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Abstract

This article reviews models of the cerebellum and motor learning starting with the landmark papers by Marr and Albus and going
through present times. The unique architecture of the cerebellar cortex is ideally suited for pattern recognition, but how is pattern
recognition incorporated into motor control and learning systems? The present analysis begins with a discussion of what the cerebellar
cortex needs to regulate through its anatomically defined projections to premotor networks. Next we examine various models of how the
microcircuitry in the cerebellar cortex may be used to achieve its regulatory functions. Having thus defined what it is that Purkinje cells
in the cerebellar cortex must learn, we then evaluate theories of motor learning. We examine current models of synaptic plasticity, credit
assignment and the generation of training information, indicating how they could function cooperatively to guide the processes of motor
learning.

Lesion studies carried out in the 19th century demonstrated that the cerebellum is important for coordinating movements (Florens,
1824). However, mechanistic models of the cerebellum awaited an analysis of the histology of the cerebellum (Braitenberg & Atwood,
1958), and combined analyses of histology and electrophysiology (Marr, 1969; Albus, 1971). The clear orthogonal relationships
between parallel and climbing fibers and the dendritic trees of Purkinje cells convinced Braitenberg that the cerebellum functions as a
timing organ. He viewed the parallel fibers as delay lines and climbing fibers as clock read-out mechanisms, with Purkinje cells firing
only when there was a coincidence of a parallel fiber volley and a climbing fiber activation. In one of his examples, a Purkinje cell
innervating an antagonist muscle fired at an appropriate time delay to terminate a movement at its intended target. Even though parallel
fibers have small diameters and low conduction velocities, the time delays only amount to a few milliseconds, rather short for most
problems in motor control. Another limitation of this theory is its requirement for foci of synchronized activation in the granular layer.
For these and other reasons, Braitenberg’s timing theory has not been as vigorously pursued as the learned pattern recognition theories
developed subsequently by Marr (1969) and Albus (1971).

Like Braitenberg, Marr and Albus were impressed by the anisotropic structure of the cerebellar cortex. In constructing their information
processing theories, they also incorporated several additional anatomical features, as for example the marked differences in the
convergence ratios of parallel (~100,000:1) and climbing (1:1) fibers onto Purkinje cells. Instead of serving as delay lines, parallel fibers
were seen as providing large vectors of potential input, transmitting a diverse array of information. The climbing fibers, instead of
serving as read-out devices, functioned as training signals that adjusted the synaptic weights of parallel fiber synapses, thus teaching
Purkinje cells to recognize specific patterns signaled by their input vectors. Marr, Albus, and Braitenberg alike, assumed that individual
Purkinje cells control elemental movements that are evoked when the Purkinje cell fires or pauses. Marr suggested that the cerebral
cortex, by activating specific climbing fiber inputs, would train the cerebellum to recognize appropriate contexts for emitting the same
movements in a more automatic fashion. Albus instead suggested that climbing fibers would signal errors, training the Purkinje cells to
select movements that would reduce these errors. Many subsequent models have been based on extensions of these basic ideas.

In this article, cerebellar models are assessed on the basis of computations internal to the cerebellar cortex and also in relation to their
function in movement control. Figure 1 summarizes the position of the cerebellar cortex in the global scheme of movement control, as a
regulator of premotor networks. While Florens (1824) had realized that the cerebellar cortex only regulates movements, rather than
actually controlling them, it was more than a century later when Ito’s (1969) electrophysiology explained why this was so. He
demonstrated that inhibition is the sole action of the Purkinje cells that project out of the cerebellar cortex. The cerebellar cortex exerts
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its influence by inhibiting and disinhibiting motor control actions that are formulated elsewhere, in the premotor networks of the
brainstem, sensorimotor cortex and spinal cord. How does the cerebellar cortex perform these regulatory functions? We should answer
this operational question prior to addressing the problem of motor learning, because a knowledge of operational principles will indicate,
or at least provide insight about, what it is that Purkinje cells in the cerebellar cortex must actually learn. This places us in a better
position to evaluate theories of how Purkinje cells are trained by climbing fiber signals originating in the inferior olive.

This article deals generally with diverse models of the cerebellum and motor learning, although it emphasizes the adjustable pattern
generator (APG) model that has been the focus of our research. We begin, in Section 1, with a discussion of the properties of premotor
networks, since this helps to specify what the cerebellar cortex may be attempting to regulate. In Section 2 we discuss the operational
features of several models of the cerebellum, analyzing the mechanisms whereby the cerebellar cortex is presumed to regulate different
types of motor response. Then, in Section 3, we discuss proposed roles of synaptic plasticity and the training signals sent from the
inferior olive in guiding processes of motor learning.

1. Premotor Networks

What is the cerebellum regulating? This is one of the key questions that needs to be answered by a theorist attempting to model the
cerebellum. Since the output actions of cerebellar cortex are exclusively inhibitory, the cerebellar nuclear cells and vestibular neurons
targeted by Purkinje inhibition must be regulated by a disinhibitory action. For this to work, nuclear cells need to have something to
inhibit, either pacemaker activity or excitatory input from another source. In his original paper, Marr (1969) ignored this problem and
simply assumed that the nervous system would somehow convert the inhibitory outputs of the Purkinje cells that had been selected
through pattern recognition into an appropriate set of elemental movements. Albus (1971) proposed that Purkinje cells are trained to
pause, rather than to fire, and that these pauses select elemental commands controlled in some unspecified manner by the individual
nuclear cells. In both cases, the theory on the output side of cerebellum was not very well developed.

1.1 Limb premotor network

The problem of what is being regulated by the cerebellar cortex was briefly addressed in a follow-up article by Blomfield and Marr
(1970). Their proposal was based on Tsukahara’s finding (Tsukahara, Korn & Stone, 1968) of an excitatory recurrent pathway between
the motor cortex and the cerebellar nucleus. Blomfield and Marr postulated that the motor cortex, through some unspecified mechanism,
initiates limb movements by firing a large set of cortical neurons that tend to command many more elemental movements than are
actually needed, and that the continuation of these commands is dependent on positive feedback circulating through the cerebellar
nucleus. The role of Purkinje cells was seen as one of eliminating, through inhibition of nuclear relays, those commands that are not
needed. While the concept of positive feedback in limb premotor networks was pursued experimentally by Tsukahara, it did not receive
much theoretical attention until recently (Houk 1989; Eisenman et al 1991; Houk et al 1993), the exception being Boylls’ thesis (1975)
and some commentary in reviews (Ito, 1970; Arbib et al 1974). Now, however, there is a substantial body of literature, reviewed in
Houk, Keifer & Barto (1993), defining the anatomy and physiology of the limb premotor network and supporting the concept that the
spread of positive feedback through this recurrent network is critical in limb command generation.

Figure 2 summarizes the known anatomy of the limb premotor network and its cerebellar cortical input. Since the interconnections
between nuclei are topographically organized, we postulated that this diagram also applies at the level of microcircuitry, thus defining a
modular architecture for generating the elemental movement commands envisioned by Marr and Albus. A band of Purkinje cells (PCs)
converges on a small cluster of nuclear cells (N) that participates in a topographically organized recurrent circuit that includes thalamic
(T), motor cortical (M), rubral (R), pontine (P) and lateral reticular (L) neurons. Elemental commands are generated by positive
feedback transmitted through this network and are then sent to the spinal cord in corticospinal and rubrospinal fibers. In contemplating
the composite motor command transmitted by all the corticospinal and rubrospinal fibers, one needs to consider a thousand to a million
replications of this module. We envision that the individual elements in this large array of modules function in a partially autonomous
manner, but that they also interact with each other through divergence in their loop connections (Houk et al, 1993). When this modular
concept is combined with simple physiological assumptions, the resultant model provides plausible answers to several basic questions
about the limb motor system.

For example, why are the movement-related discharges recorded from N, T, M, R, P and L neurons so similar to each other? We believe
that this is because elemental commands are generated as a collective computation in this cortico-rubro-cerebellar recurrent network
(Houk et al, 1993). An elemental command is initiated when positive feedback causes activity to intensify nearly simultaneously at all
stages in a given loop. The command is terminated when many of the module’s PCs fire to inhibit N activity, whereupon activity at the
other stages also dies out. In this manner an elemental command is expressed similarly at each of the nuclear stages.

What mechanisms are responsible for recruiting the large number of motor cortical and red nucleus neurons that participate in any given
movement? We believe that commands become distributed to the population of cortical and rubral cells through divergence in modular
loop connections. In this manner, positive feedback spreads from one module to another. This mechanism of progressive spread can
explain the gradual rotations of population vectors in the motor cortex that occur when an animal is required to mentally rotate a visual
target (Eisenman et al, 1991). A progressive spread of positive feedback also explains the common observation that reaction times are
much longer than expected from the conduction delays from sensory receptors, through motor cortex, back to motor neurons. The extra
delay is explained by the need for positive feedback to intensify and spread through the limb premotor network (Houk, 1989).

What is the function of the sensory response properties of cells in motor cortex and red nucleus? A sensory response to a discrete
somatosensory stimulus is relatively weak and is confined to a relatively small population of neurons under conditions in which the
subject ignores the stimulus, presumeably because spontaneous PC discharge prevents the initiation of positive feedback. In contrast,
when the subject wants to use a stimulus as a cue to initiate a movement, we postulate that PCs are turned off in preparation for the
movement. This allows the sensory stimulus to be amplified by positive feedback in the cortico-rubro-cerebellar network, thus initiating
the population activity that produces the movement (Sarrafizadeh, 1994).
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1.2 Eye premotor networks

Recurrent pathways are also prevalent in the premotor networks that control eye movements. There are separate premotor networks for
controlling smooth and saccadic eye movements and for horizontal and vertical components of each. Figure 3 is a summary diagram of
the network that controls smooth horizontal eye movements, based on a conglomeration of several published models (Galiana &
Outerbridge, 1984; Cannon & Robinson, 1987; Peterson & Houk, 1991). This network receives vestibular sensory input from the
semicircular canals and generates eye movement commands. On each side of the brainstem, neurons in the medial vestibular nucleus
(V) are interconnected with prepositus hypoglosius neurons (P) and with intermediate types (PV). In addition, the networks on the two
sides of the brainstem are interconnected through a recurrent inhibitory pathway. V signals are dominated by velocity coding, P signals
by position coding and many cells (eg. PV) combine position and velocity coding. PCs in flocculus and posterior vermal regions of the
cerebellar cortex inhibit some, though not all, of this family of neurons. The output commands from both sides of the brain converge
upon ocular motor neurons to control the horizontal component of smooth pursuit and optokinetic eye movements and the
vestibulo-ocular reflex.

Along with many obvious similarities, there are two important differences between this smooth eye network and the limb network
discussed in the previous section. One is that the smooth eye network operates more or less continuously in its active state instead of
making the many transitions from inactive to active states that are characteristic of the limb network. This fits with the need to control
eye position continuously to stabilize the visual world as opposed to the need to execute discrete limb movements to grasp and
manipulate objects. A second important difference concerns coupling between corresponding networks on the two sides of the brain.
Movements of the two eyes need to be coupled to insure fused binocular images, whereas the left and right limbs can be operated
independently in manipulation tasks. Coupling between the eye networks involves reciprocal inhibitory pathways that function as
additional positive feedback loops. Modeling studies illustrate how this coupling could perform important operational and adaptive
functions (Galiana 1985). The postulated operational function is to promote the conversion of vestibular head velocity sensations into
eye position commands (an integration in the mathematical sense), and the adaptive function is to provide a sensitive site for regulating
the gain of the vestibulo-ocular reflex. PCs in the cerebellar cortex are well situated to regulate the signals generated by this network,
thus controlling integration and other dynamics. PCs also regulate the intensity of responses to vestibular input, thus modifying the
effective gain of the vestibular ocular reflex.

Other examples of premotor networks could be highlighted, each having its characteristic processing mode and function. However,
these two examples are adequate to illustrate the variety of collective computations that can be performed in a rapid and automatic
fashion by the highly interconnected architecture of premotor networks. Now we turn to models of how these collective computations
are operated upon by the regulatory actions of a cerebellar cortex.

2. Cerebellar cortex

How does the cerebellar cortex organize its internal computations so as to regulate the many recurrent pathways in premotor networks?
Although the cerebellum has a remarkably uniform structure, the mechanisms of regulation may nevertheless differ, depending on the
type of premotor network and movement that is being regulated. For example, the regulation of networks, such as the limb premotor
network, that make transitions between passive and active states to control discrete limb movements may differ from the regulation of
networks, such as the smooth eye network, that operate continuously to control smooth eye movements. We begin by considering
models for regulating various types of discrete movements.

Elemental commands recorded from motor cortical and red nucleus neurons, M and R in Figure 2, generally take the form of an intense
burst of discharge, occurring at a frequency that corresponds to the velocity of the movement and having a duration that corresponds to
the duration of the movement (cf. Houk et al 1993). In addition to these phasic components, the neurons may also show tonic
components. The elemental commands just described are seen in isotonic movement tasks, whereas analogous relations to force rate and
force occur in isometric tasks. PCs recorded under similar conditions may show either bursts of discharge or pauses (cf. Thach et al,
1992). It is reasonable to assume that positive feedback is permitted to intensify in the loops that are regulated by pausing PCs, and that
these loops generate commands to agonist muscles. Positive feedback would be inhibited from spreading to loops regulated by bursting
PCs, and we assume that the latter loops are thus inhibited from generating commands to antagonist muscles. The question of how the
cerebellar cortex exterts its control thus translates into a problem of understanding how appropriately timed bursts and pauses of PC
discharge may be generated.

As might be anticipated, a variety of models of the cerebellar cortex are capable of explaining how these bursts and pauses could be
generated. Therefore, it is helpful to have some constraints in addition to those already imposed by the basic anatomical and
physiological properties of the network. In the following section we highlight a few particularly critical constraints that derive from
studies of motor performance.

2.1 Additional constraints from experimental psychology

The concept that movement commands are centrally specified and are then executed in essentially an open-loop manner has evolved
from a long line of studies in experimental psychology (cf. Schmidt, 1988). According to this motor program concept, the system
operates in a feed-forward mode, as opposed to using sensory feedback from the periphery. Instead of providing feedback during the
movement, sensory information is used to select the parameters of a motor program before it is initiated, to initiate the program, and to
guide the subsequent adaptive process that mediates motor learning.

Although most investigators find sensory feedback to be ineffective in modifying ongoing motor programs, except in limited ways,
Adams (1971; 1977) maintains that the endpoint of a movement is sensitive to proprioception. In support of Adams’ conclusion, we
found that the offsets of elemental motor commands recorded from the red nucleus can be appreciably prolonged by using a brake to
prevent the animal from reaching the intended target (Houk & Gibson, 1987). We also found clear support for the concept that the
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program operates mostly open loop, since application of the brake had relatively minor effects on discharge frequency during the burst.

Another key constraint from performance studies is the observation that the initiation and the programming of movement are separate
asynchronous processes (Gielen & van Gisbergen, 1990; Ghez et al 1990). Programming can occur in preparation for a movement, at
the time of a movement, or after a "default" movement has been initiated. We interpret this to meant that a decision to perform an action
corresponds to the buildup of positive feedback in the limb premotor network, whereas the regulatory input to this network from the
cerebellar cortex implements decisions about what movement to perform (Houk et al, 1993). Thus, in considering models of the
cerebellar cortex, we will emphasize their capacity to regulate the metrics of elemental commands as opposed to the initiation of these
commands. This fits well with the fact that cerebellar cortical lesions do not interfere with starting movements but instead result in
dysmetria.

2.2 Re-evaluation of Marr and Albus models

It is instructive to re-evaluate the Marr (1969) and Albus (1971) models in light of the above considerations. Marr’s idea, or better the
Blomfield and Marr (1970) revision of it, was that PCs would fire in response to learned input patterns and this would inhibit unneeded
elemental movements. This does not explain the pauses in PC discharge that release nuclear cell discharge. Pauses might be explained
by assuming that input from inhibitory interneurons predominates over excitation to these particular PCs. Another issue is that both
excitatory responses and pauses of PCs need to be more than a simple selection signal, since prolonged bursts and pauses are needed to
inhibit and release the portions of the premotor network that control antagonist and agonist muscles. Dynamics that might produce
extended bursts and extended pauses are not included in Marr’s model. If one wishes to pursue the Marr model further, these various
features need to be elaborated, and their performance implications need to be explored through simulation. Surprizingly, there was no
actual simulation of Marr’s model until quite recently (Tyrrell & Willshaw, 1992). The latter authors found that much was unspecified
in the original model. After providing these specifications, they were able to verify a number of Marr’s predictions at an information
processing level. However, they have not yet attempted to use their simulation to drive a premotor network, let alone to control a
movement.

The situation is somewhat different for Albus’ (1971) theory, since early on it was developed into an executable model called
"Cerebellar Model Articulation Controller," or CMAC (Albus, 1975). CMAC has been developed to the point of using it to control
actual robotic manipulators (Miller et al, 1987, 1990). Because of these analyses, simulations and applications, the CMAC architecture
is now well understood. To summarize its operating principles, it essentially functions as a static associative memory that implements
locally- generalizing, nonlinear maps between mossy fiber inputs and PC outputs (Albus, 1981). It does this by first treating the
granule/Golgi cell network as an association layer that generates a sparse, expanded representation of mossy fiber input, and second by
using adjustable weights to couple the large parallel fiber vector to PC output units with graded properties. It would not be difficult for
the bursts and pauses observed in PC recordings to be simulated by this architecture.

However, it is not clear that either of the above models could satisfy the performance constraints summarized in Section 2.1. For
example, how might sensory information be used to select the parameters of a motor program and to trigger its initiation, but then be
disconnected during the feedforward stage of execution? PC outputs must somehow be responsive to sensory input during a
programming phase, but become unresponsive during execution. In the Marr and Albus models, responses to sensory input are mediated
through parallel fibers. There is no mechanism whereby these inputs would have actions during a programming phase, be disconnected
during most of an execution phase, and then become active toward the end of execution in order to terminate the movement. Another
issue concerns the independent control of the programming and initiation of a movement. While the Blomfield and Marr model could
do this through an unspecified motor cortical process for initiating an excessive number of commands, in the Albus model there is no
separation between programming and initiation.

2.3 Adjustable Pattern Generator (APG) Model

The adjustable pattern generator (APG) model was developed by Houk, Barto and colleagues specifically to address the limitations
discussed in the previous paragraph (Houk, 1989; Houk et al 1990; Sinkjaer et al 1990; Berthier et al 1993; Buckingham et al, 1994;
Houk and Wise, 1995). The term adjustable pattern generator refers to the ability of an APG to generate an elemental burst command
with an adjustable intensity and duration. The model has an anatomically-based modular architecture that is summarized in Figure 4.
Each module includes a positive feedback loop between a cerebellar nucleus cell (N) and a motor cortical cell (M), which provides an
abstract representation of the cortico- rubral-cerebellar loops discussed in Section 1.1. Each N receives inhibitory input from a private
set of Purkinje cells (PCs). Each set of PCs receives a private climbing fiber training input, convergent input from an array of parallel
fibers (PFs), and inhibitory input from a basket cell (B) and from stellate cells (although the latter are not specifically simulated). In
early versions of the model, the PFs were assumed to convey unprocessed mossy fiber input, whereas in our recent simulations we have
used a layer of granule units combined with Golgi cell feedback to create a sparsely coded representation of the mossy fiber input, along
the lines assumed in the Marr and Albus theories.

Figure 5 illustrates how this model achieves independent control over the initiation and programming of a movement. In this example,
programming occurs in a preparatory phase that is initiated by an instruction signal which is transmitted to Bs and PCs through mossy
fiber input. The balance between direct PF excitation of PCs and their inhibition through a B unit causes some PCs to switch to a more
intense on-state (stippled trace in Fig. 5A) and others to switch to an off-state (solid trace). In the APG model, motor commands are not
initiated by these programming events in the cerebellar cortex. Instead, the initiation of command generation is triggered independently
by sensory or internal inputs to the motor cortex or red nucleus. As discussed in Section 1.1, this starts positive feedback thus causing
the limb premotor network to switch from an inactive to an active state, which then initiates elemental commands in a large number of
APG modules. It is only after motor commands are initiated that the effects of programming events in the cerebellar cortex become
expressed. Each elemental command intensifies to a level that is determined by the degree to which the module’s PCs are switched off
or on by the instruction signal. In this manner, the intensities of the different elemental commands can be preset to a variety of levels,
thus offering an explanation of how population vectors in motor cortex could be regulated (Eisenman et al, 1991). In agreement with the
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performance studies discussed earlier, this model allows the programming process to occur in a preparatory phase (the case illustrated in
Fig. 5A), at the time of movement onset, or even after movement onset.

Once the PCs switch to a particular firing state, in response to the instruction stimulus, they are postulated to become refractory to
further input until near the termination of the movement. As a consequence, simulated movements start to be executed in a feedforward
manner. A key assumption is that climbing fibers train PCs to recognize those particular patterns of PF activity that indicate when
desired endpoints are about to be reached. Occurrences of these patterns cause PCs that were turned off in the programming phase to
fire strongly, and this terminates positive feedback in the premotor network. We call this type of control quasi-feedforward (Houk et al
1990) and have pointed out how it satisfies the motor program constraints from experimental psychology (Berthier et al 1993). It is also
advantageous in preventing delayed feedback from causing instability oscillations (Houk et al, 1990). The fact that mossy fibers display
prominent sensory properties (Van Kann et al 1993) whereas Purkinje and nuclear cells are relatively unresponsive to somatosensory
stimulation (Harvey et al, 1977, 1979) is further explained by this feature.

In the original APG model, the quasi-feedforward characteristics of the network derived solely from the biophysical properties assumed
for PC dendrites (Fig. 5B). Due to their high density of calcium channels, PC dendrites were assumed to behave like bistable binary
elements possessing a zone of hysteresis, and, for simplicity, PCs were modeled as if they had only one dendrite. In a cell with many
dendrites, each operating in a bistable manner, their summed effect on the soma would of course be multistable. An ionic model has
been developed to demonstrate the feasibility of these ideas (Yuen et al, 1995). There are two other mechanisms that might contribute to
the observed insensitivity to input, although both presume that PC dendrites behave in a binary (not necessarily bistable) fashion. If so,
the recurrent inhibitory connections that Purkinje (and basket) cells make with each other might promote switching between states (Bell
& Grimm, 1969). Furthermore, we have recently found that insensitivity to input during the feedforward phase can result if PCs are only
trained to respond to those specific patterns of PF input that occur near the ends of movements.

Motor programs might be stored in a lookup table as detailed lists of highly specific instructions, which is close to what Marr (1969)
envisioned in his original theory. However, a literal application of this scheme would exceed the storage capacity of the cerebellum
(Kawato & Gomi, 1993). Instead, most investigators have favored the idea that memory may be used more frugally to store generalized
motor programs that are then parameterized in order to control specific movements. In the APG model, the counterpart of a generalized
motor program is a set of parallel fiber weights for proprioceptive and target inputs (Berthier et al 1993). This is analogous to Adams’
(1971) "perceptual trace," since a particular constellation of parallel fiber inputs, when processed by the set of parallel fiber weights,
signifies that the desired endpoint of a movement is about to be reached, causing PC firing that terminates the movement command.
Once weights are learned, the model’s commanded velocity is then parameterized by basket cell firing in the selection phase of the
model’s operation (Houk et al 1990). The velocity that is selected by turning PCs off is automatically scaled so as to depend on the
distance between the initial position of the limb and the desired endpoint of the movement. Velocity can also be varied independently as
a scaling factor controlled by diffuse neuromodulatory input, which can explain how velocity scaling can be applied simultaneously to
all elements in a composite motor program (Schmidt, 1988). Movement duration is parameterized in the execution phase of model
operation. Duration turns out to be a dependent variable that evolves from the course of the movement as opposed to being determined
by an internal clock. Amplitude is parameterized by the target inputs which have synaptic influences that are graded according to where
the target lies along the direction of motion controlled by the particular APG module.

2.4 Limb movement models motivated by control theory

While the formulation of the above models was based on the anatomy and physiology of the cerebellum, some authors have emphasized
engineering control principles in designing cerebellar models. Control theorists have been fascinated by the potential utility of internal
models of the controlled system, the latter being computational devices that predict responses when supplied with sample commands.
The concept of internal models was used in a recent study by Miall, Weir, Wolpert and Stein (1993) that treats the cerebellum as a
"Smith predictor." Such systems combine delayed and undelayed models of the controlled system to build controllers that are are
particularly suitable for controlling systems with large time delays. Miall and colleagues suggest that the cerebellum builds the
appropriate models through a learning process. Once learned, these internal models become integral components of the controller. Since
the motor system is characterized by large time delays, the cerebellum almost certainly needs to function as a predictive controller, but
not necessarily as a Smith predictor. In another model motivated by engineering principles, Paulin (1989) suggested that the cerebellum
computes like a Kalman filter, another form of predictor. The APG model has a much simpler control structure than either of these
models, and it also functions as a predictive controller (Buckingham et al, 1994). There is scant evidence for several of the assumptions
that Miall makes in attempting to map their Smith predictor onto the gross anatomy of the nervous system, let alone the microcircuitry
of the cerebellum. Paulin does not even attempt this exercise.

Kawato and Gomi (1992a) proposed that the lateral cerebellum learns to function as an "inverse model" of the limb controlled system.
Inverse models do the opposite of the forward models discussed in the previous paragraph; they predict commands when supplied with
sample responses. If instead of sample responses they are supplied with signals representing desired trajectories, an inverse model then
generates the appropriate commands. Kawato and Gomi assumed that the motor cortex and cerebellum are simultaneously provided
parietal signals representing a desired trajectory of a limb movement. The motor cortex compares the desired trajectory with sensory
feedback and issues a crude command while waiting for the cerebellum to use its inverse model to compute a precise command. After
the latter is sent back to the motor cortex, it is used to compute an updated command. One problem with this model is that it ignores the
time delays mentioned in the previous paragraph, which may result in serious problems with this control scheme. Although the authors
map their controller onto the gross anatomy of the brain, no attempt is made to show how the microcircuity of the cerebellum might be
used in implementing an inverse model. These authors have also proposed models of the intermediate and medial cerebellum that are
based on similar principles (Gomi and Kawato, 1992).

The effective use of internal models presumes the existence of neural stages that compute desired trajectories for movements through
space, and other stages for conversion into desired changes in muscle lengths and/or joint angles (Kawato 1990). Although signals
capable of specifying the positions of targets in extrapersonal space are present in the parietal association cortex (Zipser & Andersen,
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1988), there is no evidence for signals that specify desired trajectories. The APG model circumvents this problem because it formulates
its own trajectories based on intrinsic circuitry and properties of the neuromuscular system. These built-in trajectories tend to be straight
lines in the space of intrinsic coordinates that move the limb directly from an arbitrary starting point to the desired endpoint (Berthier et
al 1993). Indirect trajectories, when they are needed to avoid obstables, can be generated by specifying via points designated, for
example, by signals from the premotor cortex (Houk & Wise, 1995).

2.5 Conceptual models of limb control

In addition to the above mentioned executable models of the cerebellum as a limb controller, we will mention a few of the conceptual
models that have been discussed and schematized by neurobiologists, but lack a more precise formulation that would be suitable for
simulation. In this vein, Thach and colleagues (1992) described why the parallel fiber architecture is ideal for presenting PCs with the
information they need to coordinate multijoint movements. We accept this idea and tacitly include it in the APG model discussed
earlier. Bloedel (1992) proposed that climbing fibers selectively enhance microzones comprised of parasagittal rows of PCs rather than
training PCs to recognize patterned input. This is compatible with the Llin=B7s and Welsh (1993) scheme whereby gap junctions in the
inferior olive synchronize clusters of olivary neurons that innervate parasagittal zones in cerebellar cortex. Arshavsky, Gelfand and
Orlovsky (1986) offered some general guidelines about the role of the cerebellum in coordinating locomotion. Finally, Prochazka
(1989) suggested that the role of the cerebellum is to control the gain of spinal and brainstem reflexes. The gain-control idea has also
arisen in eye movement models that are discussed later.

2.6 Conditioned reflex models

Several models have been proposed to explain the role of the cerebellum in mediating conditioned reflex (CR) responses of the eyelid to
tone and light conditioned stimuli (CS) (Thompson, 1986; Moore et al, 1989; Gluck et al, 1990; Houk, 1990; Buonomano and Mauk,
1994). The circuit implicated in this response is similar in several respects to the limb premotor network discussed in previous sections
(Fig. 2). However, the CR models have generally neglected pathways through thalamus and motor cortex, since CRs can be learned and
performed in decerebrate animals. Based on this simplification and other findings, Thompson (1986) proposed a conceptual model
along the lines summarized in Figure 6A. Tone and light CSs project (via the pons) as mossy fibers into the cerebellum. Collaterals of
the mossy fibers provide direct excitation of N cells and excitation of PCs via PFs=2E In this manner, N cells are both directly excited
and indirectly restrained by PC inhibition to produce an N output. The combination generates a neural model of a CR that is then
relayed via R to the abducens (VI) and other eye nuclei that output the CR. Unconditioned reflexes (URs) are mediated by air puff
unconditioned stimuli (US) to the cornea via the trigeminal nucleus (V). The US is also transmitted through climbing fibers, and the
latter train PCs and Ns to respond appropriately to their inputs.

This model is meant to explain how CRs are generated in delay conditioning tasks. In this paradigm, the CS is an extended period of
stimulation that begins several hundred msec in advance of the US and continues until the US is delivered. Thus, one can assume that
the CS provides a constant excitatory drive to N that can readily be shaped by PC inhibition to form an appropriate CR. The control
problem for PCs is to fire initially so as to cancel the excitatory drive to N and pause when it is time to initiate the CR; depending on the
particular task, the PCs may also have to resume firing at the end to cancel the excitatory drive to N, thus terminating the CR. In several
implementable models based on this concept (Moore et al, 1989; Gluck et al, 1990; Buonomano and Mauk, 1994), PCs receive a set of
PFs that transmit a diversity of temporal patterns related to the CS. The PC is taught to respond to those PFs that are active during
periods when N needs to be inhibited and not to respond to PFs active when N needs to be disinhibited. In the Moore et al (1989) model,
the different timings of PF signals are generated in the pontine nuclei as a set of variously delayed responses to the CS input. In the
Gluck et al (1990) model, the different timings are again assumed to be generated outside of the cerebellum, but in this case are
represented as spike trains that are modulated at several sinusoidal frequencies and phases. In the Buonomano and Mauk (1994) model,
the different timings are assumed to be generated within the cerebellar cortex, as dynamic interactions between granule and Golgi cells.
This latter process is analogous to the mechanisms proposed by Fujita (1982) and by Chapeau-Blondeau and Chauvet (1991) in their
dynamic filter models of cerebellar function. The model by Moore and colleagues is most readily accomodated by current single unit
data which demonstrates that sources of mossy fiber input to the cerebellum have a distribution of latencies. The Moore et al (1989)
model is similar in this respect to a model proposed by Bell (1995) to explain the ability of the lateral line organ in electric fish to
adaptively cancel the reafference from its own electrical discharge. The lateral line organ has phylogentic relations to the neuronal
architecture of the cerebellum (Mugnaini & Mahler, 1993).

In contrast to the conditioning models described in the previous paragraphs, Houk (1989; 1990) suggested that the excitatory drive to N
is produced not by direct sensory responses to the CS, but instead by positive feedback in the recurrent network that interconnects red
nucleus (R), the lateral reticular nucleus (L) and the cerebellar nucleus (N) in Figure 6B. This hypothesis is similar to the APG model
discussed earlier in relation to limb movement control (Figs. 2 & 4). Weak sensory (CS) inputs to R need to circulate and spread in
order to start sufficient positive feedback in the R-L-N loop in order to initiate a CR command. The amplitude and duration of the CR
command is then controlled by PC inhibition of loop activity. This model allows PCs to pause well in advance of the CR as a
preparatory programming action, in agreement with observed firing patterns of PCs (Berthier and Moore, 1986). This model is also in
agreement with the diversity of signals that are recorded from R neurons during performance of CRs (Desmond and Moore, 1991). In
summary, the APG version of Thompson’s (1986) conceptual model suggests that the CS-US association is mainly formed outside of
the cerebellum (in R, L or even the motor cortex), whereas the primary role of the cerebellum is to determine the topography of the CR
(i.e., the motor program).

CR commands generated by APG modules are subsequently sent to a brainstem network that produces the final output.
Activity-dependent labeling results led Keifer and Houk (1995) to suggest a model in which a trigeminal-reticulo-abducens network,
illustrated schematically in Figure 6B, is used to output both CRs and URs. This brainstem network may be analogous to the network
formed by segmental interneurons, propriospinal neurons and motor neurons in the spinal cord, the latter being the target of the
elemental commands illustrated in Figure 2.
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2.7 Eye saccade models

Lesions of the cerebellum severly disrupt an animal’s ability to adapt the accuracy of saccadic eye movements (Robinson & Optican,
1981). While there are many eye saccade models, only a few attempt to explain how the cerebellum might achieve this adaptive control
(Grossberg & Kuperstein, 1989; Houk et al 1992; Dean et al 1994). The anatomy indicates that cerebellar regulation of saccadic eye
movements should occur at two levels, at the level of a tecto-cerebellar command network and at the level of a brainstem
burst-generating network (cf. Houk et al 1992). The model shown in Figure 7A highlights the cerebellar control of the tecto-cerebellar
command network, which we will consider first.

The intermediate layer of cells in the superior colliculus, or tectum (T), projects to a category of brainstem reticular neurons called long
lead (LL) bursters. LLs are an important source of mossy fiber input to the cerebellum, with collaterals to the cerebellar nuclei (N). The
N cells targeted by these collaterals project back onto T neurons, forming a recurrent network. Neurons in the T-LL-N premotor
network generate bursts of discharge that typically precede saccadic eye movements by relatively long latencies and are assumed to
function as saccade commands. The distributed nature of saccade commands is similar to the situation in the premotor networks
controlling limb movements (M, R, P, L, N and T neurons in Fig. 2). Pursuing this analogy further, Houk, Galiana & Guitton (1992)
hypothesized that positive feedback in the tecto-reticulo-cerebellar recurrent network functions as an important driving force for
generating long-lead burst activity. The model explains the psychophysical observation (Gielen & van Gisbergen, 1990) that the
initiation of saccades and the specification of their kinematic parameters are controlled by separate processes. A saccadic burst
command is initiated when weak visual sensory input to T neurons from the superficial layer of the model tectum initiates positive
feedback in the T-LL-N loop in Figure 7A. PCs in the the cerebellar cortex then regulate the intensity and duration of the bursts, thus
specifying the motor program that controls the velocity, duration and direction of saccadic eye movements.

Saccade commands are vectors comprised of many elemental commands, each specifying an elemental saccade in a particular direction.
(This is in analogy with limb motor commands, except that elemental saccade commands are also specialized for particular movement
amplitudes.) The model proposed by Houk et al (1992) is an APG array analogous to the limb model discussed in Section 2.3, in which
each T-LL-N module is regulated by it’s own set of PCs. The vector sum of the set of elemental commands controls the direction of the
saccade. Divergence in individual T-LL-N loops explains how a large population of T neurons can be recruited to form the composite
command observed at the level of the tectum (McIlwain 1986), and the model equally explains the concurrent bursting seen in LL and
N neurons. The pauses that occur in N neurons just before and just after bursts (Fuchs et al 1993) appear to be expressions of PC
inhibition in the process of regulating loop activity. These particular N neurons are clustered in the caudal fastigial nucleus along with
other N neurons that are reciprocally connected with the brainstem burst-generating network.

The brainstem burst-generating network is shown in Figure 7B. It receives retinotopically organized saccade commands from LL
neurons that participate in the tecto-cerebellar network of Figure 7A. Through a convergence and burst generating mechanism that has
been modelled by several authors (Robinson, 1975; Van Gisbergen et al, 1981; Scudder 1988; Van Gisbergen et al 1989; Galiana &
Guiton, 1992; Krommenhoek et al, 1993), these retinotopic inputs are converted into muscle-specific burst outputs that are sent to eye
motor neurons to control saccadic movements. (Bursts are also sent to the smooth eye system to control fixations after saccades are
completed.) Figure 7B shows the bilateral network for horizontal saccades whereas only one side of the tecto- reticulo-cerebellar
network was illustrated in Figure 7A (as another simplification, control of OP neurons by tectal fixation neurons was not discussed).
The omnipause neurons (OP) shown in the center maintain fixation between saccades by tonically inhibiting the burst neurons. Bursts
are triggered by LL saccade commands; LL neurons on one side inhibit OPs while simultaneously exciting that side’s excitatory burst
(EB) neurons. Mutual inhibition between inhibitory burst (IB) neurons prevents both sides from firing simultaneously. N neurons in the
fastigial nucleus project to EB, IB and OP neurons and receive recurrent connections back from these and other sites, as collaterals of
mossy fiber inputs to the appropriate regions of the cerebellar cortex.

The cerebellum regulates the burst-generating network through inhibition and disinhibition of N neurons, only one of which is shown in
Figure 7B. A recent model of this system by Dean and colleagues (1994) gives the cerebellum the function of setting the gain of
feedback to the burst generator circuit. They implemented gain control using a CMAC representation of the cerebellar cortex. Like the
earlier model proposed by Grossberg and Kuperstein (1969), Dean’s model computes gain factors that, when inserted into the brainstem
saccade network, are capable of generating accurate saccades in the course of development. They also simulated the adaptive response
that occurs after weakening eye muscles or after displacing visual targets. As currently formulated, this is a trial-level model that does
not predict the time course of neural signals. While some investigators see the cerebellum as exerting gain control, others have
suggested that compensation is produced by subtracting an adjustable signal from a fixed-gain saccadic circuit (Optican & Robinson,
1980). This subtraction scheme is the one favored by single unit data and also by the APG array model promoted in this article.

There has been considerable debate as to whether saccades are controlled as fixed vectors in retinotopic coordinates or as endpoint
trajectories in head or body coordinates (Robinson 1987; Scudder 1988; Sparks 1988; Guitton et al, 1990). We have postulated that both
strategies are used, but at different locations in the network (Houk et al, 1992). In the APG array model, the cerebellar cortex operates in
head (or body if the head is free) coordinates. It exerts its executive regulation by preselecting an action (as in Fig. 5), triggering it and
then continuing it until the desired endpoint of a saccade is about to be reached, whereupon its PCs fire to terminate positive feedback in
the loops that they regulate. PCs recognize desired endpoints on the basis of PF patterns derived from proprioceptive, efference copy
and target signals in mossy fibers. Since different APGs regulate the tecto- cerebellar network (Fig. 7A) and the brainstem saccade
generator (Fig. 7B), the PCs in the two systems probably utilize different vectors of PF input to perform their computation. We consider
the computation to be a pattern recognition task that implements finite state control, as opposed to conventional feedback control. On
the other hand, we accept the simpler feedback-controlled, fixed vector models as being valid for the computations that are performed
more automatically within the tecto-reticulo-cerebellar network and within the brainstem saccade generator.

Since the saccade control system includes cerebellar connections with the final stage of motor output in the brainstem, as well as with
the tectal-cerebellar network, it raises the possibility that a similar regulation may eventually be documented for limb and conditioned
eyelid systems.
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2.8 Smooth eye movement models

Starting with Ito (1970), many investigators have proposed that the cerebellum serves an important function in the regulation of smooth
eye movements (Robinson 1976; Ito 1984; Galiana 1986; Lisberger 1994; Peterson et al, 1991; Kawato & Gomi, 1992b; Shidara et al
1993). The basic circuit upon which these theories are based is shown in Figure 8. Neurons in the vestibular nucleus receive vestibular
sensory input from the semicircular canals, visual sensory input from the retina, and an inhibitory input from PCs in floccular,
parafloccular and vermal regions of the cerebellar cortex. The sensory inputs to V neurons mediate basic vestibulo-ocular and
optokinentic responses on a background of tonic PC inhibition, and these brainstem reflexes are then fine tuned by modulations in PC
discharge. The PC signals are computed from a variety of parallel fiber signals which include vestibular discharge related to the
rotational velocity of the head, optokinetic discharge related to motion of the visual field and efference copies of the eye movement
commands computed by the network. Since motion of small visual targets has negligible input to V neurons other than via PCs, the
models attribute pursuit movements entirely to transmission through the cerebellar cortex.

In normal animals, floccular PCs discharge steadily without modulation during vestibulo-ocular reflexes, even though powerful head
velocity and efference copy inputs can be demonstrated (Miles and Lisberger, 1981). This has led to the hypothesis that the basic
vestibulo-ocular reflex through the brainstem is operating with an appropriate gain without the regulatory assistance of the cerebellum.
These PCs do fire, however, when the animal makes pursuit eye movements, compatible with the hypothesis that PC discharge in
response to the visual parallel fiber input mediates pursuit responses through disinhibition (Lisberger 1994). Adaptation of the
vestibulo- ocular reflex to visual distortion has been modeled in different ways. Ito (1989) attributes the adaptation to adjustments in PF
synapses, whereas Lisberger (1994) argues that the requisite changes in gain are present in the brainstem part of this system. Other
models have assigned gain change to both locations; rapid changes were attributed to the cerebellar cortex and slower changes to the
vestibular nucleus (Galiana 1986; Peterson et al, 1991). Tests of the latter hypotheses suggested that at least some of the rapid gain
changes occur in the vestibular nucleus (Khater et al 1993). A significant part of the compensatory response, however, is still
attributable to the cerebellar cortex (Partsalis et al. 1995). On theoretical grounds, it seems advantageous to have an adaptive capacity in
both PCs and in the premotor network (Houk & Barto, 1992); however, the details of timing and degree of adaptation at the two sites
are still being debated.

Models of smooth pursuit should address some of its unique properties. They should be capable of explaining the ability of pursuit to
continue after visual input is interrupted. Young (1977), and others after him (cf. Robinson, 1987; Lisberger, 1994), attributed this to
positive feedback through the efference copy loop in Figure 8. (This assumes that the efference copy signals have a sign inversion in
addition to the stage of PC inhibition.) The model in Figure 8 is oversimplified in the sense that it does not include the many recurrent
loops in the smooth eye premotor network that were discussed in Section 1.2 (Fig. 3). Positive feedback in these loops should also
contribute to this storage property. Only the models proposed by Galliana (1986) and Peterson et al (1991) include these features. A
shortcoming of all of the above models of pursuit is their failure to confront predictive tracking, which is the ability to follow, without
any significant time delay, targets that have certain deterministic properties. It is likely that much of our normal pursuit of moving
targets involves at least some degree of predictive tracking. Mahamud et al. (1995) have recently shown that the APG model is capable
of predictive tracking, and this feature is now being explored in more detail.

2.9 Cognitive processing models

The above models apply to the phylogenetically older parts of the cerebellum which are connected with the motor system. The newer
parts of the cerebellum (much of the hemispheres and the dentate nuclei) instead are connected with the so-called association regions of
the cerebral cortex (Middleton & Strick, 1994). Leiner, Leiner and Dow (1989) have proposed a conceptual model of how these newer
areas of the cerebellum may be involved in the processing of cognitive information, and Ito (1993) has formally outlined how models of
the cerebellum might be extended to cognitive problems. Further progress will depend on the development of network models of
cognitive processing.

3. Role of the Cerebellum in Motor Learning

Models of motor learning need to address several aspects of the problem. First, it is essential to specify precisely what is being learned
in an information processing sense. The models of the cerebellum reviewed in the previous sections can serve this function. Second,
they need to adopt a rule for modifiying synaptic efficacy, hereafter referred to as a learning rule. Preferably the learning rule should
conform to, or at least be motivated by, the cellular mechanisms that underlie neuronal plasticity in the region (or regions) of brain that
is (are) being modeled. Third, they need to confront the credit assignment problem, which is the difficulty of directing training signals to
the appropriate sites in the network, and at the appropriate moments in the training process, in order for learning to be adaptive. Fourth,
they must define the training information that is provided to the model, and this should be justified in terms of the information that is
likely to be available for guiding the learning process in the organism. In this section we attempt to address each of these issues in
relation to the role of the cerebellum in motor learning.

3.1 Cellular mechanisms defining learning rules

The publication of pattern recognition models of the cerebellum by Marr (1969) and Albus (1971) encouraged experimentalists to
search for a cellular mechanism of synaptic plasticity in parallel fiber synapses that might implement one of the postulated learning
rules. Marr had the hypothesis that the parallel fiber synaptic weight would be increased if the Purkinje cell fired at about the same time
that the parallel fiber was active. This is analogous to long-term potentiation (LTP) as expressed in the hippocampus (Bliss &
Collingridge, 1993) and amounts to a Hebbian rule in which a synapse is strengthened whenever the presynaptic ending and
postsynaptic cell are simultaneously active. The role of the climbing fiber input was to fire the Purkinje cell unconditionally, thus
reinforcing parallel fiber synapses active at the time of climbing fiber discharge. No provision was made for weight decreases.

Albus envisioned a learning rule with an opposite sign, and with more complex properties. He postulated that synaptic weight would be
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decreased, i.e., a long-term depression (LTD) instead of LTP, and that this would occur only in the presence of a three-way coincidence
between a climbing fiber input (training signal), Purkinje cell firing (postsynaptic factor) and parallel fiber synaptic activity (presynaptic
factor). This amounts to a unidirectional version of the training rule used in research on Perceptrons. He also postulated synaptic
decrements on the spiny synapses of basket and stellate cells, thus providing a mechanism for countering the generally reduced
excitatory input to Purkinje cells that would occur with training experience.

The experimental search for cellular mechanisms defining a cerebellar learning rule is discussed in other articles in this issue (Crepel et
al., this volume; Linden, this volume). To summarize these observations, there now seems to be good agreement that climbing fiber
activity, when coupled with other factors, produces an LTD as opposed to an LTP, in agreement with Albus’ model of the learning rule
(Ito 1989). Although there may be more than one mechanism for LTD, the one that is best supported by current data involves the
intracellular activation of protein kinase C in the spine (Linden 1994). The model shown in Fig. 9 summarizes the intracellular steps that
appear to mediate protein kinase C activation and relates these processes to a three-factor learning rule for LTP.

When a parallel fiber is active, it releases glutamate neurotransmitter which produces both depolarization of the spine, via AMPA
receptors, and an activation of mGluR1 metabotropic receptors (left side of Fig. 9). The activation of metabotropic receptors should be
localized to those synapses that are activated by presynaptic transmitter release, and this step has been interpreted to represent the
presynaptic component in a 3-factor learning rule (Houk et al, 1990; Houk & Barto, 1992). The other two factors relate to dendrite and
spine depolarization, which are required to open calcium channels and elevate spine calcium. According to the model, accumulation of
sufficient spine calcium to mediate LTD requires a larger degree of spine depolarization than can be produced by the spine’s own
synapse. Additional spine depolarization is caused by the depolarization of the adjacent dendrite, the latter being mediated partly by
climbing fiber input (the training signal) and partly by postsynaptic responses to other parallel fiber inputs (the postsynaptic factor). If
both of these influences are present, the spine becomes sufficiently depolarized to elevate spine calcium appreciably. Then protein
kinase C can be activated by its cofactors, calcium and the diacylglycerol produced by mGluR1 activation. Activated protein kinase C
produces LTD through an action on AMPA receptors (Crepel et al., this volume). Thus, presynaptic, postsynaptic and training factors
are required in combination to produce LTD. Additional support for the above model of LTD has come recently from studies of mice
that lack mGluR1 (Conquet et al 1994; Aiba et al 1994). These animals display both impaired Purkinje cell LTD and severe cerebellar
ataxia.

Less is known about the learning rule for weight increases, although one seems to exist. LTP has been induced in brain slices by
stimulating parallel fibers without climbing fibers (Sakurai 1987). This led Houk and Barto (1992) to postulate that the presence of
presynaptic input without either postsynaptic depolarization or climbing fiber discharge mediates LTP. However, in tissue culture LTP
can be produced by combining AMPA-receptor activation with depolarization, provided mGluR1 activation is omitted (Linden et al
1991). This result suggests quite a different rule for LTP, the presence of climbing fiber and postsynaptic activity coupled with the
absence of presynaptic activity. The latter rule, which would have the effect of normalizing input to PCs, has not yet been tested
computationally. It receives support from the recent finding that gain decreases of the vestibulo-ocular reflex (presumeably mediated by
LTP) are resistant to metabotropic antagonists, whereas gain increases (presumeably mediated by LTD) are blocked (Carter &
McElligott, 1994).

Simulation studies using the learning rule for LTD outlined in Figure 9 and the first mechanism for LTP mentioned above demonstrated
the capability of finding correct PF weights, but only in a simple learning task under highly restricted conditions (Berthier et al 1993).
The model’s learning process was not robust enough to learn arbitrary movements in different parts of the work space, nor was it
capable of training the weights of sets of PF synapses onto individual PCs. Most cerebellar modeling studies have not attempted to
conform to the mechanisms of synaptic plasticity to this degree. They have simply used variants of the well-known Perceptron or LMS
rules (discussed in Houk & Barto, 1992). Such studies can be looked upon as testing the operational features of a model adequately, and
in some cases they may test some of the organizational issues of learning discussed later, but they fall short of addressing the basic
neurobiology of motor learning, which has been an important goal in our research.

In analyzing the shortcomings of the above cellular learning rule, we found that a major problem is its failure to adquately address the
temporal credit assignment problem. This is the problem of delivering appropriately timed training information to the network’s neurons
to insure that learning is adaptive. The actions produced by PCs are completed before they are detected by sensory feedback to generate
the training information in CFs. To compensate for this problem of delayed feedback, the cerebellar learning rule needs to modify
synaptic actions that occurred prior to a CF’s discharge. Most synaptic physiologists have not addressed this problem of temporal credit
assignment. However, the one full study that is available reported that CF stimulation must actually precede parallel fiber stimulation by
125-250 msec for an optimal LTD (Ekerot & Kano, 1989). A recent preliminary report based on field potentials suggested the opposite
(and computationally more appropriate) timing (Chen & Thompson, 1992). More attention needs to be given to this important issue.

Network theorists typically address temporal credit assignment by assuming a trace mechanism that provides a short-term memory of
preceding synaptic events until the arrival of the corresponding training information (Klopf 1982; Sutton & Barto, 1981). In the APG
model, the most critical events to store are traces of the synaptic events that promote state transitions in PC dendrites. In a recent version
of the APG model (Buckingham et al, 1994), we postulated that a trace is triggered whenever a PC switches from its off- to its on-state.
Recall that this should occur when a PC recognizes a pattern of PF input predicting that the limb will soon reach its intended goal. The
subsequent firing of the PC helps to terminate the movement, and it is only after this that the CF returns error information (Section 3.3).
The important point here is that CF firing, in trials when it occurs, arrives several hundred msec after the PC response that needs to be
evaluated. The postulated mechanism saves a trace in those spines that helped to switch the PC into its depolarized state. With this
learning rule, PCs very effectively learn to respond to complex patterns of PF input to terminate movements at an intended goal
(Buckingham et al, 1994). Cellular studies need to explore the possibility that spines receiving PF input concurrent with the onsets of
plateau potentials undergo LTD in response to subseqent CF input.

The cellular mechanisms of LTD and LTP discussed above may not be adequate or appropriate for forming more permanent, very
long-term memories of motor programs. Gilbert (1975) postulated that noradrenaline-containing cells in the locus coeruleus function to
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evaluate motor performance on a slower time scale than do CFs. Their firing might signal, for example, that a succession of movements
performed over the course of several minutes was sufficiently successful to warrent conversion of the LTDs and/or LTPs that ocurred
during their execution into a more permanent memory. The latter might, for example, take the form of changes in spine density as seen
by Greenough and colleagues (Black et al 1990).

3.2 Structural credit assignment

The learning rules discussed in the previous section apply to each parallel fiber synapse, there being on the order of 1015 of these
synapses. If training information were conveyed by climbing fibers indiscriminately to all of these synapses, learning would be quite
impractical. Since each PC is innervated by only one climbing fiber, and since climbing fibers transmit diverse training signals (Section
3.3), there is an opportunity for learning to be guided in an efficient manner. For this to be achieved, however, requires the routing of
each training signal to appropriate PCs in the network. The problem of doing this, called the structural credit assignment problem, is
potentially very difficult. Houk and Barto (1992) hypothesized that the unique modular organization of the cerebellar cortex is an
evolutionary adaptation that helps to alleviate structural credit assignment. Small clusters of inferior olive (IO) neurons with similar
receptive fields innervate parasagittally oriented strips of PCs called microzones (Ekerot et al, 1991), and the PCs comprising this set
project to a common cluster of nuclear cells (Gibson et al, 1987). This anatomical organization occurs early in development (Hawkes et
al. 1993) and insures that each APG module will receive a training signal that is particular to that module.

Figure 10 illustrates schematically 30 of the several hundred thousand modules present in the mammalian cerebellum, as if looking
down on the surface of the cerebellar cortex. For simplicity, we show only sets of 5, out of the 100 PCs estimated to participate in each
APG module. All of the PCs in a given set converge upon a discrete nuclear cell cluster (N, with one loop to the motor cortex (M) being
shown forming an elemental motor command). Climbing fibers run parasagittally (vertically on the page) and innervate small numbers
of PCs within a given set. Parallel fibers run horizontally intersecting a large number of the rectangular-shaped dendritic trees of the
PCs. Note that each PC in a set is shown exposed to a different 100,000-element vector of PFs, such that the 100 PCs comprising an
APG have a grand total of 10,000,000 PFs from which to select input. (There most likely is some overlap, so the actual number of PFs
might instead be 2,000,000, still a very large number.) Since each APG receives its own semi-private training signal, the storage
potential of the network is indeed quite exceptional (Gilbert, 1974).

While the modular organization shown in Figure 10 has great potential for appropriate credit assignment, due to precision of
connectivity in the parasagittal plane, the realization of this potential requires a precise alignment between the elemental commands
generated by a given module and the training information conveyed by its CF input. The elemental command has to be one capable of
diminishing the firing probability of the CF (Houk & Barto, 1992). In the case of CFs with tactile receptive fields, the appropriate
aligment is one that would mimic the spinal withdrawal reflex elicited by a noxious stimulus applied to its receptive field (Ekerot et al,
1991; Houk & Barto, 1992). If it is assumed that the premotor network is capable of Hebbian-like, NMDA-mediated synaptic plasticity,
one can outline a plausible developmental sequence that could automatically perform this alignment (Guzm=B7n-Lara, 1993). Once
aligment is completed, the module would be ideally structured to elaborate conditioned withdrawal responses, and the same
organization would be useful in developing motor programs for guiding the limb in a workspace containing obstacles. Given our
hypothesis that CFs with proprioceptive receptive fields detect when movements are too small (Berthier et al, 1993; Section 3.3), we
postulated that the elemental command produced by the corresponding APG should move the limb in the direction that maximally
activates the CF. With proper alignment, the feedback error learning scheme discussed in Section 3.3 (Kawato & Gomi, 1993) could
also use this mechanism to achieve excellent structural credit assignment.

Cerebellar models of conditioning and of eye movement control have not yet confronted the structural credit assigment problem. This is
because they have generally dealt with single control modules (typically single PCs) that produce net commands as opposed to sets of
modules regulating sets of elemental commands. The tacit assumption here is that all PCs in, say, the horizontal zone of the flocculus
have identical output connections and thus can be represented by a single equivalent PC. If there is only one PC and only one CF in the
model, there is no need to design an alignment scheme. However, this means that the model is not suitable for investigating the
mechanisms that normally operate to coordinate the cooperative actions of many modules working in parallel.

3.3 Training signals

Most theories of the cerebellum assume that climbing fibers from the inferior olive transmit the essential training information that
guides motor learning. However, different theories are based on different assumptions regarding the specific nature of these signals.
Marr (1969; for an elaboration, see Blomfield & Marr, 1970) assumed that the IO transmits specific instructions from the motor cortex
designating which elemental movements need to be executed. This begs the question as to how the motor cortex acquires such elaborate
knowledge about a large set of required movements. Albus (1971) assumed that the IO compares sensory feedback with desired
trajectories to signal errors in performance. His desired trajectories are less demanding although inherently similar to Marr’s instructed
movements. Neither theory confronts the problem of how internal standards might be acquired.

Recordings from IO neurons, or from their CF axons, provide useful constraints on the type of training information that is available. The
different regions of the IO receive various combinations of sensory fibers and collaterals of motor fibers (Bloedel & Courville, 1981)
signaling efference copies. The electrophysiology of the ascending sensory pathways from the spinal cord originally suggested a very
limited responsiveness to low-threshold somatosensory signals, leading Oscarsson (1980) to postulate that the IO computes error signals
that are dominated by efference copy inputs. However, in awake animals somatosensory responsiveness is marked, both to tactile and to
proprioceptive stimuli; furthermore, the motor responses stressed by Oscarsson are difficult to demonstrate, except as inhibitory
influences that gate off somatosensory responsiveness during certain phases of movement (Gellman et al 1985; Weiss et al 1990). The
regions of cerebellum that regulate smooth eye movements receive CFs that are directionally selective to very low velocities of visual
motion across the retina; some are sensitive to retinal slip of large, optokinetic images (Simpson 1984), and others are sensitive to slip
of small, visual pursuit targets (Stone & Lisberger, 1990). Retinal slip is a natural error signal since it designates a failure of the smooth
eye control system to stabilize visual images on the retina. It is a sensory signal as opposed to an efference copy.
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Kawato and Gomi (1992b; 1993) refined and developed Oscarsson’s error hypothesis into a theory of feedback-error learning,
summarized in Figure 11A. According to this theory, the IO transmits a motor error signal that is generated by a simple feedback
controller. The difference between a desired trajectory and sensory feedback reporting on the actual trajectory forms a trajectory error
analogous to the error signal in Albus’ theory. However, in Kawato’s theory the trajectory error is processed by the feedback controller
to convert it into a motor error signal, which is a vector with quite desireable training capabilities. The motor error also serves as a crude
motor command that is eventually replaced by an improved motor command, after the cerebellar cortex has learned the inverse model
that was described in Section 2.4. While this theory functions well in robot manipulation tasks, its consistency with the anatomy and
physiology of different cerebellar control systems needs to be examined.

In the case of limb movements, Kawato and Gomi (1992a) assumed that the motor cortex functions as the simple feedback controller
and that it also contains the two summing junctions. Motor cortex receives desired trajectory signals from the association cortex and
actual trajectory information via sensory feedback. It computes the difference to form a trajectory error which is processed further to
generate the motor error signal that is sent through the IO to provide training information to the cerebellum. The motor cortex is also the
summation site where the improved command generated in the cerebellum is added to the motor error to produce the net command sent
to the spinal cord. A basic problem with this model may be its assumption that IO activity reflects motor error. As pointed out earlier in
this section, IO neurons are highly responsive to sensory input and are actually suppressed by motor signals. Another disadvantage is
that feedback-error learning requires a higher authority, the association cortex, to produce a desired trajectory signal. Kawato’s model
suggests that the cerebellar cortex progressively takes over control from extracerebellar mechanisms in the course of learning, which is
opposite to the shift that has been postulated by others (Galiana 1986; Peterson et al 1991; Houk & Barto, 1992; Houk et al 1992).

In the APG model, Houk and Barto (1992) accepted the sensory nature of IO signaling as a basis for the generation of training
information. Tactile cells respond to light contact within a receptive field on the surface of the limb, and proprioceptive cells respond to
limb movement in a particular direction (Gellman et al 1985). In both cases, responsiveness is suppressed during certain phases of the
animal’s movement. The model in Figure 11B attributes the suppression to inhibitory gating controlled by efference copy signals, which
can occur in sensory relay neurons (SR) or directly in the IO. The tactile responses are inhibited just after a motor command ceases
(Weiss et al, 1990), which is postulated to eliminate contact responses that would otherwise occur at the end of an accurate movement.
This leaves uninhibited responses to contacts that occur when the limb bumps into an object during the movement, a simple indicator of
motor error. The proprioceptive responses are instead inhibited during movement. In the APG array model (Berthier et al, 1993), we
assumed that inhibition occurs only during primary movements, leaving the IO responsive during secondary corrective movements,
which seems to be in agreement with single unit data (Gilbert & Thach, 1977; Gelman et al 1985). Because proprioceptive neurons are
tuned to different directions of movement, different units in the network detect different directions of corrective movement, which
provides a form of supervised training information in the model.

The assumption that IO training signals derive from simple somatosensory properties helps to address the internal standards problem
mentioned earlier. The fact that low-threshold receptive fields are aligned with nociceptive fields for the same neurons (Ekerot et al
1991) suggested that IO neurons learn to respond to low-threshold predictors of nociceptive stimuli in the course of normal
development (Houk & Barto, 1992). According to this theory, nociception as a punishment signal provides the ultimate training
information for the cerebellar network.

The origin of internal standards may not be an issue for smooth eye movements, since the negative image of a head movement, as
sensed by vestibular receptors, can be thought of as the desired trajectory for stabilizing visual images on the retina. Furthermore,
motion detectors in the retina directly transduce the trajectory errors of the optokinetic system. The accessory optic system routes crude
commands directly to vestibular neurons and efference copies to the appropriate region of the IO (Kawato & Gomi, 1992b). If smooth
pursuit is treated as a reflex, a similar, though somewhat more complex, argument can be made regarding this system. The movement of
a visual target, as analyzed in the parietal cortex, could serve as the desired trajectory.

In applying feedback-error learning to saccadic eye movements, Dean and colleagues (1994) assumed that the retinal projection to the
superficial layer of the tectum in effect computes an endpoint error in visual coordinates, as assumed earlier by Grossberg and
Kuperstein (1989). The internal standard is thus replaced by the assumption that a target in the peripheral visual field needs to be
foveated. Note that a trajectory error is not computed in this case, only an endpoint error. This endpoint error is then transformed by the
intermediate layer of the tectum into a kind of motor error signal that was found to be suitable for driving feedback-error learning in a
CMAC model of the cerebellum (Dean et al., 1994). Again, we would note that single unit recordings from CFs do not support this
theory. The CFs that innervate the saccadic region of the cerebellum do not encode motor signals, although they do respond to
proprioceptive inputs. In reviewing this issue, Houk, Galiana and Guitton (1992) suggested that these CFs might be sensitive to their
proprioceptive input only during corrective saccades. This should be relatively easy to test experimentally.

Models of classical conditioning have assumed that the IO transmits the US, e.g., a strong puff of air to the cornea, as a training signal.
These CFs should then mediate the associative learning of a CS (Thompson 1986). In analogy with IO neurons involved in limb control,
those projecting to the eye blink system have exquisitely sensitive tactile receptive fields around the eye. This suggested to Weiss and
colleagues (1993) that these IO neurons might be detecting eyelid closure, as opposed to the US, in which case they could provide
training signals for adjusting the amplitude of the eye blink motor program. This would fit with the APG version of the conditioning
model of the cerebellum discussed earlier (Fig. 6B). It also fits with conditioning studies of mutant mice lacking both mGluR1 receptors
and cerebellar LTD (Aiba et al, 1994). These animals retain an ability to initiate CRs, but are impaired on their ability to regulate the
amplitude of the response.

In summary, one can make a substantial case that the training information transmitted by the IO is based on relatively simple sensory
responsiveness. A sensory origin of these training signals is advantageous since it largely circumvents the theoretical problem of
providing an internal standard for judging motor performance.

3.4 Distributed learning
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The cerebellar cortex is, of course, not the only CNS structure that mediates motor learning. While not a primary topic in the present
article, perspective may be served by offering a brief statement of our views about how plasticity in the inferior olive, premotor
networks, basal ganglia and cerebral cortex might interact with the cerebellar cortex to create an advantageous environment for overall
motor learning (cf. Houk & Barto, 1992; Houk et al 1992; Houk, 1992; Barto 1995; Houk et al 1995; Houk & Wise, 1995).

The IO may be a site of learning that could improve its ability to generate training information. This seems likely in the course of
development, during which IO neurons may acquire their ability to respond to low-threshold predictors of the nociceptive stimuli that
also activate them (Section 3.3). Learning at the level of the IO may also operate in the adult, which could offer explanations for the
puzzling CF responses that have been observed during some motor tasks (Mano et al 1986; Ojakangas & Ebner, 1992). In the Mano
experiment, CFs responded in the interval between the random transitions in a visual target and the onsets of the movements that the
animals made in attempting to follow the targets. Ito (1989) pointed out that the observed CF responses do, in fact, detect errors, namely
the descrepancies between target motion and the animals responses which are delayed by a reaction time. Due to the random
occurrences of target transitions, the observed responses might represent the earliest possible predictors of these errors. In a similar vein,
the CF responses observed by Ojakangas and Ebner (1992) may represent acquired predictors of the corrective movements their animals
used to compensate for gain changes in the visual target display. In both of these cases, we would postulate that IO neurons have
somehow acquired responses to signals that predict the proprioceptive or tactile signals that activate these neurons at the onsets of the
corrective movements. The IO system might also learn how to better use inhibitory gating to improve the quality of the training
information that is supplied by CFs (Houk & Barto, 1992). Learned gating patterns could be transmitted by the inhibitory projections to
the olive from the GABAergic cerebellar nuclear cells N in Figure 11B, since these neurons are probably adaptively controlled by input
from PCs in the cerebellar cortex. Future microelectrode studies, if appropriately designed, might be able to detect adaptive alterations
in IO responsiveness.

The cerebellar cortex is probably capable of transfering some of its motor program knowledge to the premotor network. Elsewhere we
discussed how this could come about for limb and saccadic eye movements through Hebbian mechanisms supervised by PC forcing
functions generated in the cerebellar cortex (Houk & Barto, 1992; Houk et al 1992). It has also been suggested that the cerebellum
provides the information that is used to train the brainstem vestibulo-ocular reflex (Miles & Lisberger, 1981; Galiana, 1986; Peterson et
al, 1991). The cerebellar cortex might acquire this information during task rehearsal, or it might already have adequate information and
need only export it to the premotor network. Formerly it was predicted that premotor networks would learn relatively slowly as
compared with the cerebellar cortex (Galiana 1986; Petersen et al 1991; Houk & Barto, 1992; Houk et al 1992). However, several recent
studies suggest that rapid learning can occur at brainstem (Luebke & Robinson, 1992; Khater et al 1993) and cerebral (Sanes et al 1988;
Raichle et al 1994) sites. In the Luebke and Robinson study, a process of deadaptation, which normally required only 30 minutes, was
suspended by inactivation of the flocculus, supporting the hypothesis that the cerebellar cortex guides the learning. In the Raichle study,
PET scans showed metabolic activity associated with a cognitive process moving from the lateral cerebellum to a sylvian site in the
cerebral cortex following less than 15 minutes of practice. These cases are consistent with the hypothesis that the cerebellar cortex can
export knowledge that it has previously acquired to neurons that are the targets of its regulation. This should be a fruitful area for future
investigation.

Learning how to perform complex behavioral acts clearly requires the cerebral cortex and basal ganglia. We envision that these
structures learn to detect and register events and contexts that are potentially useful in planning and programming motor actions (Houk
& Wise, 1995). The cerebellum, once provided with this information through the cortico-ponto-cerebellar pathway, must then learn how
to use it in an optimal fashion to orchestrate its own participation in complex motor acts.
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FIGURE LEGENDS

Figure 1: Position of the cerebellar cortex in motor control. Basic motor control actions are implemented by premotor networks in the
brainstem, sensorimotor cortex and spinal cord. The cerebellar cortex regulates premotor actions through inhibition and disinhibition.
The inferior olive transmits the climbing fiber information that trains Purkinje cells in the cerebellar cortex how to perform their
regulatory functions. In this and succeeding illustrations, regular arrow heads denote predominantly excitatory connections, closed
arrows denote inhibition and open arrows denote training influences.
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Figure 2: Organization of the limb premotor network and its regulation by cerebellar Purkinje cell (PC) inhibition. Neural stages in the
limb premotor network are: N, cerebellar nuclear cells; T, thalamic relays; M, neurons in the primary motor cortex; R, neurons in the
magnocellular red nucleus; P, pontine neurons; L, lateral reticular neurons.

Figure 3: Organization of the premotor network controlling smooth eye movements in the horizontal plane. Neural stages are: V, medial
vestibular neurons; P, prepositus hypoglossius neurons; PV, intermediate types.

Figure 4: Modular architecture of the adjustable pattern generator (APG) array model of the cerebellum. PCs, Purkinje cells; B, basket
cell; PFs, parallel fibers; N, cerebellar nuclear cells; M, neurons in primary motor cortex. Inhibitory interneurons in a module, the Golgi,
basket and stellate cells, are denoted with stippled cell bodies and axons.

Figure 5: Signals utilized by the APG model in selecting and regulating the execution of a motor program. The instruction stimulus fires
basket (B) cells and causes state transitions in Purkinje cells (PCs). The trigger stimulus initiates positive feedback in those M-N loops
that are disinhibited. The inserts on the right illustrate the model of dendritic bistability in PCs and the concept that bistability in several
dendrites (D1 through D5) gives rise to multistability in the soma (S) of a PC.

Figure 6: Cerebellar regulation of conditioned reflexes (CRs). Part A shows a simple model of CR generation: PC, Purkinje cells; N,
cerebellar nuclear cells; R, red nucleus cells; VI, cells in the abducens nucleus; V, cells in the trigeminal nucleus. Part B shows a
modified model of CR generation based on the APG theory. L, lateral reticular nucleus; RF, reticular formation; IO, inferior olive.

Figure 7: Cerebellar regulation of saccadic eye movements. Part A shows a model of the tecto-reticulo-cerebellar network. PC, Purkinje
cells; N, cerebellar nuclear cells; T, tectal neurons; LL, long-lead burst neurons in reticular formation. Part B shows a model of
cerebellar regulation of the brainstem burst-generating network. PC, other Purkinje cells; N, other nuclear cells; OP, omnipause
neurons; EB, excitatory burst neurons; IB, inhibitory burst neurons.

Figure 8: Cerebellar regulation of smooth eye movements in the horizontal plane. PC, Purkinje cells; V, medial vestibular neurons. Also
see Figure 3.

Figure 9: Cellular mechanisms in a learning rule for long-term depression (LTD). Stippled box defines boundaries of a spine. According
to this model, LTD requires three factors: parallel fiber input to the spine (a presynaptic factor), dendritic depolarization produced by
responses to other parallel fibers (a postsynaptic factor), and dendritic depolarization produced by climbing fiber input (a training
factor).

Figure 10: Structural credit assignment in cerebellar modules. Open arrows at the top are climbing fiber inputs oriented in a parasagittal
plane. Parallel fiber inputs instead are oriented in the horizontal plane. The rectangles schematize the dendritic trees of individual
Purkinje cells. Longitudinal sets of Purkinje cells provide focused inhibitory input to cerebellar nuclear cells (N). Stipling highlights 5
PCs that participate in one APG module, with loop connections to the motor cortex (M) shown forming an elemental motor command.

Figure 11: Two models of how climbing fiber (CF) training information is generated. Part A shows the feedback-error learning scheme,
and part B shows the scheme utilized in the APG theory. IO, inferior olive; N, cerebellar nucear cells of the GABAergic type; SR,
sensory relay cells; Int, inhibitory interneurons.


