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Abstract

This paper describes a novel method of achieving load balancing in telecommunica-
tions networks. A simulated network models a typical distribution of calls between
nodes; nodes carrying an excess of traffic can become congested, causing calls to be
lost. In addition to calls, the network also supports a population of simple mobile agents
with behaviours modelled on the trail laying abilities of ants. The ants move across the
network between randomly chosen pairs of nodes; as they move they deposit simulated
pheromones as a function of their distance from their source node, and the congestion
encountered on their journey. They select their path at each intermediate node accord-
ing the distribution of simulated pheromones at each node. Calls between nodes are
routed as a function of the pheromone distributions at each intermediate node. The per-
formance of the network is measured by the proportion of calls which are lost. The
results of using the ant-based control (ABC) are compared with those achieved by using
fixed shortest-path routes, and also by using an alternative algorithmically-based type of
mobile agent previously proposed for use in network management. The ABC system is
shown to result in fewer call failures than the other methods, while exhibiting many
attractive features of distributed control.



1 Introduction

The notion of compbecollectve behaiour emeging from the behaour of mary relatively
simple units, and the interactions between them, is fundamental to the field of artificial life.
The graving understanding of such system#erd the prospect of creating artificial systems
which are controlled by such ergent collectve behaiour; in particulay we beliee that the
exploitation of this concept might lead to completelyregproaches for the management of
distributed systems, such as load balancing in telecommunicationsrketw

What is load balancing? oF economic and commercial reasons, such orksv are
equipped not with a \@l of equipment which will guarantee successful call connection under
all possible circumstancestwith some laver level which will give acceptable performance
under most conditions of use. If there is some significant change in the conditionsanfier e
ple, if the total call slume at ap time is unusually high, or if some particular location is sud-
denly the origin or destination of an unusuallyganolume of calls - then these capacity
limitations might lead to the systemiling with calls unable to be connected.

Calls between tw points are typically routed through a number of intermediate switching
stations, or nodes; in a t@ netvork, there are manpossible routes for each such call. It is
thus possible to rele actual or potential local congestion by routing calls via parts of the net-
work which hae spare capacity.oad balancing is essentially the construction of call-routing
schemes which successfully distrib the changing loadver the system and minimise lost
calls. Of course it is possible to determine the shortest routes ey eode to eery other
node of the netark. In this vay the a&erage utilisation of nodes will be minimisedt Ibhis is
not necessarily the idealy to aoid node congestion, as this has to do witl ttwe trafic on
the netvork is distrituted.

Controlling distriluted systems l&these by means of a single central controller hessae
disadwantages. The controller usually needs currenteage about the entire system, neces-
sitating communication links fronvery part of the system to the contrall€hese central con-
trol mechanisms scale badlgue to the rapid increase of processing and communication
overheads with system sizeaikare of the controller will often lead taifure of the complete
system. There is the additional practical commercial requirement that centrally controlled sys-
tems may need to bevaed by one single authoritifurther the nature of distrilded systems
like these is highly dynamic, compland stochastic, and their bglwur can neither be pre-
dicted nor gplained by reducing it to a single central controllabledr

A good decentralized control mechanism will noténghe problems mentioned algo The
field of artificial life has gien us inspiration for such a mechanism that will be completely dis-
tributed, and highly adapt to changes in the natvk and trafic patterns. This solution
makes use of the distnitbed processing capability already inherently present in theorletw
the form of netwrk nodes. The distrnitied nature of such an approach may enidde system
very rolust aginst filures of indvidual control entities.

Our approach is inspired by thexk of biologists studying social insects, whodance-
ered the mechanisms controlling the foraging biehas of ants (Beaks, Deneubogr &
Goss, 1992; Deneubay® Goss, 1989; Goss et.al., 1990; Franks, 1989). The most important
method is the laying and sensing of trails of pheromones - specialised chemical substances
which are laid in amounts determined by local circumstances, and which by their local concen-
tration subsequently directly influence an ant's choice of route.

In this paper we present a netlk model which is populated by artificial ants that enake



of the trail laying principle; at each node an ant encounters on theydorite destination, it
leaves an amount of simulated pheromone which is a function of the congestion of the node,
and of the distance the ant hawvéled from its source node; the ant then selects tkienoele

on its journg on the basis of the local pheromone disttitm. The routing of calls is then
based on these pheromone disttidns.

We compare this method with another decentralisedarkteontrol mechanism, which is
based on preous work carried out by British dlecom (Appleby & Steard, 1994). It mads
use of mobile agents - computational processesgngdrom node to node athering informa-
tion, and making decisions for rerouting on the basis of a minimum cost function.

Both approaches are compared to an approach which usgsrifon-adapie routing tables
algorithmically optimised to yield the shortest paths.

2 A Network Simulation to investigate distributed control
mechanisms

An application has been written to simulateficgbatterns on a model of a switch-based tel-
ecommunications netwk. Such a netark is most naturally represented by an undirected
graph. Each node in the graph corresponds to a switching station; the links between nodes cor-
respond to communication channels. &egi node will usually only be lidd to a subset of
other nodes, usually its geographical neighbours; links are intrinsically bidirectional. The net-
work model used is a graph mhodes, each of which has/eeal attrilutes:

* A node identifier
» A capacity This is the number of simultaneous calls that the node can handle.

» A routing table with(n-1) entries, one for each node in the raky Each entry tells us
which node is the ¢ node on the route to the destination node concerned.

» A probability of being the end node (either source or destination) of a call.
» A spare capacityTlhis is the percentage of the capacity that is stlilable on the node.
The links between the nodes are assumedwe indinite capacityso that the geographical

distance between ligkl nodes is of no account. The node capacities will therefore be the only
bottlenecks in the netwk.

2.1 The simulation

Every time step of the simulation proceeds as ¥adloFirst, calls that @ epired are
removed, releasing capacity at the nodesxtiNealls are generated by a frafyeneratarThese
generated calls wolve a source node, a destination node and a duration, measured in time
steps. When a call is generated, its route is determined by the current routing tables, and the
call is placed on the netwk, reducing the spare capacity of each node on the route. If there is
no spare capacityvailable on a node on the route of the call, this call \aill The e&pected
number of calls generated in one time step Yadl@ Poisson distriltion, and the duration of
each call anxponential distribtion. The source and destination nodes are randomly chosen as
a function of each nodeprobability of being an end node; this is bothvemient and reason-
able.

2.2 Test details

The 30-node netark topology of Figurel was chosen because this is a realistic intercon-



nection structure of a possible switch-based adtwit is also the same topology aaswsed

in (Appleby & Stevard, 1994), and is imtt the structure of the British Synchronous Digital
Hierarcly (SDH) netvork. The interconnection structure is angukar mesh that is interesting
because it mads trafic management a compland dificult task.

FIGURE 1. This netvork topology is the same as the interconnection structure of the SDdrketiv
British Telecom and pnades a realistic netark topology

The number of parameters that camyvin this netwrk model is lage. This implies that

some arbitrary choices &ato be made for testing:

When a call is set up, each node in the model of Fifjinas a certain probability of being

an end point of the call. These probabilities are generated by selection from a suitable distri-
bution at the start ofvery run, and lie between 0.01 and 0.07. After generation these proba-
bilities are normalised to sum to 1.

The capacity of each node is 40 calls, so thatyecall using a node increases the utilisation

(or decreases the spare capacity) of that node by 2.5%.

During every time step of the simulation, anesage of 1 call is generated with are@ge
duration of 170 time steps. This means that tteeagge number of calls on the netk will

be 170, once the tifed pattern hasalt up.

The arerage length (total number of nodes) of the shortest route betweerdss is 4.07.

With fixed shortest-path routing tables, each of the 170 calls will use 2.5% of the capacity of
an aerage of 4.07 nodes. As there are 30 (number of nodes) times 40 = 1200 ‘capacity
units’, the aerage utilisation of the nodes will be 170 x 4.07 / 1200 = 57.7%.

To facilitate seeing»actly what is going on in the netwk simulation, the trdt in the net-

work is represented visually during run-time by changing the colour of the nodes to indicate
their spare capacities. A & number of features to support visualisation and usabiiy ha
been added to the program, such as displaying the changes with time of one particular route,
running the simulation step-by-step, and inspectugyyepart of the netark during the simu-



lation. The softwre was written in Smalltalk, running in thaswialWorks ™! environment on a
Hewlett-Packard 9000 Series 700ovkstation.

3 Ants in nature

Individual ants are bekeburally very unsophisticated insects. Jheave a \ery limited
memory andhibit individual behaiour that appears to @ a lage random component. Act-
ing as a collectie havever, ants manage to perform ariety of complicated tasks with great
reliability and consisteryc A few examples of collectie behaiour that hae been obseed in
several species of ants are (Hoélldobler &iI8@n, 1994; Franks, 1989):

* regulating nest temperature within limits of 1°C;

» forming bridges;

+ raiding particular areas for food,;

* building and protecting their nest;

» sorting brood and food items;

e cooperating in carrying lge items;

» emigration of a coloy

» comple patterns of @g and brood care;

+ finding the shortest routes from the nest to a food source;
« preferentially &ploiting the richest\ailable food source.

These behaours emege from the interactions betweendarnumbers of ingidual ants
and their emironment. In mawn cases, the principle of stignggr (Grassé, 1959) is used. Stig-
memy is a form of indirect communication through theissnment. Lile other insects, ants
typically produce specific actions in response to specific locatommental stimuli, rather
than as part of thexecution of some central plan. If an ant's action changes the lotaren
ment in a vay that aflects one of these specific stimuli, this will influence the subsequent
actions of ants at that location. Thevieonmental change may takeither of tw distinct
forms. In the first, the pisical characteristics may be changed as a result of carrying out some
task-related action, such as digging a hole, or adding a ball of mud teiagystructure. The
subsequent perception of the changadrenment may cause thexient to enlage the hole,
or deposit its ball of mud on top of the yus ball. In this type of stigmgy, the cumulatie
effects of these local task-related changes can guide thvthgod a complg structure. This
type of influence has been called sematectonits¢w, 1975). In the second form, theven
ronment is changed by depositing something whichesiao direct contriftion to the task,
but is used solely to influence subsequent Wiela which is task related. This sign-based stig-
memgy has been highly geloped by ants and othetatusively social insects, which use ari
ety of highly specific @latile hormones, or pheromones, tovpde a sophisticated signalling
system. Some of the almbehsiours hae been successfully simulated with computer mod-
els, using both sematectonic stigge Theraulaz & Bonabeau, 1995), and sign-based stig-
meigy (Stickland, ®fts & Franks, 1992) and also on robots (B=sk Holland & Deneubogr
1994; Russell 1995; eza et.al., 1994).

A type of sign-based stignwgyr is used in our netwwk model. It is based on theaw ants
find short routes from their nest to a food source, and also oraththey select between food

1. VisualWorks is a trademark ofdPcPlace Systems, Inc.



sources of dierent \alue. The \ay ants aganise these routes has inspired us Yesticate a
new approach for congestion@dance in telecommunications netks.

3.1 Basic principles of trail laying

Depending on the species, ants may lay pheromone trails whehinigaifrom the nest to
food, or from food to the nest, or whenviglling in either direction. Thealso follav these
trails with a fidelity which is a function of the trail strength, among othagakles. Ants drop
pheromones as thevalk by stopping briefly and touching theasier which carries the phe-
romone secreting gland, on the ground. The strength of the trailatyhés a function of the
rate at which themale deposits, and the amount per deposit. Since pherom@amsate and
diffuse avay, the strength of the trail when it is encountered by another ant is a function of the
original strength, and the time since the tradlswaid. Most trails consist of\sral superim-
posed trails from mandifferent ants, which may fia been laid at dérent times; it is the
composite trail strength which is sensed by the ants. The principles applied by ants in their
search for food are bestm@ained by anxample as gien in (Beclers, 1992):

FIGURE 2. Ants hare a decision to mak

nest o o ? ?% #»e food source

Figure2 illustrates tw possible routes between nest and food-source. Injiedlgnt arx-
ing at a Tcrossing (choice point), mak a random decision with a probability of 0.5 of turning
left or right. Nav suppose there are eavants leging the nest, looking for food, and avants
returning from the food source to the nest. Let the ants be of a type diaduadNiger which
deposits pheromones whenvielling both to and from the nest. If one ant from each pair turns
left, and the other turns right, after a while a situation occueghiéit in Figure3. The lines on
the paths represent the pheromone trails. The ants that chose the shorter bmaotvéd at
their destination, while the ones that chose the longer branch are still on dlgefknis ini-
tially select their vay with a 0.5 probability for both branches, as there is no pheromone on the
paths yet. If there is pheromone present, there is a higher probability of an ant choosing the
path with the higher pheromone concentration, i.e. the path where more atsaielled
recently If at the moment of the situation in FiguBeother ants awe and hee to choose
between the tev paths, thg are more likly to choose the shorter path, because that is where
the concentration of pheromone is highEnis means that the amount of pheromone on the
shorter path is more ity to be reinforced agn. In this vay, a stronger pheromone trail will
arise on the shorter path, and so the path will be selected by an increasing proportion of ants As
fewer ants choose the longer path, and ttistiag pheromone slaly evaporates, the trail on
the longer path will wean and eentually disappear



FIGURE 3. Situation seeral moments later

nest w food source

Although this is essentially selfganisation rather than learning, antsd#o cope with a
phenomenon that lookseky much lile overtraining in reinforcement learning techniques.
There are tw main issues: the blocking problem and the shortcut problem (Sutton, 1990). The
blocking problem occurs when a routepoeisly found by the ants is no longefdable. It
can then tad a relatiely long time for the ants to find aweoute. The shortcut problem
occurs when a ne¢ shorter route suddenly becomesilable. In this case the weaoute will
not easily be found, because the old trails are so strong that almost all the ants choose them.

4 Ant-Based Control (ABC) for network management

How could this trail laying and follwing behaiour be applied to something élka telecom-
munications netark? And can we\ercome the blocking problem and the shortcut problem?
This section describes Wwonve implemented an artificial ant population on the netwnodel.
Further details may be found in (Schoondsevd, 1996).

4.1 Pheromone tables

We replaced the routing tables in the matwnodes by tables of probabilities, which we
will call ‘pheromone tables’, as the pheromone strengths are represented by these probabilities.
Every node has a pheromone table f@rg possible destination in the nenk, and each table
has an entry forvery neighbourFor example, a node with four neighbours in a 30-node net-
work has 29 pheromone tables with four entries each. One could say thabdea netwrk
uses different kinds of pheromones. The entries in the tables are the probabilities which influ-
ence the ants’ selection of thexhaode on the way to their destination node. Figuteshavs a
possible netwrk configuration and a pheromone tabler &ample, ants trgelling from node
1 to node 3 hae a 0.49 probability of choosing node 2 as theit nede, and 0.51 of choosing
node 4. ‘Pheromone laying’ is represented by ‘updating probabilities’.



FIGURE 4. Using ants for netark management
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At every time step during the simulation, ants can be launched frgmade in the net-
work. Each ant has a random destination node. Anigrfrom node to node, selecting the
next node to mee to according to the probabilities in the pheromone tables for their destina-
tion node. Arving at a node, theupdate the probabilities of that noslggheromone table
entries corresponding to themurce node i.e. ants lay the kind of pheromone associated with
the node the were launched from. Tlgealter the table to increase the probability pointing to
their previous node. When antsvereached their destination, yhaie.

Take as anxample an ant in the nebrk of Figure4 that is launched at node 3 with desti-
nation node 2, and has justveded from node 4 to node 1. This ant will first alter node 1’
table corresponding to node 3 (its source node) by increasing the probability of selection of
node 4; it will then select its rRenode randomly according to the probabilities in the table cor-
responding to its destination node, node 2. (Note that just for the purpose of illustration this
particular ant treelled an inefective route.)

In this way, ants maing avay from their source node can only directlieaf those ants for
which it is the destination node. This is uslithe trails of bidirectional trail laying ants, in
which a trail laid in one direction can directhyfeaft ants traelling in either direction. He-
ever, the ants which can be directly influenced by an awelirag from a source node S to a
destination node D will include thoseuedling from D to S; these are thery ants which
could be gpected to hae most influence on ants¥rdling from S to D, and so antsedling
from S to D may hae a strong influence on ants subsequentleltiag that route via their
effect on the ants tvalling on the opposite route. The system may thus eelsienilar efects
to the biological bidirectional trail layersytthrough an indirect form of interaction.

This way of directly updating probabilities tkfs from the @y ants lay pheromonegytls
functionally equralent. V& feel that using probabilities instead of absolute pheromone quanti-
ties helps us to understand the hatar of the artificial ants bettefhe tables we usewg the
probabilities of alternate choices between paths directihereas the pheromones of real ants
are basically a code that idegftively corverted into probabilities by the astherwus system.

The method used to update the probabilities is quite simple: when an aed atra node,
the entry in the pheromone table corresponding to the node from which the ant has just come is
increased according to the formula:



_ Poig + AP
1+Ap
Herep is the n& probability andAp is the probability (or pheromone) increase. The other
entries in the table of this node are decreased according to:

_ Poig

P= Tap

Since the ne values sum to 1, tlyecan a@in be interpreted as probabilities. Note that a
probability can be reduced only by the operation of normalisationwfioigpan increase in
another cell in the table; since the reduction is aelidy multiplying by adctor less than
one, the probability can approach zero if the other cell or cells are increasgdimes) lut
will never reach it. Br a gven \alue of Ap the absolute and rebadi increase in probability is
much greater for initially small probabilities than for those which agetarhis has the é&ct
of weighting information from ants coming from nodes which are not on the currently pre-
ferred route, a feature which may assist in the rapid solution of the shortcut problem.

4.2 Ageing and delaying ants

A primary requirement of this evk was to find some simple methods of encouraging the
ants to find routes which are reletiy short, yet whichaid nodes which are hedy con-
gested. Wo methods are used. The first is to mAg, the alue used to change the pheromone
tables, reduce progresgsly with the age of the ant. When the antve®at one node per time
step, the age of the ant corresponds to the path length it has traced; this biases the system to
respond more strongly to those ants whickrehanored along shorter trails. The second
method, which depends on the first, is to delay ants at nodes that are congested with calls to a
degree which increases with thegidee of congestion. This delay hasot@omplementary
effects:
» it temporarily reduces the florate of ants from the congested node to its neighbours,
thereby preenting those ants fromfatting the pheromone tables which are routing ants to
the congested node, and allog the probabilities for alternag choices to increase rap-
idly.
» since the ants are older thanyth@herwise wuld hare been when tlyefinally reach the
neighbouring nodes, thdave less dect on the pheromone tables.
It is of course possible to aclieethe second &fct alone by increasing the parameter repre-
senting the age of the ant without actually delaying the ant; this essentially reducéscthe ef
on pheromone tables of an ant which has passed through a congested node. This has a biologi-
cal parallel: in some species of ants, those returning from a richer food source tend to drop
more pheromone than those from a poor source @sck993). In the case of our netw
simulation, havever, the combination of delay and age-related penalty seems to be particularly
effective. An added adintage of this formulation is that the manipulation of the parameter
relating delay to the dgee of congestion can be used to control the velateighting which
the system ges to preferring the shortest route (which maximises spare capacitygiast ag
preferring the least congested route.

4.3 How calls are routed

Having explained hav ants ‘choose’ their routes through the raty let us consider the
calls. Calls operate independently of the antsdd@termine the route for a call from a particu-



lar node to a destination, thedast probability in the pheromone table for this destination is
looked up. The neighbour node corresponding to this probability will be ttienade on the
route to this destination. The route @lig if the destination is reached, and the call is then
placed on the netwvk, unless one of the nodes on the route is congested; in that case the call
fails to be placed on the nedvk.

In this way, calls and ants dynamically interact with each otNewly arriving calls influ-
ence the load on nodes, which will influence the ants by means of the delay mechanism. Ants
influence the routes represented by the pheromone tables, which in their turn determine the
routing of nev calls. These relationships are illustrated in Figur®ne needs to realise that
the pheromone table by which an widual ant is influenced, is a thfent table than the phe-
romone table that will be updated by this ant. The load on thereat ary given time influ-
ences which calls can subsequently be placed on thenkefnd which calls willdil; which
of course determines the load at a later stage.

FIGURE 5. Relationship between calls, node utilisation, pheromone tables and ants. iindicates
the direction of influence

new calls arrving old calls apim

routes of individual new calls load on nodes pheromonetables routes of ants

N

new ants being launch
old ants dying

new calls filing
due to congestion

4.4 Initialisation

A network initialised with random or uniform entries in the pheromone tables will not ini-
tially contain ay useful information about consistent (i.e. non-circular) call routes, let alone
good routes. It therefore mek little sense toxamine netwrk performance during this phase.
However, even in the absence of calls on the raty the ants will bias teards shortest paths.
There are three mechanisms conttiitg to this:

» The shortest routes will be completed first, and will subsequently direct other ants to their
sourcing nodes first.

» Shorter routes wolve less branching, so the number of antgellimg over these routes and
laying pheromones will be Iger than on longer and more branched routes.

» Ants travelling over shorter routes will be younger whentharive, and will therefore
exercise more influence on the pheromone tables.

After a short time the highest probabilities in the pheromone tables of each node will define
relatvely short routes, and circular routes willveabeen eliminated (forxample after 500
time steps thev@rage route length is typically 4.10, where 4.07 is the minimum possible), and
when the routes are $igfently short, calls can safely be put on the rmekysubsequent adap-
tation will then be influenced by wrrongestion caused by calls. All ant netls were there-
fore initialised with equal probabilities for neighbour nodes in each pheromone table, and
allowed to run for a figd period before calls were applied.
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4.5 Noise

So far, we hae not considered the blocking problem and the shortcut problenme@d to
avoid ‘freezing’ of the routes in situations that remain static for a long time and then suddenly
change. One ay of doing this is by adding am@oration probabilityor noise, to the random
walk of the ants; this will ensure thatem apparently useless routes are used occasiosally
that at least some information about them is present in the systewe ta lggad start when a
route is blockd (e.g. by @reme node congestion or no@ddre). Noise might also encourage
the more rapid dise@ry of a better route which suddenly appears.

A convenient implementation is to arrange that a ncastof off means that atvery time
step an ant has probabilityf choosing a purely random path, and probability) @ choos-
ing its path according to the pheromone tables on the nodes. The possibly benksfotgabef
the addition of noise to ant-based algorithms were noted in (Denguld®%0): ‘Rather than
simply tolerating a certain dese of errarit can @en be desirable to deliberately add error
where none or littlerasts:

4.6 General framework for ant-based control systems

The basic principles for ant-based control (ABC) systems are applicable to aaviety of
problems, and can be characterised asvisiio

« Ants are rgularly launched with random destinations @arg part of the system.

« Ants walk randomly according to probabilities in pheromone tables for their particular des-
tination.

* Ants update the probabilities in the pheromone table for the locatigniire launched
from, by increasing the probability of selection of theirviyes location by subsequent
ants.

» The increase in these probabilities is a decreasing function of the age of the ant, and of the
original probability

» This probability increase could also be a function of penaltiesn@rds the ant hasath-
ered on its \ay.

» The ants get delayed on parts of the system that avédyhesed.

» The ants couldwentually be penalised orwarded as a function of local system utilisation.

» To avoid overtraining through freezing of pheromone trails, some noise can be added to the
behaiour of the ants.

4.7 Parameters

There is a lage number of parameters to tune for this system - choices are basgation e

ence with a ariety of pr@ious simulations:

» The speed of the ants is one node per simulation time step (unieasdluelayed on a par-
ticular node).

* We chose to letwery node launch an ant with a random destinationverydime step of
the simulation.

» The probabilities are updated agpkained in Sectiod.1, and according to the folling
formula, whereage stands for the number of time steps that passed since the launch of the
ant:

11



ap = 298, 0,005
age
» Thedelay in time steps that isggn to the ant is a function of the spare capacdy the
node:

delay = L80 [9_0'075DSJ

» The initialisation period, that is the period during which the ants initialise the routes on the
network without trafic, is between 250 (no noise) and 500 (5% noise) time steps.

Before we gre some results of our simulations, we will describe briefly another distdb
network management approach based amnkwy researchers from Britiskel[Ecom. V¢ com-
pared the ABC method with this method and with edirouting scheme.

5 Mobile Software Agents

A different approach for a distuted control mechanism is mided by the mobile agents
developed by researchers from Britiskeldcom in (Appleby & Steard 1994). In addition,
these agents are axaeenple of a routing scheme that optimises routes in theonetecording
to a least cost criterion. 8Mmplemented tev modified \ersions of their scheme on our net-
work simulation model. Further details may be found in (Schoorwedy 1996).

In this mobile agents approach, there are pecies’ of agents: load management agents
and parent agents. Thenest leel of control is preided by the load management agent. Each
such agent is launched from a particular node, and then searches algorithmically for better
routes from nodes in the nedrk to the node where itag launched. &ent agents pwide the
second leel of control. According to heuristics and informaticasttgered on the netwk, a
parent agent can decide that netkvmanagement at certain locations is needed tweeatien-
gestion, and therefore launches load agents at those locations.

5.1 The Load management agent

A load agent is launched on a particular node and optimises the routes from all other nodes
to that source node. It does this by visitingrg node in the netwk, recording the current
spare capacifyand amending the routing tablese Wvestigated two methods, each with a dif-
ferent kind of load agent. In the first, we made load agents find the route with a minimum bot-
tleneck i.e. thg maximise the minimum spare capacity on the route, as in theoBd. i the
second we implemented argion in which thg minimise the sum of squared node utilisations.
The reason for this will become clear later

The algorithm that is used to find themmutes is a@rsion of Dijkstra's shortest path algo-
rithm (Dijkstra, 1959). As a criterion for ‘shortest path’ the minimum spare capacity on the
route is used in the original algorithm; and the sum of squared node utilisations fersson v
of the load agent.

5.1.1 The algorithm of the Load agent
The load agent using the minimum spare capacity on the route as a shortest path criterion
works as follavs:

Travelling over the netwrk the load agent mak a distinction between evkinds of nodes:
permanent and temporary labelled nodes. The agent maintains lists with records of both kinds
of nodes, with the follwing data-fields:
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* The identifier of the node

» The lagest spare capacity of the route from that node to the agent's source node. This is the
route where the minimum spare capacity is maximal.

 the neighbour of the node on this route.

The goal of the load agent is to update the routes fr@ry ether node in the netrk to
the agent's source node.\ifgg done that, the agent is finished and terminates. The algorithm
is as follavs:

1. When a load agent is launched on a node, the node sets a flag ‘load @g§erg’ wl he
agent starts by creating a permanent label for its source node, with spare capacity infinity
and no contribtor to the best route. The agent does ne¢ macords yet for gnother
nodes. Hereatfter it visits all neighbour nodes, to create temporary records for each neigh-
bour. In this first step the spare capacities in these records are equal to the spare capacities
of the nodes themseads. The entries in the routing tables of the nodes will then be updated.
This part of the initial step is alsowial: the n&t node in the route to the source node is the
source node itself.

2. The net step is to promote one node from temporary to permanent. This will be the tempo-
rary node with the lgiest spare capacity in the agent's records. The agent goes to this node
and maees the record for it to the list of permanent nodes. The agent then visits all of this
nodes neighbour nodes that it does notdeecords fqrand creates temporary records for
them. For each of these records the conitibg neighbour is the mdy promoted node, and
the spare capacity is the least of the neighbour nodesspare capacity and that recorded
for the nevly promoted node. Here the routing tables are updat&d:abe n&t node in the
route to the source node is thevygermanent node. At this stage the list of temporary
records nw consists of temporary records from this step, and from the earlier steps.

3. Again the temporary node with thedasst spare capacity on its route to the source node is
visited and made permanent. Its neighbours become tempibr@ryrouting tables are
updated, so that the agent is ready to promote another node. Steps 2 and 3 are repeated until
the agent has visited all nodes in the rmekwAt this point all routing tables ha been
updated, so the agent goes back to its starting node to undo the flag ‘loadagemy w
and dies in peace.
The nev routes that are found by a load agent are the optimal rowess tiie information
gathered by the agents: the route frorarg node on the netwk to the agents’ starting node
has a maximised minimum spare capaditgwever, trafic patterns change while the agent is
working, and so the informatiorathered by the agent need not accurately reflect the situation
at a gven moment - i.e. the routes are not guaranteed to be optimal. Note further that the agent
only looks at the minimum spare capacities on the routes, and doesentitdadpare capaci-
ties of other nodes in the route into account. (Whentemporary nodes are labelled with the
same spare capacityalable, the load agent medkan arbitrary choice which of these nodes to
promote.)

5.1.2 Difference from the original approach

There is a major dérence from the approach in the Bonk. we changed the direction in
which routing tables were updated. In (Appleby &v@&ed, 1994) load agents did not update
the routing tables in the direction of their source nodeirbthe direction of the mdy visited
nodes, and from all nodes on the route between this node and the source node antikns w
load agents may at the same time do updates of routes to the same node. As these agents might
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have different data, because of constant mekwchanges, we suspected that circular routes
might occur in the netark. In early simulations we obsed such circular routes. By chang-
ing the direction in which updating occurs weiaed this problem. Heever, we lose the pos-
sibly beneficial gect that load agents also update routes to nodes in therketther than
their ovn source node.

5.1.3 Another criterion f or ‘shor test r oute’

We made an impre@ment to the load agent by storing the total sum of squared utilisations
of all nodes on the route from that node to the agesatirce node, instead of theglest spare
capacity of the route. (The node utilisation is the percentage of thesrmaghcity that is occu-
pied by calls.) The load agent then promotes temporary nodes with the smallest sum of squared
node utilisations in its records. In this case the routing tables can only be updated when the
node is being promoted, because when a node is still temporary it may be possible to find a
better solution for that node latdihe agent finishes as soon as all nodes haen promoted.

The reason whwe chose a drent criterion for ‘shortest route’as that we obseed rel-
atively long routes in simulations where load agents maximise the minimum spare c#pacity
call on such a long route occupies more nodes and this additional demand ork netw
resources may cause subsequent callaitodther load agents may then amend the route to
follow an even longer path. Our impved algorithm counteracts this by taking the spare capac-
ities of all nodes in the route into account, and leads to shorter routes (routesweith fe
nodes). Note further that by squaring the utilisation, the velatifluence of healy utilised
nodes is increased.

5.2 The Parent Ag ent

The net level of control in the netark is pravided by parent agents. TTheavel around the
network and launch load agents where reakwmanagement is needed. The decision to launch
a load agent is made on the basis of informatathayed, and a set of heuristic rules.

The parent agent wals randomly around the nedvk to cather information about the
nodes. At each node the agent visits, it records thenioiipdata fields:

» The trafic destination rate. This is the number of calls thaehhe node as their destina-
tion

» The utilisation of the node.

» The destination-rate histqrwhich is the gerage destination rate of the ldstisits to the
node.

Further it records the folaing global information, when stepping around the oekw
» The utilisation historywhich is the gerage of node utilisations of the laswvisited nodes.

» The number of nodes it has visited ao f
» A destination rate ranking table. This table contains a ranking of nodes according to their
destination rate history

When the agent encounters a node with a higher utilisatilore than the agent's utilisation
history, it assumes that tfaf management is needed. The ranking table tells the agent which
node is most used as a destination node of calls. Tlie tcafhis node is ligly to be the cause
of some netwrk overload. The agent then goes to this node and launches a load agent, unless
the node has already got a load agewmrtkimg for it. After reaching this node and launching a
load agent, the parent agent continuesyitdecof gathering information, and detecting where
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new traffic management is needed. Note further that our parent agents look at the destination
rate, whereas the original mobile agents &bkt the sourcing rate of nodes. This is due to the
difference of direction in which our load agents update the routing tables.

In real netvarks, the parent agent could also be programmed te pobblems lik crashed
load agents. This is not modelled in our simulation.

5.3 Parameters

As with the ants, the space of possible parameter settinggés the alues used in the

simulations reported here Secti@2 were those found to be best according to xperence

with previous eperiments:

» The speed of the agents is basically the same as the speed of theeanteme step of the
simulation an agent performs its task on its current node amnesmo the e node.

» The parent agent tek the last 4 visits to each node into account to calculate the destination
rate history

» The global utilisation history is 60; the last 60 visits count in the calculation of¢hage
utilisation.

» The destination ranking table has size 15. This means that if this table is smaller than 15, the
parent agent will gther more information around the netlk

* The number of parent agents is 2.

The routing tables are initialised so that the lengthvefyeroute, i.e. the number of nodes
on the route, is minimal.

6 Results of the simulations

The simulation presented us with some practical problems. Because of the initial random
selection of call probabilities, the random generation of calls, and the random lengths of calls,
the \ariability between runs as \ery high. In order toxercome this, manruns wuld have to
be areraged; since each rurasnery time consuming, an adequate number of runddvale
a prohibitvely long time. @ therefore decided to use a repeated measuremx@etsneental
design, in which each condition is tested on the same dataset; because of the redwiion in v
ablility, pairwise comparisons between conditions can then yield good information from a rela-
tively small total number of runs.&\proceeded as foils:

» 10 sets of call probabilities were generated using the method of S2&ion
« Each set of call probabilitiesas used to generate a call sequence lasting 15000 time steps.

» Each call sequenceas split into tw blocks A + B, each of 7500 time steps.

TABLE 1. Generation of call sequences for adaptation and test
call
probability adaptation test
set (0-7500) (7500-15000)
1 1A 1B
2 2A 2B
10 10A 10B
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« Each run consisted of an adaptation period (block A) and a test period (block B). During the
adaptation period the load balancing systeas ailaved to adapt to the call statisticseW
have found that ay adaptation which tas place is subsantially complete after 7500 time
periods.

» During the test period (time steps 7500 to 15000) we recorded therkegierformance in
terms of call &ilures. The xperiments hee been performed for: a é” routing scheme
without load balancing; the mobile agents; inyg mobile agents asx@ained in
Section5.1.3; ants without noise; and ants with 5% noise. kKperanental design is illus-
trated by &ble2 and the results inable3.

TABLE 2. Experimental design 1
adaptation test
(0-7500) (7500-15000)
1A 1B
2A 2B
10A 10B
TABLE 3. The mean percentages (ten experiments each) and standard deviations of call

failures for unchanging call probabilities

Mean Standard dev.
Without load balancing (fed, shortest routes) 12.57% 2.16%
Original mobile agents 9.19% 0.78%
Improved mobile agents 4.22% 0.77%
Ants (0% noise) 1.79% 0.54%
Ants (5% noise) 1.99% 0.54%

In order to find out thextent to which the results are due to the dynamic actions of the load
balancing system, rather than to thevemgence to a good set of routing tables specific to a
particular set of call probabilities, we repeated some of thgseriments, bt this time we
froze the routing tables for each method after the adaptation period; i.e. we stopped launching
mobile agents or ants. The results arexshim Table4.

TABLE 4. The mean percentages and standard deviations of call failures after stopping
load balancing for unchanging call probabilities
Mean Standard dev.
No improved mobile agents after 7500 6.43% 2.17%
No ants (0% noise) after 7500 2.11% 0.60%
No ants (5% noise) after 7500 2.48% 0.69%

We were also interested inwowell the load balancing systems will deal with a sudden
change in call probabilities. ®&amined this by alling the system to adapt to an adaptation
block from one set of call probabilities, and then testing it with a test block frofeeedifset
of call probabilities.
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The periments as presented abavere repeatedubnawv at time step 7500 the call prob-
abilities and call patterns of ruchanged to the call probabilities and call patterns ok#in
in the former gperiments; for gample, after adaptation on block 1A, the systeouldl be
tested not on block 1Bubon block 2B. Thexg@erimental design is illustrated imfle5.

TABLE 5. Experimental design 2
adaptation test
(0-7500) (7500-15000)
1A 2B
2A 3B
10A 1B

The mean percentages of calildires in thesexperiments were:

TABLE 6. The mean percentages (ten experiments each) and standard deviations of call
failures for changed call probabilities
Mean Standard dev.

Without load balancing (fed, shortest routes) 12.53% 2.04%
Original mobile agents 9.24% 0.80%

Improved mobile agents 4.41% 0.85%

Ants (0% noise) 2.72% 1.24%

Ants (5% noise) 2.56% 1.05%

And the same>@eriments where agents and ants were no longer launched after time step

7500 (see dble7):
TABLE 7.

load balancing and changing call probabilities

The mean percentages and standard deviations of call failures after stopping

Mean Standard dev.
No improved mobile agents after 7500 8.03% 2.88%
No ants (0% noise) after 7500 4.29% 2.06%
No ants (5% noise) after 7500 4.37% 2.27%

We performed the Student t-test (2-tailed) for related samples on thaikat data; we
were able to pair obsations dened from the same call sequences in the test period.asB w
paired with 1B, 2B with 2B, and so on. The feliag differences were found at the 0.01 sig-
nificance leel.

* Under all conditions the impved mobile agentsage significantly better results than the
original mobile agents.

» All ant experiments gve significant better results than the correspondipgrments with
the impraved mobile agents.

* In the case of unchanging call probabilities, ants without n@ige lgetter results than ants
with 5% noise.
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» All experiments with antsage significantly better results in the simulations without chang-
ing call probabilities than in the simulations with changing call probabilities.

» All experiments with ants and agents were significantly better tharxpleeirments where
there vas no dynamic load balancing.

* When the parent agents stopped launching load agents when the monitoringaiiuced f
started (time step 7500), the results of the simulations were that significantly morailcalls f
in the xperiments with and without changing call probabilities.

» Stopping the ants causes more calufes than leang the ants wrking.

* In the situations with unchanging call probabilities, stopping the ants produces better per-
formance than laéng both kinds of mobile agentsovking.

* We can not tell with sfitient significance whether noise is helping the ABC system to
quickly adapt to the nmesets of call probabilities.

To illustrate the performances of theferent algorithms we also measured the number of
call failures during eery 500 time steps of each run for both the adaptation and test periods for
the unchanging probability conditions. Theeges eer the ten runs under each condition are
shavn in the graph of Figuré. Three of the graphs represent the situations where there is con-
tinuous load balancing, the fourth represents no load balancing. The graph for the ants with 5%
noise is not depicted as it isry similar to that for the ants with 0% noise.
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FIGURE 6. Performances of four load balancing techniques, with unchanging call probabilities.
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6.1 Static solution or dynamic adaptation

One of the most interesting questions raised during the simulations on the 30-namt& netw
was whether the control systems wereveaging to a good static set of routing tables thas w
‘learned’ from the statistics of the naiwk, or whether thewere constantly adapting to chang-
ing situations. A good static set of routing tablesuld combine information about the net-
work topology and the call distuition statistics; routesauld be suiciently short, It would
avoid the nodes ligly to become congested with those particular call statistieghifk that
three diferent forms of adaptation are possible:

» Adaptation to the netark topology
» Adaptation to the call probabilities of the nodes
» Adaptation to temporary situations caused by the randomness of the call patterns

Adaptation to network topology. When we speak about adaptation to the nstwopology

we mean ha well the control system adapts to the disttiln of loads on the nodes that
arises as a consequence of the specific topokogythe ABC system, the system gemges to

short paths during initialisation; for the mobile agents the system is initialised with the shortest
paths. Due to the topology alone (and independent of a particular set of call probabilities) rout-
ing calls wer these paths will already lead to congestion at certain nodes. The system will
adapt to this congestion by changing its pheromone tables. Although adaptation to the distrib
tion of network loads is a response to both the topology and the call probabilities, it is possible
to get some insight into owell the system with an arbitrary set of call probabilities adapts to
the topology alone. This insight can be obtained by inspecting the results apérements

where dynamic load balancing is stopped at the same time as the call probabilities are changed.
Any useful adaptation of the control system can then only be in relation to the topahogy

is the only &ctor left unchanged.

For both the agents and the ants, the performance under these conditions is better than the
experiments with fird shortest path routing tables and no load balancing at all. Further one
can clearly see that the ABC system performs better than the mobile agents (8.03% call f
ures for the impreed agentsersus 4.29% and 4.37% for theotant eperiments); this indi-
cates that the ABC system adapts better to the the load ulistnittaused by the topology
alone.

Adaptation to call probabilities. To see how well a method performs when adapting to a
combination of topology and call statistics, one can consider the results where the launching of
agents or ants is suddenly stoppedt, the call probabilities remain the same. Here the ABC
system performs better than the mobile agents (6.43%adalies for the agentsewsus 2.11%

and 2.48% for both ant systems). The results are also better than those discwssed/alve

ing only adaptation to the netwk topology The size of the diérence gres an indication of

the influence of the call probabilities.

Adaptation to temporary situations. The performance of ants and agents on adapting to tem-
porary situations is indicated by thefdiences in performance under unchanging call proba-
bilities of the conditions where load balancing is either continued or stopped. The situations
where ants are launched after 7500 time steps perform better than those in which launching is
stopped. Although the ABC system has adapted to call probabilities and to the tppmlteg/

are still changed frequently in response to temporary situations. Because this results in
improved performance, we can tlhis to indicate that ants are dynamically adapting the
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routes on the netwk to temporary situations as well. The same can be said about the agents,

which seem indct to be more sensié to these temporary situations than the ants, as the dif-

ference in performance between the @gent gperiments is relately lager Close obsea+

tion of the netwrk while running the simulation also confirmed our impression of useful

reaction to temporary situations for both the ants and the agents.

Both type of systems thus appear capable of all three types of adaptation. The operation of
the diferent components of adaptation for the ABC system may be seen in Figuinech

shawvs the performance of ants with 5% noise (the graph for 0% noise looks similar and is

shawvn in Figure6). The corresponding graphs for the mobile agents avensino~igure8. All

graphs are on the same scale.

» By comparing the figures with the upper graph of Figyrene can see thaten if the call
probabilities are changed and load balancing stopped, in both types of control system there
is on aerage a better set of routing tables than with thedfishortest paths determined
without load balancing technique. This illustrates the adaptation to therkdétypology

» It is obvious that as soon as the call probabilities are changed, the ABC system starts pro-
ducing an increased number of calldres, after which the system adapts to thve set of
call probabilities. The reaction of the mobile agent system to changing call probabilities is
much aster

* In both types of control system, the graph of the situation when there is continuous load bal-
ancing with no change in call probabilities liewér than the one where load balancing is
stopped. This indicates that someaatage of the systems comes from continuous dynamic
adaptation to temporary situations.

FIGURE 7. Performance of ants with 5% noise. Thverage number of calbfiures during eery 500
time steps are plotted.
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FIGURE 8. Performance of the impved mobile agents. Theverage number of calkilures during
every 500 time steps of the simulations are plotted
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We note that the standardviBtions are quite high for the situations when call patterns are
changed and load balancing is stopped.tihk this is due to thett that the routing or phe-
romone tables at the moment of stopping agents or ants are partly adapted to the situation of
that instant. This might be a temporary situation that is velgtexceptional, so that freezing
the tables does not yield good static routing information. On the other hand it also might be a
temporary situation more representatof an a&erage situation, producing acceptable results
when the tables are frozen.

In the ABC system, the balance between dynamic adaptation to temporary situations and
finding good static routes could clearly be adjusted by manipulating the delay function and the
pheromone update function. In owperiments we figd these parameters on an empirical
basis at leels which appeared tovg low levels of call &ilures when adaptationas complete;
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we did not systematicallyxplore their efects on the dynamics of adaptation.

We believe that some of the peer of ABC comes from thatt that the system stores infor-
mation not only about good current routest #lso about good current and recaliér native
routes. The mobile agents do novéa representation for alternatipossibilities, and base
their routing decisions only on temporary situations, which limits their capability to adapt to a
more general,\a&rage pattern of node utilisationse\&lso suspect that with the mobile agents
a particular problem occurs which has been recognised in the field arketwting before
(Kelly, 1995): Making a ne routing decision based on a temporary situation might result in a
longer route that is only beneficial for a short period. Cais this route put a higher demand
on netvork resources and may cause a number of subsequent calls to be lost. As the demand
for node capacity increases, moreftcahas to be rerouted. This leads to a kind of cascade
effect. In this vay short term benefits are outweighed by the longer term costs. The ABC sys-
tem naturally seems to find a good balance between adaptatioehmrt and long time peri-
ods.

7 Ants versus mobile software agents

As well as the performance ahtages presented in Sectband Sectio®.1, ants hee a
number of other qualitatt and quantitate adwantages wer mobile agents, as well as some
disadwantages.

Consuming networ k resources. An ant hardly requires grbandwidth on the netwvk: It only
holds its age, and its source and destination identifiers (together withcthedm an ant’).
The mobile agents hold a number of refaly lage tables and therefore require much more
bandwidth than ants.

A property of the mobile agents from BT is that more load agents tend to get launched as
the load on the netwk increases, to do re-routing. This might be just the moment when you
do not vant aly more agents on the nairk, as it is already congested with calls. In contrast,
congestion-dependent delay of the ants temporarily reduces #intdtafongested locations.
Having said that, f@er mobile agents are required than ants. The numbers of mobile agents
used is of the order of tens, whereas ants are used in hundreds.

Limitsto the number of agents. In principle, there is no limit to the number of ants that can

be used in a netwk, because ants do not interfere with each offitex number of load agents

on a netwrk is much more limited. Once a load agent is launched on a particular node, another
one can not be launched until the first agent finishes its job, because otherwis®ultk
interfere with each other

Robustness. Malfunctioning in the system might cause a mobile process such as an ant or
agent to crash. If an ant crashes, this will nettasignificant éct on the performance of the
algorithm at all. Hwever, if a load agent or parent agent crashes, thestafthe future launch-

ing of load agents. This therefore has to be detected, and special meageitesbesta&n to
restore the damage.

Ants can be considered as simple mobile data elements being processed upon by the node,
rather than mobile computational processes, and so no problems will occur due to corruptly
programmed ants. As an indiual ant has a small influence on the system, damage caused by
a corrupt ant will be limited. Heever, a load agent on itsam can change all the routes to its
source node, and can therefore cause much more damage if its state is corrupted.
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Computational issues. Ants are lilely to require more computation on the nodes of the net-
work than the mobile agents, due to thkeeasve use of random generators. Furthgth ant-

based control, nodes need to allocate more space for their pheromone tables than is needed
when normal routing tables are usedwdeer, these issues do nofedt bandwidth or switch-

ing capacitywhich is our main concern.

Bidirectional routes. During the simulations of the ant controlled system, the route from one
node to another tends most of the time to be the same that in the opposite direction. This is
probably due to our mechanism of trail laying, where ants from complementary source and
destination nodes mutually reinforce one anothers’ trails. The mobile agents deetiiba
property At first sight, this property might seem to be disadageous for good load balanc-

ing, but we beliee that this will only ma& a significant dference in small netarks.

Circular routes. In principle, ABC systems ka the potential to yield circular routes. wo

ever, this situation \as not obserd, except when the noiseas extremely high, or the initiali-

sation period much too short. The mobile agents as implemented here are guaranteed not to
result in circular routes.

8 Conclusions and future work

We implemented a completely decentralized agaptontrol system for telecommunica-
tions netvorks which made use of engent collectre behaiour arising from the interactions
between mobile objects modelled on ants, and tables ooretades.

The principles of the algorithm are simple and general béliee that the general frame-
work for ant-based solutions presented here is capable of solving load balancing problems in
large netverks, both circuit switched and patkswitched. W do not yet kn@ exactly hav
the statistical and topological properties of the wekwnfluence the ideal parameter settings.
But as shan here, gen tuning parameters by hand can lead to a well balanced system.

The balance obtained is a goodmple of emagent oganisation. The indidual ants are
remarkably simple,ltt the resulting structures enabkry eficient use of a resource éla tel-
ecommunications netwk. We have identified three possible types of adaptation to the charac-
teristics of such netorks, and ABC systems shhahemseles capable of good performance on
all three types.

We beligre that ABC systems can be used to s@\age \ariety of optimisation problems,
€g:
 distributing loads of interconnected processors on parallel machines and managing inter

processor communication for comyplerograms;
» material flav in production emronments;

« optimal routing on intgrated circuit-boards;
 organising public transport schemes.

Much investigation of the basic principles of the ant algorithm remains to be donar,So f
our eperiments he not yet enabled us to neaktatements that are fcently supported by
statistics about the influence of the number of ants used in the simulatiereds®\do not
know exactly hav variations in the ants’ influence on the pheromonéciathe system, or
about the décts of the size of the delays imposed on the ants. Most choices irotkisine
based on a relatly small number ob@eriments.

It would also be useful towesticate the performance of the algorithm atremely lage or
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very small netwrks; the lage netvarks will tell us about scaling, and the smalivoeks might

assist our understanding of the basic processes whiclk thakalgorithm wrk. Another
intriguing possibility is to use ‘probabilistic routing’ of calls. Here routes of calls, or perhaps a
proportion of calls, wuld not be chosen according to theyést probabilities in the pherom-

one tables, it randomly according to these probabilities. A mechanism that is assumed not to
be used by natural antsytlzould be useful here, is laying ‘anti-pheromone’. One could let ants
directly decrease probabilities in the pheromone tables in particular circumstances, rather than
increase them.

The pheromone tables do not only represent the best routeslsb contain information
about the relatie merits of alternate possibilities if something goes wrong. Our simulations
have so &r been confined taxamining the use of this information in dealing with node con-
gestion; sudden node (or linlgilure and restoration also needs to be simulatexiimiae the
abilities of the ants to deal with these contingencies. The ability to cope with the insertion of
new nodes and links during netwk extension is also a topic of interest.

Extending ant-lik algorithms to situations kktelecoms netarks which are not found in
nature will also increase our understanding of the abstract and general abilities of such algo-
rithms over and abee those applications found in naturee Wope that this increase of kvie
edge will in turn assist and inform biologists studying social insects.
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