩ {T1 > Trec + κγ| ln ε|}, the condition εW1 ∈ D±0 (εγ , ε2γ , ε2γ) implies with
the help of Lemma 2.14

Y ε(T1;x) + εW1 ∈ Bε2γ (φ±) +D±0 (εγ , ε2γ , ε2γ)
= Bε2γ (0) +D±(εγ , ε2γ , ε2γ) ⊂ D±(εγ , e2γ) = D̃±(εγ).

This proves vii).

4.3.2. Full Estimates (Proof of Lemma 4.2)

Proof. We drop the superscript ± for convenience.

1. After a repartition of the event Ax for x ∈ D(εγ) we exploit Lemma 4.1 i) in the
third step of

1(Ax) 6 1(Ax)1(Ex) + 1(Ecx)
6 1(Ax)1(Ex)1{ε‖W1‖ > (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}
+ 1(Ax)1(Ex)1{ε‖W1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

+ 1{ε‖W1‖ 6 (1/2)ε2γ}+ 1(Ecx)
6 1{ε‖W1‖ > (1/2)ε2γ}1{εW1 ∈ D0}

+ 1{ε‖W1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}
+ 1{ε‖W1‖ 6 (1/2)ε2γ}1{εW1 ∈ D0}+ 1(Ecx)

= 1{εW1 ∈ D0}+ 1{ε‖W1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}+ 1(Ecx).

This proves ix).

2. In the same way we decompose Bx for x ∈ D(εγ) and use Lemma 4.1 ii) and iv)
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in the second estimate to get

1(Bx)
6 1(Ecx) + 1(Bx)1(Ex)1{‖εW1‖ > (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}

+ 1(Bx)1(Ex)1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}
+ 1(Bx)1(Ex)1{‖εW1‖ < (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}
+ 1(Bx)1(Ex)1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

6 1(Ecx)+1{εW1 /∈ D0(εγ , ε2γ)}+1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec+κγ| ln ε|}
+ 0 + 1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

= 1(Ecx) + 1{εW1 /∈ D0(εγ , ε2γ)}+ 1{T1 < Trec + κγ| ln ε|}. (4.34)

Hence x) is shown.

3. For y ∈ D̃(εγ) by definition of the small jumps component and D̃(εγ) we have

1{Y ε(s; y) /∈ D(εγ) for some s ∈ (0, T1)}
6 1(Ecy) + 1(Ey) 1{Y ε(s; y) /∈ D(εγ) for some s ∈ (0, T1)} = 1(Ecy). (4.35)

This proves xi).

4. Recall the convention D̃(εγ) = D(εγ , ε2γ). In this tedious estimate we have to
take into account the evolution of the solution trajectory over two adjacent big
jump intervals. We have by definition

1(Ax)1{Y ε,2(s;Xε(T1, x)) /∈ D(εγ) for some s ∈ (0, t2)}
= 1{Y ε(s;x) ∈ D(εγ) for s ∈ (0, t1) and Xε(T1;x) ∈ D̃(εγ)}

· 1{Y ε,2(s;Xε(T1;x)) /∈ D(εγ) for some s ∈ (0, t2)}
+ 1{Y ε(s;x) ∈ D(εγ) for s ∈ (0, t1) and Xε(T1;x) ∈

(
D(εγ) \ D̃(εγ)

)
}

· 1{Y ε,2(s;Xε(T1;x)) /∈ D(εγ) for some s ∈ (0, t2)}
6 sup
z∈D̃(εγ)

1{Y ε,2(s; z) /∈ D(εγ) for some s ∈ (0, t2)}

+ 1{Y ε(s;x) ∈ D(εγ) for s ∈ (0, t1) and Xε(T1;x) ∈
(
D(εγ) \ D̃(εγ)

)
}

= sup
z∈D̃(εγ)

1{Y ε(s; z) /∈ D(εγ) for some s ∈ (0, T1)} ◦ θT1 + 1(Cx). (4.36)

Now we repeat the arguments employed for Part 2, replacing Dc
0(εγ , ε2γ) by
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D∗0(εγ) =
(
D0(εγ) \ D̃0(εγ)

)
+Bε2γ (0). We may exploit Lemma 4.1 iii) to obtain

1(Cx)
6 1(Ecx) + 1(Cx)1(Ex)1{‖εW1‖ > (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}

+ 1(Cx)1(Ex)1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}
+ 1(Cx)1(Ex)1{‖εW1‖ < (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}
+ 1(Cx)1(Ex)1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

6 1(Ecx) + 1
{
εW1 ∈

(
D0(εγ) \ D̃0(εγ)

)
+Bε2γ (0)

}
+ 1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}+ 0

+ 1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}
= 1(Ecx) + 1 {εW1 ∈ D∗0(εγ)}+ 1{T1 < Trec + κγ| ln ε|}. (4.37)

Hence collecting the estimates (4.36) and (4.37) and applying xi) we obtain

1(Ax)1{Y ε(s;Xε(0, x)) ◦ θT1 /∈ D(εγ) for some s ∈ (0, T1)}
6 1 {εW1 ∈ D∗0(εγ)}+ 1{T1 < Trec + κγ| ln ε|}

+ sup
z∈D̃(εγ)

1{Y ε(s; z) ◦ θT 1 /∈ D(εγ) for some s ∈ (0, T1)}+ 1(Ecx)

6 1 {εW1 ∈ D∗0(εγ)}+ 1{T1 < Trec + κγ| ln ε|}
+ sup
y∈D̃(εγ)

1(Ecy) ◦ θT1 + 1(Ecx).

This proves xii).

5. For x ∈ D̃(εγ) we use the definition of A−x and Ex to get

1(A−x ) > 1(Ex)1{T1 > Trec + κγ| ln ε|}1{ε‖W1‖ 6 (1/2)ε2γ}.

Due to Lemma 4.1 vii) for the second estimate to follow, as well as the elementary
inequality 1(C1)1(C2) = 1(C1)(1 − 1(Cc2)) > 1(C1) − 1(Cc2) valid for arbitrary
events C1, C2 we obtain

1(A−x )

> 1(A−x )1(Ex)1{T1 > Trec + κγ| ln ε|}1{ε‖W1‖ 6
1
2ε

2γ}

+ 1(A−x )1(Ex)1{T1 > Trec + κγ| ln ε|}1{ε‖W1‖ >
1
2ε

2γ}
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and hence

1(A−x )

> 1(Ex)1{ε‖W1‖ 6
1
2ε

2γ}1{T1 > Trec + κγ| ln ε|}

+ 1{εW1 ∈ D0(εγ , ε2γ , ε2γ)}1(Ex)1{T1 > Trec + κγ| ln ε|}1{ε‖W1‖ >
1
2ε

2γ}

> 1{ε‖W1‖ 6
1
2ε

2γ}1{T1 > Trec + κγ| ln ε|} − 2 · 1(Ecx)

+ 1{εW1 ∈ D0(εγ , ε2γ , ε2γ)}1{T1 > Trec + κγ| ln ε|}1{ε‖W1‖ >
1
2ε

2γ}.

Using twice that 1(G ∩ E) > 1(G) − 1(Ec) for sets E,G we continue collecting
the terms

1(A−x )
> −2 · 1(Ecx) + 1{T1 > Trec + κγ| ln ε|}

·
(

1{εW1 ∈ D0(εγ , ε2γ , ε2γ)}1{ε‖W1‖ > (1/2)ε2γ}+ 1{ε‖W1‖ 6
1
2ε

2γ}
)

> 1{T1 > Trec + κγ| ln ε|}1{εW1 ∈ D0(εγ , ε2γ , ε2γ)} − 2 · 1(Ecx)

> 1{εW1 ∈ D0(εγ , ε2γ , ε2γ)} − 1{T1 < Trec + κγ| ln ε|} − 2 · 1(Ecx).

This proves statement xiii).

6. To obtain the last estimate xiv) for x ∈ D̃(εγ), we use Lemma 4.1 vi) which yields

1(Bx) > 1(Bx)1(Ex)1{T1 > Trec + κγ| ln ε|}

> 1(Ex)1{T1 > Trec + κγ| ln ε|}1{εW1 /∈ D0}

> 1{εW1 /∈ D0}(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecx). (4.38)

7. Since

1(A−x ) > 1(Ex)1{T1 > Trec + κγ| ln ε|}1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)}

and {εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} ⊆ {εWk ∈ D±0 } = A�1 we obtain

1(A−x ∩A�1) > 1(Ex)1{T1 > Trec + κγ| ln ε|}1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} (4.39)
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and by the same reasoning as part 5.

1(A−x ∩A�1) > 1{εW1 ∈ D±0 (εγ , ε2γ , ε2γ)} − 1{T1 < Trec + κγ| ln ε|} − 2 · 1(Ecx).
(4.40)

This shows inequality xv).

8. Similarly since

1(Bx) > 1(Ex)1{T1 > Trec + κγ| ln ε|}1(B�1)

it follows

1(Bx ∩B�1) > 1(Ex)1{T1 > Trec + κγ| ln ε|}1(B�1), (4.41)

giving the desired estimate xvi)

1(Bx ∩B�1) > 1{εW1 /∈ D±0 }(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecx). (4.42)

4.3.3. Asymptotics of Large Jump Events (Proof of Lemma 4.4)

Proof. 1. For convenience we drop the exponent ±. Since ν is of regular variation
of with index −α, there exists a regularly varying function v of index −α and a
non-zero measure µ ∈M0(H) such that for all A ∈ B(H) with 0 /∈ Ā follows

lim
t→∞

v(t)ν(tA) = µ(A).

Therefore from (2.13)

lim
ε→0+

λ(ε)
βε

v(ε−ρ)
v(ε−1) = lim

ε→0+

ν
(
ε−1Dc

0
)

ν
(
ε−ρBc1(0)

) v(ε−ρ)
v(ε−1) = µ(Dc

0)
µ(Bc1(0)) .

Since
lim
ε→0+

v(ε−1)
v(ε−ρ)

`(ε−ρ)
`(ε−1)ε

−α(1−ρ) = 1

and the quotient of slowly varying functions `(ε−ρ)/`(ε−1) tends to 1 as ε → 0+
we can infer that for any C > 0 there is ε0 > 0 such that for all 0 < ε 6 ε0(

µ(Dc
0)

µ(Bc1(0)) − C
)
εα(1−ρ) 6

λ(ε)
βε

6

(
µ(Dc

0)
µ(Bc1(0)) + C

)
εα(1−ρ).

This shows I).
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2. By the choice 1/2 < ρ < 1− 2γ for 1 ≥ ε > 0 small enough

P
(
ε‖W1‖ > (1/2)ε2γ) =

ν
((

(1/2)ε2γ−1 ∧ ε−ρ
)
Bc1(0)

)
ν ((ε−ρ)Bc1(0))

=
ν
(
(1/2)ε2γ−1Bc1(0)

)
ν ((ε−ρ)Bc1(0)) .

The slowly varying function ` : (0,∞)→ (0,∞) helps us to identify the limits as
ε→ 0. In fact, we may write

lim
ε→0+

ν

((
1

2ε1−2γ

)
Bc1(0)

)
ν

(
2ε1−2γ

ερ
1

2ε1−2γB
c
1(0)

) `
(

(1/2)ε2γ−1)
)

` (ε−ρ)
εαρ

2αεα(1−2γ)
= 1

Again the quotient `((1/2)ε2γ−1)/`(ε−ρ) tends to one as ε→ 0 + . Hence we find
that for all sufficiently small 0 < ε 6 ε0

P
(
ε‖W1‖ > (1/2)ε2γ) 6 4εα(1−2γ−ρ),

showing II).

3. First note that by Lemma 2.13 we have
⋂
ε>0D

c
0(εγ , ε2γ) = Dc

0. By Lemma 4.3i),
for any η > 0 there is ε0 > 0 such that for 0 < ε 6 ε0

lim
ε→0+

(
ν
( 1
εD

c
0(εγ , ε2γ)

)
βε

− λ(ε)
βε

)
ε−α(1−ρ)

= lim
ε→0+

ν
( 1
ε

(
Dc

0(εγ , ε2γ) \Dc
0
))

βε
ε−α(1−ρ) =

µ
(
Dc

0(εγ , ε2γ) \Dc
0
)

µ(Bc1(0)) < η. (4.43)

Assume that C <
µ(Dc0)
µ(Bc1(0)) , and choose η = C (µ(Dc

0)/µ(Bc1(0))− C) . Then by
the lower estimate in Part 1 for ε small enough we have

P
(
εW1 ∈ D̃c

0(εγ)
)

=
ν
(

1
εD

c
0(εγ , ε2γ)

)
βε

6
λ(ε)
βε

+ η εα(1−ρ) 6 (1 + C) λ(ε)
βε

.

This proves III).

4. Analogously, using (H.2) and Lemma 4.3 ii), we find that for η > 0 there exists
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ε0 > 0 such that for 0 6 ε 6 ε0 we have

lim
ε→0+

P (εW1 ∈ D∗0(εγ)) ε−α(1−ρ) = lim
ε→0+

ν
(
ε−1D∗0(εγ)

)
ν (ε−ρBc1(0)) ε

−α(1−ρ)

6 lim
ε→0+

ν
(
ε−1D∗0(εγ0)

)
ν (ε−ρBc1(0)) ε

−α(1−ρ) = µ (D∗0(εγ0))
µ(Bc1(0)) < η.

Thus again with the help of part 1 for η = C (µ(Dc
0)/µ(Bc1(0))− C) and by re-

ducing ε0 eventually we have for 0 < ε 6 ε0

P (εW1 ∈ D∗0(εγ)) 6 C
λ(ε)
βε

.

Hence IV ) is proved.

5. The argument for V ) is identical to the one for III). We just have to replace
Dc

0(εγ , ε2γ) \Dc
0 by D0 \D0(εγ , ε2γ , ε2γ) and use Lemma 4.3 iii). This yields the

desired estimate for ε0 small enough. The universal ε0 for which all claims of the
Lemma hold, will then be the minimum of the individual ones for I) to V ).
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The preceding Chapter is concerned with the effect of small Lévy noise in H of intensity
ε of triggering exits from the reduced domains of attraction of the stable states φ±
of a Chafee-Infante equation. Noise is seen quite generally to make stable states of
deterministic systems given by ordinary or partial differential equations metastable. In
this Chapter, we shall investigate more closely the dynamics of the stochastic system,
in particular the stochastic transition and wandering behavior between the metastable
states. We shall ask questions about the reduced dynamics of the system, i.e. the
reduction of the jump diffusion equation to a simple Markov chain in the small noise
limit ε→ 0+ boiling down the dynamics to a simple switching between the metastable
states. It will be seen that this reduction is related to a scaling limit of the jump
diffusion in the polynomial scale ε−α resulting from the asymptotic behavior of first
exit times of domains of attraction encountered in the previous Chapter.

5.1. Asymptotic Times to enter different Reduced
Domains of Attraction

For ε, γ > 0 we recall the complement of the reduced domains of attraction

D̃0(εγ) = H \
(
D̃+(εγ) ∪ D̃−(εγ)

)
,

with D̃±(εγ) = D±(εγ , ε2γ) according to Definition 2.10. Theorem 2.18 describes the
asymptotic behavior of the first exit times τ±x (ε) from D±(εγ) for initial values in
x ∈ D̃±(εγ). The aim of this and the next Section is to determine the asymptotic
behavior of the transition times between small balls centered in the metastable states.
In a first step we consider first exit times from

D̃±0(εγ) := D̃±(εγ) ∪ D̃0(εγ) = H \ D̃∓(εγ).

Definition 5.1. Define for x ∈ D̃±(εγ)

τ±0
x (ε) := inf{t > 0 | Xε(t;x) /∈ D̃±0(εγ)}

the first exit time of Xε(·;x) to leave the enhanced domain of attraction D̃±0(εγ).

We shall show that the slow deterministic dynamics close to the separatrix S asymp-
totically has no contribution to the exit rate, that is τ±(ε) ≈ τ±0(ε) for ε→ 0+.
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Analogously to (4.2) in Chapter 4 we define for y ∈ D̃±(εγ) the modified exit event

B̃y :=
{
ω ∈ Ω | Y ε(s; y) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1; y) + εW1 /∈ D̃±,0(εγ)

}
.

(5.1)
We need the following slight modification of Lemma 4.2.

Lemma 5.2. For ρ ∈ (1/2, 1), γ ∈ (0, 1 − ρ) there exists ε0 > 0 such that for all
0 < ε 6 ε0, κ > 0

1(B̃y) 6 1{εW1 /∈ D±0 }+ 1{T1 < Trec + κγ| ln ε|}+ 1(Ec(y)), y ∈ D±(εγ), (5.2)

1(B̃y) > 1{εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±}(1− 1{T1 < Trec + κγ| ln ε|})
− 1(Ec(y)), y ∈ D̃±(εγ) (5.3)

The elementary proof is given in Subsection 5.1.1.

Theorem 5.3. Assume that Hypotheses (H.1) and (H.2) are satisfied. Then for all
θ > −1 and C ∈ (0, 1 + θ) there is ε0 = ε0(θ) such that for all 0 < ε 6 ε0

1− C
1 + θ + C

6 E

[
inf

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±0

x (ε)
)]

6 E

[
sup

x∈D̃±(εγ)
exp

(
−θλ±(ε)τ±0

x (ε)
)]

6
1 + C

1 + θ − C
.

Proof. The proof is a slight modification of the one for Theorem 4.6. The reasoning for
the small jump solution Y ε carried out in Chapter 4 remains untouched, whereas for
the large jumps ηε we have to replace the event By defined in (4.2) by B̃y defined by
(5.1). Hence it is enough to estimate the expressions

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(B̃y)

]
and E

[
e−θλ(ε)T1 inf

y∈D̃(εγ)
1(B̃y)

]
analogously to Claim 2 in the proofs of Propositions 4.10 and 4.11.

Upper estimate: We use in Lemma 5.2 estimate (5.2) to estimate B̃y. We pass to the
supremum in y ∈ D±(εγ) on both sides of the inequality and integrate to obtain

E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(B̃y)

]
6 E

[
e−θλ(ε)T1

]
P
(
εW1 /∈ D±0

)
+ E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

]
+ E

[
e−θλ(ε)T1 sup

y∈D(εγ)
1(Ecy)

]
=: K3(1−K10) +K1 +K5. (5.4)
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K1,K3 and K5 are expressions appearing in Claim 2 of the proof of Proposition 4.10,
and their asymptotic behavior is described in (4.21), (4.14) and (4.17). Moreover, by
definition for ε > 0

λ±(ε) = ν

(
1
ε

(D±0 )c
)

and trivially

K10 = λ±(ε)
βε

.

Thus we obtain an estimate identical to the one given in Claim 2 in the proof of Propo-
sition 4.10 by (4.20). Hence there exists ε0 > 0 such that for all 0 < ε 6 ε0

E

[
e−θλ

±(ε)T1 sup
y∈D±(εγ)

1
(
B̃y
)]

6(1 + C/5) βε
βε + θλ±(ε)

λ±(ε)
βε

.

We can conclude as in the proof of Proposition 4.10.

Lower estimate: We now use the lower estimate in Lemma 5.2 inequality (5.3) for
B̃y. Passing to the infimum over y ∈ D̃±(εγ) on the left-hand side, and correspondingly
to the supremum on the right hand side, and then integrating we arrive at

E

[
e−θλ

±(ε)T1 inf
y∈D̃±(εγ)

1(B̃y)
]

> P
(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
·
(
E

[
e−θλ(ε)T1

]
− E

[
e−θλ(ε)T11{T1 < Trec + κγ| ln ε|}

])
− E

[
sup

y∈D̃(εγ)
1(Ecy)

]
.

By the estimates in the proof of Proposition 4.10 and 4.11 the asymptotic behavior of
all terms arising in the preceding inequality except P

(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
are

well known. To estimate the latter, we exploit the representation

D∓(εγ , ε2γ , ε2γ)− φ± =
(
D±0
)c \ ((D±0 )c \ (D∓(εγ , ε2γ , ε2γ)− φ±

))
.

Note that by the regular variation of ν and Lemma 4.3 iv) for each C > 0 there is
ε0 > 0 small enough, such that for 0 < ε 6 ε0
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P
(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
= λ±(ε)

βε
− 1
βε
ν

(
1
ε

(
(D±0 )c \ (D∓(εγ , ε2γ , ε2γ)− φ±)

))
= λ±(ε)

βε
− λ±(ε)

βε

ν
( 1
ε

((
(D±)c \D∓(εγ , ε2γ , ε2γ)

)
− φ±)

))
λ±(ε)

>
λ±(ε)
βε

1−
µ
((

(D±)c \D∓(εγ0 , ε
2γ
0 , ε2γ

0 )
)
− φ±)

)
µ
((
D±0
)c)

 >
λ±(ε)
βε

(1− C/2) .

Taking into account the remaining terms with their asymptotic behavior according to
the previous Chapter we find ε0 > 0 such that for 0 < ε 6 ε0

E

[
e−θλ

±(ε)T1 inf
y∈D̃(εγ)

1(B̃y)
]

>
λ±(ε)
βε

(1− C/2)
(

βε
θλ±(ε) + βε

− C/2 βε
θλ±(ε) + βε

λ±(ε)
βε

)
> (1− C)λ

±(ε)
βε

βε
θλ±(ε) + βε

.

Apart from these modifications the lower bound may be obtained as in the proof of
Proposition 4.11.

Theorem 5.4. Let the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and
suppose Hypotheses (H.1) and (H.2) are satisfied. Then the family of random variables
(s±(ε))ε>0 defined by (4.26) satisfies that for any θ > 0 and 0 < C < 1 there is ε0 > 0
such that for 0 < ε ≤ ε0

E

[
inf

x∈D̃±(εγ)
e−θ|τ

±0
x (ε)−s±(ε)|

]
> 1− C. (5.5)

Proof. (of Theorem 5.4):
Step 1: Reduction to incremental events
Recall for ε > 0 the events

A�j :=
(
B�j
)c = {εWj ∈ D±0 }, for j ∈ N.

In this step we follow the lines of the first part proof of Theorem 4.14. Exploiting the
strong Markov property of Xε and Y ε respectively and the Lévy property of L we may
estimate the exit first exit time from below by probabilities of exit events A−x , B̃x, A�1
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and B�1 such that

E

[
inf

x∈D̃±(εγ)
e−θ|τ

±0
x (ε)−s±(ε)|

]
=

∞∑
k=1

E

[
inf

x∈D̃±(εγ)
1{τ±0

x (ε)=Tk}∩
⋂k−1
j=1

A�
j−1∩B

�
k

]

>
∞∑
k=1

E

 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1B̃Xε(0;x)◦θTk−1∩B

�
k

 .

By k − 1-fold iterated application of the strong Markov property of Xε as for example
in the proof of Theorem 4.14 we obtain for k ∈ N that

E

 inf
x∈D̃±(εγ)

k−1∏
j=1

(
1A−

Xε(0;x)◦θTj−1∩A
�
j

)
1B̃Xε(0;x)◦θTk−1∩B

�
k


> E

[
inf

y∈D̃±(εγ)
1A−y ∩A�1

]k−1
E

[
inf

y∈D̃±(εγ)
1B̃y∩B�1

]
. (5.6)

The lower estimate of the first factor is given by the asymptotic estimate (4.33) in Step 3
of the proof for Theorem 4.14, for which we keep the notation. Hence it only remains
to estimate the second factor.

Step 2: Lower estimate of the second factor
By Lemma 5.2 estimate (5.3) we know for y ∈ D̃±(εγ)

1(B̃y) > 1{εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±}(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ec(y)).

Since {εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±} ⊆ {εW1 ∈ (D±0 )c} = B� we may infer that

1(B� ∩ B̃y) > 1{εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±}(1− 1{T1 < Trec + κγ| ln ε|})

− 1(Ec(y) ∩B�)

> 1{εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±}1{T1 > Trec + κγ| ln ε|} − 1(Ec(y)).
(5.7)

Passing to the infimum over y ∈ D̃±(εγ) on the left-hand side, and correspondingly to
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the supremum on the right hand side, and then integrating we arrive at

E

[
inf

y∈D̃±(εγ)
1(B̃y ∩B�)

]

> P
(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
P (T1 > Trec + κγ| ln ε|})− E

[
sup

y∈D̃(εγ)
1(Ecy)

]
.

By the estimates in the proof of Proposition 4.14, Proposition 4.10 and Proposition 4.11
the asymptotic behavior of all terms arising in the preceding inequality with exception
of P

(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
are well known. To estimate the latter, we exploit

the representation

D∓(εγ , ε2γ , ε2γ)− φ± =
(
D±0
)c \ ((D±0 )c \ (D∓(εγ , ε2γ , ε2γ)− φ±

))
.

Note that by the regular variation of ν and Lemma 4.3 iv) for each 0 < C5 < 1 there is
ε5 > 0 small enough, such that for 0 < ε 6 ε5

P
(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
= λ±(ε)

βε
− 1
βε
ν

(
1
ε

(
(D±0 )c \ (D∓(εγ , ε2γ , ε2γ)− φ±)

))
= λ±(ε)

βε
− λ±(ε)

βε

ν
( 1
ε

((
(D±)c \D∓(εγ , ε2γ , ε2γ)

)
− φ±)

))
λ±(ε)

>
λ±(ε)
βε

1−
µ
((

(D±)c \D∓(εγ0 , ε
2γ
0 , ε2γ

0 )
)
− φ±)

)
µ
((
D±0
)c)

 >
λ±(ε)
βε

(1− C5) .

Thus keeping all the notation from the proof of Theorem 4.14 we obtain for Ci ≤ J2
3 ≤

1
3 ,

i = 3, 4, 5 and 0 < ε 6 min{ε3, ε4, ε5}

E

[
inf

y∈D̃±(εγ)
1(B̃y ∩B�)

]

> P
(
εW1 ∈ D∓(εγ , ε2γ , ε2γ)− φ±

)
P (T1 > Trec + κγ| ln ε|})− E

[
sup

y∈D̃(εγ)
1(Ecy)

]
>
λ±(ε)
βε

(1− C5)(1− C4)− C3ε
ϑ >

λ±(ε)
βε

((1− C5)(1− C4)− C3)

>
λ±(ε)
βε

(1− C3 − C4 − C5) > λ±(ε)
βε

(1− J2).

Step 3: The asymptotic geometric series
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We can now estimate (5.6) for 0 < ε 6 min{ε1, ε2, ε3, ε4, ε5}, such that

∞∑
k=1

(
1− (1 + J1)λ

±(ε)
βε

)k−1

(1− J2)λ
±(ε)
βε

>
1− J2

1 + J1
> 1− C

if J1 > 0 and J2 > 0 are chosen to satisfy 0 6 J2 6 C + (1− C)J1.

With an analogous proof as for Corollary 4.15 we obtain the following statement.

Corollary 5.5. Under the assumptions of Theorem 5.4 there is a family random vari-
ables (τ̄(ε))ε>0 with exponential distribution of parameter 1 on the same probability
space (Ω,F ,P) as the driving Lévy noise (L(t))t>0 such that in probability

lim
ε→0+

inf
y∈D̃±(εγ)

|λ±(ε)τ±0
y (ε)− τ̄(ε)| = lim

ε→0+
sup

y∈D̃±(εγ)
|λ±(ε)τ±0

y (ε)− τ̄(ε)| = 0.

Now combining the Theorem 5.3 and Corollary 4.15 we obtain with the identical proof
as for Corollary 4.9 replacing τ±x (ε) by τ±0

x (ε)

Theorem 5.6 (Exponential convergence of exit times to another reduced domain of
attraction). Let the Chafee-Infante parameter π2 < λ 6= (kπ)2 for k ∈ N be given and
suppose Hypotheses (H.1) and (H.2) are satisfied. Then there is a family of random
variables (τ̄(ε))ε>0 with exponential law of parameter 1 such that for all θ < 1

lim
ε→0+

E
[

sup
x∈D̃±(εγ)

| exp
(
θλ±(ε)τ±0

x (ε)
)
− exp (θτ̄(ε)) |

]
= 0.

5.1.1. Estimates of Transition Events (Proof of Lemma 5.2)

Proof. In order to estimate 1(B̃y) for y ∈ D(εγ) we need the following estimates anal-
ogous to statements ii), iv) and vi) of Lemma 4.1, namely

xvii) 1(B̃y)1(Ey)1{T1 > Trec + κγ| ln ε|} 6 1{εW1 /∈ D±0 },

xviii) 1(B̃y)1(Ey)1{T1 > Trec + κγ| ln ε|}1{‖εW1‖ 6 (1/2)ε2γ} = 0,

xix) 1(Ey)1{T1 > Trec + κγ| ln ε|}1{εW1 ∈ D̃∓(εγ)− φ±} 6 1(B̃y).

Proof of xvii): Proposition 2.15 states that on the event {T1 > Trec + κγ| ln ε|}
we have u(T1; y) ∈ B(1/2)ε2γ (φ±). Hence on {T1 > Trec + κγ| ln ε|} ∩ Ey the rela-
tionship Y ε(T1; y) ∈ Bε2γ (φ±) holds, exactly as in step 1 of the proof of Lemma 4.1.
By definition of B̃y, Y ε(T1; y) + εW1 /∈ D±,0(εγ). For our system this is equivalent
to Y ε(T1; y) + εW1 ∈ D∓(εγ). By definition we have D±(εγ) +B(1/2)ε2γ (0) ⊂ D± for
ε < 1, such that

εW1 ∈ D∓(εγ)−B(1/2)ε2γ (φ±) ⊂ D∓ − φ± ⊂
(
D±0
)c
.
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5. Asymptotic Transition Times

Proof of xviii): We argue again for ε < 1. If in addition ‖εW1‖ 6 (1/2)ε2γ and by
D±(εγ) +Bε2γ (0) ⊂ D±, we obtain

0 ∈ D∓(εγ) +Bε2γ (φ±) ⊂ D∓ + φ± ⊂
(
D±0
)c

which is absurd, i.e. holds for the empty set.

Proof of xix): As mentioned in the proof of xvii), Y ε(T1; y) ∈ Bε2γ (φ±) on the event
{T1 > Trec + κγ| ln ε|} ∩ Ey. Hence in order to arrive in B̃y we only have to ensure that

Bε2γ (φ±) + D̃∓(εγ)− φ+ ⊂ D∓(εγ).

The shifts by φ± cancel out, reducing the inclusion to

Bε2γ (0) + D̃∓(εγ) ⊂ D∓(εγ),

which is a result of Lemma 2.14.

Proof of (5.2): Using xvii) and xviii), we can obtain xv) by the following calculation

1(B̃y) 6 1(Ecy) + 1(B̃y)1(Ey)1{‖εW1‖ > (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}
+ 1(B̃y)1(Ey)1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}
+ 1(B̃y)1(Ey)1{‖εW1‖ < (1/2)ε2γ}1{T1 > Trec + κγ| ln ε|}
+ 1(B̃y)1(Ey)1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

6 1(Ecy) + 1{εW1 /∈ D±0 }+ 1{‖εW1‖ > (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}+ 0
+ 1{‖εW1‖ < (1/2)ε2γ}1{T1 < Trec + κγ| ln ε|}

= 1(Ecy) + 1{εW1 /∈ D±0 }+ 1{T1 < Trec + κγ| ln ε|}.

Proof of (5.3): By xix), the estimate xvi) follows from the calculation

1(B̃y) > 1(B̃y)1(Ey)1{T1 > Trec + κγ| ln ε|}

> 1{εW1 ∈ D̃∓(εγ)− φ±}1(Ey)1{T1 > Trec + κγ| ln ε|}

> 1{εW1 ∈ D̃∓(εγ)− φ±}(1− 1{T1 < Trec + κγ| ln ε|})− 1(Ecy).
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5.2. Transition Times between Balls Centered in the Stable States

5.2. Transition Times between Balls Centered in the
Stable States

In this Section we shall investigate the asymptotic behavior in the small noise limit
ε → 0 of the times needed to switch between small neighborhoods of the metastable
states. As in the Gaussian case it turns out that they differ only to a negligible extent
from the transition or exit times investigated before.
Let σ±x (ε) describe the time needed for Xε starting in t = 0 at Xε(0) = x to enter

the ball Bε2γ (φ∓) contained in the opposite domain of attraction.

Remark 5.7. Note that by definition Xε(τ±,0(ε);x) ∈ D∓(εγ) for all x ∈ D̃±(εγ),
which differs clearly from σ±x (ε) for systems with more than two stable solutions.

The following Proposition confirms that in our situation the asymptotic transitions
between small neighborhoods of the stable states of the deterministic Chafee-Infante
equation do not differ essentially from the asymptotic first exit times from reduced
domains of attraction.

x

ε

γ

D(  )εγ

D(  )εγ
+

-

0

ϕ+

ϕ
-

ϕ+

1

ϕ
-

1

S

 

ε /2

γε /2

εW

εW

εW

1

2

3

Figure 5.1.: Sketch of a transition event

Theorem 5.8 (Asymptotic transitions between balls around the stable states). Assume
that (H.1) and (H.2) are satisfied. There is a family of random variables (τ̄(ε))ε>0 with
exponential law of parameter 1 and h0 > 0 such that for any 0 < h 6 h0

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
1{|λ±(ε)σ±x (ε)− τ̄(ε)| > h}

]
= 0.
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5. Asymptotic Transition Times

Proof. For x ∈ D± and ε > 0 sufficiently small we obviously have

τ±x (ε) 6 τ±0
x (ε) 6 σ±x (ε). P− a.s. (5.8)

Inequality (5.8) can in fact be rewritten as

inf{t > 0 | Xε(t;x) ∈
(
D±(ε)

)c}
6 inf{t > 0 | Xε(t;x) ∈

(
D±(ε) ∪D0(ε)

)c}
6 inf{t > 0 | Xε(t;x) ∈

(
D±(ε) ∪D0(ε) ∪ (D∓(ε) \Bε2γ (φ∓))

)c}.
Claim: For κ > 0 we have

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
1{σ±x (ε) < τ±0

x (ε) + Trec + κγ| ln ε|}
]

= 1. (5.9)

To prove the claim, fix ε, γ, κ > 0. By Proposition 2.15 and Remark 5.7

E

[
sup

x∈D̃±(εγ)
1{σ±x (ε) > τ±0

x (ε) + Trec + κγ| ln ε|}
]

6 E

[
sup

x∈D̃±(εγ)
1{|Xε(τ±0

x (ε) + Trec + κγ| ln ε|;x)− φ∓|∞ > ε2γ}

]

6 E

[
sup

x∈D̃±(εγ)
1{|Xε(Trec + κγ| ln ε|;Xε(τ±0;x))

−u(Trec + κγ| ln ε|;Xε(τ±0;x))|∞ >
1
2ε

2γ}
]

+ E

[
sup

x∈D̃±(εγ)
1{|u(Trec + κγ| ln ε|;Xε(τ±0;x))− φ±|∞ >

1
2ε

2γ}

]

6 E

[
1{ sup

x∈D̃±(εγ)
sup

t∈[0,Trec+κγ| ln ε|]
|Xε(t;Xε(τ±0;x))− u(t;Xε(τ±0;x))|∞ >

1
2ε

2γ}

]

6 E

[
sup

y∈D∓(εγ)
1{ sup

t∈[0,Trec+κγ| ln ε|]
|Xε(t; y)− u(t; y)|∞ >

1
2ε

2γ}

]
. (5.10)

By estimate (3.14), we find Γ = Γ(κ) > 0 and ε0 > 0 such that for 0 < ε 6 ε0 and
x ∈ D̃±(εγ)

E

[
sup

y∈D∓(εγ)
1{ sup

t∈[0,Trec+κγ| ln ε|]
|Xε(t; y)− u(t; y)|∞ >

1
2ε

2γ}

]
6 P(Ẽc), (5.11)
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where

Ẽ(ε) := { sup
t∈[0,Trec+κγ| ln ε|

‖εξ∗(t)‖ < ε(Γ+2)γ} ∩ {T1 > Trec + κγ| ln ε|}. (5.12)

Moreover, by Lemma 3.6 for ε0 small enough and a constant C > 0

P(Ẽc(ε)) 6 P

((
{ sup
t∈[0,Trec+κγ| ln ε|]

‖εξ∗(t)‖ < ε(Γ+2)γ} ∩ {T1 > Trec + κγ| ln ε|}
)c)

6 P

(
sup

t∈[0,Trec+κγ| ln ε|]
‖εξ∗(t)‖ > ε(Γ+2)γ

)
+ P (T1 6 Trec + κγ| ln ε|)

6 C (Trec + κγ| ln ε|) ε2−2(Γ+2)γ−(2−(1−Θ)α)ρ + 1− e−(Trec+κγ| ln ε|)βε , (5.13)

an estimate that converges to 0 as ε→ 0 + . This establishes

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
1{σ±x (ε) > τ±0

x (ε) + Trec + κγ| ln ε|}
]

= 0, (5.14)

and therefore in combination with the inequalities (5.8) and (5.14)

E

[
sup

x∈D̃±(εγ)
1{λ±(ε)τ±0(ε) 6 λ±(ε)σ±(ε) 6 λ±(ε)

(
τ±0(ε) + Trec + κγ| ln ε|

)
}
]

→ 1, ε→ 0+ (5.15)

as well as

E

[
inf

x∈D̃±(εγ)
1{λ±(ε)τ±0(ε) 6 λ±(ε)σ±(ε) 6 λ±(ε)

(
τ±0(ε) + Trec + κγ| ln ε|

)
}
]

→ 1, ε→ 0 + . (5.16)

By Corollary 5.5 there is a family of random variables (τ̄(ε))ε>0 with exponential law
of parameter 1 such that

lim
ε→0+

sup
x∈D̃±(ε)

|λ±(ε)τ±0
x (ε)− τ̄(ε)|

= lim
ε→0+

sup
x∈D̃±(ε)

|λ±(ε)
(
τ±0(ε) + Trec + κγ| ln ε|

)
− τ̄(ε)| = 0
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in probability. This implies for given h > 0

lim
ε→0+

E

[
sup

x∈D̃±(ε)
1{|λ±(ε)σ±0

x (ε)− τ̄(ε)| > h}

]

≤ lim
ε→0+

P

(
sup

x∈D̃±(ε)
|λ±(ε)σ±0

x (ε)− τ̄(ε)| > h

)
= 0.

This finishes the proof.
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In this Chapter, equipped with our previously obtained knowledge of exit and transition
times in the limit of small noise amplitude ε → 0, we shall investigate the global
asymptotic behavior of our jump diffusion process in the time scale in which transitions
occur, i.e. in the scale given by λ0(ε) = ν( 1

εB
c
1(0)), ε > 0. It turns out that in this time

scale, the switching of the diffusion between neighborhoods of the stable solutions φ±
can be well described by a Markov chain jumping back and forth between two states
with a characteristic Q-matrix determined by the quantities µ((D±0 )c)

µ(Bc1(0)) as jumping rates.
To show this, we need to prove that Xε is localized around the stable fixed points also
on the critical time scale T/λ0(ε). This boils down to the control of the exit behavior
from the complement of the reduced domains of attraction D̃0(εγ). Roughly, rates
for large jumps between positions inside this set have to converge to 0 with ε → 0.
This condition is made precise in Hypothesis (H.3), that plays an important role in the
subsequent study of metastability.

6.1. Hypothesis (H.3) prevents Trapping close to the
Separatrix

In this Section we shall justify Hypothesis (H.3) and prove crucial implications.

Definition 6.1. We assume Hypotheses (H.1), (H.2) and (H.3) to hold. For the con-
stant γ/2 < γ̃ 6 γ from (H.3), ε > 0, we set β̃ε := ν

( 1
ε1−γ̃B

c
1(0)

)
, and recursively for

i ∈ N

T̃0 := 0, T̃i+1 := inf{t > Ti | ε‖∆tL‖ > εγ̃}, and W̃i := ∆T̃i
L. (6.1)

By definition, T̃1 then has an exponential law with parameter β̃ε. In analogy to Sec-
tion 2.1 to we shall split L = η̃ε + ξ̃ε, where

η̃ε(t) =
∑
Ti6t

W̃i, t > 0,

is a compound Poisson process with jump probability measure 1
β̃ε
ν(· ∩ 1

ε1−γ̃B
c
1(0)). For

further use we denote by

ξ̃∗(t) :=
t∫

0

S(t− s) dξ̃ε(s), t > 0,
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and Ỹ ε the solution of equation (2.3) driven by εξ̃ε instead of εξε. We recall the notation

λ0(ε) = ν

(
1
ε
Bc1(0)

)
= εα`(1/ε)µ(Bc1(0))

with the slowly varying function `.

Remark 6.2.

1. Let us argue why we introduce the additional parameter γ̃ ∈ (γ/2, γ]. The upper
and the lower bounds are derived from two properties important in the sequel.

1.1 In Lemma 6.3 we shall compare τ0
x(ε) with a deterministic time scale 1

εg ,
where g > 0. In the proof this reduces to the comparison of T̃1 with 1

εg . We aim
at showing that that limε→0+ P(T̃1 >

1
εg ) = 0. For this purpose we may calculate

P(T̃1 >
1
εg

) =

1
εg∫

0

β̃ε exp
(
−β̃εs

)
ds = 1− exp

(
− β̃ε
εg

)

= 1− exp
(
−
εα(1−γ̃)`

( 1
ε

)
µ(Bc1(0))

εg

)
.

In order that the last term tends to zero it is sufficient that g > α(1 − γ̃). This
follows for g = α(1− γ/2), if γ̃ > γ/2.

1.2 In Lemma 6.4 we shall compare τ0
x(ε) with T̃1 in the sense that we have

to prove limε→0+ P(τ0
x(ε) > T̃1) = 0. By definition dist(D̃±(εγ),S) > εγ + ε2γ .

Clearly the choice of γ̃ must not inhibit that ∆T̃i
Xε = ε∆T̃i

L = εW̃i for i ∈ N

triggers the exit of Xε from D̃0(εγ) with a reasonable chance. Hence for any
reasonable choice of γ̃ there must be a constant C > 0 such that at least for small
ε > 0

P(‖εW̃i‖ > εγ + ε2γ) > C.

Assume γ̃ > γ and y ∈ S. Then

P(y + εW̃i ∈ D̃+(εγ) ∪ D̃−(εγ)) =
ν
( 1
ε1−γ̃

(
Bc1(0)

)
∩ 1
ε

(
D̃0(εγ)

)c)
ν
( 1
ε1−γ̃B

c
1(0)

)
6

ν
( 1
ε1−γ̃B

c
1(0) ∩ 1

εB
c
1(0)

)
ν
( 1
ε1−γ̃B

c
1(0)

) =
`( 1
ε1−γ )

`( 1
ε1−γ̃ )

εγ̃−γ → 0,

as ε→ 0+. In other words εW̃i is of an asymptotically too small scale to trigger an
exit from D̃0(εγ). Hence γ̃ 6 γ is a necessary condition. Modulo the appearence
of r > 0 in Hypothesis (H.3) on ν appears such that now quite natural, since it
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can be paraphrased as stating that there is γ/2 < γ̃ 6 γ

sup
y∈B1+r(0)∩D̃0(εγ)

P
(
y + εW̃1 ∈ D̃+(εγ) ∪ D̃−(εγ)

)
= 1− sup

y∈B1+r(0)∩D̃0(εγ)
P
(
y + εW̃1 ∈ D̃0(εγ)

)
→ 1, as ε→ 0 + .

This means that large jumps εW̃i of size height εγ̃ should have a non-negligible
chance to leave the set D̃0(εγ).

2. Could this Hypothesis (H.3) be slightly strengthened, to improve the metastability
results of Theorem 6.12 and 6.13? For instance, could the supremum over x ∈ H
appearing in Lemma 6.10 or the one over x ∈ D± in Theorem 6.12 be taken under
the expectation sign, by just requiring a slightly stronger hypothesis? Let us argue
that the hypothesis

lim
ε→0+

E

[
sup

y∈B1+r(0)∩D̃0(εγ)
1{y + εW̃1 ∈ D̃+(εγ) ∪ D̃−(εγ)}

]

= lim
ε→0+

ν
( 1
ε1−γ̃B

c
1(0) ∩ 1

ε

(
D̃0(εγ)−

(
B1+r(0) ∩ D̃0(εγ)

)))
β̃ε

= 0,

slightly stronger than Hypothesis (H.3), is in general too strong for purely geo-
metric reasons. Recalling Lemma 2.13 the second claim of which states⋂

ε>0
D̃0(εγ) = S,

we can say that apart from very special cases (for example in case S is contained
in a subspace of codimension 1), the separatrix S will not be contained in⋂

ε>0
D̃0(εγ)−

(
B1+r(0) ∩ D̃0(εγ)

)
= S − (B1+r(0) ∩ S) .

In this case there generically exists a small ball Bh(0) ⊂ S − (B1+r(0) ∩ S) . But
then

ν
( 1
ε1−γ̃B

c
1(0) ∩ 1

ε

(
D̃0(εγ)−

(
B1+r(0) ∩ D̃0(εγ)

)))
β̃ε

=
µ

(
Bc1(0) ∩ 1

εγ̃
(
D̃0(εγ)−

(
B1+r(0) ∩ D̃0(εγ)

)))
µ (Bc1(0))

>
µ

(
Bc1(0) ∩ 1

εγ̃
(S − (B1+r(0) ∩ S))

)
µ (Bc1(0)) >

µ

(
Bc1(0) ∩ 1

εγ̃
(Bh(0))

)
µ (Bc1(0))

ε→0+−→ 1.

(6.2)
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It is therefore difficult to find a stronger hypothesis enhancing the quality of
convergence in our metastability results.

The main consequence of Hypothesis (H.3) that will be exploited vastly in the sequel
is contained the following lemma.

Lemma 6.3. Suppose the Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then for
any T > 0

lim
ε→0+

sup
x∈D̃0(εγ)

P

(
τ0
x(ε) > T

εα(1−γ/2)

)
= 0

holds true.

Proof. In fact, for ε > 0 and the first jump T̃1 of the compound Poisson process η̃ε we
have

sup
x∈D̃0(εγ)

P

(
τ0
x(ε) > T

εα(1−γ/2)

)

6 sup
x∈D̃0(εγ)

P

(
{τ0
x(ε) > T

εα(1−γ/2) } ∩ {τ
0
x(ε) 6 T̃1}

)

+ sup
x∈D̃0(εγ)

P

(
τ0
x(ε) > T

εα(1−γ/2) | τ
0
x(ε) > T̃1

)
P
(
τ0
x(ε) > T̃1

)
6 sup
x∈D̃0(εγ)

P

(
T̃1 >

T

εα(1−γ/2)

)
+ sup
x∈D̃0(εγ)

P
(
τ0
x(ε) > T̃1

)
6 exp

(
− T β̃ε
εα(1−γ/2)

)
+ sup
x∈D̃0(εγ)

P
(
τ0
x(ε) > T̃1

)
.

Since γ̃ > γ/2, we obtain limε→0+
β̃ε

εα(1−γ/2) → ∞, such that the first term in the last
line of the preceding estimate tends to zero. The second term

p1(ε) := sup
y∈D̃0(εγ)

P
(
τ0
y (ε) > T̃1

)
, ε > 0,

will be estimated in the subsequent Lemma 6.4.

Before stating this Lemma, recall the uniform boundedness parameter T rrec = T rrec(λ)
from Proposition 2.8 existing for any r > 0, i.e. for all t > T rrec we have

sup
x∈H
|u(t;x)|∞ 6 1 + r.

Lemma 6.4. Under the assumptions of Lemma 6.3 the relationship

lim
ε→0+

sup
x∈D̃0(εγ)

P
(
τ0
x(ε) > T̃1

)
= 0
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holds.

Proof. For r > 0, ε > 0 and x ∈ D̃0(εγ) we may write

P
(
τ0
x(ε) > T̃1

)
= P

(
τ0
x(ε) > T̃1 and Xε(T̃1−;x) ∈ B1+r(0) ∩ D̃0(εγ)

)
+ P

(
τ0
x(ε) > T̃1 and Xε(T̃1−;x) /∈ B1+r(0) ∩ D̃0(εγ)

)
6 P

(
Ỹ ε(T̃1;x) ∈ B1+r(0) ∩ D̃0(εγ) and Ỹ ε(T̃1, x) + εW̃1 ∈ D̃0(εγ)

)
+ P

(
Ỹ ε(T̃1;x) /∈ B1+r(0)

)
6 sup
y∈B1+r(0)∩D̃0(εγ)

P
(
y + εW̃1 ∈ D̃0(εγ)

)
+ P

(
Ỹ ε(T̃1;x) /∈ B1+r(0)

∣∣ T̃1 > T rrec
)

+ P
(
T̃1 6 T rrec

)
6 sup

y∈B1+r(0)∩D̃0(εγ)
P
(
y + εW̃1 ∈ D̃0(εγ)

)
+ p2(ε) +

(
1 − e−β̃εT

r
rec

)
, (6.3)

where
p2(ε) := P

(
sup
x∈H
|Xε(T̃1−;x)|∞ > 1 + r | T̃1 > T rrec

)
, ε > 0.

The third term in the last line of the preceding inequality clearly tends to zero as ε→ 0.
By Hypothesis (H.3) we may treat the first term by noting

sup
y∈B1+r(0)∩D̃0(εγ)

P
(
y + εW̃1 ∈ D̃0(εγ)

)
= sup
y∈B1+r(0)∩D̃0(εγ)

ν
( 1
ε1−γ̃B

c
1(0) ∩ 1

ε

(
D̃0(εγ)− y

))
β̃ε

ε→0+−→ 0. (6.4)

It remains to show the convergence of p2(ε) as ε→ 0 for which we shall state Lemma 6.5.

Lemma 6.5. Under the assumptions of Lemma 6.3, and with T rrec > 0 chosen in (2.7)
for r > 0 we have

P

(
sup
x∈H
|Xε(T̃1−;x)|∞ > 1 + r

∣∣ T̃1 > T r/2rec

)
6 P

(
sup
x∈H

sup
t∈[0,T r/2rec ]

|Xε(t;x)− u(t;x)|∞ > r/2
∣∣ T̃1 > T r/2rec

)
. (6.5)
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Proof. If T̃1 > T rrec we obtain by Proposition (2.8) that

|Xε(T̃1−;x)|

6 |u(T r/2rec ;Xε(T̃1 − T r/2rec ;x))|∞

+ |Ỹ ε(T r/2rec ;Xε(T̃1 − T r/2rec ;x))− u(T r/2rec ;Xε(T̃1 − T r/2rec ;x)|∞

6 1 + r/2 + sup
y∈H
|Ỹ ε(T r/2rec ; y)− u(T r/2rec ; y)|∞. (6.6)

Hence

P

(
sup
x∈H
|Xε(T̃1−;x)|∞ > 1 + r

∣∣ T̃1 > T r/2rec

)
6 P

(
sup
x∈H

sup
t∈[0,T r/2rec ]

|Xε(t;x)− u(t;x)|∞ > r/2
∣∣ T̃1 > T r/2rec

)
. (6.7)

To continue our estimate, we shall next bound the right-hand side of (6.7). For this
purpose, we prove a slightly stronger result. As opposed to Chapter 3 we only need the
small deviation estimate for the finite time horizon T

r/2
rec . The estimate is uniform in

x ∈ H.

Lemma 6.6. Under the assumptions of Lemma 6.3 there exist p > 0, q > 0 and ε0 > 0
such that for all T > 0 and 0 < ε 6 ε0

P

(
sup
x∈H

sup
t∈[0,T ]

|Xε(t;x)− u(t;x)|∞ > εp
∣∣ T̃1 > T

)
6 Tεq.

Proof. With the notation from Definition 6.1 we shall argue for the remainder term
R̃ε(·;x) := Ỹ ε(·;x)− u(·;x)− εξ̃∗(·) and ε > 0, x ∈ H, in the same manner as in the
proof of Lemma 3.3.

Claim 1: There is 0 < ε0 = ε0(γ̃) 6 1 such that for all T > 0 there is C = C(T ) > 0
such that for 0 < ε 6 ε0 we have

sup
x∈H

sup
t∈[0,T ]

|R̃ε(t;x)|∞ 6 C sup
t∈[0,T ]

‖εξ̃∗(t)‖.

on the event ẼT (1) = {supr∈[0,T ] ‖εξ̃∗(r)‖ < 1
C }. As in the proof of Lemma 3.3 R̃ε

satisfies

1
2

d
dt |R̃

ε|2 + |∇R̃ε|2 =〈f(Ỹ ε)− f(u), R̃ε〉.

As before, by using the structure of f and applying Gronwall’s Lemma, given T > 0,
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we find a constant C1 = C1(T ) > 0 such that for 0 < t < t∞ with time horizon
t∞ := inf{t > 0 : |R̃ε(t)|∞ > 1} and on ẼT (1)

|R̃ε(t)|2 6C1 sup
r∈[0,T ]

‖εξ̃∗(r)‖2.

We next pass to the mild solution representation of R̃ε, given by

R̃ε(t) =
t∫

0

S(t− s)
(
f(Ỹ ε(r))− f(u(r))

)
dr, t > 0,

use the regularizing effect of S, Hölder’s inequality and Corollary B.12 for n = 12 to
find another constant C2 = C2(T ) > 0 depending otherwise only on the Chafee-Infante
parameter λ such that

sup
x∈H,06t6t∞∧T

‖R̃ε(t;x)‖ 6C2 sup
r∈[0,T ]

‖εξ̃∗(r)‖.

On the event ET (1/C2) = {supr∈[0,T ] ‖εξ̃∗(r)‖ < 1
C2
} we obtain t∞ > T . This yields

the claimed inequality, and we may choose C = C2 ∨ 1.

Claim 2: There is a constant ε0 > 0, and for all T > 0 there is a constant C =
C(T ) > 0 such that for all p > 0, 0 < ε 6 ε0 we obtain

P

(
sup
t∈[0,T ]

sup
x∈H
|Xε(t;x)− u(t;x)|∞ > εp

∣∣ T̃1 > T

)
6 P

(
sup
t∈[0,T ]

‖εξ̃∗(t)‖ > Cεp

)
.

Let p > 0. Then we estimate

P

(
sup
t∈[0,T ]

sup
x∈H
|Xε(t;x)− u(t;x)|∞ > εp

∣∣ T̃1 > T

)

6 P

(
sup
t∈[0,T ]

sup
x∈H
|Ỹ ε(t;x)− u(t;x)|∞ > εp

)

= P

(
sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x) + εξ̃∗(t)|∞ > εp

)
. (6.8)
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Let C̃ > 1 be according to Claim 1. Analogously to (3.14) we can calculate

{ sup
t∈[0,T ]

sup
x∈H
|Ỹ ε(t;x)− u(t;x)|∞ > εp}

⊆ { sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x) + εξ̃∗(t)|∞ > εp}

⊆ { sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x)|∞ + sup

t∈[0,T ]
|εξ̃∗(t)|∞ > εp}

⊆ { sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x)|∞ > (1/2)εp} ∪ { sup

t∈[0,T ]
‖εξ̃∗(t)‖ ≥ (1/2)εp}

⊆ { sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x)|∞ > (1/2)εp} ∩ { sup

t∈[0,T ]
‖εξ̃∗(t)‖ > 1

C̃
}

∪ { sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x)|∞ > (1/2)εp} ∩ { sup

t∈[0,T ]
‖εξ̃∗(t)‖ 6 1

C̃
}

∪ { sup
t∈[0,T ]

‖εξ̃∗(t)‖ ≥ (1/2)εp}. (6.9)

By Claim 1 we have

{ sup
t∈[0,T ]

sup
x∈H
|R̃ε(t;x)|∞ > (1/2)εp} ∩ { sup

t∈[0,T ]
‖εξ̃∗(t)‖ 6 1

C̃
} ⊂ {sup

[0,T ]
‖εξ̃∗(t)‖ > 1

2 C̃
εp}.

Therefore, since C̃ > 1 and ε0 6 1

{ sup
t∈[0,T ]

sup
x∈H
|Ỹ ε(t;x)− u(t;x)|∞ > εp}

⊆ { sup
t∈[0,T ]

‖εξ̃∗(t)‖ > 1
C̃
} ∪ { sup

t∈[0,T ]
‖εξ̃∗(t)‖ > 1

2 C̃
εp} ∪ {sup

[0,T ]
‖εξ̃∗(t)‖ > (1/2)εp}

= { sup
t∈[0,T ]

‖εξ̃∗(t)‖ > 1
2 C̃

εp} (6.10)

Hence we conclude

P

(
sup
x∈H

sup
t∈[0,T ]

|Ỹ ε(t;x)− u(t;x)|∞ > εp

)
6 P

(
sup
t∈[0,T ]

‖εξ̃∗(t)‖ > 1
2 C̃

εp

)
.

Claim 3: For any ρ := 1 − γ̃, p > 0 and 0 < Θ < 1 there are constants C > 0 and
ε0 > 0 such that for 0 < ε 6 ε0 and T > 0

P

(
sup
t∈[0,T ]

‖εξ̃∗t ‖ > εp

)
6 C T ε2−2p−(2−(1−Θ)α)ρ.
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This is a consequence of Lemma 3.6. We have to verify that for ρ = 1− γ̃ the exponent
of ε provided by the Lemma is positive, that is if

2− 2p− (2− (1−Θ)α)ρ = 2
(

(1− p)− (1− (1−Θ)α
2 )(1− γ̃)

)
> 0.

This true for p = γ̃. This completes the proof of Lemma 6.6.

Final step in the proof of Lemma 6.3. We apply Lemma 6.6 for T = T
r/2
rec to Lemma

6.5 and thus obtain that limε→0+ p2(ε)→ 0 and in Lemmas 6.3 that limε→0+ p1(ε) = 0.
This completes the proof.
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6.2. Asymptotic Estimates of Exit Times from Entire
Domains of Attraction

Based on the previous estimate of τ0
x(ε) under Hypothesis (H.3), we next will prove

a result on first exit times. On the one hand it is much weaker than Theorem 2.18,
since it only provides convergence in distribution instead of exponential convergence
and uniformity of the event in the intial state is lost. On the other hand it holds for the
non-reduced domain of attraction D±. We restate Theorem 6.2 for convenience.

Theorem 6.7 (Asymptotic estimate for the first exit time from D±). Assume that
Hypothesis (H.1), (H.2) and (H.3) are satisfied. Then there is a family of random
variables (τ̄(ε))ε>0 with exponential law of parameter 1 and h0 > 0 such that for all
0 < h 6 h0

lim
ε→0+

sup
x∈D+

P(λ±(ε)τ±x (ε) > τ̄(ε) + h) = 0.

Proof. Let (τ̄(ε))ε>0 be given by Theorem 5.3. Then for any h > 0

sup
x∈D±

P(λ±(ε)τ±x (ε) > τ̄(ε) + h)

6 sup
x∈D̃±(εγ)

P(λ±(ε)τ±x (ε) > τ̄(ε) + h) + sup
x∈D̃0(εγ)∩D±

P(λ±(ε)τ±x (ε) > τ̄(ε))

6 E

[
sup

x∈D̃±(εγ)
1{|λ±(ε)τ±x (ε)− τ̄(ε)| > h}

]
+ sup
x∈D̃0(εγ)∩D±

P(λ±(ε)τ±x (ε) > τ̄(ε)).

(6.11)

The first term tends to 0 for ε→ 0+ by Theorem 2.18. For the second term we estimate

sup
x∈D̃0(εγ)

P(λ±(ε)τ±x (ε) > τ̄(ε))

6 sup
x∈D̃0(εγ)

P(λ±(ε)τ±x (ε)τ̄(ε) and Xε(τ0
x(ε);x) /∈ D+)

+ sup
x∈D̃0(εγ)

P(λ±(ε)τ±x (ε) > τ̄(ε) and Xε(τ0
x(ε);x) ∈ D̃±(εγ)) =: I1 + I2. (6.12)

For I2, we use the strong Markov property and obtain

I2 6 sup
x∈D̃0(εγ)∩D+

P(λ±(ε)τ±y (ε) > τ̄(ε) and y = Xε(τ0
x(ε);x) ∈ D̃±(εγ))

6 sup
y∈D̃±(εγ)

P(λ±(ε)τ±y (ε) > τ̄(ε)) 6 sup
y∈D̃±(εγ)

P(λ±(ε)σ±y (ε) > τ̄(ε)). (6.13)
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The last term also tends to 0 by Theorem 5.3. We continue to estimate I1, and get

I1 6 sup
x∈D̃0(εγ)∩D+

P(λ±(ε)τ±x (ε) > τ̄(ε) and τ0
x(ε) > τ±x (ε))

6 sup
x∈D̃0(εγ)∩D+

P(λ±(ε)τ0
x(ε) > τ̄(ε))

6 sup
x∈D̃0(εγ)∩D+

P(λ±(ε)τ0
x(ε) > τ̄(ε) and τ0

x(ε) 6 1
εα(1−γ/2) )

+ sup
x∈D̃0(εγ)∩D+

P(λ±(ε)τ0
x(ε) > τ̄(ε) and τ0

x(ε) > 1
εα(1−γ/2) )

6 P(τ̄(ε) < λ±(ε)
εα(1−γ/2) ) + sup

x∈D̃0(εγ)
P

(
τ0
x(ε) > 1

εα(1−γ/2)

)
.

Since λ±(ε)
εα(1−γ̃) = εα`( 1

e )µ((D±0 )c)
εα(1−γ/2) → 0 for ε→ 0+ the first term in the preceding line tends

to zero. To see that this is also the case for the second term we have to use Lemma 6.3.
This completes the proof.
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6.3. Localization on Subcritical and Critical Time Scales

In Chapters 4 and 5 we have seen that exits and transitions between relevant areas in
the domains of attaction of the metastable solutions are of the order of ε−α. We shall
now consider our system on time scales smaller than this threshold. We shall thereby
confirm the reasonable conjecture that on these time scales the solution trajectories
converge in probability to the process spending all the time at the local minimum φ±

associated to the domain of attraction of the starting value x ∈ D±. Our result is
even stronger. We prove that after an initial relaxation time of the order of magni-
tude Trec + κγ| ln ε|, the solution trajectories of the stochastic Chafee-Infante equation
converge to the deterministic stationary solutions in φ± uniformly in probability.

Theorem 6.8 (Uniform convergence in probability on subcritical time scales). Assume
that Hypotheses (H.1) and (H.2) are satisfied and Trec, κ > 0 are given by Proposi-
tion 2.15. Fix 0 < δ < α. Then there is h0 > 0 such that for 0 < h 6 h0 and for any
T > 0

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
sup

t∈[Trec+κγ| ln ε|,T/εδ]
1{|Xε(t;x)− φ±|∞ > h}

]
= 0. (6.14)

Proof. Let h0 > 0 be the supremum of all radii h > 0 such that for all t > 0

u(t;Bh(φ±)) ⊂ Bh(φ±) ⊂ D±.

First note, that the existence of such h0 > 0 follows from Lemma B.3 or alternativle
from investigations of sub- and super-solutions for scalar reaction diffusion equations
by Matano [1979]. Secondly, since 0 /∈ D±, h0 6 |φ±|∞. With Γ = Γ(κ) > 0 according
to Theorem 5.3 let us consider the event

Ẽ(ε) := { sup
t∈[0,Trec+κγ| ln ε|

‖εξ∗(t)‖ < ε(Γ+2)γ} ∩ {T1 > Trec + κγ| ln ε|},

also defined in (5.12). We can now estimate by the supremum over all possible states
the process may take after Trec + κγ| ln ε| time units, and obtain for 0 < h 6 h0 and ε
small enough

E

[
sup

x∈D̃±(εγ)
sup

t∈[Trec+κγ| ln ε|),T/εδ]
1{|Xε(t;x)− φ±|∞ > h}

]

= E

[
sup

x∈D̃±(εγ)
1{ sup

t∈[0,T/εδ−Trec−κγ| ln ε|]
|Xε(t;Xε(0;x)) ◦ θTrec+κγ| ln ε| − φ

±|∞ > h}

·
(
1(Ẽ(ε)) + 1(Ẽc(ε))

)]
6 E

[
sup

y∈Bε2γ (φ±)
1{ sup

t∈[0,T/εδ−Trec−κγ| ln ε|
|Xε(t; y)− φ±|∞ > h}

]
+P

(
Ẽc(ε)

)
=: I1+I2
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While I2 = I2(ε)→ 0 for ε→ 0+ by Lemma 6.3, for I1, we get the estimate

I1 6 E

[
sup

y∈Bε2γ (φ±)
1{τ±y (ε) < T/εδ}

]

6 E

[
sup

y∈Bε2γ (φ±)
1{λ±(ε)τ±y (ε) < Tλ±(ε)/εδ}

]
,

which converges to 0 as ε → 0 + . For the second inequality we use (3.14) and the
definition of h0.

Corollary 6.9 (Convergence on subcritical time scales). Assume that Hypotheses (H.1)
and (H.2) are satisfied. Fix 0 < δ < α. Then for all h > 0 and T > 0

lim
ε→0+

E

[
sup

x∈D̃±(εγ)
1{|Xε(T/εδ;x)− φ±|∞ > h}

]
=0.

If we include Hypothesis (H.3) into our reasoning in the situation of Theorem 6.8 we
obtain a similar result. But time uniformy in the basic estimates is addressed differently.
As opposed to Theorem 6.8, where the estimation is achieved uniformly on time intervals
of the order [Trec + κγ| ln ε|, T/εδ] with δ ∈ (0, α), we are now able to treat intervals of
the shape [T/εα(1−γ/2) +Trec+κγ| ln ε|, T/λ0(ε)]. In addition, by (H.3) we only control
the exit times τ0

x(ε) of the separatrix in terms of ε but we do not know into which
direction this exit leads. We have no information whether Xε(τ0

x(ε);x) ∈ D̃+(εγ) or
Xε(τ0

x(ε);x) ∈ D̃−(εγ). This is natural, since the deterministic dynamics close to the
separatrix is too slow to predetermine to which domain Xε tends.

Theorem 6.10. Assume that Hypotheses (H.1), (H.2) and (H.3) are satisfied and
Trec, κ > 0 given by Proposition 2.15. Set for T > 0, γ due to (H.2), and ε > 0

s(ε) := T

εα(1−γ/2) + Trec + κγ| ln(ε)|.

Then there is h0 > 0 such that for all T > 0 and 0 < h ≤ h0

lim
ε→0+

sup
x∈H

E

 sup
t∈[s(ε), T

λ0(ε)
]
1{Xε(t;x) /∈ Bh(φ+) ∪Bh(φ−)}

 = 0.

Proof. The proof is divided in two steps.

1. Since with a slowly varying function ` we have λ0(ε) = εα `(1/ε) µ(Bc1(0)), there
exists ε0 > 0 such that for 0 < ε 6 ε0 we have T

λ0(ε) >
T

εα(1−γ/2) + Trec + κγ| ln ε| =: s(ε).
In this case the flow property of Xε ensures
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E

 sup
t∈[s(ε), T

λ0(ε)
]
1{Xε (t;x) /∈ Bh(φ+) ∪Bh(φ−)


= E

[
sup

t∈[s(ε), T
λ0(ε)

]
E

[
1{Xε (s(ε);x) ◦ θt−s(ε) /∈ Bh(φ+) ∪Bh(φ−)}

6 sup
y∈H

E
[
1{Xε (s(ε); y) /∈ Bh(φ+) ∪Bh(φ−)}

]
.

2. We treat the cases y ∈ D̃±(εγ) and y ∈ D̃0(εγ) separately. The first case is already
treated in Theorem 6.8 implying for δ = 1− γ/4

lim
ε→0+

E

[
sup

y∈D̃±(εγ)
sup

t∈[Trec+κγ| ln ε|,T/εδ]
1
{
Xε(t; y) /∈ Bh(φ+) ∪Bh(φ−)

}]
= 0. (6.15)

The second case y ∈ D̃0(εγ) can be dealt with by the estimate

sup
y∈D̃0(εγ)

E
[
1
{
Xε (s(ε); y) /∈ Bh(φ+) ∪Bh(φ−)

}]
6 sup
y∈D̃0(εγ)

E

[
1
{
Xε (s(ε); y) /∈ Bh(φ+) ∪Bh(φ−)

}
∩
{
τ0
y (ε) 6 T

εα(1−γ/2)

}]

+ sup
y∈D̃0(εγ)

P

(
τ0
y (ε) > T

εα(1−γ/2)

)
=: I1 + I2.

By Lemma 6.3, I2 = I2(ε) tends to 0 as ε → 0+. To estimate the term I1, we use the
strong Markov property of Xε to obtain

I1 = sup
y∈D̃0(εγ)

E

[
1
{
τ0
y (ε) 6 T

εα(1−γ/2)

}
· 1
{
Xε
(
s(ε)− τ0

y (ε); y
)
◦ θτ0

y (ε) /∈ Bh(φ+) ∪Bh(φ−)
}]

(6.16)
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and consequently

I1 6 sup
y∈D̃0(εγ)

E

[
1{τ0

y (ε) 6 T

εα(1−γ/2) }

· 1
{
Xε
(
s(ε)− τ0

y (ε); y
)
◦ θτ0

y (ε) /∈ Bh(φ+) ∪Bh(φ−)
}]

6 sup
y∈D̃0(εγ)

E

[
1{τ0

y (ε) 6 T

εα(1−γ/2) }

· sup
z∈D̃+(εγ)∪D̃−(εγ)

sup
t∈[Trec+κγ| ln ε|,s(ε)]

1
{
Xε (t; z) /∈ Bh(φ+) ∪Bh(φ−)

} ]
6
∑
k=±

E

[
sup

z∈D̃k(εγ)
1
{

sup
t∈[Trec+κγ| ln ε|,s(ε)]

|Xε(t; z)− φk|∞ > h

}]
.

Now choose δ = α(1− γ/4) as for inequality (6.15). Hence Theorem 6.8 ensures that I1
tends to zero as ε→ 0+.

Corollary 6.11. Assume that Hypotheses (H.1), (H.2) and (H.3) are satisfied. Fix
δ ∈ (α(1− γ/2), α). Then there is h0 > 0 such that for all T > 0 and 0 < h ≤ h0

lim
ε→0+

sup
x∈H

E

 sup
t∈[ T

εδ
, T
λ0(ε)

]
1{Xε(t;x) /∈ Bh(φ+) ∪Bh(φ−)}

 = 0.

The proof if obvious since there is ε0 > 0 such that for 0 < ε ≤ ε0 we have

T

εα(1−γ/2) + Trec + κγ| ln ε| < T

εδ
.
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6.4. Metastable Behavior
In this Section, equipped with our previously obtained knowledge of exit and transition
times in the limit of small noise amplitude ε → 0, we shall investigate the global
asymptotic behavior of our jump diffusion process in the time scale in which transitions
occur, i.e. in the scale given by λ0(ε) = ν( 1

εB
c
1(0)), ε > 0. It turns out that in this time

scale, the switching of the diffusion between neighborhoods of the stable solutions φ±
can be well described by a Markov chain jumping back and forth between two states with
a characteristic Q-matrix determined by the quantities µ((D±0 )c)/µ(Bc1(0)) as jumping
rates. We shall obtain convergence results for the finite-dimensional distributions and
the initial values x ∈ D̃±(εγ). This convergence result pertains even for all x ∈ H if the
Markov chain has random initial conditions, which contain the information if for initial
conditions x ∈ D̃0(εγ) the process Xε(·;x) exits this set to D̃+(εγ) or D̃−(εγ).
Recall the notation of Definition 2.23. For T > 0 we consider (finite) partitions of

[0, T ] as finite families of points in [0, T ], with 0 < t1 < . . . tn = T , and write |π| = n.
We shall denote by Π[0, T ] the collection of all finite partitions in [0, T ]. For convenience
we shall write for h > 0, π = (t1, . . . , tn) ∈ Π[0, T ] and v̄ = (v1, . . . , vn) ∈ {φ+, φ−}|π|
and ε > 0

Xε( π

λ0(ε) ; ·) := (Xε( t1
λ0(ε) ; ·), . . . , Xε(

t|π|

λ0(ε) ; ·))

and
Bh(v̄) = Bh(v1)× · · · ×Bh(vn).

For convenience we restate Theorem 2.24.

Theorem 6.12 (Metastability). Let the Chafee-Infante parameter π2 < λ 6= (kπ)2

for k ∈ N be given and denote by µ the limiting measure of ν according to (2.6).
Suppose Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then there exists h0 > 0 and
a continuous time Markov chain (Y (t))t>0 switching between the elements of {φ+, φ−}
with generating matrix

Q = 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c) ) .

which satisfy: For all T > 0, π = (t1, . . . , tn) ∈ Π[0, T ], v̄ ∈ (v1, . . . , v|π|) ∈ {φ+, φ−}|π|
and 0 < h 6 h0 we have

lim
ε→0+

sup
x∈D̃±(εγ)

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π, x) = v̄

)∣∣ = 0.

Proof. The proof is given in four Parts.

1. Construction of an auxiliary process Ŷ ε: We fix h0 > 0 such that for 0 < h 6 h0
Theorem 5.8 and Corollary 6.10 are true and define a two state auxiliary process Ŷ ε
by the sequence of stopping times and stable states marking the transitions between
Bh(φ+) and Bh(φ−). Note that τ0

x(ε) = 0 if x ∈ D̃±(εγ). For x ∈ D±, ε > 0 and k > 1
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let

σ0(ε;x) := 0,

m0(ε, x) :=φ±,

mk(ε;x) :=φ+1{Xε(σk(ε;x);x) ∈ Bh(φ+)}+ φ−1{Xε(σk(ε;x);x) ∈ Bh(φ−)},

σk(ε;x) := inf{t > σk−1(ε;x) | Xε(t;x) ∈ Bh(φ+) ∪Bh(φ−) \Bh(mk−1(ε;x))}.

Based on these quantities we define a Markovian finite state process on the critical time
scale T/λ0(ε) by setting

Ŷ ε(T ;x) :=
∞∑
k=0

mk(ε;x) 1{σk(ε;x) 6 T/λ0(ε) < σk+1(ε;x)}.

By construction, the jump times of Ŷ ε are λ0(ε)σk(ε;x) and since there are only two
stable states we obtain for any k > 2, x ∈ Bh(φ±) and ε > 0

P
(
mk+1(ε;x) = φ∓ | mk(ε;x) = φ±

)
= P

(
Ŷ ε(λ0(ε)σk+1(ε);x) = φ∓ | Ŷ ε(λ0(ε)σk(ε);x) = φ±

)
= 1. (6.17)

Hence mk(x, ε) = yk P-almost surely. This implies that Ŷ ε is a continuous time Markov
chain.

2. Construction of the limiting Markov chain: Define a continuous time Markov
process (Y (t))t>0 taking values in {φ+, φ−} by its generating matrix

Q =
(
−q+ q+
q− −q−

)
= 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c) ) .

Denote its jump times and states (σk, yk = Yσk), k ∈ N, where inter jump times are
conditionally independent and exponentially distributed with

L
(
σk+1 − σk|yk = φ±

)
= EXP (1/q±)

P
(
yk+1 = φ±|yk = φ∓

)
= 1.
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For x ∈ D±, a partition π ∈ Π[0, T ] and v̄ ∈ {φ+, φ−}|π| we may estimate

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− Pφ±

(
Y (π) = v̄

)∣∣
6
∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− Pφ±

(
Ŷ (π) = v̄

)∣∣
+
∣∣Pφ±(Ŷ (π) = v̄

)
− Pφ±

(
Y (π) = v̄

)∣∣. (6.18)

3. Convergence of the rescaled process to the auxiliary process: Let us estimate
the first term on the right-hand side of (6.18). For this purpose we cut the events of
both summands into comparable pieces. For ε > 0, π ∈ Π[0, T ], v̄ ∈ {φ+, φ−}|π| and
x ∈ D± we have

P
(
Xε(π/λ0(ε);x) ∈ Bh(v̄)

)
− P

(
Ŷ ε(π;x) = v̄

)
= P

(
Xε(π/λ0(ε);x) ∈ Bh(v̄) and Ŷ ε(π;x) = v̄

)
+ P

(
Xε(π/λ0(ε);x) ∈ Bh(v̄) and Ŷ ε(π;x) ∈ {φ+, φ−}|π| \ {v}

)
− P

(
Ŷ ε(π;x) = v̄ and Xε(π/λ0(ε);x) ∈ Bh(v̄)

)
− P

(
Ŷ ε(π;x) = v̄ and Xε(π/λ0(ε);x) ∈

⋃
w∈{φ+,φ−}|π|\{v}

Bh(w)
)

− P
(
Ŷ ε(T ;x) = φ± and Xε(π/λ0(ε);x) /∈

⋃
w∈{φ+,φ−}|π|

Bh(w)
)
.

Note that the first and the third term of the right-hand side cancel and the second and
and the fourth term vanish by definition of Ŷ ε. Therefore we are left with the last term,
which we may estimate for δ > α(1− γ/2) by

|P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)− P(Ŷ ε(t;x) = v̄)|

6 P
(
Xε(π/λ0(ε);x) /∈

⋃
w∈{φ+,φ−}|π|

Bh(w)
)

6 sup
y∈H

E

 sup
t∈[ T

εδ
, T
λ0(ε)

]
Xε(t; y) /∈ Bh(φ+) ∪Bh(φ−)

 .
The expression in the last line of the preceding estimate does not depend on v ∈
{φ+, φ−}|π| or x ∈ D+, such that we can take the supremum on the left-hand side.
Hence we have obtained

sup
x∈D±

∣∣∣P (Xε(π/λ0(ε);x) ∈ Bh(v̄)
)
− P

(
Ŷ ε(π;x) = v̄

)∣∣∣ ≤ p1(ε).
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The result limε→0+ p1(ε) = 0 is implied by Theorem 6.10.

4. Convergence of the Ŷ ε to the Markov chain: Let us now treat the second term
on the right-hand side of (6.18). Its convergence to zero is a consequence of the weak
convergence of Ŷ ε to Y , and therefore implied by the joint weak convergence of jump
times and jump increments (see for example Xia [1992])

L
((

(λ0(ε)σk(ε;x),mk(ε;x)
)
k>0)

)
→ L

((
(σk, yk)

)
k>0

)
, ε→ 0 + .

This in turn follows from the joint weak convergence of the inter jump times and jump
increments

L
((

(λ0(ε)(σk+1(ε;x)− σk(ε;x)),mk(ε;x)
)
k>0)

)
→ L

((
(σk+1 − σk, yk)

)
k>0

)
.

(6.19)
Since Ŷ ε is a Markov chain, to verify (6.19) it is sufficient to show individual convergence
for the infinitely many components. To prove the latter we shall treat the case of k > 2
with x ∈ Bh(φ±) and k = 1 with x ∈ D̃±(εγ) and x ∈ D̃0(εγ) separately. Note that for
k ≥ 2 we only have to treat initial values x ∈ Bh(φ±), since Xε(σ1(ε;x);x) ∈ Bh(φ±).
Together with the fact that the elements of

(
σk+1(ε;x)− σk(ε;x)

)
k>1 are independent,

condition (6.19) boils down to the convergence

L(λ0(ε)(σk+1(ε;x)− σk(ε;x)) | mk(ε;x) = φ±)
d−→ EXP (1/q±) = EXP ( µ(Bc1(0))

µ((D±0 )c)
) as ε→ 0 + . (6.20)

To prove this, note that the strong Markov property of Xε implies for the law of incre-
ments of transition times for x ∈ Bh(φ±), ε > 0

L
(
λ0(ε)

(
σk+1(ε;x)− σk(ε;x)

)
| mk(ε;x) = φ±

)
= L

(
λ0(ε)

(
σk+1(ε;x)− σk(ε;x)

)
| Xε(σk(ε;x);x) ∈ Bh(φ±)

)
= L

(
λ0(ε)σ1(ε;Xε(σk(ε;x);x))

)
= L

(
λ0(ε)σ±(ε;Xε(σk(ε;x);x))

)
. (6.21)

In addition, the regular variation with index −α of λ± and λ0 implies

lim
ε→0+

λ0(ε)
λ±(ε) = µ(Bc1(0)

µ ((D±)c) . (6.22)

Let now (τ̄(ε))ε>0 be the family of exponentially distributed random variables with
parameter 1 according to Theorem 4.9. It therefore suffices to prove that for h > 0

E

[
1{|λ0(ε)σ±(ε;x)− µ(Bc1(0)

µ ((D±)c) τ̄(ε)| > h}
]
→ 0, as ε→ 0 + .
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In fact, we may write

E

[
1{|λ0(ε)σ±(ε;x)− µ(Bc1(0)

µ ((D±)c) τ̄(ε)| > h}
]

6 E

[
sup

x∈D̃±(εγ)
1{| λ

0(ε)
λ±(ε)λ

±(ε)σ±(ε;x)− λ0(ε)
λ±(ε) τ̄(ε)| > h/2}

]

+ P

( ∣∣ λ0(ε)
λ±(ε) −

µ(Bc1(0)
µ
(
(D±0 )c

) ∣∣︸ ︷︷ ︸
→0, ε→0+

τ̄(ε) > h/2
)

(6.23)

By (6.22), the second term of the last estimate tends to zero. For the first one we use
Theorem 2.18 to conclude.

We restate Theorem 2.25.

Theorem 6.13 (Uniform Metastability). Let the Chafee-Infante parameter π2 < λ 6=
(kπ)2 for k ∈ N be given and denote by µ the limiting measure of ν according to (2.6).
Suppose that Hypotheses (H.1), (H.2) and (H.3) are satisfied. Then there exists h0 > 0
and a continuous time Markov chain (Y (t;x))t>0 starting in φ± if x ∈ D± and switching
between the elements of {φ+, φ−} with generating matrix

Q = 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c) )

and random initial condition

Φε(x) = φ±,

{
if x ∈ D±

if x ∈ S and Xε(τ0
x(ε);x) ∈ D±,

which satisfy the following. For all T > 0, π ∈ Π[0, T ], v̄ ∈ {φ+, φ−}|π| and 0 < h 6 h0
we have

lim
ε→0+

sup
x∈H

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π,Φε(x)) = v̄

)∣∣ = 0.

Proof. We proceed in similar steps as in the previous proof. For fixed π ∈ Π[0, T ] we
write 1̄ := (1, . . . , 1) ∈ {1}|π|.

1. Construction of an auxiliary process Ŷ ε: Fix h0 and 0 < h 6 h0 as in the proof of
Theorem 6.12. We define again

Ŷ ε(T ;x) :=
∞∑
k=0

mk(ε;x) 1{σk(ε;x) 6 T/λ0(ε) < σk+1(ε;x)},
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with slighly modified transition times and random states

σ0(ε;x) := 0,
m0(ε, x) := Φε(x)
σ1(ε, x) := τ0

x(ε) + σ±(ε;Xε(τ0
x(ε);x)),

σk(ε;x) := inf{t > σk−1(ε;x) | Xε(t;x) ∈ Bh(φ+) ∪Bh(φ−) \Bh(mk−1(ε;x))}

mk(ε;x) :=φ+1{Xε(σk(ε;x);x) ∈ Bh(φ+)}+ φ−1{Xε(σk(ε;x);x) ∈ Bh(φ−)}.

2. Construction of the limiting Markov chain: The continuous time Markov pro-
cess (Y (t;x))t>0 with the states {φ+, φ−} is defined identically by its infinitesimally
generating matrix

Q =
(
−q+ q+
q− −q−

)
= 1
µ(Bc1(0))

(
−µ
((
D+

0
)c)

µ
((
D+

0
)c)

µ
((
D−0
)c) −µ

((
D−0
)c)

.

)
.

Denote its jump times and states (σk, yk = Yσk), k ∈ N, where inter jump times are
conditionally independent and exponentially distributed with

L
(
σk+1 − σk|yk = φ±

)
= EXP (1/q±)

P
(
yk+1 = φ±|yk = φ∓

)
= 1.

For ε > 0, x ∈ D±, a partition π ∈ Π[0, T ] and v̄ ∈ {φ+, φ−}|π| we may estimate

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π; Φε(x)) = v̄

)∣∣
6 sup
x∈D̃±(εγ)

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Y (π; Φε(x)) = v̄

)∣∣
+ sup
x∈D̃0(εγ)

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Ŷ (π;Xε(τ0

x(ε);x)) = v̄
)∣∣

+ sup
x∈D̃0(εγ)

∣∣P(Ŷ (π;Xε(τ±x (ε);x)) = v̄
)
− P

(
Y (π; Φε(x)) = v̄

)∣∣ = I1 + I2 + I3 (6.24)

The convergence of I1 to 0 as ε→ 0+ is covered by Theorem 6.12.

3. Convergence of the rescaled process to the auxiliary process: To show the
convergence of I2 for π = (t1, . . . , t|π|) we first choose ε > 0 small enough to have
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t1
λ0(ε) >

T
εα(1−γ/2) and then use the strong Markov property at τ0

x(ε) to obtain

I2 6 sup
x∈D̃0(εγ)

∣∣P(Xε( π

λ0(ε) ;x) ∈ Bh(v̄)
)
− P

(
Ŷ (π;Xε(τ0

x(ε);x)) = v̄
)∣∣

6 sup
x∈D̃0(εγ)

∣∣P(Xε( π

λ0(ε) − τ
0
x(ε)1̄; Xε(τ0

x(ε)1̄;x)) ∈ Bh(v̄), τ0
x(ε) 6 T

εα(1−γ/2

)
− P

(
Ŷ (π;Xε(τ0

x(ε);x)) = v̄
)∣∣+ sup

x∈D̃0(εγ)
P(τ0

x(ε) > T

εα(1−γ/2) )

6 sup
y∈D̃+(εγ)∪D̃−(εγ)

∣∣P(Xε( π

λ0(ε) −
T

εα(1−γ/2) 1̄; y) ∈ Bh(v̄)
)
− P

(
Ŷ (π; y) = v̄

)∣∣
+ sup
x∈D̃0(εγ)

P(τ0
x(ε) > T

εα(1−γ/2) ) = I4 + I5. (6.25)

Now I5 → 0 as ε→ 0+ due to Lemma 6.3 under Hypothesis (H.3). Since

|Xε( π

λ0(ε) −
T

εα(1−γ/2) 1̄; y)−Xε( π

λ0(ε) ; y)| P−→ 0 as ε→ 0+,

hence the same limit holds in law.

4. Convergence of the auxiliary process to the Markov chain: We argue in the
same way as in Part 4 in the proof of Theorem 6.12 remarking that the convergence of
I3 to 0 as ε→ 0+ in (6.24)

L
((

(λ0(ε)(σk+1(ε;x)− σk(ε;x)),mk(ε;x)
)
k>0)

)
→ L

((
(σk+1 − σk, yk)

)
k>0

)
.

(6.26)
Let now τ̄ be exponentially distributed with parameter 1 according to Theorem 2.18.
The case k > 2 is already proved by (6.23). For k = 1 and x ∈ H this is a consequence
of

E

[
1{|λ0(ε)(σ±(ε;x) + τ0

x(ε))− µ(Bc1(0)
µ ((D±)c) τ̄ | > h}

]
6 sup
y∈H

E

[
1{| λ

0(ε)
λ±(ε)λ

±(ε)(σ±(ε; y) + τ0
y (ε))− λ0(ε)

λ±(ε) τ̄ | > h/2, τ0
y (ε) ≤ T

εα(1−γ/2) }
]

+ sup
y∈H

P(τ0
y (ε) > T

εα(1−γ/2) ) + P

( ∣∣ λ0(ε)
λ±(ε) −

µ(Bc1(0)
µ
(
(D±0 )c

) ∣∣︸ ︷︷ ︸
→0, ε→0+

τ̄ > h/2
)

(6.27)

by (6.22), the third term of the last estimate tends to zero. By Lemma 6.3 the second
summand also tends to zero. For the first one we use Theorem 5.8 to conclude.

116



Appendix

117





A. The Stochastic Chafee-Infante
Equation

A.1. Lévy Processes in Hilbert Space
In this Section we provide a brief introduction to Lévy processes in a separable Hilbert
space (H, ‖ · ‖, 〈·, ·〉) and present crucial properties, which we exploit frequently in the
main part, in particular the Lévy-Khinchine formula and the Lévy-Itô-decomposition.
We finish this Section with a corollary of the latter stating that symmetric pure jump
Lévy processes can be decomposed in the sum of a martingale, which has all moments,
and a compound Poisson process.

Definition A.1. Let (Ω,F ;P) be a probability space and H a separable Hilbert space.
A stochastic process (L(t))t>0 is a Lévy process in H, if it satisfies

1. L(0) = 0,

2. for any n ∈ N and 0 6 t1 < t2 < t3 < · · · < tn the vector of increments

(L(tn)− L(tn−1), . . . , L(t1)− L(t0))

is a family of independent random vectors in H,

3. for 0 6 s < t

L(L(t)− L(s)) = L(L(t− s)),

where L(X) denotes the law of a random vector X in H, and

4. it is continuous in probability, i.e. for any t > 0 and η > 0

lim
s→t

P (‖L(t)− L(s)‖ > η) = 0.

Remark A.2. In general neither the marginal nor the incremental distributions of a
Lévy process is given explicitily. However at the level of marginals Lévy processes can be
characterized by their characteristic functions by the so-called Lévy-Khinchine formula.
For a proof see Peszat and Zabczyk [2007], Theorem 4.27.

Theorem A.3 (Lévy-Khinchine decomposition). Let (L(t))t>0 be a Lévy process in a
separable Hilbert space H. Then there exist

• a vector a ∈ H,

119



A. The Stochastic Chafee-Infante Equation

• a nonnegative operator of trace class Q ∈ L+
1 (H), i.e. for an orthonormal basis

(ei)i∈N of H
∞∑
i=1
〈Qei, ei〉 <∞,

• and a σ-finite measure ν : B(H) → [0,∞], where B(H) is the Borel σ-algebra in
H, with ν({0}) = 0 satisfying∫

H

(
1 ∧ ‖y‖2

)
ν(dy) <∞,

such that
E

[
ei〈h,L(t)〉

]
= exp (t ψ(h)) , h ∈ H, t ≥ 0, (A.1)

and

ψ(h) := i〈h, a〉 − 1
2 〈Qh, h〉+

∫
H

(
ei〈h,y〉 − 1− i〈h, y〉1{0<‖y‖61}

)
ν(dy).

The three components (Q, ν, a) are called the characteristic triple of (L(t))t>0. The
vector a is called the drift vector of (L(t))t>0, Q is called the covariance operator for
the Wiener part and ν is called the Lévy measure or jump measure of the pure jump
part.

Remark A.4. Due to the special form of equation (A.1) one can verify easily that
for each characteristic triple (Q, ν, a) of this form there is a corresponding stochastic
process (L(t))t>0 in H of Lévy type. However the components in the formula (A.1) are
not unique in general. While for given Lévy process (L(t))t>0 the operator Q is unique,
only the vector (ν, a) is unique.

Definition A.5. 1. A Lévy process with characteristic triple (0, ν, 0) is called pure
jump Lévy process.

2. A compound Poisson process (Y (t))t>0 in H is a stochastic process (L(t))t>0 in H
of the following shape. There is a Poisson process (π(t))t>0 with intensity λ > 0
and an independent sequence of identically distributed random variables (Xk)k∈N
with probability measure µ such that P-almost surely for all t > 0

Y (t) =
π(t)∑
k=0

Xk.

3. For a compound Poisson process (Y (t))t>0 let
∫
H
‖y‖µ(dy) = E‖X1‖ <∞. Then

a compensated compound Poisson process (Ȳ (t))t>0 in H is a stochastic process
of the shape

Ȳ (t) = Y (t)− tλ
∫
H

yµ(dy), t > 0.
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A.1. Lévy Processes in Hilbert Space

In particular it is a martingale with respect to its natural filtration (Ft)t>0,
Ft = σ({Ȳ (s), 0 6 s 6 t}), t > 0.

Example A.6. A pure jump Lévy process (L(t))t>0 with jump measure ν(H) <∞ is a
compound Poisson process with intensity λ = ν(H) and the jump measure µ(B) = ν(B)

λ

for B ∈ B(H), where Xk = L(tk)− L(tk−) and tk = inf{t > 0 | π(t) = k} for k ∈ N.

Proposition A.7 (De Acosta). A Lévy process (L(t))t>0 in a separable Hilbert space
H, with Lévy measure ν of bounded support in H has all finite moments. In other words,
if there is r > 0 such that ν(Bcr(0)) = 0, then

E
[
‖L(t)‖k

]
<∞ for all k > 1, t > 0.

For a proof see Peszat and Zabczyk [2007], Theorem 4.4, p. 39. On a path-wise level
there exists a decomposition that corresponds to the three parts corresponding to the
characteristic triple of the Lévy-Khinchine decomposition: deterministic drift, Wiener
part and pure jump part.
In the following we will see that pure jump Lévy processes can be interpreted as

the sum of a compound Poisson process and the limit of a sequence of partial sums
of independent compensated compound Poisson processes, whose intensity tends to
infinity.

Theorem A.8 (Lévy-Itô decomposition). Let (L(t))t>0 be a Lévy process in a separable
Hilbert space (H, ‖ · ‖, 〈·, ·〉) and (ν,Q, a) the corresponding characteristic triple from
Theorem (A.3). Then there exist

1. a Q-Wiener process (W (t))t>0 in H, that is W (t) is a centered Lévy process in
H, i.e. E [W (t)] = 0 for all t > 0 satisfying E

[
‖W (t)‖2

]
<∞ and

E [〈W (t), x〉〈W (s), y〉] = (t ∧ s)〈Qx, y〉 ∀ x, y ∈ H,

2. for any sequence of positive radii rn ↘ 0 and On := {y ∈ H | rn−1 < ‖y‖ 6 rn}
a sequence of independent compensated compound Poisson processes (Ln(t))t>0 in
H with jump measures νn(B) = ν(B ∩On) for B ∈ B(H)

which satisfy P-almost surely for all t > 0

L(t) =at+W (t) +
∞∑
n=1

L̄n + L0(t) (A.2)

L̄n(t) =

Ln(t)− t
∫
H

yνn(dy)

 , n > 1. (A.3)

Furthermore (W (t))t>0 and {(Ln(t))t>0 | n ∈ N} are independent. The convergence
on the right-hand side in equation (A.2) holds P-almost surely on bounded intervals of
[0,∞).

121



A. The Stochastic Chafee-Infante Equation

For a proof see Peszat and Zabczyk [2007], Chapter 4.5. In this work we will focus
on a certain class of pure jump processes.

Definition A.9. 1. A Lévy process (L(t))t>0 in H is called symmetric if its Lévy
measure is symmetric in the sense that

ν(−A) = ν(A) for A ∈ B(H).

2. Fix α ∈ (0, 2). An α-stable process (L(t))t>0 in H is a pure jump Lévy process in
H where ν has the specific shape

ν(B) =
∫
B

ν(dy) =
∫
B

dr
r1+ασ(ds),

where r = ‖y‖ and s = y/‖y‖ and σ : B(∂B1(0)) → [0,∞) is an arbitrary finite
Radon measure on the unit sphere of H.

See for example Araujo and Giné [1979] for local limit theorems to α-stable laws and
their domains of attraction in Banach spaces.

Proposition A.10. Let (M(t))t>0 be a (Ft)t>0-martinale in a separable Hilbert space
H on a filtered probability space (Ω,F , (Ft)t>0,P). Then (M(t))t>0 has a càdlàg version
which is also a Ft-martingale.

Remark A.11. A symmetric pure jump Lévy process (L(t))t>0 in H with finite expec-
tation E [‖L(t)‖] <∞, for all t > 0 is a martingale with respect to the natural filtration
(Ft)t>0,

Ft = σ({L(s) | 0 6 s 6 t}), t > 0.

Moreover it is also martingale with respect to the right-continuous completion (F̄t)t>0,
with

F̄t :=
⋂
s>t

F̄0
s , t > 0,

where (F̄0
t )t>0 is the completion of (Ft)t>0 with respect to the null sets of F , i.e. all

subsets of measurable sets with probability zero.

With the help of Proposition A.7 and Theorem A.8 we obtain the following decom-
position, which we will use frequently throughout the work.

Theorem A.12 (Properties of symmetric pure jump Lévy processes). Let (L(t))t>0 be
a symmetric pure jump Lévy process in a separable Hilbert space H with Lévy measure ν.

1. Then there exist
a) a càdlàg F̄t-martingale (ξ(t))t>0 with Lévy measure νξ(B) := ν(B ∩ B1(0))

for B ∈ B(H) and 0 /∈ B̄, which has all moments of finite order
b) and a compound Poisson process (η(t))t>0 with intensity λ = ν(Bc1(0)) and

increment distribution µ(B) = ν(B∩Bc1(0))
λ for B ∈ B(H)
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such that P-almost surely for all t > 0

L(t) = ξ(t) + η(t).

2. There is a positive trace-class operator Qξ ∈ L1
+(H) such that

〈Qξu, v〉 =
∫
H

〈u, y〉〈v, y〉 νξ(dy), u, v ∈ H. (A.4)

A.2. Stochastic Integration in Hilbert Space
In this Section we will establish stochastic integration in a separable Hilbert space H
with respect to a Lévy process.
We fix the following convention. Let (Ω,F ,P, (Ft)t>0) be a filtered probability space,

(L(t))t>0 a symmetric pure jump process in H and L(t) = ξ(t) + η(t), t > 0 by in
Theorem A.12. We will first introduce the stochastic integral with respect to the mar-
tinale (ξ(t))t>0.

Definition A.13. For operators Yi ∈ L(H) := L(H;H), events Ai ∈ Fti , and a time
discretization 0 = t0 < t1 < · · · < tn we call

Y (t, ω) :=
n−1∑
i=0

1Ai(ω) 1(ti,ti+1](t) Yi, for ω ∈ Ω and t > 0 (A.5)

a simple process in L(H). Denote S(H) the space of all simple processes in L(H). Then
we define the stochastic integral of a simple process (Y (t))t>0 in S(H) by

t∫
0

Y (s, ω) dξ(s, ω) :=
n−1∑
i=0

1Ai(ω) Yi (ξ(ti+1 ∧ t, ω)− ξ(ti ∧ t, ω)) for t > 0, ω ∈ Ω.

(A.6)

Lemma A.14 (Itô isometry for simple processes). For Y = (Y (t))t>0 ∈ S(H) let

Iξt (Y ) :=
t∫

0

Y (s) dξ(s), t > 0.

Then

E

[
‖Iξt (Y )‖2

]
= E

 t∫
0

|Y (s)Q1/2
ξ |

2
L2(H) ds

 for t > 0,

where Qξ ∈ L+
1 (H) is the covariance operator of ξ given in Theorem A.12.2. The

operator Q1/2
ξ ∈ L2(H) is then the unique Hilbert-Schmidt operator such that

Q
1/2
ξ Q

1/2
ξ = Qξ.
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A. The Stochastic Chafee-Infante Equation

Proof. First of all for an orthonormal basis (el)l∈N of H

E

‖ t∫
0

Y (s) dξ(s)‖2
 = E

∥∥∥∥∥
n−1∑
i=0

1Ai Yi (ξ(ti+1 ∧ t)− ξ(ti ∧ t))

∥∥∥∥∥
2

= E

 n−1∑
i,k=0

1Ai1Ak 〈Yi (ξ(ti+1 ∧ t)− ξ(ti ∧ t)) , Yk (ξ(tk+1 ∧ t)− ξ(tk ∧ t))〉


= E

 n−1∑
i,k=0

∞∑
l=1

1Ai1Ak Jikl

 ,
where

Jikl := E [〈Yi (ξ(ti+1 ∧ t)− ξ(ti ∧ t)) , el〉〈Yk (ξ(tk+1 ∧ t)− ξ(tk ∧ t)) , el〉 | Ftk∨ti ]

= E [〈ξ(ti+1 ∧ t)− ξ(ti ∧ t), Y ∗i el〉〈ξ(tk+1 ∧ t)− ξ(tk ∧ t), Y ∗k el〉 | Ftk∨ti ]

=
{

0, i 6= k

((ti+1 ∧ t)− (ti ∧ t)) 〈QξY ∗i el, Y ∗i el〉, i = k
.

Hence

E

‖ t∫
0

Y (s) dξ(s)‖2
 =

n−1∑
i=0

P(Ai) ((ti+1 ∧ t)− (ti ∧ t))
∞∑
l=1
〈QξY ∗i el, Y ∗i el〉

=
n−1∑
i=0

P(Ai) ((ti+1 ∧ t)− (ti ∧ t))
∞∑
l=1
‖Q1/2

ξ Y ∗i el‖2H

=
n−1∑
i=0

P(Ai) ((ti+1 ∧ t)− (ti ∧ t)) |Q1/2
ξ Y ∗i |2L2(H)

=
n−1∑
i=0

P(Ai) ((ti+1 ∧ t)− (ti ∧ t)) |Q1/2
ξ Yi|2L2(H) = E

 t∫
0

|Q1/2
ξ Y (s)|2L2(H) ds

 .

Construction of the stochastic integral: Fix T > 0. It can be easily verified that on
the space of simple integrands S(H) the mapping

‖Y ‖2T := E

 T∫
0

|Q1/2
ξ Y (s)|2L2(H) ds

 , Y ∈ S(H).
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is a seminorm on S(H). We define on S(H) the equivalence relation

Y ∼ Z, Y, Z ∈ S(H) :⇔ ‖Y − Z‖T = 0

and consider S̃(H) := S(H)/ ∼. We now define

L2
ξ,T (H) := S̃(H)

‖·‖T
.

We can extend the stochastic integral operator in (A.6) from simple integrands to
integrands in L2

ξ,T (H).

Theorem A.15. Under the previous notation for any T > 0 and t ∈ [0, T ] there is a
unique extension of Iξt also denoted as Iξt to a continuous operator

Iξt : (L2,T (H); ‖ · ‖T )→ L2(Ω,F ,P;H).

For a proof see Peszat and Zabczyk [2007], Theorem 8.7.

Definition A.16. This operator is called the stochastic integral with respect to ξ and
for Y ∈ L2

ξ,T (H) we will denote by

t∫
0

Y (s)dξ(s) := Iξt (Y ), t > 0.

Example A.17. Let A := ∆ = ∂2

∂ζ2 the second derivative in H = H1
0 (0, 1) and denote

by S := (S(t))t>0 the C0-semigroup with generator A on H. Then S
∣∣
t∈[0,T ] ∈ L2,T (H)

since for the orthonormal basis (en)n∈N of eigenvectors in H with respect to A with
en(ζ) = sin(πnζ) for ζ ∈ [0, 1] and n ∈ N

T∫
0

‖Q1/2
ξ S(s)‖2L2(H) ds =

T∫
0

∞∑
n=1
‖Q1/2

ξ e−(πn)2sen‖2H ds

=
∞∑
n=1

T∫
0

e−2(πn)2s ds ‖Q1/2
ξ en‖2H 6

∞∑
n=1

1
2

(
‖Q1/2

ξ en‖H
πn

)2 (
1− e−2(πn)2T

)
6

1
π2 |Q

1/2
ξ |

2
L2(H) <∞.

A.3. The Stochastic Convolution with Lévy Noise

In this Section we gather the crucial properties of the stochastic convolution, which
plays a crucial role for the notion of mild solution of the Chafee-Infante equation in the
sequel and a key role in Chapter 3 of the main part of this work. Due to the previous
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A. The Stochastic Chafee-Infante Equation

Section for each T > 0 the stochastic integral

T∫
0

S(T − s) dξ(s)

is well-defined. In the sequel we will establish that the process t 7→
∫ t

0 S(t − s) dξ(s)
has a càdlàg version. We establish the notion of a variational generator of a semigroup,
and obtain in the sequel that they generate semigroups of generalized contractions, for
which a càdlàg version exists.

Definition A.18. For a separable Hilbert space H a linear, unbounded, closed operator
A : D(A)→ H is called variational if

1. there exists a Hilbert space V ↪→ H densely imbedded and a continuous bilinear
form a : V × V → R and constants α > 0 and c0 > 0 such that

−a(v, v) > α|v|2V − c0‖v‖2 for all v ∈ V, (A.7)

2. D(A) = {v ∈ V | a(v, ·) is continuous with respect to the topology in H}

3. a(u, v) = 〈Au, v〉 for all u ∈ D(A) and v ∈ V .

For the definition of an analytic semigroup we refer to DaPrato and Zabczyk [1992],
Appendix A.4, from which we cite the following proposition.

Proposition A.19. Let A be a variational generator in H such that inequality (A.7)
is satisfied. Then A is the generator of an analytic semigroup (S(t))t>0 such that

|S(t)|L(H) 6 ec0t.

If A is symmetric, then A is self-adjoint.

We see in the following statement that the existence of a variational generator is
sufficient for the existence of a càdlàg version.

Proposition A.20. Let ξ be a square integrable martingale in the separable Hilbert
space H and (S(t))t>0 a semigroup of generalized contractions of H, that means there
is an exponent c0 ∈ R such that

‖S(t)‖L(H) 6 ec0t, for t > 0.

Then the process
t∫

0

S(t− s) dξ(s)

has a càdlàg version in H.
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For the proof see Peszat and Zabczyk [2007], p. 158. It is based on the so-called
Kotelenez inequality for convolutions of so-called evolution operators. We can finally
verify that ∆ is variational in H.

Example A.21. We consider H = H1
0 (0, 1) with ‖h‖2 =

∫ 1
0 (∇h)2(ζ) dζ and

V = H2
0 (0, 1) = {v ∈ H1

0 (0, 1) | ∇v ∈ H1
0 (0, 1)}

with norm |v|2V =
∫ 1

0 (∆v)2(ζ) dζ and A = ∆. Then A is a variational generator in H.

1. For

a(u, v) := −
1∫

0

(∆v)(ζ)(∆u)(ζ) dζ, u, v ∈ V

we obtain by Poincaré’s inequality for v ∈ H2
0 (0, 1)

−a(v, v) = ‖∇v‖2 > ‖v‖2

such that in this case inequality (A.7) is fulfilled with α = 1 and c0 = 0.

2. The domain D(A) can be indentified with

D(A) = H3(0, 1) ∩H2
0 (0, 1).

Since for u ∈ H3(0, 1) ∩H2
0 (0, 1) and v ∈ V

a(u, v) = −
1∫

0

(∆u)(ζ)(∆v)(ζ) dζ =
1∫

0

(∇∆u)(ζ)(∇v)(ζ) dζ

6

 1∫
0

(∇∆u)2(ζ) dζ

 1∫
0

(∇v)2(ζ) dζ = |u|2H3∩H2
0
‖v‖2.

3. The operator A is defined via the bilinear form by integration by parts by

a(u, v) =
1∫

0

(∇∆u)(ζ)(∇v)(ζ) dζ, u ∈ D(A), v ∈ H.

Hence ∆ is variational in H.

Example A.22. In particular, for ξε for ε > 0 and ρ ∈ (0, 1) defined in (2.2) in (3.2)
the process

ξ∗(t) =
t∫

0

S(t− s)dξε(s), ε > 0, t > 0 (A.8)

has a càdlàg version.
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A.4. The Stochastic Chafee-Infante Equation with Lévy
Noise

In this Section we to show existence and uniqueness for the solution of the stochas-
tic Chafee-Infante equation. For this purpose we need the following properties of the
f(x) = λ(x3 − x). For clarity in this Section we will denote by | · | the modulus in R, by
| · |L2 the norm in L2(0, 1) and as before by ‖ · ‖ the norm in H = H1

0 (0, 1).

Lemma A.23 (The polynomial nonlinearity is locally Lipschitz in H). For each R > 0
there are K1,R > 0 and KR > 0 such that

|f(t)− f(s)| 6 K1,R|t− s|, t, s ∈ R, with |t|, |s| 6 R, (A.9)

‖f(u)− f(v)‖ 6 KR‖u− v‖, u, v ∈ H, with ‖u‖, ‖v‖ 6 R. (A.10)

Proof. The proof is found in Sell and You [2002], Chapter 5.1.1, we provide it for
completeness. The proof of (A.9) is obvious. We show (A.10).

Claim 1: f is locally Lipschitz from L2(0, 1) to H. We start with u, v ∈ BR(0) ⊂
H = H1

0 (0, 1) ↪→ L∞(0, 1). Due to |u|∞ 6 |∇u| for all u ∈ H, we have |u|∞, |v|∞ 6 R.
In particular for each ζ ∈ (0, 1)

|f ′(u(ζ) + θ(v(ζ)− u(ζ)))| 6 sup
y∈2R

|f ′(y)|∞ =: K1,R <∞ (A.11)

|f ′′(u(ζ) + θ(v(ζ)− u(ζ)))| 6 sup
y∈2R

|f ′′(y)|∞ =: K2,R <∞.

Hence due to the mean value theorem

|f(u)− f(v)|2L2 =
1∫

0

(f(u(ζ))− f(v(ζ)))2 dζ

=
1∫

0

∣∣( 1∫
0

f ′(u(ζ) + θ(v(ζ)− u(ζ))) dθ
)
(u(ζ)− v(ζ))

∣∣2 dζ

6 K2
1,R|u− v|2L2 6 K2

1,R‖u− v‖2.

128



A.4. The Stochastic Chafee-Infante Equation with Lévy Noise

Claim 2: f is locally Lipschitz from H to H For u, v ∈ BR(0) ⊂ H we may calculate

‖f(u)− f(v)‖2 = |f ′(u)∇u− f ′(v)∇v|2L2

6 2|f ′(u)∇u− f ′(v)∇u|2L2 + 2|f ′(v)∇u− f ′(v)∇v|2L2

6 2|f ′(u)− f ′(v)|2‖u‖2 + 2|f ′(v)|2‖u− v‖2

6 2K2
2,R|u− v|2 + 2K2

1,R‖u− v‖2 6 2
(
K2

1 +K2
2
)︸ ︷︷ ︸

=:K2
R

‖u− v‖2.

Proposition A.24. Consider a càdlàg function ψ : [0,∞) → H, a C0-semigroup
(S(t))t>0 and a Lipschitz continuous map g : H → H. Then for all x ∈ H, the
integral equation

v(t) = S(t)x+
t∫

0

S(t− s)g(v(s) + ψ(s−)) ds

has a unique continuous solution t→ v(t) in H.

This can be proved by standard contraction principles taking into account that the
càdlàg function ψ ∈ L1

loc(0,∞;H) and using the Lipschitz continuity of g.

Definition A.25. Let X = (X(t))t>0 be a an adapted càdlàg process in H. For R > 0
and x ∈ BR(0) ⊂ H and we define the first exit time

τR(x;X) := inf{t > 0 | ‖X(t)‖ > 2R}.

Let (X(t))t>0 be an adapted càdlàg process in L∞(0, 1). For R > 0 and x ∈ BR(0) in
L∞(0, 1) we define the first exit time

τ̃R(x;X) := inf{t > 0 | |X(t)|∞ > 2R}.

Remark A.26. Both hitting times τR and τ̃R are stopping times (see for example
Kallenberg [1997], Lemma 7.6.). Due to the imbedding H ⊂ L∞(0, 1) with |u|∞ 6 ‖u‖
for u ∈ H for an adapted càdlàg process in H

τR(x,X) 6 τ̃R(x,X).

Proposition A.27 (Existence of a unique local mild solution). For any R > 0 and
x ∈ BR(0) and T > 0, ε > 0 there is a unique local mild solution of equation (2.3),
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which satisfies for any t ∈ [0, T ∧ τR(x, Y ε)]

Y ε(t) = S(t)x+
t∫

0

S(t− s)f(Y ε(s)) ds+ ε

t∫
0

S(t− s)dξε(s). (A.12)

Moreover Y ε has a càdlàg version.

Proof. First note that since (L(t))t>0 is a symmetric pure jump Lévy process (see Def-
inition A.9) for any ρ ∈ (0, 1) and ε > 0 the process ξε defined in Section 2.1, (2.2) is
a mean zero martingale with moments of second order. We verify the assumptions of
Theorem 9.29 in Peszat and Zabczyk [2007]. By Lemma A.23 for all u, v ∈ BR(0) and
t > 0 it follows

‖S(t)(f(u)− f(v))‖ 6 ‖S(t)‖‖f(u)− f(v)‖ 6 e−c0tKR‖u− v‖

where c0 is the largest negative eigenvalue of ∆ in H and in particular

‖S(t)f(u)‖ 6 e−c0tK1,R‖u‖, t > 0, u ∈ BR(0),

where K1,R is defined by (A.11). For the orthonormal basis (en)n∈N of eigenvectors of
∆, the set (Q1/2

ξ (en)n∈N) is an orthonormal basis in Q
1/2
ξ (H). We may calculate for

t > 0

‖S(t)‖
L2(Q1/2

ξ
(H);H) =

∞∑
k=1
‖S(t)Q−1/2

ξ Q
1/2
ξ ek‖ =

∞∑
k=1

e−c0k
2t.

Thus

T∫
0

‖S(t)‖2
L2(Q1/2

ξ
(H);H)

dt =
T∫

0

( ∞∑
n=1

e−c0n
2t

)2

dt 6

T∫
0

∞∑
n=1

e−c02n2t dt

=
∞∑
n=1

T∫
0

e−2c0n2t dt 6
∞∑
n=1

1
2c0n2 < ∞.

Hence we may apply Theorem 9.29 in Chapter 9 of Peszat and Zabczyk [2007], which
states under these assumptions the existence of a local unique weak solution, and The-
orem 9.15 therein, which ensures the existence of an equivalent local mild solution of
equation (2.3). If ξ∗(t) =

∫ t
0 S(t− s)ξε(s), we can rewrite equation (2.3) as

v(t) + ξ∗(t) = S(t)x+
t∫

0

S(t− s)f(v(s) + ξ∗(s−)) ds+ εξ∗(s).

We apply Proposition A.20 to Example A.21, which implies that ψ(t) := εξ∗(t) has a
càdlàg version. By Proposition A.24 there is a continuous solution v(t) in H for t > 0,
such that t → Y ε(t) = v(t) + εξ∗(t) inherits the càdlàg property on the stochastic
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interval [0, T ∧ τR(x, Y ε)].

Proposition A.28. There exists a unique mild solution (Y ε(t))t>0 of equation (2.3),
which has a càdlàg version.

Proof. We derive an a priori estimate for the local mild solution and derive a contradic-
tion to a blow-up of the solution in finite time. For the solution u of the Chafee-Infante
equation (2.6), there is a radius R′ and T ′ > 0 such that for all t > T ′ and all x ∈ H

u(t;x) ∈ BR′(0).

See Appendix B. Since t → u(t;x) is continuous in H, supt∈[0,T ′] ‖u(t;x)‖ < ∞ for all
x ∈ H such that

M(x) := sup
t>0
‖u(t;x)‖ <∞, x ∈ H.

We denote by Rε(t;x) := Y ε(t;x)− u(t;x)− εξ∗(t) for t > 0, x ∈ H, where (εξ∗(t))t>0
is defined by (A.8). Then

d
dtR

ε(t;x) = ∆Rε(t;x) + (f(Y ε(s;x))− f(u(t;x))) .

We denote | · |L2 the norm in L2(0, 1), | · | the modulus in R and ‖v‖2 =
∫ t

0 (∇v)2(ζ) dζ
the norm in H1

0 (0, 1). We multiply the last equation with Rε(t;x), integrate in ζ and
obtain

1
2

d
dt |R

ε(t;x)|2L2 + ‖Rε(t;x)‖ 6
1∫

0

|f(Y ε(t;x))− f(u(t;x))||Rε(t;x)| dζ.

For any r > 0, the local Lipschitz constant K1,r of f on (−r, r) from Lemma A.23 equals
obviously the local Lipschitz constant of f in L∞(0, 1) on Br(0) ⊂ L∞(0, 1). Hence for
any x ∈ H, r > M(x) and t 6 τ̃r(x, Y ε) by Lemma A.23 we may estimate

d
dt |R

ε(t;x)|2L2 6 2K1,2r

1∫
0

(|Rε(t;x)|+ |εξ∗(t)|)|Rε(t;x)| dζ

6 2K1,2r

1∫
0

(Rε(t;x))2 + (Rε(t;x))2 + (εξ∗(t))2 dζ

= 4K1,2r|Rε(t;x)|2L2 + 2K1,r sup
s∈[0,t]

‖εξ∗(s)‖2.

By Gronwall’s Lemma we obtain the following estimate

|Rε(t;x)|L2 6 2K1,re
4K2rt sup

s∈[0,t]
‖εξ∗(s)‖. (A.13)
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Passing to the mild representation of Rε(t;x)

Rε(t;x) =
t∫

0

S(t− s)(f(Y ε(s;x)− f(u(s;x))) ds

and exploiting the regularizing effect of the semigroup (S(t))t>0 we obtain still for
t 6 τ̃r(x, Y ε)

‖Rε(t;x)‖ 6 C1

t∫
0

e−
3c0
4 (t−s)
√
t− s

|f(Y ε(s;x))− f(u(s;x))|L2 ds

6 C1

( t∫
0

e−
3c0
4 (t−s)

(t− s)3/4 ds
)2/3(

K3
1,2r

t∫
0

|Rε(s;x) + εξ∗(s)|3L2 ds
)1/3

6 C2K1,2r3
( t∫

0

(
|Rε(s;x)|3L2 + |εξ∗(s)|3L2

)
ds
)1/3

.

We apply inequality (A.13) to the right-hand side of the preceding estimate

t∫
0

(
|Rε(s;x)|3L2 + |εξ∗(s)|3L2

)
ds 6

t∫
0

(
e2K2rs sup

s′∈[0,s]
‖εξ∗(s′)‖3 + sup

s′∈[0,s]
‖εξ∗(s′)‖3

)
ds

and obtain
‖Rε(t;x)‖ 6 C3K1,2rt

(
e2K1,2rt + 1

)
sup
s∈[0,t]

‖εξ∗(s)‖

and
‖Y ε(t;x)− u(t;x)‖ 6

(
C3K1,2rt

(
e2K1,2rt + 1

)
+ 1
)

sup
s∈[0,t]

‖εξ∗(s)‖

for t 6 τ̃r(x, Y ε) =: τ̃r. Hence we can conclude

‖Y ε(t;x)‖ 6 r +
(
C3K1,2rt

(
e2K1,2rt + 1

)
+ 1
)

sup
s∈[0,t]

‖εξ∗(s)‖

=: r + Ψx(t) sup
s∈[0,t]

‖εξ∗(s)‖ 6 r + Ψx(τ̃r) sup
s∈[0,τ̃r]

‖εξ∗(s)‖.

Assume that the local mild solution t 7→ Y ε(t;x) blows up in finite (random) time in H.
That means there is an event A with P(A) > 0, a sequence of stopping times (τn)n∈N
with τ i(ω) 6 τ i+1(ω) on A such that τ∞(ω) := supn∈N τn(ω) <∞ for ω ∈ A and

lim
n→∞

‖Y ε(τn(ω);x)(ω)‖ =∞.

This means by definition that for all r > 0 the hitting times τ̃r(ω) < τ∞(ω) for ω ∈ A.
We denote for a sequence of deterministic radii M(x) 6 r < r1 < r2 < . . . → ∞ and
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ω ∈ A by
τ∞(ω) := inf{t > 0 | t > sup

n∈N
τ̃rn(ω)}.

The time τ∞ does not depend on the sequence (ri)i∈N, since the hitting times are
ordered monotonically. Moreover τ∞(ω) 6 τ∞(ω) for ω ∈ A. Without loss of generality
we consider the case τ∞(ω) = τ∞(ω). Then we obtain

‖Y ε(τ̃ri(ω);x)(ω)‖ 6 r + Ψx(τ̃ri(ω)) sup
s∈[0,τ̃ri (ω)]

‖εξ∗(s)(ω)‖

6 r + Ψx(τ∞(ω)) sup
s∈[0,τ∞(ω)]

‖εξ∗(s)(ω)‖ = r + Ψx(τ∞(ω)) sup
s∈[0,τ∞(ω)]

‖εξ∗(s)(ω)‖.

Since τn(ω) ↗ τ∞(ω) for n → ∞ and τri(ω) ↗ τ∞(ω) for i → ∞ we obtain for each
τn(ω) there is a ri(n)(ω) such that τn(ω) 6 τri(n)(ω) and hence for all n ∈ N

‖Y ε(τn(ω);x)(ω)‖ 6 ‖Y ε(τri(n)(ω);x)(ω)‖

6 r + Ψx(τri(n)(ω)) sup
s∈[0,τri(n)(ω)]

‖εξ∗(s)(ω)‖

6 r + Ψx(τ∞(ω)) sup
s∈[0,τ∞(ω)]

‖εξ∗(s)(ω)‖ <∞

which is a contradiction. The càdlàg version is inherited from each of the unique local
milds solutions. Hence Y ε is a global unique mild solution.

A.5. The Strong Markov Property

In this Section we sketch how to establish the strong Markov property of our solutions
Y ε of equation (2.3) since it is absolutely crucial for our method. We pass mostly along
the lines in the books DaPrato and Zabczyk [1992] and Peszat and Zabczyk [2007], but
since it is not covered explicitely we prefer to indicate the arguments here.

Definition A.29. Let (Ft)t>0 be a complete right-continuous filtration. A (Ft)-
adapted process (X(t))t∈[0,T ] in a measurable space (E, E) has the Markov property
if it satisfies for 0 6 s 6 t 6 T

P(X(t) ∈ A | Fs) = P(X(t) ∈ A | X(s)) for all A ∈ E . (A.14)

For a separable Hilbert space E = H and the Borel-σ-Algebra E = B(H) we denote
Bb(H) the space of real-valued, bounded Borel functions equipped with the norm

|f |Bb = sup
x∈H
|f(x)|H .

We denote Y ε(t; s, x) the value of the global mild solution of equation (2.3) established
in Proposition A.28 at time t ∈ [0, T ] starting at time 0 6 s 6 t in x ∈ H. For
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ϕ ∈ Bb(H) and 0 6 s 6 t 6 T and x ∈ H define by

(Ps,tϕ)(x) := E [ϕ(Y ε(t; s, x))]

the transition operator of (Y ε(t))t∈[0,T ]. Note that in this case for A ∈ B(H)

E [1A(Y ε(t; s, x))] = P(Y ε(t; s, x) ∈ A).

If the transition operators are translation invariant, i.e. Ps,tϕ = P0,t−s for all 0 6 s 6 t,
the family (Ps,t) is called homogeneous. If ϕ ∈ Cb(H) and 0 6 s 6 t 6 T the map

Ps,tϕ : H → R, x 7→ (Ps,tϕ)(x)

is continuous, the family (Ps,t) satisfies the Feller property. We say that the process
(Y ε(t))t∈[0,T ] is homogeneous, has the Markov or the Feller property if its family of
transition functions (Ps,t) has this property.

Lemma A.30. If the solution (Y ε(t))t∈[0,T ] of (2.3) has the Markov property, then for
all ϕ ∈ Bb(H) and 0 6 r 6 s 6 t 6 T it follows for an arbitrary Fs measurable random
variable X̃ ∈ L2(Ω,Fs,P;H) that

E
[
ϕ(Y ε(t; r, X̃)) | Fs

]
= (Ps,tϕ)(Y ε(s; r, X̃)) P-a.s. (A.15)

Proof. Each bounded measurable function ϕ can be approximated monotonically by
simple functions ϕn. This allows to pass to the limit in equation (A.14).

Proposition A.31. The mild solution Y ε of equation (2.3) satisfies the homogeneous
Markov property and the Feller property.

Proof. In Peszat and Zabczyk [2007], in the Theorems 9.29 and 9.30 and Remark 9.33,
the authors prove that mild solutions of SPDEs with time independent Lipschitz coef-
ficients driven by an additive mean zero Lévy martingale with second moments in H

possess the homogeneous Markov property and the Feller property.

So far all properties were at the level of marginals. In order to prove the strong
Markov property one has to pass to the perspective on path space. We follow here
DaPrato and Zabczyk [1992], Chapter 9.2.

Proposition A.32. For the solution (Y ε(t; s, X̃))t>s of equation (2.3) with initial val-
ues (s, X̃), for ϕ1, . . . , ϕn ∈ Bb(H), 0 6 s 6 t and 0 6 h1 6 h2 6 . . . 6 hn the
relation

E
[
ϕ1(Y ε(t+ h1; s, X̃)) ϕ2(Y ε(t+ h2; s, X̃)) . . . ϕn(Y ε(t+ hn; s, X̃)) | Ft

]
= Qϕ1,...,ϕn

h1,...,hn
(t, Y ε(t; s, X̃)) P-a.s. (A.16)
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is valid, where Qϕ1,...,ϕn
h1,...,hn

: [0, T ]×H → R is defined by

Qϕ1,...,ϕn
h1,...,hn

(s, x) :=
∫
H

p(s, x, ; s+ h1,dy1)ϕ1(y1)
∫
H

p(s, x, ; s+ h2,dy2)ϕ2(y2) . . .

. . .

∫
H

p(s, x, ; s+ hn,dyn)ϕn(yn). (A.17)

Due to the iterated integral form Qϕ1,...,ϕn
h1,...,hn

is a Borel function.

This can be proved by induction over n identically to Proposition 9.11 in DaPrato
and Zabczyk [1992], p.252.
Since Y ε has almost surely càdlàg trajectories the theory differs slightly from the case

of continuous trajectories in DaPrato and Zabczyk [1992] Chapter 9.2.

Definition A.33. Denote D := D([0,∞);H) the space of càdlàg curves in H. We
denote by Ps,x the distribution of Y ε(s + · ; s, x) on (D,B(D)) with respect to the
Skorohod topology. Thus it is defined by

Ps,x(A) = P(Y ε(s+ · ; s, x) ∈ A) for A ∈ B(D).

A cylindrical set Z in D is defined by 0 6 h1 6 . . . 6 hn and A1, . . . , An ∈ B(H)

Z = Z(h1, . . . , hn;A1, . . . , An) = {g ∈ D | g(h1) ∈ A1, . . . , g(hn) ∈ An}.

Remark A.34. 1. The measure Ps,x is uniquely determined by its values on cylin-
drical sets.

2. For a cylindrical set in D over H it follows by definition

Ps,x(Z) = P
(
Y ε(s+ h1; s, x) ∈ A1, . . . , Y

ε(s+ hn; s, x) ∈ An
)
.

In particular by the Chapman-Kolmogorov equation, it follows

Ps,x(Z) = Q
1A1 ,...,1An
h1,...,hn

(s, x).

Hence equation (A.16) has for 0 6 s 6 t the shape

P(Y ε(t+ · ; s, X̃) ∈ Z | Ft) = Pt,Y ε(t;s,X̃)(Z). (A.18)

Definition A.35. We denote by Es,x := EPs,x .

Remark A.36. With this notation equation (A.18) can be rewritten as

E
[
1{Y ε(t+ · ; s, X̃) ∈ Z} | Fs

]
= Et,Y ε(t;s,X̃)[1Z ]. (A.19)

Since each measurable, bounded function Ψ : D → R can be approximate monotonically
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by simple functions, it follows the identity

E
[
Ψ(Y ε(t+ · ; s, X̃)) | Fs

]
= Et,Y ε(t;s,X̃)[Ψ]. (A.20)

Definition A.37. Let τ be a (Ft)t>0-stopping time. We denote by

Fτ := σ{A ∈ F | {τ 6 t} ∩A ∈ Ft}.

We say Y ε satisfies the strong Markov property if for each s > 0, stopping time τ > s,
X̃ a Fs-measurale random variable and measureable mapping Ψ : (D,B(D)) → R it
holds

E
[
Ψ(Y ε(τ + · ; s, X̃)) | Fτ

]
= Es,Y ε(τ ;s,X̃)[Ψ] P(· | τ <∞)-a.s.

Proposition A.38. The mild solution Y ε of equation (2.3) satisfies the strong Markov
property.

Proof. We have to prove that for all nonnegative Borel functions Ψ : (D,B(D))→ R,
s > 0, X̃ ∈ L2(Ω,Fs,P;H) and all stopping times τ > s and A ∈ Fτ holds

E
[
Ψ(Y ε(τ + · ; s, X̃))1A∩{τ<∞}

]
= E

[
Eτ,Y ε(τ ;s,X̃) [Ψ 1A∩{τ<∞}

]]
.

Each stopping time τ has for fixed 2 6 q ∈ N and N ∈ N a q-adic approximation
τN := bτqNc+1

qN
with countably many values. Since τN > τ we have FτN ⊃ Fτ and

τN ↘ τ for N → ∞ P-a.s. For Markov processes in Polish spaces such as H with
a countable set of time parameters I, which is closed under summation, the Markov
property implies the strong Markov property, see for example Klenke [2005] p. 352. In
our case this property is fulfilled for (Y ε(t))t∈In , where In = { kqn , k ∈ N}. Hence under
previous assumptions we already have

E
[
Ψ(Y ε(τn + · ; s, X̃))1A∩{τ<∞}

]
= E

[
Eτn,Y

ε(τn;s,X̃) [Ψ 1A∩{τ<∞}
]]
. (A.21)

The remaining question is now, whether we can pass to the limit n→∞ in (A.21). We
denote by M := {Ψ : (D,B(D)) → R | Ψ measurable }. Clearly for each h > 0 and
ϕ ∈ Cb(H) the point evaluations

Ψ(f) := ϕ(f(h))

are a subclass ofM. For point evaluations of this type equation (A.21) has the form

E
[
ϕ(Y ε(τn + h; s, X̃))1A∩{τ<∞}

]
= E

[
(Pτn,τn+hϕ)(Y ε(τn; s, X̃))1A∩{τ<∞}

]
. (A.22)

Since Y ε has the Feller property, for each ϕ ∈ Cb(H) and t, h > 0 the mapping

H → R, x 7→ (Pt,t+hϕ)(x)

is continuous. It can be shown analoguously to DaPrato and Zabczyk [1992], Theo-
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rem 9.1 that for any t > 0 and X̃ ∈ L2(Ω,Ft,P;H) the mapping h 7→ E[(Y ε(t+h; t, x))2]
is continuous and hence that for each ϕ ∈ Cb(H), x ∈ H and t > 0 the mapping

h 7→ (Pt,t+hϕ)(x)

is continuous. In addition, by Theorem A.28, Y ε has almost surely right-continuous
trajectories. Hence we can pass to the limit and obtain

E
[
ϕ(Y ε(τ + h; s, X̃))1A∩{τ<∞}

]
= E

[
(Pτ,τ+hϕ)(Y ε(τ ; s, X̃))1A∩{τ<∞}

]
. (A.23)

This is equivalent to

E
[
ϕ(Y ε(τ + h; s, X̃)) | Fτ

]
= (Pτ,τ+hϕ)(Y ε(τ ; s, X̃)) P(· | τ <∞)-a.s. (A.24)

Since 1B(v) for B ∈ B(D) can be approximated by continuous functions, and measurable
functions can be approximated by simple functions, we obtain even for ϕ ∈ Bb(H) that

E
[
ϕ(Y ε(τ + h; s, X̃)) | Fτ

]
= (Pτ,τ+hϕ)(Y ε(τ ; s, X̃)) P(· | τ <∞)-a.s. (A.25)

By induction one can now show the following stopping time analogon of Proposition
A.32. Consider the solution (Y ε(t; s, X̃))t>s of equation (2.3) with initial values (s, X̃).
For ϕ1, . . . , ϕn ∈ Bb(H), s > 0, a stopping time τ > s and 0 6 h1 6 h2 6 . . . 6 hn we
have

E
[
ϕ1(Y ε(τ + h1; s, X̃)) ϕ2(Y ε(τ + h2; s, X̃)) . . . ϕn(Y ε(τ + hn; s, X̃)) | Fτ

]
= Qϕ1,...,ϕn

h1,...,hn
(τ, Y ε(τ ; s, X̃)) P(· | τ <∞)-a.s. (A.26)

where the right-hand side is defined by (A.16). Hence for a cylindrical set Z we can
hence rewrite the last equation as

P(Y ε(τ + · ; s, X̃) ∈ Z | Fτ ) = Pτ,Y ε(τ ;s,X̃)(Z). (A.27)

By monotone approximation of measurable and bounded Ψ : D → R and the convention
Es,x = EPs,x we obtain the desired equation

E
[
Ψ(Y ε(τ + · ; s, X̃)) | Fτ

]
= Eτ,Y ε(τ ;s,X̃)(Ψ).

This completes the proof.
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A.6. Basics on Slowly and Regularly Varying Functions

In this Section we provide basic properties of slowly varying function, with the help of
which we can define regularly varying Lévy measures in Section 2.1. We will exploit
these properties extensely in Chapter 4.
We cite from Hult and Lindskog [2006] and Bingham et al. [1987].

Definition A.39. A positive measurable function ` : (0,∞)→ (0,∞) satisfaying

lim
x→∞

`(yx)
`(x) = 1 for all y > 0 (A.28)

is called slowly varying.

The next Theorem states already the uniform convergence in y > 0 (Bingham et al.
[1987], Theorem 1.3.1).

Theorem A.40. For a slowly varying function ` the limit (A.28) is uniformly in the
sense that for all compact sets K ⊂ (0,∞)

lim
x→∞

sup
y∈K

`(yx)
`(x) = 1.

For the proof see Bingham et al. [1987] Theorem 1.2.1.

The connection between regular varying function and slowly varying functions is given
by (Bingham et al. [1987], Theorem 1.4.1).

Theorem A.41. For any regularly varying function v : (0,∞) → (0,∞) with index β
there is a slowly varying function ` : (0,∞)→ (0,∞) such that

v(x) = xβ`(x) for all x ∈ (0,∞).

Example A.42. 1. `1(x) = ln(ln x) is a slowly varying function.

2. `2(x) = exp(ln(x)(1/3) cos(ln(x)(1/3)) is a slowly varying function with infinite
oscillations i.e.

lim inf
x→∞

`2(x) = 0 and lim sup
x→∞

`2(x) =∞.

These oscillations are of vanishing order as we can see in the following proposition
though.

The next Proposition is most significant for our studies. It tells us that in comparison
to polynomials, slowly varying functions behave asymptotically like constants.
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Proposition A.43. A slowly varying function ` : (0,∞) → (0,∞) has the property
that for any a > 0

lim
x→∞

xa`(x) = ∞

lim
x→∞

x−a`(x) = 0.

For the proof see Bingham et al. [1987] Theorem 1.2.1.
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B.1. Consistency of Reduced Domains of Attraction
(Proof of Lemma 2.13)

We prove Lemma 2.13, which states, that the reduced domains of attraction asymptot-
ically exhaust the unreduced domains of attraction.

Proof. ”⊃” is true by definition. We show ”⊂” in all three cases.
1. Take x ∈ D±. It is obviously enough to prove the existence of δ > 0 such that

x ∈ D±(δ), i.e. ∪t>0Bδ(u(t;x)) ⊂ D±. In fact, according to Lemma B.3 or Matano
[1979] and Sattinger [1972] and by closedness of S there is δ1 > 0 such that for all
0 < δ 6 δ1 and t > 0

∪t>0u(t;Bδ(φ±)) ⊂ Bδ(φ±) ⊂ D±. (B.1)

Since limt→∞ u(t;x) = φ± by Proposition 2.9, there exists t0 > 0 such that for t > t0
we have u(t;x) ∈ Bδ1/2(φ±), hence

∪t>t0Bδ1/2(u(t, x)) ⊂ Bδ1(φ±) ⊂ D±.

Let δ2 = min06t6t0 dist(u(t;x),S). By continuity and compactness, δ2 > 0. Then also

∪06t6t0Bδ2/2(u(t;x)) ⊂ D±.

Altogether with δ = δ1∧δ2
2 we obtain

∪t>0Bδ(u(t;x)) ⊂ D±.

2. Take x ∈ D±. It is enough to prove that there exist 0 < δ0, η0 such that for all
0 < δ 6 δ0, 0 < η 6 η0 we have x ∈ D±(δ, η). In other words, we have to show that for
0 < δ 6 δ0, 0 < η 6 η0 we have ∪s>0Bη(u(s;x)) ⊂ D±(δ), which amounts to

∪t>0Bδ(u(t;∪s>0Bη(u(s;x)))) ⊂ D±.

First use part 1 of the proof to obtain the existence of 0 < η0 such that for all 0 < η 6 η0

∪s>0Bη(u(s;x)) ⊂ D±.
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Now for any t0 > 0 the map y 7→ u(t; y) is compact, hence transfers bounded sets to
compact sets. Since limt→∞ u(t;x) = φ±, we know that ∪s>0Bη(u(s;x)) is a bounded
subset of D±. Hence for t0 > 0

u(t0;∪s>0Bη(u(s;x))) is compact in D±.

Next choose δ1 > 0 according to the first part of the proof. Elementary arguments using
the Lipschitz property of u on compact sets, as well as limt→∞ u(t;x) = φ± enable us
to show that there exists t1 > t0 > 0 such that

u(t1;∪s>0Bη0(s;x)) = u(t1 − t0;u(t0;∪s>0Bη0(s;x))) ⊂ Bδ1(φ±).

By choice of δ1, analogously to the first part of the proof,

∪t>t1Bδ1/2(u(t;∪s>0Bη0(u(s;x)))) ⊂ D±.

Finally, uniform continuity of u(t; ·) in t ∈ [0, t1] implies that with some δ2 > 0 we arrive
at

∪06t6t1Bδ2(u(t;∪s>0Bη0(u(s;x)))) ⊂ D±.

Now choose δ0 = δ1
2 ∧ δ2 to conclude.

3. Take x ∈ D±. It is enough to prove that there exist 0 < δ0, η0, ζ0 such that for all
0 < δ 6 δ0, 0 < η 6 η0, 0 < ζ 6 ζ0 we have x ∈ D±(δ, η, ζ). In other words, we have to
show that for 0 < δ 6 δ0, 0 < η 6 η0, 0 < ζ 6 ζ0 we have ∪s>0Bζ(u(s;x)) ⊂ D±(δ, η),
which amounts to

∪r>0Bδ(u(r;∪t>0Bη(u(t;∪s>0Bζ(u(s;x)))))) ⊂ D±.

It is clear from this statement, that the arguments of the second part of the proof just
have to be repeated with ∪t>0Bη(u(t;∪s>0Bζ(u(s;x)))) replacing ∪s>0Bη(u(s;x)). This
completes the proof.
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B.2. Logarithmic Bounds on the Relaxation Time in
Reduced D.o.A.

B.2.1. The Fine Structure of the Attractor
Since our results in the Chapters 3, 4, 5 and 6 are based on a pathwise analysis we need
to further specify the fine structure of the attractor of the Chafee-Infante equation.
Note that its shape depends crucially on the bifurcation parameter λ.
It is known from Faris and Jona-Lasinio [1982a] that the solution u of the Chafee-

Infante equation has the following set of fixed points. For a detailed exposition of the
bifurcation on the elliptic boundary value problem and the analytic representation of the
stationary solutions also consult for instance Henry [1983], Hale [1983], Raugel [2002],
Chueshov [2002], Wakasa [2006] or Robinson [2001].

Proposition B.1. For the Chafee-Infante parameter λ 6 π2 there is a unique stable
fixed point v ≡ 0. For λ > π2 there are always two stable fixed points φ± ∈ C∞([0, 1]).
More precisely, if (π(n − 1))2 < λ 6 (πn)2, n ∈ N there are 2 stable and for n > 2
exactly (2n− 3) unstable fixed points {0, φ±j , j = 1, . . . , n− 2}. In other words

Eλ :=


{0}, 0 < λ 6 π2,

{0, φ±}, π2 < λ 6 (2π)2,

{0, φ±, φ±j , j = 1, . . . , n− 2}, (π(n− 1))2 < λ 6 (πn)2, n > 2.

In the following we are going to exploit the fine structure of the system’s attractor Aλ.
The attractor Aλ consists of all fixed points and all global trajectories {u(t), t ∈ R}.
Following Chueshov [2002], in this case of finitely many fixed points the global attractor
has the following shape. For any λ > 0

Aλ =
⋃
v∈Eλ

Wu(v), where Wu(v) =
⋃
v→w
w∈Eλ

C(v, w) (B.2)

with the notation established in (2.9). In other words

Aλ = {φ+, φ−} ∪
⋃

v∈Eλ\{φ+,φ−}

{v} ∪
⋃

v,w∈Eλ
v→w

C(v, w). (B.3)

Summarizing the results in the literature we can describe the structure of the global
attractor recursively in λ as follows.

Recursive description of the attractor Aλ: For λ ∈ (((n− 1)π)2, (πn)2) the elements
of Eλ as well as Aλ depend continuously on λ. Thus the topological structure of Aλ
remains invariant for λ ∈ (((n− 1)π)2, (πn)2). In other words, in this interval all Aλ
are homotope. If λ passes (πn)2 from the left the connection structure of the elements
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Figure B.1.: Sketch of Aλ for λ ∈ (π2, (2π)2), λ ∈ ((2π)2, (3π)2), λ ∈ ((3π)2, (4π)2)

of Eλ for λ ∈ ((π(n− 1))2, (πn)2) is retained in Aλ for λ > (nπ)2 as a substructure,
but two new unstable fixed points φ±n appear in Eλ. In addition, exactly 2(n− 1) new
connecting orbits emerge in the attractor: 2(2n− 3) ones linking the 2n− 3 previously
unstable fixed points {0, φ±j , j = 1, . . . , n− 2} with each of the new ones {φ+

n , φ
−
n }, and

4 trajectories directed from each the latter ones to each of the stable points {φ+, φ−}.
There is an extensive literature on further properties of attractors for reaction diffusion
equations, see instance the survey article by Fiedler and Scheel [1982]. It turns out to
be important in the proof of Proposition 2.15 that the longest cascade visits n− 1 fixed
points and any cascade ends in one of the stable points φ±. In particular the number
of connecting orbits for λ ∈ ((π(n− 1))2, (πn)2)) is exactly

n∑
k=1

2(2k − 1) = 2n2.

B.2.2. Logarithmic Relaxation Times (Proof of Proposition 2.15)

We prove the statement of Proposition 2.15 for the finer topology on H related to the
norm ‖ · ‖ and then infer the result for the topology related to | · |∞. Let γ > 0 be fixed.
Denote by D± = D± ⊂ H1

0 (0, 1) the domain of attraction of φ± (i.e. φ+ or φ−). We
define D±(εγ), ε > 0 as subsets of D± in the same fashion as D±(εγ), with the norm ‖·‖
replacing | · |∞. By definition of D±(εγ) and by | · |∞ 6 ‖ · ‖, we have for x ∈ D±(εγ),
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s ∈ S and t > 0
‖u(t;x)− s‖ > |u(t;x)− s|∞ > εγ ,

hence x ∈ D±(εγ), which implies D±(εγ) ⊂ D±(εγ). In addition, by the same argument
for v ∈ {φ+, φ−}

|u(t;x)− v|∞ 6 ‖u(t;x)− v‖ 6 1
2ε

2γ .

Therefore it is sufficient to prove the statement of Proposition 2.15 in the topology of
‖ · ‖, i.e. for initial values x ∈ D±(εγ) and the distance ‖ · ‖ instead of | · |∞.
For any set A ⊂ H and σ > 0, we define the σ-neighborhood of A by

Uσ(A) :=
⋃
x∈A

Bσ(x).

For two fixed points v, w ∈ Eλ of the Chafee-Infante equation that are connected in
Aλ (C(v, w) 6= ∅) in the previous Subsection B.2.1 we recall the notation (v → w) :⇔
C(v, w) 6= ∅ and denote for η, σ > 0 by

Uσ(v, w) := Uη(C(v, w))

the σ-tube around the heteroclinic orbit C(v, w) ⊂ Aλ and by

U−η,σ(v, w) := Uη(C(v, w)) \ (Bσ(v) ∪Bσ(w)) .

the η-tube around the heteroclinic orbit C(v, w) ⊂ Aλ deprived of the σ-balls around the
end points v and w.
For η 6 ||v−w||

3 and σ > 0 it follows for all v, w ∈ Eλ that

U−η,σ(v, w) 6= ∅ ⇐⇒ v → w. (B.4)

For convenience we write v ← w equivalently to w → v (⇔ (C(v, w) 6= ∅). Define for
σ > 0 the maximal radius d(σ) so that the d(σ)-tubes around the heteroclinic orbits
deprived of the σ-balls around the fixed points are all disjoint. More precisely for σ > 0
we define

d(σ) := sup{h > 0 | for all v, w1, w2 ∈ Eλ,
if w1 ← v → w2, then Uh(v, w1) ∩ Uh(v, w2) ∩Bcσ(v) = ∅,
if w1 → v ← w2, then Uh(w1, v) ∩ Uh(w2, v) ∩Bcσ(v) = ∅,
if w1 → v → w2, then Uh(w1, v) ∩ Uh(v, w2) ∩Bcσ(v) = ∅,

if w1 ← v ← w2, then Uh(v, w1) ∩ Uh(w2, v) ∩Bcσ(v) = ∅}. (B.5)

For w1 → v → w2, we sketch d(σ) in Figure B.2.
It is easy to see that due to the transversality of the fixed points there is δd > 0 such

that for all 0 < σ 6 δd it follows
d(σ) > 0. (B.6)
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Figure B.2.: Disjoint tubes around an unstable fixed point w1 → v → w2

Note that necessarily d(σ) < σ.
Let us rewrite Proposition 2.15 for the finer topology generated by ‖ · ‖.

Proposition B.2. Let the Chafee-Infante parameter π2 < λ 6= (nπ)2, for n ∈ N, be
given. Then there exists Trec > 0 and a constant κ > 0 such that for each γ > 0 there
exist constants ε0 = ε0(γ) > 0, such that for all 0 < ε 6 ε0 and t > Trec + κγ| ln ε| and
x ∈ D±(εγ)

‖u(t;x)− φ±‖ 6 (1/2)ε2γ .

Proof. The proof is structured into three parts. In Part I we discuss the absorbtion of the
trajectories of the Chafee-Infante equation for any initial value x ∈ H by a neighborhood
of the attractor in finite time. This is followed, in Part II, by a detailed discussion of
the local behavior of the system when entering different parts of this neighborhood.
In other words, using the flow properities we analyze the behaviour of the solution for
initial values taking values in the mentioned neighborhood of the attractor. Here we
exploit the well-known shape of the attractor and the hyperbolicity of the fixed points.
In Part III we can finally use the gradient structure of the system in order to determine
the global behavior by the local information gained in Part II.
We fix γ > 0.

I. The global dynamics absorbed by a neighborhood of the attractor

Claim I.1: There is a universal relaxation time to enter Uη(Aλ). For any η > 0 there
is a time τ1 = τ1(η) > 0 such that for all t > τ1 and x ∈ H

u(t;x) ∈ Uη(Aλ).
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Proof. By Temam [1992], Remark 1.4, p. 88 there exist ρ1 = ρ1(λ) > 0 and a uniform
upper bound t0 = t0(λ) > 0 such that for all t > t0 and x ∈ H

u(t;x) ∈ Bρ1(0).

By the definition of a global attractor for each η > 0 and each bounded set A ⊂ H there
is a time t1 = t1(A, η, λ) > 0 such that for all t > t1 and x ∈ A

u(t;x) ∈ Uη(Aλ)

holds true. The claim follows for A = Bρ1(0) and τ1 := t1 + t2.

Claim I.2: There is a unique last entrance time for open neighborhoods of the
attractor. For any open set O ⊃ Aλ and x /∈ O there is a unique θ1 = θ1(x,O) > 0
such that

u(θ1;x) ∈ ∂O and u(t;x) ∈ O for all t > θ1.

For all x ∈ H, η > 0, open sets O ⊇ Uη(Aλ) and x ∈ H \ O we have

θ1(x,O) 6 τ1(η).

Proof. For the first part of the statement it suffices to write

θ1(x,O) := sup{t > 0 | u(t;x) /∈ O} <∞,

since Aλ is an attracting set. For the second part we use Claim I.1 and obtain

θ1(x,O) 6 θ1(x, Uη(A)) 6 τ1(η).

II. The local behavior in a neighborhood of the attractor in D±(εγ) There exists a
universal constant δb > 0 such that for 0 < σ 6 δb the balls Bσ(v), v ∈ Eλ, are pairwise
disjoint, (B.4) and (B.6) are satisfied, and Bσ(φ±) ⊂ D±. Then there is exists εb =
εb(σ) > 0 such that for 0 < ε 6 εb, Bσ(φ±) ⊂ D±(εγ). We shall exploit the segmented
structure (B.3) of attractorAλ which is reflected in the structure of the surface ∂Uσ(Aλ).
Due to (B.2) and the definition of U−σ,σ(v, w) we have the following decomposition in
three disjoint sets if σ > 0 is small enough

Uσ(Aλ) = Bσ(φ±) ∪
( ⋃
v∈Eλ\{φ+,φ−}

Bσ(v)
)
∪
( ⋃
v,w∈Eλ
v→w

U−σ,σ(C(v, w))
)
. (B.7)
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By the choice of σ the balls Bσ(v), v ∈ Eλ appearing in (B.7) are pairwise disjoint.
However, in general there is no σ > 0 such that the set⋃

v,w∈Eλ
v→w

U−σ,σ(C(v, w))

becomes a disjoint union. Since we shall use this property we argue for 0 < σ 6 δb and
0 < η 6 d(σ) for the following modified neighborhood Uη,σ(Aλ) of Aλ we have

Uη,σ(Aλ) = Bσ(φ±) ∪
( ⋃
v∈Eλ\{φ+,φ−}

Bσ(v)
)
∪
( ⋃
v,w∈Eλ
v→w

U−η,σ(C(v, w))
)
. (B.8)

Hence for 0 < ε 6 εb, 0 < σ 6 δb and 0 < η 6 d(σ)

Uη,σ(Aλ) ∩ D±(εγ)

= Bσ(φ±) ∪
( ⋃
v∈Eλ\{φ+,φ−}

Bσ(v) ∩ D±(εγ)
)
∪
( ⋃
v,w∈Eλ
v→w

U−η,σ(C(v, w)) ∩ D±(εγ)
)
,

(B.9)

which by definition of d(σ) is a union of pairwise disjoint sets. In the sequel we shall
further reduce the upper bounds for σ, η and ε appropriately.
The strategy of the proof is the following. For σ, η, ε to be determined in the sequel

and x ∈ D±(εγ), we shall use the flow property of the solution u(· ;x) of the Chafee-
Infante equation and treat the local behaviour of u(t; y) for t > 0 after having entered
Uη/2(Aλ) ⊂ Uη,σ(Aλ), i.e. for initial conditions

y = u(θ1;x) for θ1 = θ1(x, Uη/2(Aλ) ∩ D±(εγ)).

In Part II.A we treat y ∈ Bσ(φ±), followed by the case y ∈ Bσ(v) ∩ D±(εγ) for v ∈ Eλ
in Part II.B, and finally the situation y ∈ U−η,σ(v, w) for v, w ∈ Eλ with v → w in Part
II.C.

II.A: Local behavior in a ball around a stable state

Claim II.A.1: Close to a stable state there is exponential convergence. For any
v ∈ {φ+, φ−} there are δs = δs(v) > 0, κs = κs(v) > 0 and εs = εs(v) > 0 such that for
all 0 < σ 6 δs, 0 < ε 6 εs, y ∈ Bσ(v) and

θ2(y, v, σ, ε) := {t > 0 | u(t; y) ∈ Bεγ (v)}

the inequality
θ2 6 κsγ | ln ε| for θ2 = θ2(y, v, σ, ε)
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holds.
This will follow from Lemma B.3 below.

II.B: Local behavior in D±(εγ) in a ball around an unstable state.

Claim II.B.1: Trajectories in D±(εγ) leave balls around unstable states in at most
logarithmic time in ε. For each v ∈ Eλ \{φ+, φ−} there exist constants δu = δu(v) > 0
and κu = κu(v) > 0 such that for all 0 < σ 6 δu there is εu = εu(v, σ) > 0 such that
for all 0 < ε 6 εu we have D±(εγ) ∩Bσ(v) 6= ∅, and for all y ∈ D±(εγ) ∩Bσ(v) and

θ3(y, v, σ, ε) := inf{t > 0 | u(t; y) /∈ Bσ(v) ∩ D±(εγ)}

the inequality
θ3 6 kuγ | ln ε| for θ3 = θ3(y, v, σ, ε)

holds.
This results from Proposition B.4 below.

II.C: Local behavior in a tube around a connecting orbit. For arbitrary 0 < η 6 σ

and v, w ∈ Eλ with v → w and y ∈ U−η,σ(v, w) we define the first exit time from
U−η,σ(v, w)

τ3(y, η, σ, v, w) := inf{t > 0 | u(t;x) /∈ U−η,σ(v, w)}.

Claim II.C.1: Tubes around connecting orbits are left at the edges. For v, w ∈ Eλ
with v → w there is δ1 = δ1(v, w) > 0 such that for any 0 < σ 6 δ1 there is
η1 = η1(σ, v, w) > 0 such that for all 0 < η 6 η1 and y ∈ U−η,σ(v, w) we have

u(τ3; y) ∈ ∂U−η,σ(v, w) ∩ (∂Bσ(v) ∪ ∂Bσ(w)) for τ3 = τ3(y, v, w, η, σ).

Proof. Since all trajectories with initial values x ∈ H \S finally enter Bσ(φ+) or Bσ(φ−)
in finite time they have to leave the connecting tube in finite time. The latter is also true
for x ∈ S due to the convergence towards a fixed point on S. Hence τ3(y, v, w, η, σ) <∞
for all v, w ∈ Eλ, 0 < η 6 σ, and y ∈ U−η,σ(v, w).
Since τ3(y, v, w, η, σ) > 0 and by definition of y = u(θ1(x, Uη(Aλ));x), the trajectory

cannot leave U−η,σ(v, w) via its outer hull, because this is part of ∂Uη(Aλ). But Uη(Aλ)
is positive invariant for t > θ1(x, Uη(Aλ)). Hence the only possible exit locus is

u(τ3; y) ∈ ∂U−η (v, w) ∩ (∂Bσ(v) ∪ ∂Bσ(w)) for τ3 = τ3(y, v, w, η, σ).

Claim II.C.2: The exit time from connecting tubes is uniformly bounded. For each
pair of connected orbits v, w ∈ Eλ with v → w there is δh = δh(v, w) such that for all
0 < σ 6 δh there exists η2 = η2(σ, v, w) > 0 such that for 0 < η 6 η2 there exists
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τ4 = τ4(v, w, σ, η) > 0 such that for all y ∈ U−η,σ(v, w) we have

u(τ4; y) ∈ Bσ/2(w).

In other words for

θ4(y, v, w, η, σ) := inf{t > 0 | u(t; y) ∈ Bσ/2(w)}

we have the obtain the estimate

θ4(y, v, w, η, σ) 6 τ4(v, w, η, σ)

for all y ∈ U−η,σ(v, w).
This results from Lemma B.7.

III: Global dynamics by the local behavior and the gradient structure

Claim III.1: Along a cascade of steady states trajectories visit each unstable state
at most once.

1. For any ”cascade” of length k > 2 in Eλ, v1 → . . . → vk, vi ∈ Eλ, we have that
vi 6= vj for i 6= j. Hence it has no loops.

2. There is δg > 0 such that for 0 < σ 6 δg and any cascade v1 → . . .→ vk in Eλ
the trajectory t 7→ u(t;x) for x ∈ D±(εγ) can only move forward along σ-balls
centered at fixed points in the cascade.

3. For all v1, v2 ∈ Eλ with v1 → v2 there is δ2 = δ2(v1, v2) > 0, such that for
0 < σ 6 δ2 there exists η3 = η3(v1, v2, σ) > 0 and ε0 = ε0(v, w, σ) > 0 such that
for all 0 < η 6 η3, 0 < ε 6 ε0 and y ∈ U−η,σ(v1, v2) ∩D±(εγ) there is v3 ∈ Eλ with
v2 → v3 such that for

θ5(y, v1, v2, v3, η, σ) := inf{t > 0 | u(t; y) ∈ U−η,σ(v2, v3)}

the inequality

θ5(y, v1, v2, v3, η, σ) 6 τ4(v1, v2, η, σ) + κu(v2)γ | ln ε|

holds.

Proof. 1. Consider the energy functional

E(z) =
1∫

0

(
1
2

ζ∫
0

∣∣∣∣∂z∂ξ (ξ)
∣∣∣∣2 dξ + λ

(
z4(ζ)− z2(ζ)

))
dζ, z ∈ H.

First note that for all steady states v, w ∈ Eλ, v → w we have E(v) > E(w). As
t 7→ E(u(t;x)) is non-increasing, E(v) > E(w). The equality E(v) = E(w) would
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imply that

0 = d
dtE(u(t;x)) = ∇E(u(t;x))∂u

∂t
(t) =

〈∆u(t;x) + f(u(t;x)), ∂u
∂t

(t;x)〉 = −
∥∥∥∥∂u∂t (t;x)

∥∥∥∥2

holds for any x ∈ C(v, w) and t ∈ R implying that C(v, w) ⊂ Eλ, which is absurd.
Hence for v → w we have E(v) > E(w). Thus for any cascade v1 → . . . → vk we
obtain

E(v1) > · · · > E(vk).

2. Due to the continuity of H = H1
0 (0, 1) 3 z 7→ E(z) ∈ R there is δg > 0 such that

for 0 < σ 6 δg and each cascade v1 → . . .→ vk in Eλ we have

sup
w∈Bσ(v1)

E(w) > inf
w∈Bσ(v1)

E(w) > · · · > sup
w∈Bσ(vk)

E(w) > inf
w∈Bσ(vk)

E(w).

Since t → E(u(t;x)) is non-increasing, each trajectory (u(t;x))t>0 that visits
Bσ(vi) in a cascade cannot come back to the previous one Bσ(vi−1).

3. By Claim II.C.2 for all v1, v2 ∈ Eλ with v1 → v2 there exists δh = δh(v1, v1) such
that for 0 < σ 6 δh there is η2 = η2(v1, v2, σ) > 0 which ensures for 0 < η 6 η2
the existence of τ4 = τ4(v1, w2, η, σ) > 0 such that for y ∈ U−η,σ(v1, v2) we have

u(τ4; y) ∈ Bσ/2(v2).

Due to the positive invariance of Uη(Aλ) and D±(εγ) for any ε > 0 we obtain

u(τ4; y) ∈ Bσ/2(w) ∩ Uη2(Aλ) ∩ D±(εγ).

By Claim II.B.1 and the positive invariance of Uσ(Aλ), for v2 ∈ Eλ \ {φ+, φ−}

there are constants κu = κu(v2) > 0 and δu = δu(v2) > 0 such that for 0 < σ 6
δu
2

there is ε0 > 0 such that for 0 < ε 6 ε0 and z ∈ Bσ(v2) ∩ D±(εγ) we have for
t > κuγ| ln ε|

u(t; z) ∈ Bc2σ(v2) ∩ D±(εγ).

We now fix

δ2(v1, v2) = 1
2 (δb ∧ δh(v1, v2) ∧ δ1(v1, v2) ∧ δu(v2) ∧ δg(v1, v2))

and 0 < σ 6 δ2(v1, v2). Then there exists

η3 = η3(v1, v2, σ) = η1(v1, v2, σ) ∧ η2(v1, v2, σ) ∧ d(σ)

with d(σ) defined in (B.5), for which we fix 0 < η ≤ η3. We denote N(λ) = |Eλ|.
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By Proposition B.1

N(λ) = 2d
√
λ

π
e − 1. (B.10)

Hence there are finitely many fixed points w1, . . . , wl ∈ Eλ, that are connected
with v2, v2 → w1, . . . , v2 → wl. Since 0 < η 6 d(σ) for d(σ) defined in (B.5), the
sets

U−η,σ(v2, wk), k = 1, . . . , li (B.11)

are pairwise disjoint in Uη(Aλ), which is positive invariant. Hence, by continuity of
t 7→ u(t;x), leaving Uη(Aλ)∩B2σ(v2) is equivalent to enter one of the connecting
tubes (B.11), say U−η,2σ(v2, wki). By the statement of Part 2 wki 6= v1. Call
wki = v3. In other words for y ∈ Uη,σ(v1, v2)

θ5(y, v1, v2, η, σ, ε) := inf{t > 0 | u(t; y) ∈ U−η,σ(v2, w3) ∩ D±(εγ)}

we have

θ5(y, v1, v2, η, σ, ε) = inf{t > 0 | u(t; y) ∈
(
U−η,σ(v1, v2) ∩B2σ(v2)

)c ∩ D±(εγ)}.

By the flow property and Claims II.B.1 and II.C.2 we obtain for all y ∈ Uη,σ(v1, v2)

θ5(y, v1, v2, η, σ, ε) = θ4(y, v1, v2, η, σ) + θ3(u(θ4(y, v1, v2, η, σ), v2, σ, ε)
6 τ4(v1, v2, η, σ) + κu(v2)γ | ln ε|. (B.12)

We conclude the desired result. We fix

δ0 := δu(0) ∧
(

min
v,w∈Eλ\{φ+,φ−}

v→w

δ2(v, w)
)
∧ δc ∧

(
min

v∈{φ+,φ−}
δs(v)

)

for
δc = min

v∈Eλ\{φ+,φ−}
w∈{φ+,φ−}

v→w

δ1(v, w) ∧ δ2(v, w).

Then for 0 < σ 6 δ0 define

η0 :=
(

min
v,w∈Eλ\{φ+,φ−}

v→w

η3(v, w, σ)
)
∧
(

min
v∈Eλ\{φ+,φ−}
w∈{φ+,φ−}

v→w

η1(v, w) ∧ η2(v, w)
)

and fix 0 < η 6 η0. Then there exists

ε0(σ) :=
(

min
v∈{φ+,φ−}

εs(v, σ) ∧ εb(v, σ)
)
∧
(

min
v∈Eλ\{φ+,φ−}

εu(v, σ)
)
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such that for all 0 < ε 6 ε0 the statements of the Claims I.1, II.A.1, II.B.1, II.C.1,
III.C.2 are true simultaneously for all v ∈ Eλ involved. Define

θ6(x) := inf{t > 0 | u(t;x) ∈ B(1/2)ε2γ (φ±)}.

For x ∈ D±(εγ) by Claim I.2

u(t+ θ1(x, Uη/2(Aλ));x) ∈ Uη/2(Aλ) ⊂ Uη,σ(Aλ) (B.13)

for all t > 0. We have to distinguish three cases according to where u(θ(x, Uη/2(Aλ);x)
lies. Either

u(θ1(x, Uη/2(Aλ);x) ∈ Bσ(φ±) (B.14)

or there is v ∈ Eλ \ {φ+, φ−} such that

u(θ1(x, Uη/2(Aλ);x) ∈ Bσ(v) ∩ Uη,σ(Aλ) (B.15)

or there are v, w ∈ Eλ such that v → w and

u(θ1(x, Uη/2(Aλ);x) ∈ U−η,σ(v, w). (B.16)

Case (B.14) is contained in the two preceding cases. For convenience we first treat case
(B.16). By (B.13) and Claim III.1.2 and III.1.3 for x ∈ D±(εγ) there is k = k(x) ∈
{1, . . . , N(λ)} and a cascade of steady states v1 → . . . → vk → vk+1 = φ± in Eλ of
length k such that the trajectory u(· ;x) visits all balls Bσ(vi) or radius σ once along
the cascade. The case k = 1 means that there is an unstable state v ∈ Eλ with v → φ±

and
u(θ1(x, Uη/2(Aλ));x) ∈ U−η,σ(v, φ±).

Hence

θ6(x) = θ1(x, Uη/2(Aλ)) + θ4(u(θ1(x, Uη/2(Aλ);x), v, φ±, η, σ)
+ θ2(u(θ4(u(θ1(x, Uη/2(Aλ);x), v, φ±, η, σ);x), φ±, σ)

6 τ1(η/2) + τ4(v, φ±, η, σ) + κs(φ±)γ | ln ε|. (B.17)

This covers the case (B.14). For the cases k > 2 we have to introduce the following
global versions of θ5 form Claim III.1.3

σ0(x, η, σ) = θ1(x, Uη/2(Aλ))
σi(x, η, σ) = θ5(u(σi−1(x, η, σ);x), vi, vi+1, vi+2, η, σ), i ∈ {1, . . . , k − 1}.
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In this case we may estimate

θ6(x) = θ1(x, Uη/2(Aλ)) +
k(x)∑
i=1

σi(x, η, σ) + θ4(u(σk(x)(x, η, σ);x), vk, φ±, η, σ)

+ θ2(u(θ4(u(σk(x)(x, η, σ);x), vk, φ±, η, σ);x), φ±, σ)

6 τ1(η/2) +
k(x)∑
i=1

τ4(vi, vi+1, η, σ) + κu(vi+1)γ| ln ε|

+ τ4(vk(x), vk(x)+1, η, σ) + κs(φ±)γ | ln ε|
6 τ1(η/2) +N(λ) max

v,w∈Eλ
v→w

τ4(v, w, η, σ)

+N(λ)
(

max
v∈Eλ\{φ+,φ−|

κu(v) + max
{v∈{φ+,φ−}

κs(v)
)
γ| ln ε|

=: Trec + κγ| ln ε|.

The expression in the preceding line is also an upper bound for (B.17) covering the case
(B.14). Case (B.15) can be obtained analogously with a slightly shifted summation, for
which the identical upper bound is attained. This finishes the proof.

B.2.3. Local Convergence to Stable States
In this Subsection we prove Claim II.A.1 in the proof of Proposition B.2.

Lemma B.3 (Local exponential convergence to stable states). For v ∈ {φ+, φ−} there
are constants δs = δs(v) > 0 and κs = κs(v) > 0 such that for all γ > 0 there is
εs = εs(γ) > 0 such that for all 0 < σ 6 δs, 0 < ε < εs, y ∈ Bσ(v) and t > κsγ| ln ε|

‖u(t; y)− v‖ 6 (1/2)ε2γ .

In addition, for the balls Bσ(v) with respect to | · |∞ it follows for all t > 0

u(t;Bσ(v)) ⊂ Bσ(v).

Proof. For t > 0, y ∈ H and v ∈ {φ+, φ−} denote by R(·; y) := u(·; y)− v.

1. We argue similarly as in the proof of Lemma 3.4, equation (3.8), and obtain

dR
dt = ∆R+ f ′(v)R+

 1∫∫
0

f ′′(v + θ2u+ θ2θ1R) (u− v + θ1R) dθ2dθ1

R. (B.18)

We fix η > 0 to be specified later and define for y ∈ Bη(v)

t∗η := inf{t > 0 | |R(t; y)|∞ > η}.
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For y ∈ Bη(v) we have t∗η > 0. For convenience we drop the arguments of R. Multiplying
(B.18) with R and using the stability of v, which ensures that there exists Λ > 0 and
δ1 > 0 such that for 0 < σ 6 δ1 and w ∈ Bσ(v) we have 〈∆w + f ′(v)w,w〉 6 −Λ|w|2.
We obtain for 0 6 t 6 t∗η

1
2

d
dt |R|

2 + Λ|R|2

6

 1∫∫
0

|f ′′(v + θ2u+ θ2θ1R)|∞ dθ2 dθ1

 1∫
0

(|u− v|∞ + |R|∞)R2 dζ

6

(
|v|∞ + |u|∞ + |R|

)(
|u− v|∞ + |R|∞

)
|R|2

6 6λ
(

2|v|∞ + |u− v|∞ + |R|∞
)(
|u− v|∞ + |R|∞

)
|R|2.

If we choose

δ2 ≤
|v|∞

2

(√
1 + Λ

12λ|v|∞
− 1
)

we obtain for η 6 δ2 that
d
dt |R|

2 6 −Λ|R|2

and for σ 6 η and y ∈ Bσ(v) with respect to | · |∞ by Gronwall’s Lemma

|R(t)|2 6 σ2e−Λt 6 σ2e−Λ̃t. (B.19)

where Λ̃ := min
(
Λ, c02

)
and −c0 was the largest eigenvalue of the Laplacian.

2. We next sharpen the estimate in the first part to an estimate in the ‖ · ‖-norm. To
this end, we again use the regularizing effect of the heat semigroup on [0, 1] and estimate
for t > 1, σ 6 δ1 ∧ δ2 and y ∈ Bσ(v)

‖R(t; y)‖ 6e
−c0t

t1/2
|R(0; y)|+ C1

t∫
0

e−c0(t−s)

(t− s)1/2 |f(u(s; y))− f(v)| ds

6e−(1/2)Λ̃tσ + C1

t∫
0

e−c0(t−s)

(t− s)1/2

1∫
0

|f ′(v + θR(s; y))|∞|R(s; y)| dθ ds

6e−(1/2)Λ̃tσ + 3C1λ
(
(|v|∞ + η)2 + 1

) t∫
0

e−c0(t−s)

(t− s)1/2 |R(s; y)| ds
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Inserting (B.19) we obtain

‖R(t; y)‖ 6e−(1/2)Λ̃tσ + 3
2C1λ

(
|v|2∞ + Λ

9λ + 1
) t∫

0

e−c0(t−s)

(t− s)1/2σe
−(1/2)Λ̃s ds


6e−(1/2)Λ̃tσ + 3

2C1λ

(
|v|2∞ + Λ

9λ + 1
) t∫

0

e−(c0−(1/2)Λ̃)(t−s)

(t− s)1/2 ds


︸ ︷︷ ︸

6C2

σe−(1/2)Λ̃t.

Hence, for t > 1,
‖u(t; y)− v‖ 6 (1 + C2)σe−(1/2)Λ̃t.

Thus for δ3 < 1
2(1+C2) we may choose κs := 4

Λ̃
and δs := min(δ1, δ2, δ3). Then for

σ 6 η 6 δs, εs(σ) = σ ∧ exp
(
− 1

κsγ

)
and 0 < ε 6 εs, y ∈ Bσ(v) and t > κsγ| ln ε|

‖u(t; y)− v‖ 6 (1/2)ε2γ .

If we choose additionally
1
2ε

2γ
s 6 η

we can deduce that t∗η = ∞ and the balls Bσ(v) with respect to | · |∞ are positively
invariant. This finishes the proof.

B.2.4. Local Repulsion from Unstable States in Reduced D.o.A.

In this Subsection we prove Claim II.B.1 in the proof of Theorem B.2.

Proposition B.4. For π2 < λ 6= (πn)2, n ∈ N given and v ∈ Eλ \ {φ+, φ−} there exists
δu = δu(v) > 0 and κu = κu(v) > 0 such that for 0 < σ 6 δu there is εu = εu(v, σ) > 0
ensuring for 0 < ε 6 εu that D±(εγ)∩Bσ(v) 6= ∅, and we have for x ∈ D±(εγ)∩Bσ(v)
and t > κuγ| ln ε| that

u(t;x) ∈ Bcσ(v) ∩ D±(εγ).

Let γ > 0 be fixed throughout this Subsection. We study the local behaviour of the
solution u(·;x) of the Chafee-Infante equation starting in x ∈ Bσ(v) for small σ > 0
and an unstable state v ∈ Eλ \ {φ+, φ−}. More precisely we are interested to determine
an upper bound in terms of ε > 0 of the time u(· ;x) starting in x ∈ Bσ(v) ∩ D±(εγ)
needs to leave Bσ(v) ∩ D±(εγ) for σ > 0, ε > 0 sufficiently small. For convenience we
recall that the formal Chafee-Infante equation (2.6) for fixed Chafee-Infante parameter
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π2 < λ 6= (πn)2, n ∈ N, is given as

∂

∂t
u(t, ζ) = ∂2

∂ζ2u(t, ζ) + f(u(t, ζ)) ζ ∈ [0, 1], t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, ζ) = x(ζ), ζ ∈ [0, 1],

where f(y) = −λ(y3 − y).

Without loss of generality let v = 0 ∈ Eλ \ {φ+, φ−}. Hence f(v) = 0. We set

B : D(B) ⊂ H → H, Bw =∂2w

∂ζ2 + f ′(v)w, w ∈ D(B)

G : H → H, G(w) =f(w)− f ′(v)w, w ∈ H.

Thus G(v) = G′(v) = 0. It is well-known that B has a discrete spectrum and a finite
number of positive eigenvalues. Denote by ω0 the smallest positive eigenvalue of B. We
denote by Pu : H → H+ the orthogonal projection ontoH+, the span of the eigenvectors
of the positive eigenvalues, and respectively Ps : H → H−, where H− is the span of
the eigenvectors of the negative eigenvalues. Since for the Chafee-Infante parameter
π2 < λ 6= (πn)2, n ∈ N, all steady states in Eλ are hyperbolic, 0 is not an eigenvalue
and H = H+ ⊕ H−. We denote by ws = Psw and wu = Puw for w ∈ H. For t > 0
and x ∈ D±(εγ) and the solution u(t;x) of equation (2.6) we use in this subsection the
notation

X(t;x) :=Psu(t;x),
Y (t;x) :=Puu(t;x).

We write

g : H+ ⊕H− → H−, g(wu, ws) := PsG(w),
h : H+ ⊕H− → H+, h(wu, ws) := PuG(w)

and by (T (t))t>0 the C0-semigroup by the linearized operator B = ∆ + f ′(v). Solving
equation (2.6) for u(t;x) is then equivalent to solving the coupled system of projected
equations

X(t) =T (t)xs +
t∫

0

T (t− ϑ)g(X(ϑ), Y (ϑ)) dϑ (B.20)

Y (t) =T (t)xu +
t∫

0

T (t− ϑ)h(X(ϑ), Y (ϑ)) dϑ (B.21)

for (X(t), Y (t)) = (X(t;xs), Y (t;xu)).
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For initial values xs ∈ H− we have for all t > 0

|T (t)xs| 6 e−ω0t|xs|.

Moreover T (t)Pu can be extended for x ∈ H+ to t 6 0 with

|T (t)xu| 6 eω0t|xu|.

Before giving the proof we sketch the so-called Lyapunov-Perron construction of the
unstable manifold. More details can be found in Temam [1992], Chapter IX.

Definition B.5. Let (Ψ(t))t>0 be a dynamical system on H, i.e. a family of continuous
operators Ψ(t) : H → H satisfying

Ψ(t+ s) = Ψ(t) ◦Ψ(s), t, s > 0.

Let v ∈ H a fixed point, i.e. Ψ(t)v = v. The unstable manifold Wu(v) of v is defined as

Wu(v) := {w ∈ H | lim
t→−∞

Ψ(t;w) = v}.

the stable manifold Ws(v) of v by

Ws(v) := {w ∈ H | lim
t→∞

Ψ(t;w) = v}.

Sketch of the Lyapunov-Perron Construction of the Unstable Manifold: For a
radius σ > 0 let Bσ(v) a ball centered in the unstable solution v = 0. First of all we
truncate g and h by a function ψσ : H → H, ψσ ∈ C∞(H;H) such that

ψσ(x) =
{

1 if x ∈ Bσ(v)
0 if x ∈ Bc2σ(v).

We denote by Lσ > 0 the common Lipschitz constant of g and h on B2σ(v). Clearly

Lσ → 0, if σ → 0.

We want to construct the unstable manifold Wu(v) as the graph of a bounded function
Φu : H+ → H−, which is Lipschitz continuous with Lipschitz constant LΦu > 0 such
that there is δΦu = δΦu(v) > 0 such that for 0 < σ 6 δΦu

Wu(v) = {h+ Φu(h) | h ∈ Bσ(v) ∩H+}. (B.22)

We assume the existence of Φu and that Φu ∈ C1 in order to be allowed to apply
the calculus. This is done by fixed point arguments, which can be found in Temam
[1992], Chapter IX. However, we shall prove that if it exists it provides an exponentially
attracting, invariant unstable manifold for the truncated equation on Bσ(v).
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Figure B.3.: Sketch of the exit from a neighborhood an unstable point

Claim 1: Assume that Φu exists, such that (B.22) is fulfilled, then there is δ1 = δ1(v) >
0 such that for 0 < σ 6 δ1 the projection

R(t; y) := Y (t; y) + Φu(Y (t; y))

satisfies (2.6) for all y ∈ Bσ(v) ∩H+ and t ∈ R and limt→−∞R(t; y) = 0.

Proof. Let δl be the maximal positive number such that for 0 < σ 6 δl

Lσ(1 + LΦu) 6 ω0

2 . (B.23)

Set δ1 = δΦu ∧ δl and fix 0 < σ 6 δ1. Under the assumption that Φu exists and (B.22)
holds true the function Φu satisfies for y ∈ H+ ∩Bσ(0)

Φu(y) =
0∫

−∞

T (−s)g(Φu(Y (s; y)), Y (s; y)) ds, (B.24)

Y (s; y) =T (s)y +
s∫

0

T (s− r)h(Φu(Y (r; y)), Y (r; y)) dr, s 6 0.
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For details consult Temam [1992], Chapter IX. By the flow property we obtain for t ∈ R

Φu(Y (t; y)) =
t∫

0

T (t− s)g(Φu(Y (s; y)), Y (s; y)) ds

Y (t; y) =T (t)y +
t∫

0

T (t− s)h(Φu(Y (s; y)), Y (s; y)) ds.

Hence for t ∈ R and y ∈ Bσ(v)∩H+ the function R(t; y) = Φu(Y (t; y))+Y (t; y) satisfies

R(t; y) = T (t)y +
t∫

0

T (t− s)G(R(s; y)) ds, t 6 0.

In addition, by the local Lipschitz continuity of Φu and G in Bσ(0) we obtain for t 6 0

|Y (t; y)| 6 eω0t|y|+
0∫
t

eω0(t−ϑ)Lσ(1 + LΦu)|Y (ϑ; y)| dϑ.

By Gronwall’s Lemma
|Y (t; y)| 6 e(ω0−Lσ(1+LΦu ))t|y|

and due to the choice of σ in (B.23) we obtain

|Y (t; y)| 6 e
ω0
2 t|y| → 0, t→ −∞.

Hence Φu(Y (t; y))→ 0, t→ −∞.

Claim 2: Assume that Φu exists and (B.22) is true. Then there is δ2 = δ2(v) > 0 such
that for all 0 < σ 6 δ2 such that for all y ∈ Bσ(v) ∩H+ und t > 0

|u(t; y)− Pu(u(t; y))− Φu(Pu(u(t; y)))| 6 e−
ω0
2 t|Ps(y)− Φu(Pu(y))|.

In addition, for all y ∈ Wu(v) the global trajectories (u(t; y))t∈R are of the form
u(t; y) = Y (t; y) + Φu(Y (t; y)).

Proof. Let 0 < σ 6 δ2, δ2 = δΦu ∧δl such that (B.23) is true and y ∈ Bσ(v)∩H+. Since
Y (s;Y (t; y)) = Y (t+ s; y) and by (B.24)

Φu(Y (t; y)) =
0∫

−∞

T (−s)g(Φu(Y (s;Y (t; y))), Y (s;Y (t; y))) ds
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it follows

Φu(Y (t; y)) =
t∫

−∞

T (t− s)g(Φu(Y (s; y));Y (s; y)) ds.

Thus Φu(Y (t; y)) is a mild solution of

d
dtΦu(Y (t; y)) = BΦu(Y (t; y)) + g(Φu(Y (t; y)), Y (t; y)) (B.25)

with the respective initial condition. Since by the chain rule

d
dtΦu(Y (t; y)) = (∇Φu)(Y (t; y)) ∂

∂t
Y (t; y)

= (∇Φu)(Y (t; y))(BY (t; y) + h(X(t; y), Y (t; y)) (B.26)

we obtain at t = 0 that

(∇Φu)(y)(By + h(Φu(y), y))−BΦu(y)−G(Φu(y), y) = 0 for all y ∈ H.

Let (X(t; y);Y (t; y))t>0 be the associated solution of u(t; y). In the next calculation we
omit the arguments for convenience. By identification of the right-hand side of (B.25)
and (B.26) we obtain

d
dt (X − Φu(Y )) = BX + g(X,Y )−∇Φu(Y )(BY + h(X,Y ))

= B(X − Φu(Y )) + g(X,Y )− g(Φu(Y ), Y ) +∇Φu(Y )h(Φu(Y ), Y )−∇Φu(Y )h(X,Y )

−∇Φu(Y )(BY )−∇Φu(Y )h(Φu(Y ), Y ) +B(Φu(Y )) + g(Φu(Y ), Y )

= B(X − Φu(Y )) + g(X,Y )− g(Φu(Y ), Y ) +∇Φu(Y )(h(Φu(Y ), Y )− h(X,Y )).

Therefore Z(t; y) = X(t; y)− Φu(Y (t; y)) satisfies for t > 0

Z(t; y) = T (t)Z(0; y) +
t∫

0

T (t− s) (g(X(s; y), Y (s; y))− g(Φu(Y (s; y)), Y (s; y))) ds

+
t∫

0

T (t− s)∇Φu(Y (s; y)) (h(Φu(Y (s; y)), Y (s; y))− h(X(s; y), Y (s; y))) ds.

Taking the L2-norm we use the Lipschitz continuity of Φu and G truncated by ψσ we
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arrive at

|Z(t; y)|

6 e−ω0t|Z(0; y)|+
t∫

0

e−ω0(t−s)Lσ|Z(s; y)| ds+
t∫

0

e−ω0(t−s)LΦuLσ|Z(s; y)| ds.

By Gronwall’s Lemma we obtain

|Z(t; y)| 6 e−(ω0+Lσ(1+LΦu ))t|Z(0; y)|.

Thus for 0 < σ 6 δl such that (B.23) is true and y ∈ Bσ(v) ∩H+, we have exponential
estimate

|Z(t; y)| 6 |Z(0; y)|e−
ω0
2 t for t > 0.

In other words for y ∈ Bσ(v) ∩H+

|X(t; y)− Φu(Y (t; y))| 6 e−
ω0
2 t|X(0; y)− Φu(Y (0; y))|, for t > 0. (B.27)

Hence the graph of Φu is exponentially attracting for t → ∞ and invariant. For y ∈
Bσ(v) ∩ H+ let (X(t; y), Y (t; y)) be a solution defined on R

− which converges to the
unstable state 0 for t→ −∞, it is in particular bounded by a constant, M > 0, say

|X(t; y)|+ |Y (t; y)| 6M, t 6 0.

For t0 6 0 and all t > t0 we have

|X(t; y)− Φu(Y (t; y))| 6 e−
ω0
2 (t−t0)|X(t0; y)− Φ(Y (t0; y))| 6 Me−

ω0
2 (t−t0).

Since the left-hand side does not depend on t0 we can pass to the limit t0 → −∞
implying

X(t; y) = Φu(Y (t; y)) for t ∈ R, z ∈ Bσ(v) ∩H+.

Hence a global solution ((X(t; y), Y (t; y))t∈R for y ∈ Bσ(0) ∩H+ lives on the unstable
manifold given as the local graph of Φu in Bσ(v). This finishes the proof of Claim 2.

Remark B.6. The whole construction so far is entirely carried out in the topology of
L2(0, 1).

We can now prove Proposition B.4.

Proof. Fix γ > 0. We show that close to an unstable state v ∈ Eλ there are times t > t0
for appropriate t0 and initial values Z0 for which we obtain an affine upper bound for
the respective unstable projection Y (t;x) = Puu(t;x) of the solution of (2.6). This will
be used for the argument in the second part.
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1. Claim: For v ∈ Eλ \ {φ+, φ−} there is δ3 = δ3(v) > 0 such that for 0 < σ 6 δ3,
there are ε1 = ε1(σ) > 0 and C = C(σ) > 0 which ensures that for all 0 < ε 6 ε1 and
x ∈ D±(εγ) ∩ Bσ(v) there is t0 = t0(ε, σ) > 0 exists Z0 = Z0(t0, x) ∈ D±(εγ) ∩ Bσ(v)
such that for t0 6 t 6 s the inequality

|Y (t;Z0)| 6 e−
ω0
2 (s−t)|Y (s;Z0)|+ Cεγ .

is satisfied.

Without loss of generality, we still consider v = 0. Fix δ3 = δ3(v) = δ1 ∧ δ2 and
0 < σ 6 δ3 such that Claim 1 and Claim 2 are true. Fix ε1 = ε1(σ) > 0 small
enough such that for 0 < ε 6 ε1 we have Bσ(v) ∩ D±(εγ) 6= ∅ and pick an element
x ∈ Bσ(v) ∩ D±(εγ). This is justified by Lemma (2.13). Then we can bound the first
exit time from Bσ(v) ∩D±(εγ) in terms of 0 < ε 6 ε1. Let Φu be the generating graph
of the unstable manifold as constructed above with Lipschitz constant LΦu . Due to
estimate (B.27) we obtain

|X(t;x)− Φu(Y (t;x))| 6 e−
ω0
2 t|Ps(x)− Φu(Pu(x))| 6

1
8ε

γ (B.28)

for
t > t0 := −2γ

ω0
ln(ε) + 2

ω0
ln(8σ) (B.29)

and set Z0 = Z0(x, ε, σ) = (X(t0;x), Y (t0;x)). In other words

|Ps(Z0)− Φu(Pu(Z0))| 6 1
8ε

γ . (B.30)

Note that on the finite dimensional subspace H+ the linearised semigroup (T (t)
∣∣
H+) is

defined for all t ∈ R. For any t, s ∈ R

Y (t;Z0) = T (t− s)Y (s;Z0) +
t∫
s

T (t− r)h(X(r;Z0), Y (r;Z0)) dr

= T (t− s)Y (s;Z0) +
t∫
s

T (t− r)h(Φu(Y (r;Z0)), Y (r;Z0)) dr

+
t∫
s

T (t− r) (h(X(r;Z0);Y (r;Z0))− h (Φu(Y (r;Z0)), Y (r;Z0)) dr.

Note that Φu(v) = 0 and T (t)
∣∣
H+ is a contraction for t 6 0 with operator norm

∣∣T (t)
∣∣∣
H+

∣∣
L(H+) = eω0t.
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Hence we obtain for t0 6 t 6 s with the help of (B.28)

|Y (t;Z0)| 6 eω0(t−s)|Y (s;Z0)|+
s∫
t

eω0(t−r) Lσ(1 + LΦu)|Y (r, Z0)| dr

+
s∫
t

eω0(t−r) Lσ |Φu(Y (r;Z0))−X(r;Z0)| dr

6 eω0(t−s)|Y (s;Z0)|+ Lσ(1 + LΦu)
s∫
t

eω0(t−r) |Y (r, Z0)| dr

+ Lσε
γ

8

s∫
t

e
3ω0

2 (t−r) dr.

Hence Gronwall’s Lemma implies for Ψ(t) := e−ω0t|Y (t;Z0)| the estimate

|Y (t;Z0)| 6 e(ω0−Lσ(1+LΦu ))(t−s)|Y (s;Z0)|+ Lσ
8

2
3ω0

εγ for t0 6 t 6 s (B.31)

Since 0 < σ 6 δl and Lσ(1 + LΦu) < ω0
2 we obtain the desired result for C = Lσ

8
2

3ω0
.

2. Claim: For v ∈ Eλ there is δu = δu(v) > 0 such that for 0 < σ 6 δu there is
εu = εu(σ) > 0 ensuring that for 0 < ε 6 εu we have D±(εγ) ∩ Bσ(v) 6= ∅, and for
x ∈ D±(εγ) ∩Bσ(v) and s > κuγ| ln ε| that

u(s;x) /∈ D±(εγ) ∩Bσ(v).

Denote by Φs : H+ → H− the function that generates the local stable manifold of v as a
graph. More precisely we assume the existence of δΦs > 0 such that for all 0 < σ 6 δΦs

Ws(v) = {h+ Φs(h) | h ∈ Bσ(v) ∩H−}

according to an analogue construction as for Φu. In the same way as for Φu we denote
by LΦs the Lipschitz constant of Φs on Bσ(v). Since H+ is finite dimensional there is
M > 0 such that ‖y‖ 6M |y| for all y ∈ H+. Since the Lipschitz constant Lσ of G on a
ball Bσ(v) ∩H+ becomes arbitrarily small for σ → 0 we may choose δ4 > 0 such that
for 0 < σ 6 δ4

Lσ <
4
M
∧ 3ω0

M
∧ 1.

Fix δu = δΦs∧δ3∧δ4 and 0 < σ 6 δu. We set εu := ε1∧exp(− ln(256Mσ2)
3γ ) and 0 < ε 6 εu.

By construction D±(εγ) is invariant for all ε > 0 under the solution flow and such that
(X(t; z), Y (t; z)) ∈ D±(εγ) for all t > 0 and z ∈ D±(εγ). Hence for all t > 0 and
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z ∈ D±(εγ) by construction (X(t; z),Φs(X(t; z))) ∈ S. Thus for z ∈ D±(εγ) ∩Bσ(v)

‖Y (t; z)− Φs(X(t; z))‖ > dist ((X(t; z), Y (t; z);S) > εγ . (B.32)

By definition the functions Y (· ;x) and Φs(X(· ;x)), x ∈ H, take values in H+, which is
finite dimensional, such that all norms are equivalent there. Hence there is a constant
M > 0 such that ‖y‖ 6M |y| for all y ∈ H+ and

‖Y (t; z)− Φs(X(t; z))‖ 6 M |Y (t; z)− Φs(X(t; z))|. (B.33)

Using Lσ 6 1 and estimate (B.30) in the proof of Claim 1 we obtain for 0 < ε 6 ε0 and
t > t0(v, σ, ε), x ∈ D±(εγ) ∩Bσ(v) and z = Z0 = Z0(t0, x) ∈ D±(εγ) ∩Bσ(v)

|Y (t;Z0)− Φs(X(t;Z0))| 6 |Y (t;Z0)|+ |Φs(X(t;Z0)| 6 |Y (t;Z0)|+ Lσ|X(t;Z0)|

6 |Y (t;Z0)|+ Lσ|X(t;Z0)− Φu(Y (t;Z0))|+ |Φu(Y (t;Z0))|

6 (1 + Lσ)|Y (t;Z0)|+ Lσ
8 εγ . (B.34)

Since in addition Lσ < 4
M by the choice of σ, we can combine (B.34), (B.33) and (B.32)

and obtain
εγ

2M 6
1

1 + Lσ

(
1
M
− Lσ

8

)
εγ 6 |Y (t;Z0)|. (B.35)

Applying inequality (B.31) from Claim 1 to the right-hand side of (B.35) we obtain for
s > t > t0 and Z0 that

εγ
(

1
2M − Lσ

12ω0

)
6 e

ω0
2 (t−s)|Y (s;Z0)|.

Since also Lσ < 3ω0
M we may estimate for s > t > t0 and Z0

εγ

4M 6 e
ω0
2 (t−s)|Y (s;Z0)|. (B.36)

Thus for 0 < ε 6 εu, x ∈ D±(εγ) ∩Bσ(v) and s > t > t0

|u(s+ t0;x)| = |u(s;Z0)| > |Y (s;Z0)| > e
ω0
2 (s−t) ε

γ

4M

Hence
s− t > 2

ω0
(ln(σ4M)− γ ln(ε)) (B.37)

implies
|u(s+ t0;x)| > σ. (B.38)
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Adding t > t0 to (B.37) we may eliminate t and obtain by (B.29) that

s >
2
ω0

(ln(σ4M)− γ ln(ε)) + 2 t0

= 2
ω0

(ln(σ4M)− γ ln(ε)) + 4
ω0

(−γ ln(ε) + ln 8− ln σ)

= 6γ
ω0
| ln(ε)|+ 2

ω0
ln(256Mσ2)

(B.39)

implies the desired result
‖u(s;x)‖ > |u(s;x)| > σ.

Since εu 6 exp(− ln(256Mσ2)
3γ ) inequality (B.39) simpifies for 0 < ε 6 εu to

s >
12γ
ω0

γ| ln(ε)|.

Set κu(v) = 12γ
ω0

. This finishes the proof.

B.2.5. Uniform Exit from Small Tubes around Heteroclinic Orbits

In this Subsection we prove Claim II.C.2 in the proof of Proposition B.2, stating that
the exit times from tubes around heteroclinic orbits can be estimated by a constant.

Lemma B.7 (Uniform exit time from tubes around connecting orbits). For
v, w ∈ Eλ with v → w there is δh = δh(v, w) > 0 such that for all 0 < σ < δh there
exists η2 = η2(σ, v, w) > 0 such that for 0 < η 6 η2 we obtain τ4 = τ4(η, σ, v, w) > 0
ensuring for all y ∈ U−η,σ(v, w) that

u(τ4; y) ∈ Bσ/2(w).

Proof. Fix a point z ∈ C(v, w) such that ‖v − z‖ = σ. Since C(v, w) = {u(t; z), t ∈ R}
and E(v) > E(w) the solution u(t; z)→ v for t→ −∞. Hence

t− := inf{t ∈ R | ‖v − u(t; z)‖ = σ} > −∞.

Additionally t 7→ u(t; z) is continuous such that ‖u(t−; z) − v‖ = σ. Denote by z− :=
u(t−; z). It is uniquely determined and depends only on σ. Since C(v, w) = {u(t; z−), t ∈
R} and E(v) > E(w) the solution u(t; z−)→ w for t→ +∞. Hence there exists a time
τ4 = τ4(σ, v, w) > 0 such that for t > τ4

‖u(t; z−)− w‖ 6 σ

4
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and thus for all z ∈ Cσ(v, w) := C(v, w) ∩Bcσ(v) ∩Bcσ(w)

‖u(t; z)− w‖ 6 ‖u(t; z−)− w‖ 6 σ

4 .

The map x 7→ u(τ4;x) is uniformly continuous on bounded sets. This implies that there
is η2 = η2(σ, v, w) > 0 such that for 0 < η 6 η2 the inequality ‖y1 − y2‖ 6 η implies

sup
s∈[0,τ4]

‖u(s, y1)− u(s, y2)‖ 6 σ

4 .

We can coose η2 6 σ. Then for 0 < η 6 η2 and y ∈ U−η,σ(v, w) it follows that
dist (y, Cσ(v, w)) 6 η hence there is z ∈ Cσ(v, w) with ‖y − z‖ 6 η. We conclude
that for all y ∈ U−η,σ(v, w)

‖u(τ4; y)− w‖ 6 ‖u(τ4; y)− u(τ4; z)‖+ ‖u(τ4; z)− w‖ 6 σ

2 .
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B.3. An Integrability Result
The structure of the reaction term f in the Chafee-Infante equation guarantees that the
solution u(·;x), started in some arbitrary x ∈ H, enters any ball with respect to the
| · |∞-norm around the origin in finite time Trec independent of x. This remarkable fact
is exploited in the estimates of Chapter 5, in the form of a bound on

∫ t
0 |u(t;x)|2∞ ds

by a value independent of x. For this we need an upper bound b(t) on |u(t)|∞ which
is integrable in time t over finite time intervals. In Eden et al. [1994], p. 99, Lemma
5.6, the authors obtained the following result on the speed of convergence towards the
absorbing set B√2(0) in L∞(0, 1).

Proposition B.8. For an absorbing set B ⊂ H of the Chafee-Infante equation which
is bounded in L∞(0, 1), x ∈ B and t > 1

λ

|u(t;x)|∞ 6
√

2.

Since for any x ∈ H it follows that supt>0 |u(t;x)|∞ < ∞, we can get rid of the
condition that B should be bounded in L∞(0, 1). In addition, we can choose B =
H. With the arguments used to prove this statement the authors actually obtain the
following result.

Corollary B.9. For any x ∈ H and t > 0

|u(t;x)|∞ 6 max{
√

2, 1
(λt) 1

2
}.

We only need to improve this result slightly around t = 0 in order to get the integra-
bility of |u(t;x)|2∞ in t uniformly in x.

Lemma B.10. There is a polynomial p such that for any initial value x ∈ H and any
t > 0

t∫
0

|u(s;x)|2∞ ds 6 p(t).

Proof. The proof is structured as follows.

1. In the first part of the proof we use a trick to get rid of the diffusion term in the
Chafee-Infante equation. We shall show that there is a polynomial p such that for t > 0
and x ∈ H

t∫
0

(t− r)|u(x; r)|7/27/2dr 6 p(t).

For x 6= 0 the norm |u(t;x)|q 6= 0 for all q > 1 and t > 0. The main idea consists
in choosing η > 0 and multiplying the deterministic equation (2.6) by u(|u|2 + η)−1/4,
omitting the dependence on x ∈ H and ζ ∈ [0, 1], to get for the term on the left hand
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side

1∫
0

(
∂u

∂t

u

(u2 + η)1/4

)
dζ =

1∫
0

∂

∂t

2
3(u2 + η)3/4 dζ = 2

3
d
dt

1∫
0

(u2 + η)3/4 dζ.

The contribution of the diffusion term can be seen to be negative, using integration by
parts

1∫
0

(∆u)u(u2 + η)−1/4dζ = −
1∫

0

(∇u)∇
(
u(u2 + η)−1/4

)
dζ

= −
1∫

0

(∇u)2
(

(u2 + η)−1/4 − u1
4(u2 + η)−5/42u

)
dζ

= −
1∫

0

(∇u)2
(

(u2 + η)−1/4 − u2

2 (u2 + η)−5/4
)

dζ =

−
1∫

0

(∇u)2

(u2 + η)1/4︸ ︷︷ ︸
>0

(
1− 1

2
u2

u2 + η

)
︸ ︷︷ ︸

>1/2

dζ.

And for the reaction term we can write

1∫
0

(−u3 + u)u(u2 + η)−1/4 dζ =
1∫

0

−u4 + u2

(u2 + η)1/4 dζ.

Neglecting the negative diffusion term, and integrating in time between s and t for any
η > 0 we obtain the inequality

2
3

1∫
0

(
u(t)2 + η

)3/4 dζ − 2
3

1∫
0

(
u(s)2 + η

)3/4 dζ 6 λ

t∫
s

1∫
0

−u4(r) + u2(r)
(u(r)2 + η)1/4 dζdr,

and hence by monotone convergence for η → 0

2
3 |u(t)|3/23/2 −

2
3 |u(s)|3/23/2 6 λ

t∫
s

−|u(r)|7/27/2 + |u(r)|3/23/2 dr.

Dividing by λ we hence get for any s 6 t

t∫
s

|u(r)|7/27/2 dr 6

t∫
s

|u(r)|3/23/2 dr − 2
3λ |u(t)|3/23/2 + 2

3λ |u(s)|3/23/2.
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Integrating in s from 0 to t and appealing to the preceding Corollary B.9 gives an upper
bound independent of an initial value, according to

t∫
0

(t− r)|u(r)|7/27/2 dr 6

t∫
0

(t− r)|u(r)|3/2∞ dr + 2
3λ

t∫
0

|u(r)|3/2∞ dr

6

t∫
0

(t− r) max
{

1
(λr)3/4 , 2

3/4
}

dr + 2
3λ

t∫
0

max
{

1
(λr)3/4 , 2

3/4
}

dr.

We can obtain an explicit expression for the bound for t > 1/(2λ) by computing

t∫
0

(t− r) max
{

1
(λr)3/4 , 2

3/4
}

dr =

1
2λ∫

0

(t− r) 1
(λr)3/4 dr +

t∫
1

2λ

(t− r)23/4 dr

= t

1
2λ∫

0

r−3/4 dr
λ3/4 −

1
2λ∫

0

r1/4 dr
λ3/4 + 23/4t(t− 1

2λ )− 23/4 t2

2 + 23/4

(2λ)22

= 4λ−3/4

(2λ)1/4 t−
4λ−3/4

5(2λ)5/4 + 23/4 t2 − 23/4

2λ t− 23/4 t2

2 + 23/4

(2λ)22

= t2

21/4 +
(

22

21/4 −
1

21/4

)
t

λ
+
(

1
29/4 −

23/4

5

)
1
λ2 = t2

21/4 + 3
21/4

t

λ
− 3

29/45
1
λ2

and

2
3λ

t∫
0

max
{

1
(λr)3/4 , 2

3/4
}

dr = 2
3λ

1
λ3/4

1/(2λ)∫
0

r−3/4 dr + 2
3λ23/4

(
t− 1

2λ

)

= 2
3λ7/4

4
21/4λ1/4 + 27/4

3λ t− 23/4

3λ2 = 27/4

3
t

λ
+ 4

3
1
λ2 .

Summing up the two preceding estimates yields

t∫
0

(t− r)|u(r)|7/27/2 dr 6 2−1/4t2 +
(

3
21/4 + 27/4

3

)
t

λ
+
(

4
3 −

3
29/45

)
1
λ2

= 2−1/4t2 + 13
3 21/4

t

λ
+ 215/45− 9

3 5 29/4
1
λ2 6 2−1/4

(
t2 + 13

2
t

λ
+ 90

3 5 4
1
λ2

)
6 t2 + 7 t

λ
+ 2 1

λ2 . (B.40)
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2. In the second part of the proof we shall show that there is a polynomial q such that
for t > 1

2λ , x ∈ H, we have
t∫

0

||u(x; s)||2ds 6 q(t).

Again we omit the dependence of u on x. First note that by Hölder’s and Jensen’s
inequalities for p = 7/4 and p′ = 7/3 and any t > 0

t4/7

2

 t/2∫
0

|u(r)|22 dr


4/7

6
t

2

t/2∫
0

|u(r)|7/22 dr 6 t

2

t/2∫
0

|u(r)|7/27/2 dr

6

t∫
0

(t− r)|u(r)|7/27/2 dr,

whence
t/2∫
0

|u(r)|22 dr 6 4
t

 t∫
0

(t− r)|u(r)|7/27/2 dr

7/4

. (B.41)

Now we return to the representation of |u|22 by the Chafee-Infante equation which gives
for s, t > 0, s 6 t

1
2 |u(t)|22 −

1
2 |u(s)|22 +

t∫
s

|∇u(r, ζ)|2 ds+
t∫
s

λ[|u(r)|44 − |u(r)|22] dr = 0.

This immediately implies

t∫
s

||u(r)||2 dr 6 1
2 |u(s)|2 + λ

t∫
s

|u(r)|2 dr.

Again we integrate in s from 0 to t/2 and with the help of (B.40) and (B.41) we arrive
at the estimate

t

4

t/4∫
0

||u(s)||2 ds 6
t/2∫
0

(
t

2 − s
)

(||u(s)||2 ds

6
1
2

t/2∫
0

|u(s)|2 ds+ λ

t/2∫
0

(
t

2 − s
)
|u(s)|2 ds 6

(
1
2 + λ

2 t

) t/2∫
0

|u(s)|2 ds

6 2
(

1 + λ t

t

)(
t2 + 7

λ
t+ 5

4λ2

)7/4
.
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Dividing both sides of this inequality by t and observing that t > 1
2λ we get

t/4∫
0

||u(s)||2 ds 6 8
(

1 + λ t

t2

)(
t2 + 7

λ
t+ 5

4λ2

)7/4

6 2λ2 (1 + λ t)
(
t2 + 7

λ
t+ 5

4λ2

)7/4
.

Now the claim is obvious for large t > 1, and follows for small t by monotonicity of the
integral.

3. To derive the desired estimate from the result of the second part of the proof it
remains to refer to the Sobolev embedding implying that |u|∞ 6 ||u|| for u ∈ H.

Corollary B.11. There is a constant K̄ > 0 such that for all t > 0 and any initial
value x ∈ H

t∫
0

|u(s;x)|2∞ ds 6 K̄ + 2 t.

Proof. We use Proposition B.8 and Lemma B.10 for the estimate for small t.

Corollary B.12. For all n ∈ N there is a constant K̄n > 0 such that for all t > 0 and
any initial value x ∈ H

t∫
0

|u(s;x)|n∞ ds 6 K̄n + 2n/2 t.

Proof. Due to Eden et al. [1994], all we have to show is that
∫ t

0 |u(s;x)|n∞ ds < ∞ for
n ∈ N. We proceed by recursion. The case case n = 1 is a simple consequence of
Corollary B.9 and the integrability of the reciprocal square root. In Lemma B.10 we
treat the case n = 2. Assume that there is a polynomial pn such that for all x ∈ H and
t > 0

t∫
0

|u(s;x)|n∞ ds 6 pn(t).

Following the usual procedure we multiply the equation

∂u

∂t
= ∆u− λ(u3 − u)
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by u|u|n−2 and use the identities

〈∂u
∂t
, u|u|n−2〉 = 1

n

d
dt |u|

n
n,

〈∆u, u|u|n−2〉 = − (n− 1)〈∇u)2, |u|n−2〉,

λ〈u3 − u, u|u|n−2〉 = λ(|u|n+2
n+2 − |u|nn).

Note that in the preceding and following equations |·| is used to denote the absolute value
of real numbers as well as the L2 norm in L2(0, 1). We neglect the negative diffusion
term, for s, t > 0, s ≤ t integrate from s to t and obtain

1
n
|u(t)|nn −

1
n
|u(s)|nn + λ

t∫
s

(
|u(r)|n+2

n+2 − |u(r)|nn
)

dr 6 0.

Integrating in s from 0 to t and using | · | 6 | · |∞ we obtain

t

2

t/2∫
0

|u(r)|n+2
n+2 dr 6

t∫
0

(t− r)|u(r)|n+2
n+2 dr

6

t∫
0

(t− r)|u(r)|n∞ dr + 1
λn

t∫
0

|u(r)|n∞ dr

6 tpn(t) + 1
λn

pn(t) =: pn+2(t/2).

For t > 2 this leads to
t∫

0

|u(r)|n+2
n+2 dr 6 pn+2(t).

For t 6 2 the inequality follows again from the monotonicity of the integral, formally
by adding a constant to pn+2. This completes the recursion from n to n+ 2.
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