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Chapter 1

Introduction

These notes are the course notes from a topics course in Iwasawa theory taught
at the Ohio State University autumn term of 2006. They are an amalgamation
of results found elsewhere with the main two sources being [Wash] and [Skinner].
The early chapters are taken virtually directly from [Wash] with my contribution
being the choice of ordering as well as adding details to some arguments. Any
mistakes in the notes are mine. There are undoubtably type-o’s (and possibly
mathematical errors), please send any corrections to jimlb@math.ohio-state.edu.
As these are course notes, several proofs are omitted and left for the reader to
read on his/her own time. The goal of the course was to give the students a
feel for the arithmetic side of Iwasawa theory as much as possible with the clear
goal of discussing the main conjecture. To this end, analytic arguments are
generally omitted entirely. The students were assumed to be familiar with basic
algebraic number theory and have been exposed to class field theory previously.
Background material is presented, though in more of a fact gathering framework.

Classically Iwasawa theory was concerned with the study of sizes of class
groups of cyclotomic fields and other related fields. More recent results are
phrased in terms of ”main conjectures” of Iwasawa theory. These main con-
jectures relate the sizes of class groups, or more generally Selmer groups, to
p-adic L-functions. In these notes we will focus on the classical theory with the
ultimate goals of proving Iwasawa’s theorem about the sizes of class groups in
Zp-extensions and stating the main conjecture of Iwasawa theory for totally real
fields and outlining Wiles’ proof. We now give a brief overview of the two main
goals.

Let Kn = Q(ζpn) for n ≥ 1 and K∞ = Q(ζp∞) =
⋃

Kn. Observe that
Gal(K∞/Q) ∼= Z×

p via the map σ 7→ aσ ∈ Z×
p where aσ is determined by the

equation σ(ζpn) = ζaσpn . Recall that one has an isomorphism

Z×
p
∼= (Z/pZ)× × Zp.

Set Q∞ = K
(Z/pZ)×

∞ so that

Gal(Q∞/Q) ∼= Zp.
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6 CHAPTER 1. INTRODUCTION

The extension Q∞/Q is what is called a Zp-extension. Let γ ∈ Gal(K∞/Q)
be such that γ 7→ 1 + p ∈ Z×

p in the above isomorphism. The image of γ in
Gal(Q∞/Q) is a topological generator and we still denote it as γ.

Let χ : (Z/NZ)× → Q
×

be a primitive Dirichlet character. We view χ as a
character of Gal(Q/Q) via

χ : Gal(Q/Q) ։ Gal(Q(ζN )/Q) ∼= (Z/NZ)× → Q
×
.

Let Qχ = Q
kerχ

be the splitting field of χ. Observe this means that Gal(Q/Qχ) ∼=
kerχ and so χ can be viewed as a character of Gal(Qχ/Q). One should note
that often one will see Qχ written as Qχ. We use the superscript notation to
remind the reader this is the fixed field of kerχ as well as to ease notation as we
will often be dealing with the subscripts that arise in dealing with Zp-extensions
as well.

Assume now that Qχ ∩Q∞ = Q. Set F∞ = QχQ∞. We have Gal(F∞/Q) ∼=
Γ×∆ where

∆ = Gal(F∞/Q∞) ∼= Gal(Qχ/Q)

so χ can be viewed as a character of ∆ and

Γ = Gal(F∞/Q∞) ∼= Gal(Q∞/Q) ∼= Zp

so we view γ as an element of Γ.
There are fields Fn ⊂ F∞ that correspond to the subgroups Γp

n

of Γ (and Qn

corresponding to the subgroups pnZp of Zp) such that Gal(Fn/Q
χ) ∼= Γ/Γp

n ∼=
Z/pnZ. Let Ln be the maximal unramified abelian p-extension of Fn. The
group Xn = Gal(Ln/Fn) is isomorphic to An, the p-Sylow subgroup of the class
group of Fn. Set X = Gal(L∞/F∞) so we have the following diagram of fields:

L∞

X

F∞

Γ

{{
{{

{{
{{ ∆

DD
DD

DD
DD

Qχ

CC
CC

CC
CC

Q∞

Zp
zz

zz
zzz

z

Q

Thus, X is a ∆× Γ-module. In fact, X is a ZpJΓK-module. One can show that
ZpJΓK ∼= Λ := ZpJT K. Thus, X is a Λ-module. In fact, X is a finitely generated
torsion Λ-module so has that there exists a Λ-module homormophism

X →
(

r
⊕

i=1

Λ/pµi

)

⊕





s
⊕

j=1

Λ/fj(T )mj




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where the kernel and cokernel are Λ-modules of finite order, µi,mj ≥ 0, and
the fj(T ) are irreducible monic polynomials in Zp[T ]. The terms µi and the
polynomial fX(T ) =

∏

fj(T )mj are uniquely determined by X . The following
theorem tells us exactly how the size of the p-part of the class group grows in a
Zp-extension.

Theorem 1.1. (Iwasawa’s Theorem) Let pen be the exact power of p dividing
the class group of Fn. There exists integers λ ≥ 0, µ ≥ 0, and ν all independent
of n and n0 ∈ N such that for n ≥ n0 one has

en = λn+ µpn + ν.

Set V = X ⊗Zp Qp. This is a finite dimensional vector space since V ∼=
Qp(T )/fX(T ). Set

V χ = {v ∈ V : σv = χ(σ)v ∀ σ ∈ ∆}.

This is the χ-isotypical piece of V . Let fχ(T ) be the characteristic polynomial
of γ− 1 acting on Vχ. Note that fX(T ) is the characteristic polynomial of γ− 1
acting on V so fχ(T ) | fX(T ). If instead of tensoring with Qp we tensored with
Oχ := Zp[χ] we would also obtain a µχ term corresponding to the power of ̟
occurring where ̟ is a uniformizer of Oχ.

The main conjecture relates the characteristic polynomial fχ(T ) and µχ to
a p-adic L-function and an analytic µ factor. Let ψ be any primitive Dirichlet
character. Set

Hψ(T ) =

{

ψ(1 + p)(1 + T )− 1 ψ = 1 or has conductor a power of p
1 otherwise.

There exists Gψ(T ) ∈ OψJT K such that

Lp(1− s, ψ) = Gψ((1 + p)s − 1)/Hψ((1 + p)s − 1) (s ∈ Zp)

such that

Lp(1− n, ψ) = (1− ψω−n(p)pn−1)L(1− n, ψω−n) (n ≥ 1).

This is the “p-adic L-function” which we will discuss in more detail later. The
Weierstrass preparation theorem states that we can write

Gψ(T ) = ̟µan
ψ gψ(T )uψ(T )

where µan
ψ ≥ 0, gψ(T ) is a monic polynomial in Oψ[T ], and uψ(T ) is a unit in

OψJT K.

Theorem 1.2. (Main Conjecture of Iwasawa Theory) Let χ be odd of order
prime to p and assume Qχ ∩Q∞ = Q. Then

fχ(T ) = gχ−1ω((1 + p)(1 + T )−1 − 1)

and
µχ = µan

χ−1ω.
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We connect the main conjecture back to results on sizes of class groups by
proving the following theorem.

Theorem 1.3. Let p be an odd prime and let F be an abelian imaginary exten-

sion of Q of degree prime to p. Let χ : Gal(F/Q) → Q
×

p be an odd character.
Suppose χ 6= ω, then

|AχF | = |Oχ/(Lp(0, χ−1ω))|
where AχF is the χ-isotypical piece of the p-part of the class group of F .



Chapter 2

Background Material

This chapter will contain a very brief review of some of the background material
necessary to understand the material in this course. It is assumed that you have
seen this material before and may need a quick refresher. If you are unfamiliar
with any of the results you should consult [CF], [Milne1], or [Milne2].

2.1 Algebraic Number Theory

Let L/K be a finite extension of number fields with ring of integers OL and OK
respectively.

Theorem 2.1. Every non-zero proper ideal a ⊂ OK admits a unique factoriza-
tion

a = ℘e11 · · ·℘err
with ei > 0 and the ℘i prime ideals.

Given a prime ideal ℘ ⊂ OK , we can consider the ideal ℘OL in OL. The
previous theorem allows us to factor this ideal into a product of prime ideals:

(2.1) ℘OL = ℘e11 · · ·℘err

where the ℘i are prime ideals of OL. We make the following definition.

Definition 2.2. Given a factorization as in Equation 2.1, we call ei the ram-
ification index of ℘ at ℘i. We denote the ramification index by e(℘i/℘). The
prime ℘ is said to ramify in L if some ei > 1. The residue class degree of ℘ at ℘i
is the dimension of the vector space OL/℘i over OK/℘. We denote the residue
class degree by f(℘i/℘).

Proposition 2.3. A prime ℘ in OK ramifies in OL if and only if ℘| disc(OL/OK).

One has the following important theorem.

9



10 CHAPTER 2. BACKGROUND MATERIAL

Theorem 2.4. With the set-up as above,

r
∑

i=1

e(℘i/℘)f(℘i/℘) = [L : K].

In these notes we will only be interested in the case where L/K is a Galois
extension. This assumption allows us to simplify Theorem 2.4 considerably.

Corollary 2.5. Suppose L/K is Galois and 0 6= ℘ ⊂ OK is a prime ideal.
Then e(℘i/℘) = e(℘j/℘) and f(℘i/℘) = f(℘j/℘) for all i, j as in Equation 2.1.
In particular, we have [L : K] = ref .

This corollary follows immediately from the following proposition.

Proposition 2.6. The Galois group Gal(L/K) acts transitively on the set of
prime ideals ℘i of OL lying over ℘.

Proof. Suppose that σ(℘i) 6= ℘j for all σ ∈ Gal(L/K). The Chinese remainder
theorem says that there exists x ∈ OL such that x ≡ 0(mod℘i) and x ≡
1(modσ(℘j)) for all σ ∈ Gal(L/K). Observe that the norm

NL/K(x) =
∏

σ∈Gal(L/K)

σ(x)

is in OK ∩ ℘i = ℘ since ℘i is a prime ideal and by definition the norm lands
in OK . However, x /∈ σ(℘i) for any σ ∈ Gal(L/K), hence σ(x) /∈ ℘j for any
σ ∈ Gal(L/K). Thus,

∏

σ(x) /∈ OK ∩ ℘j = ℘, a contradiction.

Definition 2.7. Let p be a prime of OL. The subgroup Dp = {σ ∈ Gal(L/K) :
σ(p) = p} is called the decomposition group of p over K.

Proposition 2.6 gives the following Corollary.

Corollary 2.8. For L/K as above we have:
(a) [Gal(L/K) : Dp] = r for any p|℘
(b) Dp = 1 if and only if ℘OL is totally split
(c) Dp = Gal(L/K) if and only if ℘OL = pn for n = [L : K]
(d) #Dp = ef

It is not difficult to see that one has a natural mapDp → Gal((OL/p)/(OK/℘)).
It turns out that this map is also surjective ([Lang1], Proposition 14). This leads
to the following definition.

Definition 2.9. The kernel Ip ⊆ Dp of the homomorphismDp → Gal((OL/p)/(OK/℘))
is called the inertia group of p over K.

It is then clear from Corollary 2.8 that we have:

Corollary 2.10. For L/K as above we have that #Ip = e.
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Let q = #OK/℘. The theory of finite fields gives that for p|℘ there is an
automorphism σp of OL/p fixing OK/℘ given by σp(x) = xq. This is often
referred to as the Frobenius automorphism. The isomorphism

Dp/Ip ∼= Gal((OL/p)/(OK/℘))

shows that we have a coset σpIp that corresponds to the Frobenius automor-
phism. Any element of this coset is called a Frobenius automorphism of p and
will be denoted Frobp. If Ip is trivial, i.e., ℘ is unramified, then there is a
well defined element Frobp ∈ Dp. It is of course important to be able to re-
late Frobp1 to Frobp2 for different primes pi|℘. We know that there exists
τ ∈ Gal(L/K) so that τp1 = p2. It is then easy to see that Dp2 = τDp1τ

−1

and Frobp2 = τ Frobp1 τ
−1. If Gal(L/K) is abelian and ℘ unramified in L, we

are able to associate a unique element in Gal(L/K) lying in Dp for all p|℘. We
then call this element Frob℘.

It will also be necessary to use the following fact on decomposition groups.

Proposition 2.11. Let L/K be a finite Galois extension with ℘ a prime of K
and p a prime of L with p|℘. There is an isomorphism Dp

∼= Gal(Lp/K℘) where
Lp and K℘ denote the completions.

2.2 Cyclotomic Fields

In this section we recall some basic facts about cyclotomic fields. These number
fields will be the primary focus of classical Iwasawa theory, so we give some of
the relevant details in this section.

Definition 2.12. A primitive nth root of unity is a number ζn ∈ C such that
ζnn = 1 but ζmn 6= 1 for every 0 < m < n. The field Q(ζn) is called the nth

cyclotomic field.

Exercise 2.13. Show that ζmn is a primitive nth root of unity if and only if
gcd(m,n) = 1.

Define the nth cyclotomic polynomial Φn(x) by

Φn(x) =
∏

0 < m < n

(m,n) = 1

(x− ζmn ).

Note that the roots of this polynomial are precisely the primitive nth roots of
unity. It is clear that we have deg(Φn) = ϕ(n). It is also true that Φn(x) ∈ Q[x].
This can be seen by using the fact that

(2.2) xn − 1 =
∏

d|n

Φd(x)
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and induction on n. Observe that Φn(ζn) = 0, so deg(Q(ζn)/Q) ≤ ϕ(n). We
also have that Q(ζn) is Galois over Q since Φn(x) splits over Q(ζn).

Applying Möbius inversion to Equation 2.2 we obtain

Φn(x) =
∏

d|n

(xd − 1)µ(n/d).

In particular, for n = pr, one has

Φpr(x) =
xp

r − 1

xpr−1 − 1
.

Exercise 2.14. Prove the following are equivalent:
1. Φ is irreducible over Q.
2. Gal(K/Q) acts transitively on the roots of Φn.
3. Gal(K/Q) ∼= (Z/nZ)× by (σ 7→ m such that σ(ζn) = ζmn ).
4. #Gal(K/Q) = ϕ(n).

Lemma 2.15. Suppose n = pr with p a prime. Then
1. deg(Q(ζpr )/Q) = ϕ(pr) = pr − pr−1.
2. pOQ(ζpr ) = (1 − ζpr )ϕ(pr) and (1 − ζpr ) is a prime of OQ(ζpr ).
3. OQ(ζpr ) = Z[ζpr ]

4. ∆Q(ζpr ) = ±ppr−1(pr−r−1).

Proof. First observe that clearly we have Z[ζpr ] ⊂ OQ(ζpr ).

If ζ′pr is another pr th root of unity, then there exists s, t ∈ Z such that p ∤ st and
ζpr = (ζ′pr )

t, ζ′pr = ζspr . Thus Q(ζpr ) = Q(ζ′pr ) and Z[ζpr ] = Z[ζ′pr ]. Moreover,

1− ζ′pr
1− ζpr

= 1 + ζpr + · · ·+ ζs−1
pr ∈ Z[ζpr ]

and similarly,
1− ζpr
1− ζ′pr

∈ Z[ζpr ]. Thus
1− ζ′pr
1− ζpr

is a unit in Z[ζpr ], and hence is a

unit in OQ(ζpr ).
Note

Φpr(x) =
xp

r − 1

xpr−1 − 1
=
tp − 1

t− 1
= 1 + t+ · · ·+ tp−1, t = xp

r−1

,

i.e., Φpr (1) = p.
Using the definitions we see that

Φpr (1) =
∏

(1− ζ′pr )

=
∏ 1− ζ′pr

1− ζpr
(1− ζpr )

= u · (1 − ζpr )ϕ(pr)
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with u a unit in Z[ζpr ]. Therefore we have an equality of ideals in OQ(ζpr ) given

by pOQ(ζpr ) = (1− ζpr )ϕ(pr). Thus pOQ(ζpr ) has at least ϕ(pr) prime factors in
OQ(ζpr ). Therefore we have deg(Q(ζpr )/Q) ≥ ϕ(pr). But we already had that
deg(Q(ζpr )/Q) ≤ ϕ(pr), therefore we have that

deg(Q(ζpr )/Q) = ϕ(pr) = pr − pr−1.

Observe that we also have that (1−ζpr) must generate a prime ideal for otherwise
we would have too many prime factors of pOQ(ζpr ). This gives us part 2.
Now we compute (up to sign) disc(Z[ζpr ]/Z). We have the formula (see for
example [Milne1], Prop. 2.33)

disc(Z[ζpr ]/Z) = ±NQ(ζpr )/Q(Φ′
pr (ζpr )).

To get Φ′
pr (ζpr ), we differentiate (xp

r−1 − 1)Φpr(x) = xp
r − 1 and substitute

x = ζpr to get Φ′
pr (ζpr ) =

prζp
r−1
pr

ζp
r−1

pr − 1
. Clearly we have that

NQ(ζpr )/Q(ζpr ) = ±1

and
NQ(ζpr )/Q(pr) = (pr)ϕ(pr) = prϕ(pr).

Claim: NQ(ζpr )/Q(1− ζp
s

pr ) = pp
s

, 0 ≤ s < r.

Pf: The minimal polynomial of 1− ζpr is Φpr(1−x), which has a constant term

of Φpr(1) = p, so NQ(ζpr )/Q(1 − ζpr ) = ±p. Now let s < r, ζp
s

pr is a primitive

p(r−s)th root of unity, so the computation we just did with r replaced by r − s
gives N

Q(ζp
s

pr
)/Q

(1− ζp
s

pr ) = ±p. Now using that NM/K = NL/K ◦NM/L for fields

K ⊂ L ⊂M and the fact that NM/L(α) = α[M :L] if α ∈ L, we obtain

NQ(ζpr )/Q(1 − ζp
s

pr ) = pa

where
a = [Q(ζpr ) : Q(ζp

s

pr )] = ϕ(pr)/ϕ(pr−s) = ps. �

Thus we have NQ(ζpr )/Q(Φ′
pr (ζpr )) = ±pc where c = pr−1(pr − r − 1). So we

have that disc(Z[ζpr ]/Z) is a power of p. Hence disc(OQ(ζpr )/Z) is a power of p

using the formula disc(OQ(ζpr )/Z)[OQ(ζpr ) : Z[ζpr ]]
2 = disc(Z[ζpr ]/Z) ([Milne1],

Remark 2.24)

We also have that [OQ(ζpr ) : Z[ζpr ]] is a power of p, and hence pM (OQ(ζpr )/Z[ζpr ]) =

0 for some M , i.e., pMOQ(ζpr ) ⊆ Z[ζpr ]. Now we use that for p = (1 − ζpr ) we
have f(p/p) = 1 to get that the map

Z/pZ→ OQ(ζpr )/(1− ζpr )
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is an isomorphism. Thus Z + (1− ζpr )OQ(ζpr ) = OQ(ζpr ) and so

(2.3) Z[ζpr ] + (1− ζpr )OQ(ζpr ) = OQ(ζpr ).

This gives

(2.4) (1− ζpr )Z[ζpr ] + (1 − ζpr )2OQ(ζpr ) = (1− ζpr )OQ(ζpr ).

Now let α ∈ OQ(ζpr ). Then Equation 2.3 gives that α = α′ + γ with α′ ∈
(1 − ζpr )OQ(ζpr ) and γ ∈ Z[ζpr ], and Equation 2.4 gives α′ = α′′ + γ′ with

α′′ ∈ (1− ζpr )2OQ(ζpr ) and γ′ ∈ Z[ζpr ]. Thus α = (γ + γ′) + α′′. So we get

Z[ζpr ] + (1 − ζpr )2OQ(ζpr ) = OQ(ζpr ).

We can iterate this to get Z[ζpr ]+(1−ζpr )mOQ(ζpr ) = OQ(ζpr ) for m ∈ N. Since

(1 − ζpr )ϕ(pr) = p · unit, we have Z[ζpr ] + pmOQ(ζpr ) = OQ(ζpr ) for all m ∈ N.
However, for large enough m, pmOQ(ζpr ) ⊆ Z[ζpr ]. Thus Z[ζpr ] = OQ(ζpr ), i.e.,
part 3 holds. Combining this with the above computation of disc(Z[ζpr ]/Z)
gives part 4 as well.

We now generalize to the case of general n.

Proposition 2.16. Let ζn be a primitive nth root of unity and let K = Q(ζn).
Then we have:
1. deg(K/Q) = ϕ(n)
2. OK = Z[ζn]
3. The prime p ramifies in K if and only if p | n (unless n = 2 · odd and p = 2);
in particular, if n = prm with gcd(p,m) = 1, then

pOK = (p1 . . . ps)
ϕ(pr)

in K with the pi distinct primes in K.

Proof. We proceed by induction on the number of primes dividing n. Consider
the fields:

K = Q(ζn)

ooooooooooo

OOOOOOOOOOO

E = Q(ζpr )

OOOOOOOOOOOOO
F = Q(ζm)

ooooooooooooo

Q

We look at how p factors in E and F :
pOE = pϕ(pr) is totally ramified as given in the previous theorem.
pOF = p1 . . . pr is unramified since p is relatively prime to the discriminant.
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Now we can consider the factorization of p in OK by going up the tower in two
different ways. This shows that we must have deg(K/F ) = ϕ(pr) and that

pOK = (
∏

qi)
ϕ(pr)

where
piOK = q

ϕ(pr)
i

and
pOK =

∏

qi.

Therefore we have that deg(K/Q) = ϕ(pr)ϕ(m) = ϕ(n) and we have part 1. To
finish the proof, we note the following lemma.

Lemma 2.17. ([Milne1], Lemma 6.5) Let K and L be finite extensions of Q
such that

[KL : Q] = [K : Q] · [L : Q],

and let d = gcd(disc(OK/Z), disc(OL/Z)). Then

OKL ⊂ d−1OKOL.

Remark 2.18. Note that since ϕ(pr) = pr−1(p−1), if n = 2 ·(odd number)and
p = 2 then it will happen that 2 divides n but does not ramify. One should also
note that Q(ζn) = Q(ζ2n) if n in this case.

Remark 2.19. Let K = Q(ζp). The only roots of unity in K are those ζsp for
1 ≤ s ≤ p− 1. This follows immediately from the fact that Q(ζm) ∩Q(ζn) = Q
if gcd(m,n) = 1.

We can say a little more about how a prime p splits in Q(ζn) if p ∤ n. First
we need the following lemma.

Lemma 2.20. Let p be a prime so that p ∤ n. Let p be a prime of Q(ζn) lying
over p. Then the nth roots of unity are distinct modulo p.

Proof. This lemma follows immediately from the equation:

n =

n−1
∏

j=1

(1 − ζjn).

Note that this result does not hold for p | n. In particular, in Q(ζp) one has

ζp ≡ 1(mod(1 − ζp)).

Lemma 2.21. Let p be a prime so that p ∤ n. Let f be the smallest positive
integer so that pf ≡ 1(modn). Then p splits into ϕ(n)/f distinct primes in
Q(ζn), each of residue class degree f . In particular, p is completely split if and
only if p ≡ 1(modn).
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Proof. Let p be a prime of Q(ζn) that lies over p. Recall from the previous
section the Frobenius automorphism of Q(ζn) that is defined by

σp(x) ≡ xp(mod p)

for all x ∈ Z[ζn]. We know that σp(ζn) is again an nth root of unity. Therefore,
we can apply Lemma 2.20 to conclude that not only is σp(ζn) ≡ ζpn(mod p), but
in fact σp(ζn) = ζpn. We also have that the order of σp is the degree of the
residue class extension of (Z[ζn]/pZ[ζn])/(Z/pZ). Thus

pf ≡ 1(modn)⇔ ζp
f

n = ζn ⇔ σfp = 1.

Recalling that the degree of Q(ζn)/Q is equal to the degree of the residue class
extension multiplied by the number of primes above p, we have the result.

2.3 Infinite Galois Theory

It will often be necessary to talk about field extensions of infinite degree as
well as the corresponding Galois groups. We collect some basic facts here to
remind the reader of the similarities and differences between the Galois theory
of infinite extensions and the more familiar finite extensions.

Let K/k be a Galois extension of fields. As is custom, we write Gal(K/k) to
denote the set of automorphisms of K that leave k fixed pointwise. Let F be a
field so that k ⊆ F ⊆ K with F/k a finite extension. In particular, we have that
Gal(K/F ) is of finite index in Gal(K/k). We define a topology on Gal(K/k) by
letting the sets Gal(K/F ) form a basis of the neighborhoods of the identity in
Gal(K/k). With this topology one has that Gal(K/k) is profinite and

Gal(K/k) ∼= lim←−
F

Gal(K/k)/Gal(K/F ) ∼= lim←−
F

Gal(F/k)

where F is running through the finite normal subextensions F/k or any subse-
quence so that ∪F = K. The ordering used is that of inclusion and the maps
are the natural maps Gal(F2/k) → Gal(F1/k) for F1 ⊆ F2. In this setting the
fundamental theorem of Galois theory reads:

Theorem 2.22. Let K/k be a Galois extension. There is a 1-1 correspondence
between closed subgroups H of Gal(K/k) and fields F with k ⊆ F ⊆ K such
that

H ↔ KH

Gal(K/L)↔ L.

Open subgroups correspond to finite extensions.

Example 2.23. Let Q(ζp∞) be the extension of Q obtained by adjoining all
p-power roots of unity. This extension will be very important to us as it is used
to produce the Zp-extension of Q. An element of Gal(Q(ζp∞)/Q) is completely
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determined by its action on the p-power roots of unity. Let n ∈ N. For σ ∈
Gal(Q(ζp∞)/Q) we have σ(ζpn) = ζσnpn for some σn ∈ (Z/pnZ)×. Observe that
σn ≡ σn−1(mod pn−1) for all n ≥ 1. In particular, this shows we obtain an
element of

Z×
p
∼= lim←−

n

(Z/pnZ)× ∼= lim←−
n

Gal(Q(ζpn)/Q).

Conversely, it is easy to see that given α ∈ Z×
p one gets an element σ ∈

Gal(Q(ζp∞)/Q) given by the action σ(ζpn) = ζαpn . Thus we have Z×
p
∼= Gal(Q(ζp∞)/Q).

One should also note that the closed subgroup 1+pnZp corresponds to its fixed
field Q(ζpn).

Exercise 2.24. Let F be a finite field and F its algebraic closure. Prove that
Gal(F/F) ∼= Ẑ.

Let K/k be a Galois extension, not necessarily finite. Let OK and Ok be
the rings of integers of K and k respectively. We would like to discuss the rami-
fication of prime ideals as we did in the case of finite extensions. Unfortunately,
it is not true in general that OK and Ok are even Dedekind domains.

Exercise 2.25. Show that for K = Q(ζp∞), OK is not a Dedekind domain. It
may be helpful to consider the prime ideal p = (ζp − 1, ζp2 − 1, . . . ) and its pth

power.

Since it is not possible to define the ramification of a prime in terms of its
prime factorization, we must find a new way. Recall that in the case of finite
extensions, if e is the ramification index of some prime ideal ℘ at p, then we
have e = #Ip where Ip is the inertia group. We can use this fact to find a way
of defining ramification in infinite extensions.

As in the finite case, define the decomposition group Dp of a prime ideal
p ⊂ OK lying over ℘ ⊂ Ok by

Dp = {σ ∈ Gal(K/k) : σ(p) = p}.

The inertia group Ip is defined by

Ip = {σ ∈ Dp : σ(α) ≡ α(mod p) for all α ∈ OK}.

One can show that Dp and Ip are both closed subgroups of Gal(K/k). We now
define the ramification index of ℘ at p to be e = #Ip.

The situation for infinite places is a little different. However, it turns out
that in the infinite case that e is always 1 or 2. In fact, Ip is nontrivial in the
infinite case only when ℘ is real and p is complex. In this case the inertia group
is generated by complex conjugation.
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2.4 Class Field Theory

Class field theory provides a description of abelian extensions of number fields.
For those unfamiliar with the subject or those needing a more thorough re-
fresher then that provided here are encouraged to consult [CF] or [Milne2]. We
provide here only a statement of results and only those results we will need in
this course. We begin by recalling the statements of global class field theory in
terms of ideals before treating the statements in the language of ideles. Finally,
we give the statements of local class field theory. The interested reader should
note that the statements and applications of class field theory are in general
much more important and useful then the proofs of the statements.

2.4.1 Global Class Field Theory (ideals)

Let k be a number field and let I = Ik be the group of fractional ideals of k.
Let S be a finite set of places of k and IS the subgroup of I generated by the
prime ideals not in S. Let mf =

∏

℘eii be an integral ideal of k and m∞ be
a square-free product of real archimedean places of k. We call m = mfm∞ a
divisor of k. For α ∈ Ok, we write α ≡ 1(mod∗ m) if (1) v℘i(α − 1) ≥ ei for all
primes ℘i|mf and (2) α > 0 for all the real primes dividing m∞. Set Pm,1 to
be the set of principal ideals of Ok that are generated by an element α so that
α ≡ 1(mod∗ m). We write S(m) to denote the primes dividing m.

Definition 2.26. Let m be a divisor of k. The group Cm = IS(m)/Pm,1 is called
the ray class group of k modulo m.

Theorem 2.27. ([Milne2]) Let m =
∏

℘m(p) be a divisor of k. There is an
exact sequence

(2.5) 0 −→ U/Um,1 −→ Pm/Pm,1 −→ Cm −→ C −→ 0

and canonical isomorphisms

Pm/Pm,1
∼=
∏

℘|∞
℘|m

{±} ×
∏

℘∤∞
℘|m

(Ok/℘m(℘))× ∼=
∏

℘|∞
℘|m

{±} × (Ok/mf)
×,

where

Pm = {α ∈ k× : ord℘(α) = 0 for all ℘ | mf},
U = O×

k ,

Um,1 = U ∩ Pm,1.

Example 2.28. Let m = 1. In this case the ray class group Cm is nothing more
then the familiar ideal class group C.



2.4. CLASS FIELD THEORY 19

Example 2.29. Let n ∈ N and set m = n. In this case we see that IS(m) is the
set of ideals generated by rational numbers relatively prime to n. If (x) ∈ Pm,1,
then we must have x ≡ 1(modn) and x > 0. The exact sequence becomes

0 −→ {±1} −→ (Z/nZ)× −→ Cm −→ 0.

Thus, we see that the ray class group is isomorphic to (Z/nZ)×/{±}.

Exercise 2.30. Compute IS(m)/Pm,1 for k = Q and m = n.

Let K be a finite Galois extension of k. Further assume that K/k is abelian,
i.e., Gal(K/k) is an abelian group. Let p be a prime of OK and ℘ a prime of
Ok with p|℘. Recall from Section 2.1 that if ℘ is unramified in K then there is
a well defined Frobenius element Frob℘ in Gal(K/k). Let S be the set of prime
ideals in k that ramify in K. We can define the Artin map

ψK/k : IS → Gal(K/k)

to be the map defined by

ψK/k(℘
e1
1 · · ·℘err ) =

r
∏

i=1

Frobei℘i .

Recall that one has a norm map NmK/k : IK → Ik defined by NmK/k(p) =

℘f(p/℘) where ℘ = p∩Ok. The following proposition follows from basic proper-
ties of the Frobenius element and how it behaves with respect to field extensions.

Proposition 2.31. Let L be an abelian extension of k so that k ⊂ K ⊂ L
and let S be any finite set of primes of k containing all those that ramify in L
and also the primes of K lying over primes of k in S. The following diagram
commutes:

ISK
ψL/K

//

NmK/k

��

Gal(L/K)

inclusion

��

ISk
ψL/k

// Gal(L/k).

Corollary 2.32. Let L be an abelian extension of k. Then

NmL/k(I
S
L) ⊂ ker(ψL/k : IS → Gal(L/k)).

Definition 2.33. Let ψ : IS → G be a group homomorphism. We say ψ admits
a divisor if there exists a divisor m of k so that S(m) ⊂ S and ψ(Pm,1) = 1, i.e.,
ψ admits a divisor if and only if it factors through Cm.



20 CHAPTER 2. BACKGROUND MATERIAL

Theorem 2.34. (Reciprocity Law) Let K be a finite abelian extension of k and
let S be the set of primes of k ramifying in K. The Artin map ψK/k : IS →
Gal(K/k) admits a divisor m with S(m) = S and defines an isomorphism

ISk /Pm,1 NmK/k(I
S
K) ∼= Gal(K/k).

One should note that this theorem does not imply that any abelian exten-
sions of k exist. It merely states that if you already have an abelian extension
that it is a quotient of the ray class group by a particular subgroup, namely,
the image of ISK under the norm map.

Definition 2.35. We say a subgroup H ⊂ I
S(m)
k is a congruence subgroup

modulo m if Pm,1 ⊂ H ⊂ IS(m)
k .

Theorem 2.36. Let H be a congruence subgroup of I
S(m)
k . There exists a

unique abelian extension K/k with its only possible ramification being at the

primes dividing m such that H = Pm,1 NmK/k(I
S(m)
K ) and I

S(m)
k /H ∼= Gal(K/k)

under the Artin map.

Note that this theorem shows that given H the associated field K is such
that
1. K is a finite abelian extension of k
2. m(℘) = 0 implies that ℘ is not ramified in K
3. the prime ideals not in S(m) that split inK are precisely those contained inH .

Observe that if one is given a divisor m one can set H = Pm,1 and use the
theorem to conclude there exists a field Km so that Cm

∼= Gal(Km/k). This field
Km is called the ray class field. Note that the primes of k that ramify in Km

are precisely the primes dividing m. If we choose m = 1 then we obtain Cm = C
as noted above. In this case we call the associated ray class field the Hilbert
class field. The Hilbert class field is the maximal unramified abelian extension
of the fieldK. We will generally denote the Hilbert class field of a fieldK byHK .

For a field K ⊂ Km, set Nm(CK,m) = Pm,1 NmK/k(I
S(m)
K )(modPm,1). We

then have the following corollary classifying abelian extensions.

Corollary 2.37. Fix a divisor m. The map K → Nm(CK,m) is a bijection from
the set of abelian extensions of k contained in Km to the set of subgroups of Cm.
We also have the following:

K1 ⊂ K1 ⇔ Nm(CK1,m) ⊃ Nm(CK2,m)

Nm(CK1K2,m) = Nm(CK1,m) ∩Nm(CK1,m)

Nm(CK1∩K2,m) = Nm(CK1,m)Nm(CK2,m).

We end this section with a couple of applications that will be useful in these
notes. Let K/E be a Galois extension of number fields. We know from our
discussion above that for a field K we have CK ∼= Gal(HK/K) as groups where
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we include the K in the notation for the ideal class group to avoid any confusion.
We now show that they are in fact isomorphic as Gal(K/E)-modules. Observe
that we have an action of Gal(K/E) on Gal(HK/K) given as follows. Let
τ ∈ Gal(K/E) and σ ∈ Gal(HK/K). Extend τ to Gal(HK/K) and denote this
extension by τ̃ . The action is then given by τ · σ = τ̃στ̃−1. Let ℘ be a prime
ideal of K. Under the Artin map ℘ 7→ Frob℘. Thus, we have that τ℘ maps to
Frobτ℘ = τ̃ Frob℘ τ̃

−1 = τ · Frob℘ as desired.
With K and E as above, assume that HE ∩K = E. We wish to show that

the norm map CK → CE on ideal class groups is surjective and the following
diagram commutes:

CK
∼

//

Norm

��

Gal(HK/K)

rest.

��

CE
∼

// Gal(HE/E).

First note that since HE∩K = E we have that Gal(HEK/K) ∼= Gal(HE/E)
and since HEK ⊂ HK , we obtain that the map Gal(HK/K) → Gal(HE/E) is
onto. Therefore, if we can show the diagram commutes we will have that the
norm map on the ideal class groups is surjective. We leave the proof of the fact
that the diagram commutes as an exercise. It is merely an exercise in keeping
track of how the Frobenius acts, one that should be done though!

Exercise 2.38. Prove the diagram above commutes.

2.4.2 Local Class Field Theory

We would like to treat global class field theory from the idelic viewpoint. How-
ever, before we do that we need to review local class field theory.

Let k be a local field and let kab be the maximal abelian extension of k. The
theorems of local class field theory are as follows.

Theorem 2.39. (Local Reciprocity Law) For any nonarchimedian local field k
there is a unique homomorphism

ϕk : k× −→ Gal(kab/k)

such that
1. for any prime ̟ of k and any finite unramified extension K of k, ϕk(̟) |K=
FrobK/k;
2. for any finite abelian extension K of k, NmK/k(K

×) is contained in the
kernel of x 7→ ϕk(x) |K and ϕk induces an isomorphism

ϕK/k : k×/NmK/k(K
×)

≃−→ Gal(K/k);

3. one has
O×
k /
⋂

L

NmL/k(O×
L ) ∼= I(K/k)
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where I(K/k) is the inertia subgroup of Gal(K/k) and L runs through all finite
subextensions of K/k.

The maps ϕk and ϕK/k are referred to as the local Artin maps. Note that
part (2) of the local reciprocity theorem gives the following commutative dia-
gram:

k×
ϕk

//

��

Gal(kab/k)

τ 7→τ |L

��

k×/NmK/k(K
×)

ϕK/k
// Gal(K/k)

Theorem 2.40. (Local Existence Theorem) A subgroup N of k× is of the form
NmK/k(K

×) for some finite abelian extension K of k if and only if it is of finite
index and open.

Corollary 2.41. The map K 7→ Nm(K×) is a bijection from the set of fi-
nite abelian extensions of k to the set of open subgroups of finite index in k×.
Moreover, one has

K1 ⊂ K1 ⇔ Nm(K×
1 ) ⊃ Nm(K×

2 )

Nm((K1 ·K2)
×) = Nm(K×

1 ) ∩Nm(K×
1 )

Nm((K1 ∩K2)
×) = Nm(K×

1 )Nm(K×
2 ).

2.4.3 Global Class Field Theory (ideles)

We now give the theorems of global class field theory in terms of ideles. The
formulation in terms of ideles allows one to study all places at once as well as
to look at infinite degree field extensions. The idelic version also makes clear
the relationship betweeen the global and local theories. The material in this
subsection as well as a review of ideles can be found in [Milne2].

Let k be a number field. Recall that the group of ideles is defined to be

A×
k = {(xυ) ∈

∏

k×υ | xυ ∈ O×
υ for all but finitely many υ}.

Let S be a finite set of primes that contain all the archimedean primes. We
write A×

k,S to denote
∏

υ∈S

k×υ ×
∏

υ/∈S

O×
υ .

We put a topology on A×
k so that A×

k,S is open for all such S. This is accom-
plished by declaring sets of the form

∏

υ

Uυ =

{

Uυ open in k×υ for all υ;
Uυ = O×

υ for almost all υ
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to be open sets.

Recall that k embeds in A×
k via the diagonal embedding. This allows one

to define the idele class group Ck of k to be A×
k /k. Note that there is also a

canonical surjective homomorphism

id : A×
k → Ik

(xυ) 7→
∏

υ∤∞

pordp(xυ)
υ

with kernel A×
k,S∞

where S∞ = {υ|∞}. In particular, this gives a description of
the ideal class group in terms of ideles:

Ck ∼= Ck/(
∏

υ|∞

k×υ ×
∏

υ∤∞

O×
υ ).

In particular, note that this shows the ideal class group is a quotient of the idele
class group. Of course, we would like to have the same result for the ray class
groups as well. Fortunately, we do.

Let m be a divisor of k. For each prime υ | m, we set

Wm(υ) =

{

R>0 υ real

1 + m
m(υ)
υ υ finite.

Observe that

Pm,1 = k× ∩
∏

υ|m

Wm(υ).

Set

A×
k,m =





∏

υ∤m

k×υ ×
∏

υ|m

Wm(υ)



 ∩ A×
k

and

Wm =
∏

υ∤m
υ|∞

k×υ ×
∏

υ|m

Wm(υ)×
∏

υ∤m
υ∤∞

O×
υ .

One then has the following theorem:

Theorem 2.42. ([Milne2]) Let m be a divisor of k.
1. The map id : A×

k,m −→ IS(m) defines an isomorphism

A×
k,m/(Pm,1 ·Wm) ∼= Cm.

2. The inclusion map A×
k,m →֒ A×

k defines an isomorphism

A×
k,m/Pm,1

∼= A×
k /k

×.
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Note that by combining the two parts of the theorem we obtain the desired
result that the ray class groups can be realized as quotients of the idele class
group. Therefore, by studying the idele class group we are in essence studying
all of the ray class groups at once.

Let K be a finite extension of k. Let (yω) ∈ A×
K be an idele. We define the

norm of (yω) to be the idele (xυ) ∈ A×
k with xυ =

∏

ω|υ

NmKω/kυ yω.

Proposition 2.43. There exists a unique continuous homomorphism

ϕk : A×
k −→ Gal(kab/k)

with the following property: for any K ⊂ kab with K/k finite and any prime ω
of K so that ω | υ, the diagram

k×υ
ϕυ

//

��

Gal(Kω/kυ)

��

A×
k

(xυ) 7→ϕk((xυ))|K
// Gal(K/k)

commutes.

Theorem 2.44. (Reciprocity Law) The homomorphism ϕk has the following
properties:
1. ϕk(k

×) = 1;
2. for every finite abelian extension K/k the map ϕk defines an isomorphism

ϕK/k : A×
k /(k

× Nm(A×
K))

≃−→ Gal(K/k)

i.e., the map ϕk defines an isomorphism

ϕK/k : Ck/Nm(CK)
≃−→ Gal(K/k).

The prime υ is unramified in K/k if and only if O×
υ ⊆ k× NmK/k(A

×
K).

Theorem 2.45. (Existence Theorem) Let k be a fixed algebraic closure of k.
For every open subgroup N ⊂ Ck of finite index, there exists a unique abelian
extension K/k contained in k so that NmK/k CK = N . The prime υ is unram-
ified if and only if k×O×

υ /k
× ⊆ N .

Corollary 2.46. The map K 7→ Nm(CK) is a bijection from the set of fi-
nite abelian extensions of k to the set of open subgroups of finite index in Ck.
Moreover, one has

K1 ⊂ K1 ⇔ Nm(CK1) ⊃ Nm(CK2)

Nm(CK1·K2) = Nm(CK1) ∩Nm(CK1)

Nm(CK1∩K2) = Nm(CK1)Nm(CK2).



Chapter 3

Some Results on the Sizes
of Class Groups

This chapter serves to introduce a wide variety of results on the sizes of class
groups of cyclotomic fields. Many of the major results will be presented without
proof as we focus more on their applications. The interested reader can find their
proofs in chapters 3-6 of [Wash].

The second main purpose of this chapter is to introduce some of the tools
that will be necessary in later chapters, namely, characters, L-functions, and
p-adic L-functions. We will see that p-adic L-functions play a crucial role in the
main conjectures as discussed in chapter 5.

3.1 Characters

In this section we briefly review the definitions associated with Dirichlet char-
acters. Most of the information is probably familiar and so this section can be
used more as a reference for the terminology used subsequently.

Definition 3.1. A Dirichlet character is a multiplicative homomorphism
χ : (Z/mZ)× → C× where m is a positive integer.

Given such a Dirichlet character, it is easy to see that one obtains a Dirichlet
character (Z/nZ)× → C× for any integer n with m|n by merely composing with
the natural map (Z/nZ)× → (Z/mZ)× → C×. The minimal such m so that
χ gives a map (Z/mZ)× → C× is called the conductor of χ. We write mχ if
confusion may arise. We say a character is primitive if it is defined modulo
its conductor. Note that given any character χ we always have an associated
primitive character.

Observe that for a character χ we have χ(−1) = ±1. This allows us to split
our characters into those that satisfy χ(−1) = 1, the so called even characters,
and those that satisfy χ(−1) = −1, the odd characters.

25
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Let χ and ψ be two characters of conductors mχ and mψ respectively. We
define their product χψ as follows. Define ϕ : (Z/ lcm(mχ,mψ))× → C× by
ϕ(n) = χ(n)ψ(n). This character may or may not be primitive. We define χψ
to be the primitive character associated to ϕ.

Exercise 3.2. Prove that if gcd(mχ,mψ) = 1 then mχψ = mχmψ.

Exercise 3.3. Show that a character and the associated primitive character are
either both odd or both even.

It will often be useful for us to regard Dirichlet characters as Galois charac-
ters via the isomorphism Gal(Q(ζn)/Q) ∼= (Z/nZ)× which we recall is given by
σ 7→ aσ where aσ is such that σ(ζn) = ζaσn . Let χ be a character of conductor
n regarded as a character of Gal(Q(ζn)/Q). The kernel of χ is then a subgroup
of Gal(Q(ζn)/Q) and thus the fixed field of kerχ is a subfield of Q(ζn). We
generally refer to this field as the fixed field of χ and denote it by Qχ.

Example 3.4. Let χ : (Z/12Z)× → C× be given by χ(1) = χ(7) = 1 and
χ(5) = χ(11) = −1. Thus kerχ = {1, 7}. This gives that Qχ must be a degree
2 extension of Q. However, it is easy to see that Q(ζ3) is a degree 2 extension
of Q fixed by kerχ. Thus, Qχ = Q(ζ3) and so χ must factor through (Z/3Z)×,
as one can easily check.

Exercise 3.5. Define χ : (Z/8Z)× → C× by χ(1) = χ(5) = 1 and χ(3) =
χ(7) = −1. Show that the fixed field of χ is Q(ζ4) and hence χ can be regarded
as a character of Gal(Q(ζ4)/Q) ∼= (Z/4Z)×.

Let X be a finite group of Dirichlet characters and let n be the least common
multiple of the conductors of the characters in X . Thus, X is a subgroup of
the group of characters of Q(ζn). Set K to be the intersection of all the kernels
of the characters in X and QX to be the fixed field of K. We call QX the
field belonging to X . We will finish this section by exhibiting a correspondence
between the subgroups of X and subfields of QX . First we need to recall some
basic facts about finite abelian groups and their groups of characters.

Let G be a finite abelian group. We write G∧ to denote the group of multi-
plicative characters of G. We will use G to stand for a finite abelian group for
the remainder of this section.

Exercise 3.6. Prove that G ∼= G∧.

Theorem 3.7. For G as above we have G ∼= (G∧)∧.

The map from G to (G∧)∧ is given by g 7→ (χ 7→ χ(g)). The main point in
the proof of the above theorem is that if there exists a g so that χ(g) = 1 for all
χ ∈ G∧, then g = 1. To see this, let H = 〈g〉. We see that every character in
G∧ factors through G/H and are all distinct on G/H by assumption. However,
there are #G such characters by the previous exercise and there should be only
#(G/H) distinct characters on G/H , thus H = 1, i.e., g = 1. This same
argument shows that we have a perfect pairing

G×G∧ → C×
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given by (g, χ) 7→ χ(g).

Let H be a subgroup of G and set

H⊥ = {χ ∈ G∧ : χ(h) = 1 ∀ h ∈ H}.

Exercise 3.8. Prove that H⊥ ∼= (G/H)∧.

Proposition 3.9. One has H∧ ∼= G∧/H⊥.

Proof. We have the restriction map G∧ → H∧ with kernel H⊥. To see the map
is surjective one just compares sizes.

Exercise 3.10. Prove that H ∼= (H⊥)⊥.

We are now in a position to show the desired correspondence. First we show
that Q(ζn) actually belongs to a group of Dirichlet characters.

Proposition 3.11. The field Q(ζn) is the field associated to the group of char-
acters X = {χ : Gal(Q(ζn)/Q)→ C×}.

Proof. It is clear that the field associated to X gives a subfield of Q(ζn). We
want to show that K, the intersection of the kernels of the characters in X , is
actually 1. Let g ∈ K. Then we have that χ(g) = 1 for every χ ∈ X . Using
G = Gal(Q(ζn)/Q) and X = G∧, we see from the above results that this implies
g = 1 as claimed.

We continue with the notation that X is the group of characters associated
to Q(ζn). Note we have a perfect pairing

Gal(Q(ζn)/Q)×X → C×.

Let K be a finite abelian field. (Recall the “finite abelian” refers to the Galois
group Gal(K/Q).) The Kronecker-Weber theorem shows that K ⊂ Q(ζn) for
some n. Set

Y = {χ ∈ X : χ(σ) = 1 ∀ σ ∈ Gal(Q(ζn)/K)}.

Observe that

Y = Gal(Q(ζn)/K)⊥

∼= (Gal(Q(ζn)/Q)/Gal(Q(ζn)/K))∧

= Gal(K/Q)∧.

Thus, given a field K we have associated a group of Dirichlet characters Y . Now
suppose we are given a subgroup Y of X . Let K be the fixed field of

Y ⊥ = {σ ∈ Gal(Q(ζn)/Q) : χ(σ) = 1 ∀ χ ∈ Y }
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where we have used the isomorphism G ∼= (G∧)∧. Note this is our “K” from
before. Galois theory shows Y ⊥ = Gal(Q(ζn)/K). Thus, we have

Y = (Y ⊥)⊥

= Gal(Q(ζn)/Q)⊥

∼= Gal(K/Q)∧.

Thus, we have a 1-1 correspondence between subgroups of X and subfields of
Q(ζn) given by

K ←→ Gal(K/Q)∧

Y ←→ Q(ζn)
Y ⊥

.

For the remainder of these notes when we talk of the field belonging to a char-
acter or group of characters or the group of characters belonging to a field the
notions of this section are what is meant.

We now introduce the Teichmuller character. As usual we assume p is an
odd prime with the understanding that this can all be carried out in the case
of p = 2 but would require more notation.

Lemma 3.12. There are precisely p− 1 distinct (p− 1)th roots of unity in Zp.
Moreover, these roots of unity remain distinct modulo p.

Proof. Let f(x) = xp−1 − 1 ∈ Qp[x]. It is clear that f(x) can have at most
p − 1 roots in Qp. Let a ∈ Zp, a 6= 0. We have that f(a) = 0(mod p). Since
f ′(a) 6= 0(mod p), Hensel’s lemma gives that there is a unique root of f(x) in
Zp that is congruent to a modulo p. This gives that there are p − 1 distinct
roots of unity in Zp, i.e., µp−1 ⊂ Z×

p .

Therefore, for each nonzero a ∈ Zp we have that there corresponds to a a
well defined root of unity in Zp. We define ω : Z×

p → Z×
p by setting ω(a) to be

the root of unity corresponding to a. As usual one can extend this by 0 if one
wants a map Zp → Zp. Observe in the above construction that what happens is
a ∈ Zp maps to a ∈ Fp and then is lifted back to Zp via Hensel’s lemma. This
shows that ω is a p-adic Dirichlet character of conductor p. One could view this
as a complex Dirichlet character, but it is best to view it as a p-adic object.

Exercise 3.13. Show that ω is an odd character.

The following proposition will be applied in the following sections to study
sizes of class groups.

Proposition 3.14. Let Y = {1, ω2, ω4, . . . , ωp−3}. The field determined by Y
is Q(ζp)

+ := Q(ζp + ζ−1
p ).

Proof. It is easy to see that X = {1, ω, ω2, . . . , ωp−2} is the group of characters
corresponding to Q(ζp). (There are p− 1 of them and they are all distinct, so
must be all of Gal(Q(ζp)/Q)∧.) It is easy to see that we must have |Y ⊥| =
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|X |/|Y | = 2. Since all the characters in Y are even characters we must have
that 1 and -1 comprise Y ⊥. The fixed field of this is then Q(ζp)

+ as this is the
totally real subfield of Q(ζp) and we want the largest field fixed by −1, i.e., by
complex conjugation.

3.2 L-functions and Class Numbers

In this section we review some basic results about L-functions attached to char-
acters. The facts given here either will be used later or are included to illustrate
the analogy with p-adic L-functions. Proofs are omitted as the results are as-
sumed either to be familiar or can be taken on faith as the proofs will not be
used in these notes. The interested reader can consult [Jan] or [Wash] for the
proofs and more information on L-functions.

Let χ be a Dirichlet character of conductor n extended to Z as indicated
above. The L-function attached to χ is given by

L(s, χ) =
∞
∑

n=1

χ(n)n−s, Re(s) > 1.

It is well known that L(s, χ) can be analytically continued to the entire complex
plane if χ 6= 1. If χ = 1 then L(s, χ) is just the Riemann zeta function, which has
meromorphic continuation to the complex plane with a simple pole of residue 1
at s = 1. The L-function L(s, χ) has a convergent Euler product given by

L(s, χ) =
∏

p

(1− χ(p)p−s)−1, Re(s) > 1.

Remark 3.15. The L-function L(s, χ) also satisfies a functional equation re-
lating L(s, χ) to L(1− s, χ). However, we will not need the precise form of the
functional equation so omit a discussion of it.

Recall the Bernoulli numbers are defined by

t

et − 1
=

∞
∑

m=0

Bm
tm

m!
.

Similarly, we define the generalized Bernoulli numbers by

n
∑

j=1

χ(j)tejt

ent − 1
=

∞
∑

m=0

Bm,χ
tm

m!

where χ is a Dirichlet character of conductor n.

Exercise 3.16. Set δ = 0 if χ is even and δ = 1 if χ is odd. Prove that
Bm,χ = 0 if m 6≡ δ(mod 2) with the exception of B1,1.
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The generalized Bernoulli numbers play a large role in arithmetic due to
their relation to the special values of L-functions. In particular, we have the
following theorem.

Theorem 3.17. ([Wash] Theorem 4.2) For m ≥ 1 we have

L(1−m,χ) = −Bm,χ
m

.

We now come to Dirichlet’s class number formula. One should view this as
an example of a larger philosophy prevalent in number theory. In particular,
given an object of number theoretic interest (a “motivic” object) X , there is
associated to X an L-function L(s,X). This L-function is an analytic object and
can be studied using tools from complex analysis. One expects that the special
values of this L-function should then provide arithmetic information back about
X . In the current situation the object of interest is a number field K and the
arithmetic information we are interested in is the size of the class group of K.

Theorem 3.18. (Dirichlet’s Class Number Formula) Let K be a number field
and let X be the group of characters that K belongs to. We have

∏

χ∈X
χ6=1

L(1, χ) =
2r1(2π)r2RK

ωK
√

|DK |
hK

where r1 is the number of real embeddings of K into C, r2 is the number of pairs
of complex conjugate embeddings of K into C, RK is the regulator of K, ωK is
the number of roots of unity in K, DK is the discriminant of K, and hK is the
size of the class group of K. For definitions of any of these terms please consult
[Milne1].

Remark 3.19. This formulation of the class number formula may not look like
the one presented in most algebraic number theory courses. We have used the
fact that

ζK(s) =
∏

χ∈X

L(s, χ)

and that ζ(s) has a simple pole with residue 1 at s = 1 to arrive at the present
formulation.

We now specialize to the case of K = Q(ζn). Note that Q(ζn) is a degree
2 extension of the field Q(ζn + ζ−1

n ), a field that sits inside R. What we are
really using here is that Q(ζn) is a CM-field. Set hn to be the class number of
Q(ζn) and h+

n to be the class number of Q(ζn+ζ−1
n ). We will need the following

proposition.

Proposition 3.20. Let K/E be an extension of number fields so that there is
no nontrivial unramified subextension F/E with Gal(F/E) abelian. Then hE
divides hK .
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Proof. LetH be the maximal unramified abelian extension ofE. From class field
theory we know that Gal(H/E) is isomorphic to the ideal class group of E. Our
assumption implies that K ∩H = E. Thus, we have hE = [H : E] = [HK : K]
where we use the fact that Gal(HK/K) ∼= Gal(H/E). This isomorphism also
gives that Gal(HK/K) is an unramified abelian extension ofK and so sits inside
the maximal unramified abelian extension of K. Thus, hE |hK as claimed.

Theorem 3.21. For n a positive integer we have that h+
n | hn.

Proof. This follows immediately from the previous proposition when one ob-
serves that Q(ζn)/Q(ζn + ζ−1

n ) is totally ramified at the real place.

Definition 3.22. Define the relative class number of Q(ζn) to be h−n := hn/h
+
n .

With some work one can show using Dirichlet’s class number formulae that
the following formula for h−n holds

h−n = 2a2n
∏

χ∈X
χ(−1)=−1

(

−1

2
B1,χ

)

where X is the group of characters associated to Q(ζn) and a is 0 if n is a prime
power and 1 otherwise. In particular, taking p to be prime we have

(3.1) h−p = 2p

p−2
∏

j=1
j odd

(

−1

2
B1,ωj

)

.

We will use this formula in the following section to prove that p | h−p if and only
if p | Bj for some j = 2, 4, . . . , p− 3.

3.3 p-adic L-functions

We give here a brief introduction to p-adic L-functions. Proofs that are purely
analytic in nature are omitted with appropriate references given. These L-
functions will be important when we discuss the main conjectures of Iwasawa
theory. Here we just give some basic facts and return to them when we come
to the main conjectures.

Theorem 3.23. ([Wash], Theorem 5.11) Let χ be a Dirichlet character. There
exists a p-adic meromorphic function (analytic if χ 6= 1) Lp(s, χ) defined on
{s ∈ Cp : |s| < p1−1/(p−1)} such that

Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n
, n ≥ 1.

If χ = 1 then Lp(s, 1) is analytic except for a pole at s = 1 with residue 1−1/p.
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Remark 3.24. One should note that χω−n is the primitive character associated
to the character a 7→ χ(a)ω−n(a). In general one does not have χω−n(a) =
χ(a)ω−n(a).

One should view the p-adic L-function Lp(s, χ) as a p-adic interpolation of
the usual L-function L(s, χ). In particular for n ≥ 1 we have

Lp(1− n, χ) = (1− χω−n(p)pn−1)L(1− n, χω−n).

Thus, if n ≡ 0(mod p− 1) then we obtain

Lp(1− n, χ) = (1− χ(p)pn−1)L(1− n, χ) = L(p)(1− n, χ).

The pth Euler factor must be removed in order for the p-adic L-function to
converge. In general, if p is allowed to divide 1/ns then the p-adic absolute
value of such terms would get arbitrarily large and so the sum of the terms
would not converge.

If χ is an odd character it is easy to see that Bn,χω−n = 0. Thus the p-adic
L-function of an odd character is identically 0. However, if χ is even then the
p-adic L-function is not identically 0. The zeros of the p-adic L-function are not
well understood.

Though the proof of the existence of Lp is omitted, it is not a difficult proof.
In general it is believed that one can associate p-adic L-functions to a wide class
of classical L-functions. Unfortunately, proving the existence of such p-adic
L-functions in other settings can be extremely difficult.

We conclude this section with some congruence results that follow from the
existence of the p-adic L-function as given in Theorem 3.23.

Theorem 3.25. Let χ be a nontrivial character and suppose p2 ∤ mχ. (Note
we are again ignoring the case of p = 2, though it can easily be handled!) One
has that

Lp(s, χ) = a0 + a1(s− 1) + a2(s− 1)2 + · · ·
where |a0|p ≤ 1 and p | ai for all i ≥ 1.

Proof. See ([Wash] Theorem 5.12).

Corollary 3.26. Let m and n be integers with m ≡ n(mod p − 1) and n 6≡
0(mod p− 1). Then one has

Bm
m
≡ Bn

n
(mod p).

Proof. Note that since m ≡ n(mod p − 1) we have Lp(s, ωm) = Lp(s, ωn). We
know that

Lp(1−m,ωm) = −(1− pm−1)
Bm
m

and similarly for Lp(s, ωn). Using the previous theorem and the fact that m ≡
n 6≡ 0(mod p− 1) we can write

Lp(s, ωm) = a0 + a1(s− 1) + a2(s− 1)2 + · · ·
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where |a0|p ≤ 1 and p | ai for all i ≥ 1. Thus,

Lp(1−m,ωm) = a0 + a1(−m) + a2(−m2)2 + · · · ≡ a0(mod p)

and similarly for Lp(1 − n, ωn). Thus, Lp(1 −m,ωm) ≡ Lp(1 − n, ωn)(mod p).
The result now follows.

Corollary 3.27. Let m,n ∈ Z and χ a nontrivial character with p2 ∤ mχ. Then
one has that Lp(m,χ) is p-integral and

Lp(m,χ) ≡ Lp(n, χ)(mod p).

Proof. This follows immediately from the previous theorem.

Corollary 3.28. Let n be an odd integer and n 6≡ −1(mod p − 1). Then we
have

B1,ωn ≡
Bn+1

n+ 1
(mod p)

and both sides are p-integral.

Proof. We begin by observing that ωn+1 6= 1 since n 6≡ −1(mod p− 1). We also
have that ωn 6= 1 since n is odd and so ωn(p) = 0. By Theorem 3.23 we have

Lp(−n, ωn+1) = −(1− pn)Bn+1

n+ 1

and

Lp(0, ωn+1) = −(1− ωn(p))B1,ωn

= −B1,ωn .

Using these equalities and the facts that Lp(−n, ωn+1) and Lp(0, ωn+1) are both
p-integral and congruent modulo p by Corollary 3.27 we obtain the result.

Theorem 3.29. Let p be an odd prime. Then p | h−p if and only if p | Bj for
some j = 2, 4, . . . , p − 3. Here it is understood that p|Bj means that p divides
the numerator of Bj.

Proof. Recall from equation (3.1) that

h−p = 2p

p−2
∏

j=1
j odd

(

−1

2
B1,ωj

)

.

We begin by studying 2p

(

−1

2
B1,ωp−2

)

= −pB1,ωp−2. Note that B1,ωp−2 =

B1,ω−1 . Using the definition of B1,ω−1 one sees that

B1,ω−1 =
1

p

p−1
∑

a=1

aω−1(a).
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Thus we have

2p

(

−1

2
B1,ωp−2

)

= −
p−1
∑

a=1

aω−1(a).

Modulo p we have that a ≡ ω(a) and so we obtain

2p

(

−1

2
B1,ωp−2

)

≡ −(p− 1) ≡ 1(mod p).

Thus,

h−p ≡
p−4
∏

j=1
j odd

(

−1

2
B1,ωj

)

(mod p).

Now we apply the previous corollary to obtain

p−4
∏

j=1
j odd

(

−1

2
B1,ωj

)

≡
p−4
∏

j=1
j odd

(

−1

2

Bj+1

j + 1

)

(mod p).

From this the theorem follows immediately.

Definition 3.30. We say a prime p is irregular if p | Bj for some j = 2, 4, . . . , p−
3. If a prime is not irregular it is said to be regular.

Note that the previous theorem shows that p is an irregular prime if and
only if p | h−p . We will see in the next section that p | hp if and only if p | Bj
for some j = 2, 4, . . . , p − 3. Thus, p is an irregular prime if and only if p | hp.
This is also often used as the definition of an irregular prime.

Theorem 3.31. There are infinitely many irregular primes.

It is also believed that there are infinitely many regular primes. In fact,
numerical evidence suggests that around 61% of all primes are regular primes.
However, no one yet knows how to prove there are infinitely many regular primes.

3.4 p-adic L-functions and Class Numbers

We now give a short section on the p-adic class number formula. We include
this not only for the analogy with the classical Dirichlet class number formula,
but also because of its application to proving a result on class numbers. The
p-adic class number formula is usually developed in order to prove the following
result.

Theorem 3.32. Let χ 6= 1 be an even Dirichlet character. Then Lp(1, χ) 6= 0.

However, since these notes are focused more on class numbers combined with
the fact that we did not pursue the analogous result for classical L-functions
L(s, χ), we will have the following theorem as our goal.
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Theorem 3.33. If p | h+
p , then p | h−p . In particular, p | hp if and only if p | Bj

for some j = 2, 4, . . . , p− 3.

We now state, but do not prove the p-adic class number formula. For a
complete proof and for a definition of the p-adic regulator Rp(K) see ([Wash],
Chapter 5). We will not need the definition of Rp(K) here.

Theorem 3.34. Let K be a totally real abelian number field with [K : Q] = n.
Let X be the group of Dirichlet characters corresponding to K. One has

∏

χ∈X
χ6=1

(

1− χ(p)

p

)−1

Lp(1, χ) =
2n−1hKRp(K)√

∆K

.

We will also need the following proposition. We again omit the proof.

Proposition 3.35. Suppose K is a totally real Galois number field. If there is
only one prime ℘ of K such that ℘ | p and if e(℘/p) ≤ p− 1, then

∣

∣

∣

∣

[K : Q]Rp(K)√
∆K

∣

∣

∣

∣

p

≤ 1.

Proof. See ([Wash], Proposition 5.33).

Proof. (of Theorem 3.33) Recall that the group of characters that corresponds
to Q(ζp)

+ is {1, ω2, ω4, . . . , ωp−3}, i.e., the even characters of Q(ζp). Set n =
(p − 1)/2. Since Q(ζp)

+ is a totally real abelian number field, the p-adic class
number formula gives

p−3
∏

j=2
j even

Lp(1, ωj) =
2n−1h+

p R
+
p

√

∆+
p

since ωj(p) = 0 for j = 2, 4, . . . , p − 3. We know that Q(ζp)
+ satisfies the

hypotheses of Proposition 3.35 so we have
∣

∣

∣

∣

∣

∣

[Q(ζp)
+ : Q]R+

p
√

∆+
p

∣

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∣

R+
p

√

∆+
p

∣

∣

∣

∣

∣

∣

p

≤ 1.

If p | h+
p , the we must have p | Lp(1, ωj0) for some j0 ∈ {2, 4, . . . , p − 3}.

Corollary 3.27 shows that

−B1,ωj0−1 = −
(

1− ωj0−1(p)

p

)−1

B1,ωj0−1

= Lp(0, ωj0)
≡ Lp(1, ωj0)(mod p)

≡ 0(mod p).
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Thus, p | B1,ωj0−1 . Using that all the B1,ωi are p-integral and that we have

h−p ≡
p−4
∏

i=1
i odd

(

−1

2
B1,ωi

)

(mod p)

we have that h−p ≡ 0(mod p), as desired.

We conclude this section with the following open conjecture of Vandiver.

Conjecture 3.36. (Vandiver) For p a prime one has p ∤ h+
p .

3.5 Herbrand’s Theorem

In this section we seek to prove a much stronger criterion then that given in
Theorem 3.33 by looking at “pieces” of the class group rather then the entire
class group. This description is known as Herbrand’s theorem. We will also state
the converse of this theorem which is due to Ribet ([Ribet]). We will return to
the proof of the converse in later chapters as it provides a nice overview of the
method Wiles used to prove the main conjecture of Iwasawa theory for totally
real fields ([Wiles2]).

Before we can state any results we need to formulate what we mean by
“pieces” of the ideal class group. We begin with some generalities. Let G be
a finite abelian group and G∧ the group of multiplicative characters of G as
before. Let R be a commutative ring that contains |G|−1 and all the values of
all the χ ∈ G∧. We define the orthogonal idempotents of the group ring R[G]
to be the elements

εχ =
1

|G|
∑

σ∈G

χ(σ)σ−1 ∈ R[G].

Exercise 3.37. Prove the following results:
1. ε2χ = εχ
2. εχεψ = 0 if χ 6= ψ

3.
∑

χ∈G∧

εχ = 1

4. εχσ = χ(σ)εχ.

Proposition 3.38. Let M be a module over R[G]. Then we have M =
⊕

χ εχM .

Proof. This proposition follows easily from the properties listed in the exercise.

Note that if we view σ ∈ G as acting on M , the space εχM are the
eigenspaces of this action with eigenvalue χ(σ).

We now specialize to the case that the module we are considering is an ideal
class group. Let C be the ideal class group of a finite abelian extension K/Q
and set G = Gal(K/Q). Choose n so that K ⊆ Q(ζn). The group ring Z[G]
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naturally acts on C. Given x =
∑

xσσ ∈ Z[G] and a a fractional ideal of K,
the action is given by

x · a = ax =
∏

σ

(σa)xσ .

Now let A denote the p-Sylow subgroup of the class group C. We obtain an
action of Zp[G] on A. To see this, observe that Zp acts on A by

(

∞
∑

j=0

ajp
j) · a =

∞
∏

j=1

(aajp
j

)

due to the fact that pmA = 0 for large enough m.
For a real number x, let {x} denote the fractional part of x, i.e., x−{x} ∈ Z

and 0 ≤ {x} < 1.

Definition 3.39. The Stickelberger element of K is defined by

θ = θ(K) =
∑

a(modn)
gcd(a,n)=1

{a

n

}

σ−1
a ∈ Q[G]

where σa is the element of Gal(Q(ζn)/Q) given by ζn 7→ ζan restricted to K. The
Stickelberger ideal I(K) of K is defined to be Z[G] ∩ θZ[G].

We require the following theorem that will be stated without proof.

Theorem 3.40. (Stickelberger’s Theorem) The Stickelberger ideal annihilates
the ideal class group of K, i.e., if a is a fractional ideal of K, β ∈ Z[G] is such
that βθ ∈ Z[G], then (βθ) · a is principal.

Suppose now that K = Q(ζp) for p an odd prime. Recall that G∧ = {ωi :
0 ≤ i ≤ p − 2}. We use the group ring Zp[G]. In this case the orthogonal
idempotents are

εi := εωi =
1

p− 1

p−1
∑

a=1

ωi(a)σ−1
a

for 0 ≤ i ≤ p− 2 and the Stickelberger element is given by

θ =
1

p

p−1
∑

a=1

aσ−1
a .

Observe that we have

εiθ =
1

p

p−1
∑

a=1

aεiσ
−1
a

=
1

p

p−1
∑

a=1

aωi(σ−1
a )εi

=
1

p

p−1
∑

a=1

aω−i(a)εi

= B1,ω−iεi.
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and similarly for c ∈ Z we have

εi(c− σc)θ = (c− ωi(c))B1,ω−iεi.

Proposition 3.41. Let c ∈ Z with p ∤ c. Then (c− σc)θ ∈ Z[G].

Proof. We begin by observing

(c− σc)θ =

p−1
∑

a=1

c

{

a

p

}

σ−1
a −

p−1
∑

a=1

{

a

p

}

σcσ
−1
a .

It is easy to see that σcσ
−1
a = σca−1 . Thus, by changing the index of summation

on the second sum we obtain

(c− σc)θ =

p−1
∑

a=1

(

c

{

a

p

}

−
{

ac

p

})

σ−1
a .

Using that
{

a
p

}

= a
p and that x − {x} ∈ Z we see that (c − σc)θ ∈ Z[G] as

desired.

Let A denote the p-Sylow subgroup of the class group of Q(ζp). As was
observed above, A is a Zp[G]-module and so we have the decomposition

A =

p−2
⊕

i=0

Ai

where it is customary to write Ai for εiA. Stickelberger’s theorem along with
the previous proposition imply that (c− σc)θ annihilates A and hence each Ai
for p ∤ c. In particular, we have shown that (c− ωi(c))B1,ω−i annihilates Ai.

Note that if i 6= 0 is even, then B1,ω−i = 0 and so we have really shown
nothing new. For i = 0 we get that (c− 1)/2 annihilates A0 for any c with p ∤ c,
and so it must be that A0 = 0. Now consider the case that i is odd. If i 6= 1,
then there exists a c so that c 6≡ ωi(c)(mod p) and so we can ignore the factor
(c− ωi(c)) and obtain that B1,ω−i annihilates Ai. If i = 1, set c = 1 + p. Then

(c− ω(c))B1,ω−1 = pB1,ω−1

=

p−1
∑

a=1

aω−1(a)

= p− 1 6≡ 0(mod p).

Since A1 is necessarily a p-group we must have A1 = 0. Thus, we have the
following proposition.

Proposition 3.42. The pieces of the class group A0 and A1 are both 0 and for
i = 3, 5, . . . , p− 2 we have that B1,ω−i annihilates Ai.
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We now are ready to state Herbrand’s theorem. Suppose that Ai 6= 0 for
some i = 3, 5, . . . , p−2, i.e., the ith part of the p-Sylow subgroup of the ideal class
group of Q(ζp) is nontrivial. Since B1,ω−i annihilates this nontrivial p-group,

we must have that p | B1,ω−i . However, we know that B1,ω−i ≡ Bp−i
p−i (mod p).

Thus we have Herbrand’s theorem.

Theorem 3.43. (Herbrand’s Theorem) Let i be odd and 3 ≤ i ≤ p − 2. If
Ai 6= 0, then p | Bp−i.

Note this is stronger then Theorem 3.33 in one direction. There it was stated
if p | hp then p divides some Bernoulli number. Here we get the exact Bernoulli
number in terms of which piece of the class group is nontrivial.

Theorem 3.44. ([Ribet]) Let i be odd with 3 ≤ i ≤ p − 2. If p | Bp−i, then
Ai 6= 0.

Ribet is able to prove the converse to Herbrand’s theorem by actually con-
structing elements in the ith part of the p-Sylow subgroup of the class group
of Q(ζp). He accomplishes this by using modular forms. In particular, he pro-
duces a congruence between an Eisenstein series and a cusp form and then uses
this congruence and some results on Galois representations to find an element
of order p in the appropriate piece of the class group. We will return to this
argument later in the notes.

We close this chapter with the following strengthening of the result p | h+
p

implies p | h−p .

Theorem 3.45. Let i be even and j odd with i+ j ≡ 1(mod p− 1). Then

p-rank(Ai) ≤ p-rank(Aj) ≤ 1 + p-rank(Ai)

where the p-rank of a finite abelian group G is the dimension of G/pG as a
vector space over Fp.

To actually see this is a strenghtening of the result p | h+
p implies p | h−p

requires some work. Recall that we defined h+
p to be the size of the class group

of Q(ζp)
+. We then showed h+

p | hp and so defined h−p = hp/h
+
p . We will now

show that h+
p and h−p are sizes of pieces of the class group of Q(ζp).

We denote complex conjugation σ−1 ∈ Gal(Q(ζp)/Q) by J as is customary.
Write Cp for the class group of Q(ζp) and Cp+ for the ideal class group of Q(ζp)

+.
Let C−

p be the (−1)-eigenspace of Cp for the action of J , i.e.,

C−
p = {a ∈ Cp : (1 + J) · a = 1}.

Recall that in the class field theory section we proved that if HQ(ζp)+ ∩Q(ζp) =
Q(ζp)

+, then the norm map Cp → Cp+ is surjective where HQ(ζp)+ is the Hilbert
class field of Q(ζp)

+. However, we know that Q(ζp) is ramified over Q(ζp)
+ at

the archimedean primes, so this condition is satisfied. Now we observe that we
have an exact sequence
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1 // C−
p

// Cp
Norm

// Cp+ // 1.

To see that C−
p is precisely the kernel of the norm map see ([Milne1], page 63)

for properties of the norm map and recall that Gal(Q(ζp)/Q(ζp)
+) ∼= {1, J}.

Thus we see that h−p is the order of C−
p , a piece of the class group of Q(ζp).

Since we are concerned with only the p-divisibility in the above theorem, we
can restrict to working with the p-part of the class group. Define ε− = 1−J

2 and

ε+ = 1+J
2 . It is an elementary calculation to show that the (−1)-eigenspace of

J acting on A is precisely ε−A. Thus we write A− = ε−A and similarly we
define A+ = ε+A. We have that A = A− ⊕ A+. The above result then shows
that A+ is precisely the p-part of Cp+ as desired. One can show that

ε+ =
∑

i even

εi

and
ε− =

∑

i odd

εi,

i.e.,
A− = A1 ⊕A3 ⊕ · · · ⊕Ap−2

and
A+ = A0 ⊕A2 ⊕ · · · ⊕Ap−3.

The fact that the above theorem generalizes the statement p | h+
p implies p | h−p

is now clear.



Chapter 4

Zp-extensions

4.1 Introduction

Let p be an odd prime. All of the results in this chapter follow if p = 2 as well,
but we restrict ourselves to odd primes in order to simplify the notation. For
the general results one should consult [Wash].

Given a number field K, a Zp-extension of K is a field extension K∞ of K
such that Gal(K∞/K) ∼= Zp. Note here that we are looking at the additive
group of p-adic integers. It is important in Iwasawa theory to keep track of
which structures one is using.

First we need to show that any given number field actually has at least one
Zp-extension. We begin with Q. Recall that one has

Gal(Q(ζpn+1)/Q) ∼= (Z/pn+1Z)× ∼= (Z/pZ)× × (Z/pnZ).

Let Qn be the fixed field of (Z/pZ)×, i.e., Qn = Q(ζpn+1)(Z/pZ)× . From Galois
theory we know that Gal(Qn/Q) ∼= Z/pnZ. Let Q∞ =

⋃

Qn. Then we have
that

Gal(Q∞/Q) = lim←−
n

(Z/pnZ) ∼= Zp.

Thus, the rational numbers have a Zp-extension.
To show that the general number field K has a Zp-extension, set K∞ =

KQ∞. Thus we have that Gal(K∞/K) ∼= Gal(Q∞/K ∩Q∞). We now use that
Gal(Q∞/K ∩Q∞) is a closed subgroup of Gal(Q∞/Q) and so of the form pnZp
for some n ∈ N. Thus, Gal(K∞/K) ∼= pnZp ∼= Zp as desired. This Zp-extension
is known as the cyclotomic Zp-extension of K. It is possible that K has other
Zp-extensions as well, but we now know that every number field has at least
one Zp-extension.

Let K∞ now be any Zp-extension of K. We wish to show that it is possible
to consider K∞ as a union of a sequence of intermediate fields:

K = K0 ⊂ K1 ⊂ · · · ⊂ K∞ =
⋃

Kn

41
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where one has
Gal(Kn/K) ∼= Z/pnZ.

Recall from the section on infinite Galois theory that the intermediate fields
correspond precisely to the closed subgroups of Zp. Let H be such a closed
subgroup and let h ∈ H be the element with minimal valuation. Observe that
hZ is necessarily contained in H . Since H is closed we obtain that hZp is
actually in H . However, since we chose h to have minimal valuation, it must
be that H = hZp = pnZp for some n. Thus, we have the intermediate fields as
desired.

The main theorem we will prove in this chapter is the following.

Theorem 4.1. Let K∞/K be a Zp-extension and let en be the integer so that
pen‖hn where hn is the order of the class group of Kn. There exist integers
λ ≥ 0, µ ≥ 0, ν, and n0 so that

en = λn+ µpn + ν

for all n ≥ n0 where λ, µ, and ν are all indepedent of n.

4.2 Power Series Rings

One of the main objects of study in Iwasawa theory is the Iwasawa algebra
Λ = ZpJT K, i.e., the power series ring in T with coefficients in Zp. We devote
this section to establishing a few general results that will be needed in subsequent
sections.

Let K/Qp be a finite extension, O := OK the ring of integers of K, p the
maximal ideal of O, and ̟ a uniformizer, i.e., p = (̟). We begin by proving a
division algorithm for the algebra ΛO := OJT K.

Proposition 4.2. Let f, g ∈ ΛO with f = a0 + a1T + · · · with ai ∈ p for
0 ≤ i ≤ n − 1 and an ∈ O×. Then there exists a unique q ∈ ΛO and r ∈ O[T ]
with deg r ≤ n− 1 so that

g = qf + r.

Proof. We begin by defining a shifting operator τn := τ : ΛO :→ ΛO defined by

τ

(

∞
∑

i=0

biT
i

)

=

∞
∑

i=n

biT
i−n.

This operator is clearly O-linear. Furthermore, one has

• τ(T nh(T )) = h(T )

• τ(h(T )) = 0 if and only if h is a polynomial of degree ≤ n− 1

By our description of f(T ) we have P (T ) and U(T ) so that

(4.1) f(T ) = ̟P (T ) + T nU(T )
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where P (T ) is a polynomial of degree less then or equal to n − 1 and U(T ) is
invertible in ΛO since the leading coefficient is an ∈ O×. Set

q(T ) =
1

U(T )

∞
∑

j=0

(−1)j̟j

(

τ ◦ P
U

)j

◦ τ(g).

The definition is a bit difficult to interpret, so for example we have

(

τ ◦ P
U

)3

◦ τ(g) = τ

(

P

U

(

τ

(

P

U

(

τ

(

P

U
(τ(g))

)))))

.

The presence of the ̟j forces this to converge, so it is in ΛO. Using equation
(4.1) we have

qf = ̟qP + T nqU.

Applying τ we have

(4.2) τ(qf) = ̟τ(qP ) + τ(T nqU) = ̟τ(qP ) + qU.

Now we examine ̟τ(qP ):

̟τ(qP ) = ̟τ





P

U

∞
∑

j=0

(−1)j̟j

(

τ ◦ P
U

)j

◦ τ(g)





=
∞
∑

j=0

(−1)j̟j+1

(

τ ◦ P
U

)j+1

◦ τ(g)

= ̟

(

τ ◦ P
U

)

◦ τ(g)−̟2

(

τ ◦ P
U

)2

◦ τ(g) + · · ·

= τ(g) −
(

τ(g) −̟
(

τ ◦ P
U

)

◦ τ(g) +̟2

(

τ ◦ P
U

)2

◦ τ(g) + · · ·
)

= τ(g) − Uq.

Plugging this into equation (4.2) we obtain

τ(qf) = τ(g).

Thus we have that τ(qf) and τ(g) differ only by a polynomial of degree less then
n. To see uniqueness, suppose there exists q1, q2, r1, and r2 with g = q1f + r1 =
q2f+r2. Thus we have that (q1−q2)f+(r1−r2) = 0. Suppose that q1 6= q2 and
r1 6= r2. Then we may assume that ̟ ∤ (q1 − q2) or ̟ ∤ (r1 − r2). Now reduce
modulo ̟, giving us that r1 ≡ r2(mod̟) since ̟|ai for 1 ≤ i ≤ n − 1. Thus
̟|(q1 − q2)f . But we know ̟ ∤ f since an ∈ O×, so we must have ̟|(q1 − q2),
a contradiction.

Definition 4.3. Let P (T ) = T n + an−1T
n−1 + · · ·+ a1T + a0 ∈ O[T ]. We call

P (T ) distinguished if ai ∈ p for 0 ≤ i ≤ n− 1.
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Theorem 4.4. (p-adic Weierstrass Preparation Theorem) Let f(T ) =
∞
∑

i=0

aiT
i ∈

ΛO and suppose there exists n ∈ N with ai ∈ p for 0 ≤ i ≤ n− 1 but an ∈ O×.
Then there exist a unique U(T ) ∈ ΛO a unit and a unique P (T ) ∈ O[T ] a
distinguished polynomial of degree n so that

f(T ) = P (T )U(T ).

If f(T ) ∈ ΛO is nonzero, then there exists a unique µ ∈ Z, µ ≥ 0, P (T ) ∈ O[T ]
a distinguished polynomial of degree at most n, and a unit U(T ) ∈ ΛO so that

f(T ) = ̟µP (T )U(T ).

Proof. We begin by applying Proposition 4.2 to g(T ) = T n and f(T ) to obtain

q(T ) =

∞
∑

i=0

qiT
i ∈ ΛO and r(T ) ∈ O[T ] with

(4.3) T n = f(T )q(T ) + r(T )

where deg r(T ) ≤ n− 1. If we consider this equation modulo ̟ we see that

T n ≡ q(T )(anT
n + an+1T

n+1 + · · · ) + r(T )(mod̟).

Since deg r(T ) ≤ n − 1, we must have r(T ) ≡ 0(mod̟). Thus, T n − r(T ) is
a distinguished polynomial, call it P (T ). Looking back at equation (4.3) and
looking at the coefficients of T n we have q0an ≡ 1(mod̟). Thus, ̟ ∤ q0, which
implies that q0 ∈ O×, i.e., q(T ) is a unit. So we have

T n − r(T ) = f(T )q(T )

i.e.,
f(T ) = P (T )U(T )

where U(T ) = q(T )−1.
The uniqueness statement is not difficult. Any distinguished polynomial can be
written as P (T ) = T n − r(T ). Then translate the equation f(T ) = P (T )U(T )
into an equation of the form T n = f(T )q(T ) + r(T ) and use the uniqueness in
Proposition 4.2.
For the last statement, just factor out the largest power of ̟ possible.

Corollary 4.5. Let f(T ) ∈ ΛO be nonzero. There are only finitely many z ∈ Cp
with |z|p < 1 and f(z) = 0.

Proof. Write f(T ) = ̟mP (T )U(T ). Since U is a unit, U(z) 6= 0. Thus it must
be that P (z) = 0. Since P is a polynomial we have the result.

Lemma 4.6. Let P (T ) ∈ O[T ] be distinguished and let g(T ) ∈ O[T ]. Suppose

that
g(T )

P (T )
∈ ΛO, then

g(T )

P (T )
∈ O[T ].
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Proof. Let f(T ) ∈ ΛO so that
g(T )

p(T )
= f(T ), i.e., g(T ) = f(T )P (T ). Let z be a

root of P (T ). Then

0 = P (z) = zn + (multiple of ̟)

since P is distinguised. Then ̟|z implies |z|p < 1. Thus we have f(T ) con-
verges at z and so g(z) = 0, i.e., (T − z)|g(T ). Continuing in this pattern,
possibly enlarging O to contain all the roots of P (T ), we see that P (T )|g(T ) as
polynomials.

4.3 A Structure Theorem on ΛO-modules

We continue with the notation of the last section. Note that from the previous
section we have that ΛO is a UFD whose irreducibles are ̟ and irreducible
distinguished polynomials. The units are elements in ΛO whose constant term
is in O×.

In this section we state a powerful structure theorem allowing us to determine
the structure of finitely generated ΛO-modules. We will use this to study certain
Galois groups in the following section.

Lemma 4.7. Let f, g ∈ ΛO be relatively prime. The ideal (f, g) generated by f
and g is of finite index in ΛO.

Proof. Let h ∈ (f, g) have minimal degree. We can write h(T ) = ̟nH(T )
for some integer n and where H = 1 or H is a distinguished polynomial (by
Weierstrass preparation theorem). If H 6= 1 we can write f = qH + r with
deg r < degH . This gives us

̟nf = q̟nH +̟nr

= qh+̟nr.

However, this shows that ̟nr ∈ (f, g) and has smaller degree then h, a con-
tradiction. Now suppose that H = 1 and so h = ̟n. We may assume that
̟ ∤ f for if it does divide f we can use g instead since f and g are relatively
prime. We may also assume that f is distinguished for if not we can just look at
P (T ) = f(T )/u(T ) by the Weierstrass preparation theorem since this generates
the same ideal. We have that (̟n, f) ⊆ (f, g) and so ΛO/(̟

n, f) ⊇ ΛO/(g, f).
The division algorithm shows that everything in ΛO is congruent modulo (̟n, f)
to a polynomial of degree less then the degree of f with coefficients modulo
̟n. However, there are only finitely many choices for such polynomials and so
(̟n, f) has finite index, and hence so does (f, g).

Lemma 4.8. Let f, g ∈ ΛO be relatively prime. Then:
1. the natural map

ΛO/(fg) −→ ΛO/(f)⊕ ΛO/(g)
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is an injection with finite cokernel;
2. there is an injection

ΛO/(f)⊕ ΛO/(g) −→ ΛO/(fg)

with finite cokernel.

Proof. 1. The fact that this map is an injection follows immediately from the
fact that ΛO is a UFD. It remains to show that the cokernel is finite. Consider
(a(mod f), b(mod g)). Suppose that a − b ∈ (f, g). Then there exists α, β so
that a− b = fα+ gβ. Set γ = a− fα = b+ gβ and observe that γ ≡ a(mod f)
and γ ≡ b(mod g). Thus, γ is in the image of the map. Let r1, . . . , rn be the
representatives of ΛO/(f, g). This is a finite set by the previous lemma. We
then have that

{(0(mod f), ri(mod g) : 1 ≤ i ≤ n}
is a set of representatives for the cokernel of the map.
2. Set M = ΛO/(fg) and N = ΛO/(f) ⊕ ΛO/(g). We know that M ⊆ N of
finite index by what we have just shown. Let P be a distinguished polynomial
in ΛO that is relatively prime to fg. Note that in ΛO, P k → 0 (where we use

that

∞
⋂

n=0

(̟,T )n+1 = 0) and so we have P kN ⊆ M for some k. Now suppose

that (P kx, P ky) = 0 in N for some (x, y) ∈ N . We must have that f | P kx and
g | P ky. We chose P so that gcd(P, fg) = 1 and so we have that necessarily
f | x and g | y. Thus, (x, y) = 0 in N . Hence, the map is injective:

N
Pk−→M.

The image of the map contains (P k · 1, P k · 0) = (P k, 0) = (P k, fg). This is of
finite index by the previous lemma, so the cokernel must be finite.

Next we determine the prime ideals of ΛO as well as show it has a unique
maximal ideal.

Proposition 4.9. The primes of ΛO are 0, (̟,T ), (̟) and the ideals (P (T ))
for P (T ) irreducible and distinguished. The ideal (̟,T ) is the unique maximal
ideal.

Proof. It is easy to see that the given ideals are prime ideals; it remains to show
they are the only prime ideals. Let ℘ ⊂ ΛO be a non-zero prime ideal. Let
h ∈ ℘ have minimal degree. Using the Weierstrass preparation theorem we can
write h = ̟nH with H = 1 or H ∈ ℘. If H = 1 then we cannot have H ∈ ℘ for
then ℘ = ΛO. Suppose H 6= 1 and H ∈ ℘. In this case H must be irreducible
by the minimality of the degree of h. Thus, (H) ⊆ ℘. If (H) = ℘ we are done.
Assume (H) 6= ℘ so that there exists g ∈ ℘ with H ∤ g. Since H is irreducible
we must have that H and g are relatively prime. Now apply Lemma 4.7 to
conclude that (H, g), and hence ℘, is of finite index in ΛO. Thus, ΛO/℘ is a
finite O-module and so ̟N ∈ ℘ for some large N . Since ℘ is prime this implies
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that ̟ ∈ ℘. We also have that T i ≡ T j(mod℘) for some i < j since ℘ is of
finite index. However, 1 − T j−i ∈ Λ×

O implies that T ∈ ℘. Thus we have that
(̟,T ) ⊆ ℘. However, ΛO/(̟,T ) ∼= O/̟ and so (̟,T ) is maximal and hence
℘ = (̟,T ).
One sees that this argument gives the case where H = 1 and ̟n ∈ ℘ as well.
Now since all primes are contained in (̟,T ) it is the only maximal ideal.

Lemma 4.10. Let f ∈ ΛO − Λ×
O. Then ΛO/(f) is infinite.

Proof. Assume f 6= 0. The Weierstrass preparation theorem allows us to write
f = ̟nH with H = 1 or distinguished. Observe that (f) ⊆ (̟) or (f) ⊆ (H)
and so it is enough to consider f = ̟ and f distinguished. If f is distinguished
one applies the division algorithm to get the result. If f = ̟, ΛO/(̟) ∼=
(O/̟)JT K, which is infinite.

Lemma 4.11. The ring ΛO is a Noetherian ring.

Proof. Since O is Noetherian we apply the standard fact from algebra that A
Noetherian implies AJT K is Noetherian.

Definition 4.12. Two ΛO-modules M and N are said to be pseudo-isomorphic,
written M ∼ N , if there is an exact sequence

0 −→ A −→M −→ N −→ B −→ 0

with A and B finite ΛO-modules.

Remark 4.13. One should note that M ∼ N does not imply that N ∼ M .
However, it is equivalent if they are finitely generated ΛO-torsion ΛO-modules.

Exercise 4.14. Show that (p, T ) ∼ Λ but Λ ≁ (p, T ).

We conclude this section with the structure theorem that will be instrumen-
tal in proving Theorem 4.1.

Theorem 4.15. Let M be a finitely generated ΛO-module. Then

M ∼ ΛrO ⊕
(

s
⊕

i=1

ΛO/(̟
ni)

)

⊕





t
⊕

j=1

ΛO/(fj(T )mj)





where r, s, t, ni and mj are in in Z and fj(T ) are distinguished and irreducible.
This decomposition is uniquely determined by M .

Proof. The proof is essentially the same proof as the structure theorem for mod-
ules over a PID. One uses row and column operations. See ([Wash], Theorem
13.12) for the details.



48 CHAPTER 4. ZP -EXTENSIONS

4.4 Proof of Iwasawa’s theorem

In this section we prove Theorem 4.1. We do this by making use of the structure
theorem of the last section. Let K be a number field and K∞/K a Zp-extension
with K = K0 ⊂ K1 ⊂ · · · ⊂ K∞ with Gal(Kn/K) ∼= Z/pnZ as Section 4.1.
Write Γ = Gal(K∞/K) and let γ0 be a topological generator of Γ. Note that
the isomorphism Zp ∼= Γ is given by x 7→ γx0 . Let Ln be the maximal unramified
abelian p-extension of Kn. Set Xn = Gal(Ln/Kn) so that Xn is the p-Sylow
subgroup of the ideal class group of Kn. Note that what we are interested
in is studying the power of p dividing the order of Xn. Let L =

⋃

n≥0 Ln,
X = Gal(L/K∞), and G = Gal(L/K). Note that it is not uncommon for some
authors to refer to L as L∞. However, we have reserved the subscript ∞ to
denote a Zp-extension. We have the following diagram of fields (including their
Galois groups):

L
X

||
||

||
||

G
































K∞

Γ

K

Observe that if we take Kn for any n ≥ 0 we have that K∞/Kn is still a
Zp-extension and we have the same X as for K. This will be important as we
wish to reduce our arguments to the case where any prime that ramifies in K∞

is totally ramified. We will accomplish this by replacing K with Kn for some n.
We will then obtain results on X and it is important to know that this “new”
X is the original one we are interested in.

Exercise 4.16. Prove that the X one obtains from the Zp-extension K∞/Kn

is the same X as one obtains from the Zp-extension K∞/K for any n ≥ 0.

Proposition 4.17. All Zp-extensions are unramified away from p, i.e., if λ is
a prime of K which does not lie above p, then K∞/K is unramified at λ.

Proof. Let Iλ ⊂ Gal(K∞/K) be the inertia group of λ. We know the inertia
group is a closed subgroup, so in this case we have Iλ is either 0 or pnZp for
some n. If Iλ = 0 we are done, so assume that Iλ = pnZp for some n. The
inertia group of an archimedian prime must have order 1 or 2 and since Iλ
has infinite order we can rule out the case that λ is a ramified archimedian
prime. For each m choose a place λm so that λm lies over λm−1 and so on
setting λ0 = λ. We can complete each field Km at λm and obtain a tower
of fields Kλ = K0,λ ⊂ K1,λ1 ⊂ · · · . Set K̂∞ =

⋃

m≥0Km,λm . Observe that

Iλ ⊂ Gal(K̂∞/Kλ). Now let U be the units of Kλ. We know from local
class field theory that there is a surjective map U → Iλ, i.e., a surjective map
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U → pnZp. However, the local unit theorem from algebraic number theory gives
that U ∼= (finite group) × Zaℓ for some a ∈ Z and some prime ℓ ⊂ Z with λ | ℓ.
However, we know that pnZp has no torsion, so we must have a continuous
surjective map Zaℓ → pnZp. Combining this with the natural projection map we
obtain a continuous surjective map

Zaℓ → pnZp/p
n+1Zp.

However, this would give a closed subgroup of index p in Zaℓ , which cannot
happen. Thus it must be that Iλ = 0.

Proposition 4.18. At least one prime ramifies in the extension K∞/K and
there is an m ≥ 0 such that every prime that ramifies in K∞/Km is totally
ramified.

Proof. It is easy to see that at least one prime must ramify. The maximal abelian
unramified extension is a finite extension and K∞/K is an infinite extension, so
at least one prime must ramify.
We know from the previous proposition only the primes lying over p can possibly
ramify, call these primes that ramify ℘1, . . . , ℘r and the corresponding inertia
groups I1, . . . , Ir. Since each Ii is a closed subgroup, so is

⋂

Ii. Thus we have
that there is some m ∈ Z so that

⋂

Ii = pmZp.

Recall that Gal(Km/K) ∼= Z/pmZ ∼= Zp/p
mZp, so we have that Gal(K∞/Km) ∼=

pmZp and so is contained in Ii for all i = 1, . . . , r. Thus, we see that ℘i must
be totally ramified in K∞/Km for all i = 1, . . . , r.

We now fix an m be as in Proposition 4.18.

Exercise 4.19. For n ≥ m prove that Kn+1 ∩ Ln = Kn.

We now make the simplifying assumption that m = 0. We will see how to
remove this assumption shortly, but for now it makes the notation much easier.
This assumption is in effect in all the lemmas as well until stated otherwise. The
previous exercise shows that we have Gal(Ln/Kn) ∼= Gal(LnKn+1/Kn) using
the following diagram of fields:

LnKn+1

tttttttttt

LLLLLLLLLL

Ln

JJJJJJJJJJ Kn+1

rrrrrrrrrr

Ln ∩Kn+1



50 CHAPTER 4. ZP -EXTENSIONS

Since we know that Xn+1 = Gal(Ln+1/Kn+1) and LnKn+1 ⊂ Ln+1, we see that
Gal(LnKn+1/Kn+1), and hence Xn, is a quotient of Xn+1. Thus we have an
onto map Xn+1 → Xn. Similarly, if we take K∞ in the above exercise we have
that

Xn = Gal(Ln/Kn) ∼= Gal(LnK∞/K∞)

and so we have

lim←−Xn = lim←−Gal(Ln/Kn)

∼= lim←−Gal(LnK∞/K∞)

= Gal((
⋃

LnK∞)/K∞)

= Gal(L/K∞)

= X.

Thus we have that X is a projective limit of the groups Xn. Recall that
Γn = Γ/Γp

n ∼= Z/pnZ ∼= Gal(Kn/K). The important thing to note is that
the structure on Γn is multiplication. Let γn ∈ Γn. We extend γn to an element
γ̃n ∈ Gal(Ln/K). Let xn ∈ Xn. There is an action of γn on xn given by

γn · xn = γ̃nxnγ̃
−1
n .

Exercise 4.20. Check that this action is well-defined. It may help to recall that
Xn is abelian!

This gives that Xn is a Zp[Γn]-module. (It has a Zp-action because it is a p-
group!) Since we have shown that X ∼= lim←−Xn, we can represent elements of
X in the form (x0, x1, . . . , xn, . . . ) with xi ∈ Xi. Using that Λ ∼= lim←−Zp[Γn], we
define an action of Λ on X componentwise so that X is a Λ-module. As before,
if γ ∈ Γ and x ∈ X , define

γ · x = γ̃xγ̃−1

where γ̃ is an extension of γ to Gm := Gal(L/Km).
Let ℘1, . . . , ℘s be the primes which ramify in K∞/K. Fix a prime pi of L

lying over ℘i. As usual, let Ii = I(pi/℘i) ⊂ G be the inertia group. By definition
we have that L/K∞ is unramified, so necessarily we have Ii∩X = {e}. Thus we
have an injection Ii →֒ G/X ∼= Γ. Now we use that K∞/K is totally ramified
at ℘i to conclude that this injection is a surjection and hence an isomorphism.
Thus,

G = IiX = XIi

for i = 1, . . . , s. Let σi ∈ Ii be the element that maps to the topological
generator γ0 in Γ. This gives that σi is a topological generator of Ii. Now using
that G = XI1 we have that Ii ⊂ XI1 for i = 1, . . . , s. Thus there exists ai ∈ X
so that

σi = aiσ1.

Lemma 4.21. We have

[G,G] = (γ0 − 1) ·X = TX.
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Proof. We identify Γ with I1 and define the action of Γ on X via this identifi-
cation, i.e.,

γ · x = γxγ−1.

Let g1, g2 ∈ G. Using that G = ΓX we have elements γ1, γ2 ∈ Γ and x1, x2 ∈ X
so that g1 = γ1x1 and g2 = γ2x2. We have

g1g2g
−1
1 g−1

2 = γ1x1γ2x2x
−1
1 γ−1

1 x−1
2 γ−1

2

= (γ1 · x1)γ1γ2x2x
−1
1 γ−1

1 x−1
2 γ−1

2

= (γ1 · x1)((γ1γ2) · (x2x
−1
1 ))(γ2 · x−1

2 )

where we have used that Γ is abelian. Also observe that

((1 − γ2)γ1 · x1)((γ1 − 1)γ2 · x2) = ((1 − γ2) · γ1x1γ
−1
1 )((γ1 − 1) · γ2x2γ

−1
2

= (γ1x1γ
−1
1 )(γ2γ1x

−1
1 γ−1

1 γ−1
2 )(γ1γ2x2γ

−1
2 γ−1

1 )(γ2x
−1
2 γ−1

2 )

= (γ1 · x1)((γ1γ2) · (x2x
−1
1 ))(γ2 · x−1

2 )

where we have used that Γ and X are abelian. Thus we have

g1g2g
−1
1 g−1

2 = ((1 − γ2)γ1 · x1)((γ1 − 1)γ2 · x2).

In particular, if we set γ2 = e and γ1 = γ0 we have that (γ0 − 1) · x2 ∈ [G,G].
Thus,

(γ0 − 1) ·X ⊆ [G,G].

Now let γ ∈ Γ be arbitrary. Since γ0 is a topological generator, there exists
c ∈ Zp so that γ = γc0. Thus,

1− γ = 1− γc0
= 1− (1 + T )c

= 1−
∞
∑

n=0

(

c

n

)

T n ∈ TΛ

where we have used that γ0 corresponds to 1 + T . Thus we have that

(1− γ2)γ1 · x1 ∈ (γ0 − 1) ·X

and
(1 − γ1)γ2 · x2 ∈ (γ0 − 1) ·X.

Thus, we have that [G,G] ⊆ (γ0 − 1) ·X .

Note here that the corresponding statement in [Wash] is in terms of the
closure of the commutator and not the commutator itself. However, we have
shown that TX = [G,G] and TX is closed (it is the image of the compact set
X), so we have that [G,G] is its own closure.

For n ≥ 0, define
νn = 1 + γ0 + · · ·+ γp

n−1
0 .
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Observe that

νn =
γp

n

0 − 1

γ0 − 1

=
(1 + T )p

n − 1

T
.

Let Y0 be the Zp-submodule of of X that is generated by {ai : 2 ≤ i ≤ s} and
TX . Note here that we do not include a1. Set Yn = νn ·Y0. The following lemma
is crucial for proving Theorem 4.1 as it allows to relate information about X
back to information about Xn.

Lemma 4.22. For n ≥ 0 we have

Xn
∼= X/Yn.

Proof. We begin with the base case of n = 0. In this case we know that
K ⊂ L0 ⊂ L and that L0 is the maximal abelian unramified p-extension of K.
Since L/K is also a p-extension, it must be that L0/K is the maximal abelian
unramified p-subextension of L/K. Thus, we must have that Gal(L/L0) is gen-
erated by by G̃ and all of the inertia groups Ii, 1 ≤ i ≤ s. In particular, we have
that Gal(L/L0) is the closure of the subgroup generated by (γ0− 1) ·X , I1, and
{ai : 2 ≤ i ≤ s}. Thus, we have

X0 = Gal(L0/K)

= G/Gal(L/L0)

= XI1/〈(γ0 − 1) ·X, a2, . . . , as, I1〉
∼= X/〈(γ0 − 1) ·X, a2, . . . , as〉
= X/Y0.

Thus we have the case n = 0. Now suppose n ≥ 1. We only need to translate
the above proof into this case. Replace K by Kn and so γ0 is replaced by γp

n

0

since Gal(K∞/Kn) ∼= Γp
n

. In particular, this changes the σi to σp
n

i . We have
that

σk+1
i = (aiσ1)

k+1

= aiσ1aiσ
−1
1 σ2

1aiσ
−2
1 · · ·σk1aiσ−k

1 σk+1
1

= (1 + σ1 + · · ·+ σk1 ) · aiσk+1
1 .

Thus,
σp

n

i = (νnai) · σp
n

1 .

This shows we should replace ai in the above argument with νn · ai. It is clear
that we should replace (γ0−1) ·X by (γp

n

0 −1) ·X = νn(γ0−1) ·X . (Incidently,
this shows how to proceed with the above proofs if one does not want to simplify
to the case of n = 0!) Thus, the Y0 becomes Yn and we are done.
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Lemma 4.23. Let M be a compact Λ-module. If M/(p, T )M is finitely gener-
ated, then M is a finitely generated Λ-module. In particular, if M/(p, T )M is
finite, then M is a finitely generated Λ-module.

Proof. Let U be a neighborhood of 0 in M . We have already seen that (p, T )n →
0 in Λ. Thus, given anym ∈M there is a neighborhood Um so that (p, T )nUm ⊆
U for large enough n. Now we use that M is compact to conclude we can choose
a finite cover of M . Therefore, taking N to be the maximum n needed for this
finite set we have that (p, T )NM ⊂ U . Since U is an arbitrary neighborhood
of 0, we have that ∩((p, T )nM) = 0. Now let m1, . . . ,mn generate M/(p, T )M .
Set N = Λm1 + · · ·Λmn ⊆M . Observe that N is compact since it is the image
of Λ, thus it is closed. This implies that M/N is a compact Λ-module. Our
assumption that m1, . . . ,mn generatesM/(p, T )M gives thatN+(p, T )M = M .
Thus we have

(p, T )(M/N) = (N + (p, T )M)/N = M/N.

Hence,
(p, T )n(M/N) = (M/N)

for all n ≥ 0. Now from what we’ve shown above we get that M/N = 0, i.e.,
m1, . . . ,mn generate M .

Corollary 4.24. The Λ-module X = Gal(L/K∞) is a finitely generated module.

Proof. Recall that ν1 =
(1 + T )p − 1

T
. It is clear that ν1 ∈ (p, T ). Thus we

have that Y0/(p, T )Y0 is a quotient of Y0/ν1 · Y0 = Y0/Y1 ( X/Y1 = X1. We
know that X1 is a finite set and so we get that Y0/(p, T )Y0 is finite and applying
Lemma 4.23 we get that Y0 is finitely generated. Now X/Y0 = X0, which is
finite, thus X itself must be finitely generated as a Λ-module.

Of course all of these results have been shown under the assumption that
K∞/K is totally ramified at the primes that ramify. We now remove this
assumption. Let K∞/K be a Zp-extension and let Km be as in Proposition
4.18. Recall that X is the same for K as for Km. Therefore we have that X is
a finitely generated Λ-module by Corollary 4.24. For n ≥ m, we replace νn by
νn,m given by

νn,m =
νn
νm

= 1 + γp
m

0 + γ2pm

0 + · · ·+ γp
n−pm

0 .

Note that this works out because Gal(K∞/Km) ∼= Γp
m

is generated by γp
m

0 .
Making these appropriate substitutions we obtain

Lemma 4.25. Let K∞/K be a Zp-extension. One has X is a finitely generated
Λ-module and there exists m ≥ 0 so that

Xn
∼= X/νn,m · Ym

for every n ≥ m where Ym is defined as above.
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We are now in a position to apply our structure theorem on finitely generated
Λ-modules (Theorem 4.15) to X as well as Ym. Observe that we obtain the same
answer whether we useX or Ym. This is becauseX/Ym is finite and the theorem
is given in terms of a pseudo-isomorphism. Thus, we have

(4.4) X ∼ Ym ∼ Λr ⊕
(

⊕

Λ/(pµi)
)

⊕
(

⊕

Λ/(fj(T )mj )
)

.

Our next step is to calculate M/νn,m ·M for each summand M on the right side
of equation (4.4). We will be able to use this to obtain the bounds we desire on
|Xn|.
Case 1: M = Λ
Observe that νn,m is not a unit in Λ, in fact, it is a distinguished polynomial!
In particular, we can apply Lemma 4.10 to conclude that Λ/(νn,m) is infinite.
However, we already know that Ym/νn,m · Ym is finite. Thus we must have that
r = 0.
Case 2: M = Λ/(pk) for some k > 0.
In this case we need to investigate Λ/(pk, νn,m). It was remarked above that νn,m
is a distinguished polynomial. We can apply the division algorithm to conclude
that the elements of Λ/(pk, νn,m) are precisely the polynomials modulo pk of
degree less then deg νn,m = pn − pm. Hence,

|M/νn,mM | = (pk)p
n−pm = pkp

n+c

where c = −kpm, a constant depending on the field K.
Case 3: M = Λ/(f(T )r)
Let g(T ) = f(T )r. Suppose g has degree d. Since f is a distinguished polyno-
mial, so is g. Thus we have that

T k ≡ p · (poly)(mod g)

for k ≥ d. Note that we will use “poly” to stand for a polynomial several times
in this argument, it is not meant to be the same polynomial at each step. Let
pn ≥ d. We have

(1 + T )p
n

= 1 + p · (poly) + T p
n

≡ 1 + p · (poly)(mod g).

In particular, we see that

(1 + T )p
n+1

= ((1 + T )p
n

)p

≡ (1 + p · (poly))p(mod g)

≡ 1 + p2 · (poly)(mod g).
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Set Pn(T ) = (1 + T )p
n − 1. We have

Pn+2(T ) = (1 + T )p
n+2 − 1

= ((1 + T )p
n+1 − 1)(1 + (1 + T )p

n+1

+ · · ·+ (1 + T )p
n+1(p−1))

= Pn+1(T )(1 + (1 + T )p
n+1

+ · · ·+ (1 + T )p
n+1(p−1))

≡ Pn+1(T )(1 + · · ·+ 1 + p2 · (poly))(mod g)

≡ Pn+1(T )(p+ p2 · (poly))(mod g)

≡ p(1 + p · (poly))Pn+1(T )(mod g).

Using that 1 + p · (poly) is necessarily a unit in Λ, we see that
Pn+2(T )

Pn+1(T )
acts on

Λ/(g) as p times a unit as long as pn ≥ d.
Assume now that we have n0 > m, pn0 ≥ d, and n ≥ n0. Observe that

νn+2,m

νn+1,m
=
νn+2

νn+1
=
Pn+2

Pn+1
.

Thus,

νn+2,mM =
Pn+2

Pn+1
νn+1,mM

= pνn+1,mM.

Therefore we have

|M/νn+2,mM | = |M/pM | · |pM/pνn+1,mM |.

Note that since g is a distinguished polynomial we have gcd(p, g) = 1. In
particular, this means that multiplication by p is an injective map. Thus,

|pM/pνn+1,mM | = |M/νn+1,mM |.

We also have
M/pM ∼= Λ/(p, g) = Λ/(p, T d),

and so |M/pM | = pd.

Exercise 4.26. Prove that

|M/νn,mM | = pd(n−n0−1)|M/νn0+1,mM |

for n ≥ n0 + 1.

Therefore, if |M/νn,mM | is finite for all n we obtain |M/νn,mM | = pdn+c for
n ≥ n0 + 1 and c a constant depending on the field K. If M/νn,mM is infinite
for any n, then M cannot occur as was observed in Case 1. Thus we have shown
the following.
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Proposition 4.27. Suppose

N = Λr ⊕
(

⊕

Λ/pµi
)

⊕
(

⊕

Λ/(fj(T ))
)

where each fj is distinguished. Let µ =
∑

µi and λ =
∑

deg fj. If N/νn,mN is
finite for all n, then r = 0 and there exists n0 and c such that

|N/νn,mN | = pµp
n+λn+c

for all n ≥ n0.

We know that Ym is pseudo-isomorphic to an appropriate N as given in
the previous proposition. We also know the order of N/νn,mN for all n ≥ n0.
Therefore, it remains to relate this order to the order of Ym/νn,mYm. The
issue here is that the “A” and “B” we obtain in using the definition of pseudo-
isomorphism could vary with n. We know from the above lemma that the order
of Ym/νn,mYm is determined as we want it up to the order of A and B, so we
need to show that for large enough n the orders of these are constant as well.
The main work left is contained in the following lemma, which is essentially an
exercise in applying the Snake Lemma.

Lemma 4.28. Suppose M and N are Λ-modules with M ∼ N and M/νn,mM
is finite for all n ≥ m. For some constant a and some n0 one has

|M/νn,mM | = pa|N/νn,mN |

for all n ≥ n0

Proof. The fact that M ∼ N implies that t we have an exact sequence

0 // kerφ // M
φ

// N // cokerφ // 0

with kerφ and cokerφ finite. Using this exact sequence we obtain the following
commutative diagram
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0

��

0

��

0

��

kerφ′n

��

kerφ

��

kerφ′′n

��

0 // νn,mM //

φ′

n

��

M

φ

��

// M/νn,mM

φ′′

n

��

// 0

0 // νn,mN

��

// N //

��

N/νn,mN

��

// 0

cokerφ′n

��

cokerφ

��

cokerφ′′n

��

0 0 0

Our goal is to prove that for large enough n we have | kerφ′′n| and | cokerφ′′n| are
constant. We prove this by showing each is bounded and decreasing. We begin
by showing each is bounded. It is clear that | cokerφ′′n| ≤ | cokerφ| since one
obtains representatives of cokerφ′′n from those of cokerφ. To see that | kerφ′′n|
we apply the snake lemma to obtain the long exact sequence

0 // kerφ′n // kerφ // kerφ′′n //

cokerφ′n // cokerφ // cokerφ′′n // 0.

From this we see that

| kerφ′′n| ≤ | kerφ| · | cokerφ′n|
≤ | kerφ| · | cokerφ|

where we have used that | cokerφ′n| ≤ | cokerφ|, which follows from the fact that
one obtains representatives of cokerφ′n by multiplying those of cokerφ by νn,m.
Thus, | kerφ′′n| is bounded as well.

We now show that | cokerφ′′n| is decreasing. Let n′ ≥ n ≥ 0. Then we have

| cokerφ′′n′ | ≤ | cokerφ′′n| since νn′,mN = νn,m

(

νn′,m

νn,m

)

N ⊆ νn,mN . Thus, we

have for large enough n that | cokerφ′′n| is constant.

It only remains to show that | kerφ′′n| is constant for large enough n. Using
the snake lemma we have

| kerφ′n| · | kerφ′′n| · | cokerφ| = | kerφ| · | cokerφ′n| · | cokerφ′′n|,
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Thus, we need to show that for large enough n one has | kerφ′n| and | cokerφ′n|
are constants. It is clear from the commutative diagram that kerφ′n ⊂ kerφ, so
we easily obtain that | kerφ′n| is bounded. To see it is decreasing, just observe
that νn′,mM ⊆ νn,mM , which in turn implies that kerφ′n′ ⊆ kerφ′n.

We now deal with | cokerφ′n|. The fact that | cokerφ′n| ≤ | cokerφ| was
mentioned above. Now we need to show that | cokerφ′n| is decreasing. Let
νn′,my ∈ νn′,mN . Fix a set of representatives of cokerφ′n and let z ∈ νn,mN be
the representative for νn,my in cokerφ′n. Observe that

νn,my − z = φ(νn,mx)

for some x ∈ M since it is necessarily in im(φ′n) and this injects into im(φ).
Thus we have

(

νn′,m

νn,m

)

νn,my −
(

νn′,m

νn,m

)

z =

(

νn′,m

νn,m

)

φ(νn,mx),

i.e., we have

νn′,my −
(

νn′,m

νn,m

)

z = φ(νn′,mx)

= φ′n′(νn′,mx).

Thus, by multiplying representatives of cokerφ′n by
νn′,m

νn,m
we obtain represen-

tatives for cokerφ′n′ , which proves that | cokerφ′n′ | ≤ | cokerφ′n|.
Summarizing, we have the exact sequence

0 // kerφ′′n
// M/νn,mM // N/νn,mN // cokerφ′′n

// 0.

and n0 so that if n ≥ n0 then the terms | kerφ′′n| and | cokerφ′′n| are constant
and thus we obtain the result.

It is now simple to complete the proof of Theorem 4.1. We have shown that
there exists integers n0, ν, λ ≥ 0, and µ ≥ 0 so that

pen = |Xn|
= |X/Ym| · |Ym/νn,mYm|
= pb|N/νn,mN |
= pλn+µpn+ν

for all n ≥ n0.
We close this section with some applications of the work we have done.

Recall that Xn
∼= An where An is the p-Sylow subgroup of the ideal class group

of Kn. In general we continue to use Xn in our notation with the exception
of incorporating the common notation that hn denotes the order of the class
group of Kn. In particular, the order of An is the p-part of hn. We will also
need Nakayama’s Lemma.
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Lemma 4.29. (Nakayama’s Lemma) Let M be a finitely generated R-module
and I an ideal of R contained in the Jacobson radical of R. Then IM = M
implies M = 0.

Proof. See Proposition 2.6 in [AM].

Proposition 4.30. Let K∞/K be a Zp-extension in which exactly one prime
ramifies. Moreover, assume the prime that ramifies is totally ramified. Then we
have

Xn
∼= X/((1 + T )p

n − 1)X

and p ∤ h0 if and only if p ∤ hn for all n ≥ 0.

Proof. We begin by observing that K∞/K satisfies the assumption we were
working under when we proved Lemma 4.22. In particular, s = 1 and so Y0 =
TX . Thus,

Yn = νnTX

=

(

(1 + T )p
n − 1

T

)

TX,

which clearly gives the first result.
Suppose p ∤ h0. In particular, this gives that X0 = 0, i.e., X/TX = 0. However,
this implies that X/(p, T )X = 0. Combining this with Nakayama’s Lemma we
have that X = 0 and we are done.

One should observe that we cannot apply Theorem 4.1 directly to conclude
the statement about divisibility of hn because Theorem 4.1 is only true for
n ≥ n0 for some n0 and not all n ≥ 0.

Definition 4.31. Let A be a finite abelian group. The p-rank of A is given by

p-rank(A) = dimZ/pZ(A/pA).

Lemma 4.32. Let N be given by

N =

(

s
⊕

i=1

Λ/(pµi)

)

⊕





t
⊕

j=1

Λ/(fj(T ))





where the fj are distinguished polynomials. Set µ =
∑

ki. Then µ = 0 if and
only if p-rank (N/νn,mN) is bounded as n→∞.

Proof. Recall that νn,m is a distinguished polynomial of degree pn−pm. There-
fore, if take n large enough so that pn − pm is larger then the maximum of the
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degrees of the fj, we have

N/(p, νn,m)N =

(

s
⊕

i=1

Λ/(p, νn,m)

)

⊕
(

t
⊕

i=1

Λ/(p, fj, νn,m)

)

=

(

s
⊕

i=1

Λ/(p, T p
n−pm)

)

⊕
(

t
⊕

i=1

Λ/(p, T deg fj )

)

∼= (Z/pZ)s(p
n−pm)+λ

for λ =
∑

deg fj. From this last equation it is clear that the p-rank is bounded
if and only if s = 0, i.e., if and only if µ = 0.

Proposition 4.33. Let µ be as in Theorem 4.1. Then µ = 0 if and only if
p-rank (Xn) is bounded as n→∞.

Proof. The previous lemma implies that µ = 0 if and only if p-rank (N/νn,mN)
is bounded where N is as above. Recall we have an exact sequence

0 // kerφ′′n
// Ym/νn,mYm

φ′′

n
// N/νn,mN // cokerφ′′n

// 0

where we know | kerφ′′n| and | cokerφ′′n| are bounded independent of n for large
enough n. This implies that µ = 0 if and only if p-rank (Ym/νn,mYm) is bounded.
However, we know that Xn

∼= X/νn,mYm and X/Ym ∼= Xm is finite. Thus, Xn

differs from Ym/νn,mYm by a finite group bounded independent of n. The result
now follows.



Chapter 5

The Iwasawa Main
Conjecture

5.1 Introduction

In this section we will give the necessary background and then state the Iwasawa
main conjecture. The goal is to understand the statement of the main conjecture
for totally real fields as well as to outline Wiles’ proof. We will state the main
conjecture for totally real fields, but then restrict ourselves to the case of Q to
outline the proof. The main conjecture was known for abelian extensions of Q
by work of Mazur and Wiles ([MW]) by geometric methods, but we outline here
the methods used to prove the conjecture for totally real fields. Our restriction
to Q is one of convenience, allowing us to work with classical rather then Hilbert
modular forms. For the general case the reader should consult Wiles’ original
paper [Wiles2]. Though this section is phrased in terms of totally real fields,
one should keep in mind the corresponding statements for abelian extensions as
these are the ones that will be used in section 5.2.

Let F be a totally real number field and let F ⊂ F1 ⊂ · · · ⊂ F∞ be the cy-
clotomic Zp-extension of F . Let γ0 ∈ Gal(F∞/F ) be the element corresponding
to 1 ∈ Zp under the isomorphism Gal(F∞/F ) ∼= Zp so that γ0 is a topological
generator of Gal(F∞/F ). One should observe that F∞, and hence all the Fn, is
totally ramified at p. Thus, the inertia group at p is the entire Galois group.

Let χ be a p-adic valued Artin character of F and Fχ the associated field.
Recall this means that χ factors through Gal(Fχ/F ). Following Wiles we say
χ is of type S if Fχ ∩ F∞ = F and of type W if Fχ ⊂ F∞. Note that in [Wash]
these are referred to as type 1 and type 2. We will assume throughout that Fχ

is totally real as well.

Exercise 5.1. Let F = Q and χ : (Z/NZ)× → Q
×

p be a primitive Dirichlet
character. Prove that χ is type S if and only if ordp(N) ≤ 1. It may be helpful
to consider the ramification of p.

61
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Assume now that χ is of type S. Set Fχn = FnF
χ so that Fχ∞ = F∞F

χ =
⋃

Fχn . The fact that χ is of type S gives the isomorphisms

Γ = Gal(Fχ∞/F
χ)

∼−→ Gal(F∞/F ) ∼= Zp

and

∆ = Gal(Fχ∞/F∞)
∼−→ Gal(Fχ/F )

One obtains similar isomorphisms replacing Fχ∞ and F∞ by Fχn and Fn respec-
tively. We think of γ0 as an element of Γ. We have the following diagram.

Fχ∞
Γ

{{
{{

{{
{{ ∆

CC
CC

CC
CC

Fχ

DD
DD

DD
DD

F∞

Zp
zz

zz
zz

zz

F

As in chapter 4 we let Ln denote the maximal abelian unramified pro-p
extension of Fχn . Set Xn = Gal(Ln/F

χ
n ) so that Xn is isomorphic to the p-

Sylow subgroup of the ideal class group of Fχn . Let L =
⋃

LnF
χ
n and observe

we have

X = Gal(L/Fχ∞)

= lim←−Gal(LnF
χ
∞/F

χ
∞)

∼= lim←−Gal(Ln/F
χ
n )

∼= lim←−Xn

as in chapter 4. We have the following diagram of fields:

L

{{
{{

{{
{{

X

CC
CC

CC
CC

Ln

}}
}}

}}
}} Xn

BB
BB

BB
BB

Fχ∞

Γp
n

||
||

||
|| ∆

CC
CC

CC
CC

L0

X0

BB
BB

BB
BB

Fχn

Γ/Γp
n

||
||

||
||

CC
CC

CC
CC

F∞

pnZp{{
{{

{{
{{

Fχ

CC
CC

CC
CC

Fn

Z/pnZ
zz

zz
zz

zz

F
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As before we have that Gal(Fχ∞/F ) ∼= ∆×Γ acts onX via conjugation. Since
X is pro-p we also have a natural action of Zp on X . Thus X is a ZpJ∆ × ΓK-
module and hence a ZpJΓK-module. We will again make use of the fact that
ZpJΓK ∼= Λ = ZpJT K via γ0 7→ 1 + T . Recall we saw in chapter 4 that

(5.1) X ∼
(

⊕

i

Λ/(pµi)

)

⊕





⊕

j

Λ/(fj(T )mj )





with the fj(T ) irreducible and distinguished in Zp[T ].
Set V = X ⊗Zp Qp. We have

V ∼=
⊕

j

Qp[T ]/(fj(T )mj )

as tensoring with Qp kills the kernel, cokernel, and the Λ/(pµi)’s in equation
(5.1). Thus, V is a finite dimensional vector space. Setting

fX(T ) =
∏

j

fj(T )mj

and recalling that T ↔ γ0 − 1 under the isomorphism Λ ∼= ZpJΓK we see that
fX(T ) is the characteristic polynomial of γ0−1 acting on V . We can gain more
information by recalling our previous work on orthogonal idempotents. The
vector space V is clearly a Qp[∆]-module, so we have

V =
⊕

ψ∈∆∧

εψV.

Recall that we can view χ as a character of Gal(Fχ/F ) ∼= ∆. We are interested
in

V χ = εχV = {v ∈ V : σv = χ(σ)v ∀σ ∈ ∆}.
It is clear that V χ is still a Γ-module (γ0 acts as 1+T as before.) Set fχ(T ) to be
the characteristic polynomial of γ0 − 1 acting on V χ. Note that fχ(T ) | fX(T ).
This characteristic polynomial gives us half of the information we need to state
the main conjecture. Before moving to the other half, one should observe that
by tensoring up with Qp we lose all of the information contained in µχ =

∑

µi
in equation (5.1). We will return to this and see how we can reformulate the
above approach to preserve this data.

It is now necessary to revisit p-adic L-functions. For the field Q these were
introduced in chapter 3. In this chapter the basic properties such as the inter-
polation of classical L-functions was stated. Given a character ψ of a totally
real field F so that Fψ is again totally real Deligne and Ribet ([DR]) proved the
existence of a p-adic L-function Lp(s, ψ) associated to ψ generalizing the one
already discussed for Q with the same interpolation properties. Define

Hψ(T ) =

{

ψ(γ0)(1 + T )− 1 ψ of type W or trivial
1 otherwise.
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Deligne and Ribet also proved that there exists Gψ(T ) ∈ Zp[ψ]JT K such that

Lp(1− s, ψ) = Gψ((1 + p)s − 1)/Hψ((1 + p)s − 1)

where Oψ := Zp[ψ] is the ring generated over Zp by the values of ψ. We will
use the notation Λψ to denote OψJT K. We will also need that if ρ is a character
of type W then

Gψρ(T ) = Gψ(ρ(γ0)(1 + T )− 1).

Let χ be an odd character and set ψ = χ−1ω where ω again denotes the
Teichmuller character. Since ψ is an even character we have the existence of
the p-adic L-function along with Gψ . Applying the Weierstrass preparation
theorem to Gψ((1 + p)(1 + T )−1 − 1) we have

Gψ((1 + p)(1 + T )−1 − 1) = ̟µan
χ gψ(T )uψ(T )

where ̟ is a uniformizer of Oψ , gψ(T ) is a distinguished polynomial, and uψ(T )
is a unit in Λψ. Note that the “an” is added to the µχ to distinguish it as the
“analytic” µ-invariant. Observe that if χ is of type S then Hψ(T ) = 1 unless
χ = ω.

Theorem 5.2. (Main conjecture of Iwasawa theory) For χ odd of type S and
p an odd prime one has

fχ(T ) = gχ−1ω(T ).

For what is known in the case of p = 2 the reader should consult [Wiles2].
Note we do not need the assumption that χ is of type S for the abelian extensions
of Q. See [MW] for the statements in this case.

As was mentioned above, because of the fact that we formed a vector space
V from X by tensoring up with Qp we lost the information contained in µχ and
µan
χ in the main conjecture. We now describe another approach so as to retain

this information. Suppose now that in addition to being odd of type S that χ
also has order prime to p. We write Xχ to denote (X ⊗Zp Oχ)χ where

(X ⊗Zp Oχ)χ = {x ∈ X ⊗Zp Oχ : σx = χ(σ)x ∀σ ∈ ∆}
∼= X ⊗Zp[∆] Oχ.

where Oχ is viewed as a Zp[∆]-module via the ring homomorphism induced by
χ. One should note that it is necessary for us to tensor with Zp[χ] for this to
make sense. In particular, without tensoring up with Zp[χ] the term χ(σ)x does
not make sense. We have that Xχ is a finitely generated torsion Λχ-module and
has characteristic polynomial of form ̟µχfχ(T ).

Theorem 5.3. (µ-invariant conjecture) Let p be an odd prime and χ an odd
character of order prime to p of type S. Then

µχ = µan
χ .
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The strong form of the µ-invariant conjecture also asserts that these µ-
invariants are 0 for cyclotomic Zp-extensions. For abelian extensions the strong
version of the conjecture is know, see ([Wash], Theorem 7.15) for example. How-
ever, it is known that for non cyclotomic Zp-extensions that the µ-invariants may
not be zero. For example, Iwasawa constructed a non-cyclotomic Zp-extension
with µ > 0 in [Iwas1].

There is a more compact way to state main conjectures that captures The-
orems 5.2 and 5.3 in one statement. Let M be a module so that

M ∼
(

⊕

i

Λ/pµi

)

⊕





⊕

j

Λ/(fj(T )mj )





with the fj(T ) irreducible and distinguished. The ideal generated by the charac-
teristic polynomial p

P

µi
∏

fj(T )mj is called the characteristic ieal of M and we
write it as charΛ(M). The main conjecture can then be stated as the following
equality of ideals in Λχ

charΛχ(X
χ) = (Gχ−1ω((1 + p)(1 + T )−1 − 1)).

Note here that the uχ−1ω(T ) that occurs in the application of Weierstrass prepa-
ration to Gχ−1ω((1 + p)(1 + T )−1 − 1) is a unit in Λχ so plays no role in the
above equality.

Proving a “main conjecture” is a very difficult task. Currently there are two
basic methods used to proved main conjectures. The easiest one to apply is the
use of an Euler system. Unfortunately, constructing an Euler system is very
difficult in its own right and very few Euler systems are known. Kolyvagin was
able to significantly simplify Mazur and Wiles’ proof of the main conjecture
for Q by using an appropriate Euler system. For more information on Euler
systems the reader is urged to consult [Rubin].

The other method is the “geometric” method. In this method one uses
congruences and p-adic representations coming from modular forms. This is
the method we will be concerned with. We will develop some of the neces-
sary background material in the following sections before giving an outline of
the argument used. However, before we develop the background we give one
application of the main conjecture to the size of class groups in the next section.

5.2 The Main Conjecture and Class Groups

Let p be an odd prime and let F be an abelian imaginary extension of Q of degree
prime to p. Let χ : Gal(F/Q)→ O×

χ be an odd character. Set ∆ = Gal(F/Q).

We view χ as a character on Gal(Q/Q). Let g = [Oχ : Zp]. Write AF for the
p-Sylow subgroup of the class group of F . As usual, we write AχF to denote the
χ-isotypical piece of AF , namely,

AχF = AF ⊗Zp[∆] Oχ.
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The goal of this section is to use the main conjecture to prove the following
result.

Theorem 5.4. Suppose χ 6= ω, then

|AχF | = |Oχ/(Lp(0, χ−1ω))|.

In particular,

vp(|AχF |) = gvp(L(0, χ−1))

where vp(a) denotes the p-adic valuation of a.

Though the theorem is true as stated, the case that χ(p) = 1 is much more
difficult to prove so we stick to the case that χ(p) 6= 1. See ([MW], Chapter 1 §
10).

We begin by reducing to the case that F = Qχ. To see this we prove
something slightly more general. Let K/E be an abelian extension of number
fields with [K : E] prime to p and χ factors through Gal(E/Q). We show that
the natural mapping

AχE → AχK

is in fact an isomorphism. Once this is shown it is easy to see we may reduce
to the case F = Qχ by setting K = F and E = Qχ. We begin by showing the
following elementary result.

Lemma 5.5. Let K/E be a Galois extension of number fields with [K : E] = n
and gcd(n, hE) = 1. Then the natural map CE → CK is an injection.

Proof. The natural map CE → CK arises from the map IE → IK given by
a 7→ aOK where IE denotes the fractional ideals of OE and similarly for IK .
Let a ∈ IE be such that a becomes principal in IK , i.e., there exists an α ∈ K
so that aOK = (α). Recall that if we map a into IK and then back to IE via
the norm map we obtain Nm(aOK) = a[K:E]. We also have that since aOK
is principal, Nm(aOK) = (Nm(α)). Thus, we see that a[K:E] = (Nm(α)), i.e.,
a[K:E] is 0 in the class group of E. Thus, we must have that the order of a

divides [K : E] as well as hE. However, these were assumed to be relatively
prime so it must be that the order of a is 1 and so the map is injective.

Using this lemma we see that AχE injects into AχK . The fact that χ factors
through Gal(E/Q) means that χ is trivial on Gal(K/E). In particular, using
the definition of AχK applied to the σ ∈ Gal(K/E) we see that Gal(K/E) leaves
the ideals in AχK fixed. In particular, for any prime ideal p in AχK , we have that
σp = p fpr every σ ∈ Gal(K/E). However, we know that Gal(K/E) permutes
the primes p lying over ℘ in E. Thus, there is only one prime over ℘ for each
prime ideal ℘ ∈ AχE . This shows that the above map is also a surjection and
hence an isomorphism as claimed.

Let Ln, L, Xn, and X be defined as in the previous section. In particular,
our goal is to determine the p-adic valuation of |Xχ

0 |. By our choice of χ we
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have that Xχ
0 = (X/TX)χ = Xχ/TXχ. Recall that Xχ is a finitely generated

torsion Λχ-module. Set ̟ to be a uniformizer of Oχ. Recall that we have

Xχ ∼
(

⊕

i

Λχ/̟
µχ,i

)

⊕





⊕

j

Λχ/(fχ,j(T )mj )





where we set µχ =
∑

µχ,i and the fχ,j are all irreducible distinguished polyno-
mials. In fact, since we are assuming χ is an odd character we have that the
above pseudo-isomorphism is actually an injection with finite cokernel C. For a
proof of this, see ([Wash], Proposition 13.28). Thus we have

0 // Xχ //

T (1)

��

(
⊕

i Λχ/̟
µχ,i)⊕

(

⊕

j Λχ/(fχ,j(T )mj)
)

//

T (2)

��

C //

T (3)

��

0

0 // Xχ // (
⊕

i Λχ/̟
µχ,i)⊕

(

⊕

j Λχ/(fχ,j(T )mj)
)

// C // 0

where T (i) is just multiplication by T .

Lemma 5.6. The kernel of the map T (2) is 0.

Proof. Suppose kerT (2) 6= 0. Then we must have T | ∏j fχ,j(T )mj . The main

conjecture then implies that T | Gχ−1ω((1 + p)(1 + T )−1 − 1), i.e., we have

0 = Gχ−1ω((1 + p)− 1)

= Lp(0, χ−1ω)

= (1 − χ−1(p))L(0, χ−1)

where we have used that χ 6= ω to conclude that Hχ−1ω = 1. However, we know
that χ(p) 6= 1 by assumption and L(0, χ−1) 6= 0 since χ is odd. Thus the kernel
must be 0.

We can now apply the Snake lemma as well as the fact that kerT (2) = 0 to
conclude we have an exact sequence

0 // kerT (3) // cokerT (1) // cokerT (2) // cokerT (3) // 0.

We also have the exact sequence

0 // C[T ] // C
·T

// C // C/TC // 0

where C[T ] = {c ∈ C : Tc = 0}. We now use the fact that given an exact
sequence of finite groups
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0 // A // B // C // D // 0

we have that |A| · |B| · |C|−1 · |D|−1 = 1 to conclude that |C[T ]| = |C/TC|.
Now, observing that C[T ] = kerT (3) and C/TC = cokerT (3) we obtain that
| cokerT (1)| = | cokerT (2)|. Thus, we have the following string of equalities.

|AχF | = |X
χ
0 |

= |Xχ/TXχ|
= | cokerT (1)|
= | cokerT (2)|
= |
⊕

i

Λχ/(̟
µχ,i , T )| · |

⊕

j

Λχ/(fχ,j(T )mj , T )|

= |Λχ/(fχ(T ), T )|(1)

= |Oχ/f(0)|
= |Oχ/Gχ−1ω(p)|(2)

= |Oχ/Lp(0, χ−1ω)|

where we used in equation (1) that µχ = 0 by the main conjecture since this
is an abelian field and we used the main conjecture in equation (2) as well. In
particular, we have that

|Oχ/Lp(0, χ−1ω)| = |Oχ/(L(0, χ−1)(1− χ−1(p)))|.
Thus,

vp(A
χ
F ) = vp(|Oχ/(L(0, χ−1)(1− χ−1(p)))|) = g · vp(L(0, χ−1))

as claimed.

5.3 Classical Modular Forms

In this section we give a very brief overview of the theory of classical modular
forms. It is assumed the reader is familiar with the theory and we include this
section to set notation mainly. Those wishing to read a more complete account of
the theory are encouraged to consult any of the following: [DS], [Kob], [Milne3],
or [Miyake]. For a more advanced overview that contains references to proofs
one should consult [DI].

We denote the complex upper half plane by h. The group GL+
2 (R) acts on h

via linear fractional transformations, i.e., for g =

(

a b
c d

)

∈ GL+
2 (R) and z ∈ h

we have gz = az+b
cz+d . The two subgroups of SL2(Z) that we will be interested in

are

Γ0(N) =

{(

a b
Nc d

)

∈ SL2(Z)

}
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and

Γ1(N) =

{(

a b
Nc d

)

∈ SL2(Z) : a ≡ d ≡ 1(modN)

}

.

Define j(g, z) = cz + d.

Exercise 5.7. For g1, g2 ∈ GL+
2 (Z) and z ∈ h, show

j(g1g2, z) = j(g1, g2z)j(g2, z).

For f a complex valued function on h and k ≥ 0 an integer we write

(f |kg)(z) = (det g)k/2j(g, z)−kf(gz).

A modular form of weight k and level N on Γ1(N) is a holomorphic function
f : h → C so that f |kg = f for every g ∈ Γ1(N) and f is holomorphic at
the cusps, i.e., f is holomorphic at the points in P1(Q). We write Mk(Γ1(N))
to denote the complex vector space of modular forms of weight k on Γ1(N).
Observe that if f ∈ Mk(Γ1(N)), then f is periodic of period 1 and so has a
Fourier expansion. We write this expansion as

f(z) =

∞
∑

n=0

af (n)qn

where q = e2πiz. For a ring O, we write Mk(Γ1(N),O) to indicate the space of
modular forms that have Fourier coefficients lying in O.

Observe that Γ1(N) ⊂ Γ0(N) and is a normal subgroup. In fact, one has

Γ0(N)/Γ1(N) ∼= (Z/NZ)× via the map

(

a b
Nc d

)

7→ d. We have an action of

Γ0(N) on Mk(Γ1(N)) via f 7→ f |kg for g ∈ Γ0(N). This gives an action of
(Z/NZ)× on Mk(Γ1(N)) and so we can decompose this space with respect to
the characters of (Z/NZ)×. Write

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f |kg = χ(d)f ∀g ∈ Γ0(N)}.

Then we have

Mk(Γ1(N)) =
⊕

χ

Mk(N,χ).

The space Mk(N,χ) is referred to as the space of modular forms of weight k,
level N and character χ.

A modular form f is called a cusp form if it vanishes at all the cusps. We
write Sk(Γ1(N)) for the subspace of Mk(Γ1(N)) of cusp forms. Note that for a
cusp form f , the Fourier coeffience af (0) = 0. Similarly we can define Sk(N,χ)
and have a decomposition

Sk(Γ1(N)) =
⊕

χ

Sk(N,χ).
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Hecke operators are linear operators that act on each space of modular forms
so far defined. We omit their precise definition and content ourselves with listing
relevant properties. The reader who has never encountered Hecke operators is
urged to read the brief account given in [Kob] as a quick introduction. For each
n ∈ N there is an associated Hecke operator Tn. For gcd(n,N) = 1 there is also
an operator 〈n〉. Note the following facts:
(1) Hecke operators commute.
(2) For gcd(n,m) = 1, Tnm = TnTm.
(3) Let ℓ be a prime. Then

Tℓr =

{

(Tℓ)
r ℓ | N

TℓTℓr−1 − ℓ〈ℓ〉Tℓr−2 ℓ ∤ N.

(4) Let f ∈Mk(N,χ). The action of Tℓ on f is given by

Tℓf =

{ ∑∞
n=0 af (ℓn)qn ℓ | N

∑∞
n=0 af (ℓn)qn + χ(ℓ)ℓk−1

∑∞
n=0 af (n)qnℓ ℓ ∤ N.

Let T(k,N) ⊆ EndC(Mk(Γ1(N)) denote the Z-subalgebra generated by the
Tn’s, or equivalently by the Tℓ’s and 〈ℓ〉’s. We will drop the k and N when they
are clear from the context. Given an integer M , we write T(M) to denote the
subalgebra generated by the Tn’s with gcd(n,M) = 1. There is a perfect pairing

Sk(Γ1(N))× T→ C

given by (f, t) 7→ atf (1). In particular, we can use this perfect pairing and
the fact that Sk(Γ1(N),O) is a TO := T⊗O-module to conclude that we have
Sk(Γ1(N),O) ∼= HomO(T,O).

Let f ∈ Sk(Γ1(N)) and g ∈ Mk(Γ1(M)). There is an inner product known
as the Petersson product given by

〈f, g〉N = vol(Γ1(N)\h)−1

∫

Γ1(N)\h

f(z)g(z)yk
dxdy

y2

where z = x + iy. This integral always converges. The Petersson product is
a perfect pairing on Sk(Γ1(N)) × Sk(Γ1(N)). The orthogonal complement of
Sk(Γ1(N)) inMk(Γ1(N)) is the space of Eisenstein series denoted by Ek(Γ1(N)).

The Petersson product is Hecke equivariant, i.e., for ℓ ∤ N we have 〈Tℓf, g〉N =
〈f, 〈ℓ〉Tℓg〉N . Note that for f ∈ Sk(N,χ) one has 〈ℓ〉f = χ(ℓ)f . One can
use these results to conclude that T(N) can be simultaneously diagonalized on
Sk(N,χ), i.e., Sk(N,χ) has a basis of simultaneous eigenforms for T(N). Thus
we can write Sk(N,χ) =

⊕

Vi where each Vi is an eigenspace for the action of
T(N). For each Vi there exists a unique M | N and a unique f ∈ Sk(M,χ) so
that f ∈ Vi and satisfies the following properties:
(1) af (1) = 1
(2) f is a simultaneous eigenform for all Tℓ and 〈ℓ〉 (including ℓ |M)
(3) The set

{

f(ez) : e | NM
}

forms a basis of Vi. (Note: If M = N then Vi is
1-dimensional. Also observe that if ℓ | N but ℓ ∤ M then Tℓ is not the same
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on Sk(N,χ) as on Sk(M,χ). So while f is an eigenform for Tk(M) it is not
necessarily an eigenform for Tk(N).)
(4) Tℓf = af (ℓ)f .
The forms f where Vi is 1-dimensional are referred to as newforms. They are
“new” in the sense that they do not come from a form on a space of lower level.
The following fact will also be useful. Let f1, . . . , fr be a basis of newforms for
Snew
k (Γ1(N)) and suppose each of these newforms has coefficients in some num-

ber field L. The action of T(k,N) on the space of newforms gives the following
isomorphism

T⊗ L ∼=
r
∏

i=1

L.

Let f ∈Mk(Γ1(N)). Associated to f is a complex analytic function L(s, f)
defined by

L(s, f) =

∞
∑

n=1

af (n)n−s,

which converges in some right half plane. This L-function has analytic continu-
ation to C if f ∈ Sk(Γ1(N)) and meromorphic continuation to C with the only
possible poles at s = 0, k in general. There is also a functional equation, but we
will not make use of it so omit it. Suppose now that f is an eigenform for T. In
this case L(s, f) has an Euler product given by

L(s, f) =
∏

ℓ∤N

(1− af (ℓ)ℓ−s + χ(ℓ)ℓk−1−2s)−1
∏

ℓ|N

(1− af (ℓ)ℓ−s)−1.

We will also require the following information about Eisenstein series. Recall
the space Ek(Γ1(N)) is the orthogonal complement to the space of cusp forms
in Mk(Γ1(N)). Let χ1 and χ2 be Dirichlet characters of conductor M1 and M2

respectively. We assume that either both characters are primitive or if k = 2
and χ1 and χ2 are both trivial then M1 = 1 and M2 is prime. Define terms
a(n) by

∞
∑

n=1

a(n)n−s = L(s, χ1)L(s− k + 1, χ2),

i.e.,

a(n) =
∑

0<d|n

χ1(n/d)χ2(d)d
k−1 (n ≥ 1).

Note this gives a(ℓ) = χ1(ℓ) + χ2(ℓ)ℓ
k−1 for primes ℓ. Define a(0) by

a(0) =















− 1
24 (1−M2) if k = 2 and χ1 = 1 = χ2

0 if k 6= 1 and χ1 6= 1
0 χ1 6= 1 6= χ2

L(1−k,χ1χ2)
2 otherwise.
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Then there exists a modular form

E(k)
χ1,χ2

(z) =

∞
∑

n=0

a(n)qn ∈Mk(M1M2, χ1χ2).

In fact, this modular form is a normalized eigenform for T(M1M2). Moreover,

Ek(N,χ) =

〈

E(k)
χ1,χ2

(ez) : e | N

M1M2
, χ = χ1χ2

〉

.

Exercise 5.8. (For the representation theory people.) Reconcile the above state-
ments about Eisenstein series with what you know from representation theory.

Let f ∈ Sk(N,χ) be a normalized eigenform for T, i.e., af (1) = 1 and
Tnf = af (n)f for all n. We shall make use of the fact that there exists a
number field Kf such that af (n) ∈ Kf for all n. In fact, one can show that
af (n) ∈ Of := OKf for all n. Fix an embedding Q →֒ Qℓ for ℓ a prime. Let λ
be a prime of Of lying over ℓ and let Of,λ denote the completion of Of at λ.
There exists a continuous representation

ρf,λ : Gal(Q/Q)→ GL2(Of,λ)

where GL2(Of,λ) gets the topology inherited from Of,λ and Gal(Q/Q) gets
the profinite topology. This map is a continuous homomorphism of topological
groups such that
(1) ρf,λ is unramified at all p ∤ ℓN (action of inertia group at p is trivial)
(2) det ρf,λ(Frobp) = χ(p)pk−1 for p ∤ ℓN
(3) trace(ρf,λ(Frobp)) = af (p) for p ∤ ℓN
(4) ρf,λ is irreducible.
There are also Galois representations attached to Eisenstein series but these are
no longer irreducible.

Let K be a finite extension of Qℓ for some prime ℓ. Let O denote the ring of
integers of K and set k = O/̟ where ̟ is the maximal ideal of O. We fix the
appropriate embeddings: K →֒ Qℓ, Q →֒ Qℓ, and Q →֒ C. The Hecke algebras
TK and Tk are Artinian and so only have a finite number of prime ideals, all
of which are maximal. The Hecke algebra TO is finitely generated and free as
an O-module. Thus, the maximal ideals are those lying over ̟ of O and the
minimal primes are those lying over (0) ⊂ O. This is a consequence of the going
up and going down theorems, see ([Mats], Theorems 9.4, 9.5). Thus, the natural
maps TO →֒ TO ⊗O K ∼= TK and TO ։ TO ⊗O k ∼= Tk give bijections

{maximal ideals of TK} ↔ {minimal primes of TO}
{maximal ideals of Tk} ↔ {maximal primes of TO}.

Using the fact that O is complete we can apply ([Mats] Theorems 8.7, 8.15) to
conclude that the natural map

TO →
∏

m

TO,m



5.3. CLASSICAL MODULAR FORMS 73

is an isomorphism where the product is over the finite set of maximal ideals of
TO. Each TO,m is a complete local O-algebra which is finitely generated and
free as an O-module. Moreover, each minimal prime p of TO is contained in a
unique m.

We now connect the ideals of the Hecke algebras back to what they tell us
about eigenforms. Let f ∈ Sk(N,K) be a normalized eigenform for T. One has
that the map Tn 7→ af (n) from T → K induces a K-algebra homomorphism
TK → K. The image is the finite extension of K generated by the Fourier
coefficients of f . The kernel of this map is a maximal ideal of TK that depends
only on the Gal(K/K)-conjugacy class of f . Thus, a Gal(K/K) conjugacy class
of normalized eigenforms gives rise to a maximal ideal of TK . The analogous
statement for Tk holds as well. In fact, we have the following result.

Theorem 5.9. The following diagram commutes with the vertical maps being
bijective and the horizontal maps being surjective. Note the top horizontal map
is nothing more then the Deligne-Serre lifting lemma ([DS], Lemma 6.11).







normalized eigenforms in
Sm(N,K) modulo

Gal(K/K)-conjugacy







→







normalized eigenforms in

Sm(N, k) modulo

Gal(k/k)-conjugacy







↓ ↓
{maximal ideals of TK} {maximal ideals of Tk}

l l
{minimal primes of TO} ։ {maximal primes of TO}

We will mainly be interested in “ordinary” modular forms. .

Definition 5.10. Let Kf be a number field containing all the Fourier coef-
ficients of f ∈ Sk(N,χ) and Of be the ring of integers of Kf . We say f is
ordinary at p if af (p) ∈ O×

f,℘ for every prime ℘|p in Of .

Exercise 5.11. Prove that f being ordinary at p is equivalent to the statement
that

x2 − af (p)x+ χ(p)pk−1

has at least one root that is a unit modulo ℘ for each ℘|p in Of .

An important feature of ordinary forms is the fact that given an eigen-
form f ∈ Sk(N,χ) that is ordinary at p one has that the Galois representation
attached to f has the following nice form when restricted to the absolute de-
composition group Dp of p:

ρf |Dp ≃
(

χ1 ∗
0 χ2

)

where χ2 is unramified at p and satisfies

χ2(Frobp) =

{

unit root of x2 − af (p)x + χ(p)pk−1 p ∤ N
af (p) p|N.
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Note here that the ≃ means that ρf |Dp can be conjugated into this form.
We will also need Hida’s ordinary projector e. To avoid confusion we adopt

the convention that we will write Up for Tp when we are thinking of Tp in T(k,N)
with p | N . Let O be a finite extension of Zp and K the field of fractions of O.
Set

e = lim
m→∞

Um!
p .

This is well defined and acts on Mk(Γ0(Np
r),O) where r ≥ 1 ([Hida1], page

236). In fact, e is an idempotent. Given an eigenform f , ef is nonzero if and
only if f is ordinary at p.

Exercise 5.12. Prove that ef is nonzero if and only if f is ordinary at p.

Let f be an ordinary form of level N . If p ∤ N , we can still consider f as an
element of Mk(Γ0(Np)) and so have an action of e on f . One has then that ef
is an eigenform of level Np if p ∤ N and an eigenform of level N if p|N . The
eigenform ef has the same eigenvalues as f away from p (Hecke operators Tn
commute with Up for p ∤ n) and has the unit root of x2 − af (p)x+ χ(p)pk−1 as
its eigenvalue at p. The form ef is called the p-stabilized newform associated to
f .

We write M0
k (Γ0(N),K) for eMk(Γ0(N),K) and likewise for S0

k. It is con-
vention to refer to M0

k (Γ0(N),K) as the ordinary forms. However, one should
be aware that this is an abuse of language as an ordinary form does not nec-
essarily lie in here. What is true is that if f is an ordinary form, then ef is
nonzero and in M0

k (Γ0(N),K). So M0
k (Γ0(N),K) consists of the p-stabilized

newforms associated to the ordinary forms in Mk(Γ0(N),K).
We will need the following theorem when we study Λ-adic modular forms.

Theorem 5.13. ([Wiles1], page 539) For fixed N , dimKM
(0)
k (Γ0(Np),K) is

bounded independent of k.

Proof. We give here an outline of the proof of this theorem, leaving many of
the details to the reader. The main idea is to make use of the Eichler-Shimura
isomorphism:

Mk(Γ,C)⊕ Sk(Γ,C)
∼−→ H1(Γ, Lk−2(C))

where we have group cohomology on the right with Lk−2(C) denoting the sym-
metric polynomial algebra in two variables of degree k − 2 over C. The ac-
tion of Γ on Lk−2(C) is given by γ · P (x, y) = P ((x, y)γ−1 det γ). It is possi-
ble to define Hecke operators on the cohomology group corresponding to the
Hecke operators on modular forms. The point here is that Mk(Γ0(Np),C) →֒
H1(Γ0(Np), Lk−2(C)), so we can prove the theorem by bounding the dimension
of H1(Γ0(Np), Lk−2(C)). Observe that we can define e as above since we have
the appropriate Hecke operator acting on the cohomology group. With O as
above we have an exact sequence

0 // Lk−2(O)
·̟

// Lk−2(O) // Lk−2(F) // 0
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where F = O/̟. This gives an injection

eH1(Γ0(Np), Lk−2(O)) ⊗ F →֒ eH1(Γ0(Np), Lk−2(F))

where we have used that tensoring with F kills off the kernel. Thus, we have

dimC(eH1(Γ0(Np), Lk−2(C))) ≤ rankO(eH1(Γ0(Np), Lk−2(O)))

≤ dimF(eH1(Γ0(Np), Lk−2(F))).

Thus, it remains to bound the dimension of eH1(Γ0(Np), Lk−2(F)) independent
of k. Define j : Lk−2(F)→ F by

k−2
∑

m=0

Amx
k−2−mym 7→ A0.

This is a map of Γ0(Np)-modules that compatible with the action of

(

p 0
0 1

)

.

Thus we have a map

j∗ : H1(Γ0(Np), Lk−2(F))→ H1(Γ0(Np),F)

that is Up-equivariant. If we can show that j∗ is injective on eH1(Γ0(Np), Lk−2(F))
we will be done because everything will be bounded by the dimension of H1(Γ0(Np),F).
To show j∗ is injective one shows that one can define a map

I : H1(Γ0(Np),F)→ H1(Γ0(Np), Lk−2(F))

so that I◦j∗ = j∗◦I = Up. This proves that j∗ is injective on eH1(Γ0(Np), Lk−2(F))
because Up is invertible on eH1(Γ0(Np), Lk−2(F)). (Think Up acts by a unit here
since the eigenvalues are the unit roots!) The map I is defined as follows. Let

g =

(

p 0
0 1

)

. Observe that gLk−2(F) ∼= gF ∼= F since g kills everything except

the first coefficient. To ease notation set Γ = Γ0(Np). We have maps

H1(Γ,F)
g∗

// H1(Γ ∩ gΓg−1, gF)
i∗

// H1(Γ ∩ gΓg−1,F)

j−1
∗

��

H1(Γ ∩ gΓg−1, gLk−2(F))

i∗

��

H1(Γ ∩ gΓg−1, Lk−2(F))

cores

��

H1(Γ, Lk−2(F)).

Define I to be the composition of these maps. It is then left to check I satisfies
the properties claimed, which is left as a long tedious exercise.
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5.4 Converse to Herbrand’s Theorem

In this section we will outline the Ribet’s proof of the converse of Herbrand’s
theorem. We include this here as it provides a “classical outline” of Wiles’
proof of the main conjecture. Understanding this proof will give one a good
foundation to understand Wiles’ proof which relies on the same method using
Λ-adic modular forms instead of classical modular forms. Recall Theorem 3.44
which we state here in a more general form then that due to Ribet.

Theorem 5.14. Let p be a fixed odd prime and χ : (Z/NZ)× → Q
×

p an even

primitive Dirichlet character of order prime to p. Set ψ = χω and F = Qψ.

If L(−1, χ) is not a unit in Qp, then Aψ
−1

F = AF ⊗Zp[∆] Fp(ψ
−1) 6= 0 where

∆ = Gal(F/Q) and we write Fp(ψ
−1) to denote Fp with an action of ∆ by ψ−1.

Remark 5.15. One can replace Qψ in the above theorem with any abelian
extension of Q of order prime to p that contains Qψ and the result remains
valid.

Exercise 5.16. Show that Theorem 3.44 follows from this theorem.

Our goal is to construct a nontrivial unramified extension of F on which
∆ acts by ψ−1. This is accomplished by constructing an appropriate Galois
representation.

Consider the Eisenstein series E
(2)
1,χ(z). We will drop the superscript (2) as it

will not change throughout the argument. Recall the constant term of E1,χ(z)

is given by L(−1,χ)
2 and the ℓth Fourier coefficient is cE(ℓ) = 1+χ(ℓ)ℓ. Let O be

the ring of integers of some finite extension of Qp that contains all the values of χ
and let ̟ be a uniformizer of O. The first step in Ribet’s argument is to produce
an ordinary newform f so that the eigenvalues of f are congruent to those of
E1,χ(z) modulo a prime ̟ that divides L(−1, χ). Note that modulo ̟ the
Eisenstein series is a semi-cusp form, i.e., it is a modular form with a constant
term of 0 in the Fourier expansion about the cusp infinity. One can show that
there is a modular form g ∈ M2(M,χ) with constant term 1 for some M with
N |M by studying the geometry of the modular curve X1(p). In fact, one can
choose M so that ordp(M) ≤ 1 and if ℓ|M with ℓ ∤ Np, then χ(Frobℓ) 6≡ ℓ−2

modulo any prime above p. One then sets h(z) = E1,χ(z) − L(−1,χ)
2 g(z). The

modular form h is congruent to E1,χ modulo ̟ and is in fact a semi-cusp form.
Note that h is not necessarily an eigenform, it is only an eigenform modulo ̟.
One then applies the Deligne-Serre lifting lemma to obtain a semi-cusp form f ′

that is an eigenform and congruent to E1,χ modulo ̟. A short argument then
yields an ordinary newform f that is congruent to E1,χ modulo ̟.

Before we show how such a congruence can yield information about class
groups, we rephrase this in terms of Hecke algebras as opposed to applying the
Deligne-Serre lifting lemma itself. The reason for this is that a similar argument
using Λ-adic forms will be used in the proof of the main conjecture. We look

at the Hecke algebra T
(M)
O := T

(M)
O (k,M). Assume that L(−1, χ) /∈ O×. Recall
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that h ≡ E1,χ(mod̟), i.e., for any t ∈ T
(M)
O if tE1,χ(z) = cE(t)E1,χ(z), then

th ≡ cE(t)h(mod̟). Note we remove the places dividing M to avoid any
difficulty with the fact that E1,χ is of level N . In fact, we could just remove
the primes dividing M

N and achieve the same effect, but removing the ones at

M causes no difficulty. Define Φ : T
(M)
O → O/(L(−1, χ)) by t 7→ cE(t). This

is easily seen to be a homomorphism and Φ(Tℓ) = 1 + χ(ℓ)ℓ for ℓ ∤ M . Set
m = Φ−1(̟). We can extend this ideal to an ideal of TO, call this extended
ideal mE1,χ . We know from Theorem 5.9 that there exists a minimal prime
℘ ⊂ mE1,χ . The minimal prime ℘ corresponds to a newform f of level M and
character χ. To see f is congruent to E1,χ away from M , observe that one can
define a maximal ideal mf by defining a map πf : TO → O by t 7→ af (n). The
minimal prime ℘ ⊂ mf as well, and so mE1,χ = mf .

Exercise 5.17. Let f and g be eigenforms. Show that f ≡ g(mod̟) if and
only if mf = mg.

Note in this case it is easy to see f is ordinary at p as Φ(Tp) = 1, so in
particuar ̟ ∤ af (p). The kernel of Φ contains I = 〈Tℓ − 1 − χ(ℓ)ℓ〉. This ideal
is referred to as the Eisenstein ideal ([Mazur]). It is a maximal ideal and thus
we have the following isomorphism:

T
(M)
O /I

∼−→ O/(L(−1, χ)).

Even though our congruence is only at the places away from M , we can use the
Chebotarev density theorem to obtain the isomorphism of Galois representations
we are interested in so this poses no difficulties.

The reason one cares about such a congruence in terms of gaining information
about class groups is because of what it tells in terms of Galois representations.
We continue with the same set-up as above. Let K := Qp({af (n)}), i.e., the fi-
nite extension of Qp generated by the Fourier coefficients of f . Let O be the ring
of integers of K. Let ρf : Gal(Q/Q) → GL2(F) be the residual representation
obtained upon composing ρf with the natural map O ։ F = O/̟. Observe

that the congruence to E1,χ(z) modulo ̟ gives trace(ρf (Frobℓ)) = af (ℓ) ≡
1 + χ(ℓ)ℓ(mod̟) for ℓ ∤ M . Thus, combining the Chebotarev density theorem
and Brauer-Nesbitt theorem we obtain that semi-simplification of ρf is given by
ρss
f = 1 ⊕ ψ where ψ = χω. Thus, there exists M ∈ GL2(F) so that MρfM

−1

is one of the following matrices:

(

1 ∗
0 ψ

)

,

(

1 0
0 ψ

)

, or

(

1 0
∗ ψ

)

. Note we are

assuming that the forms that have a “∗” are nonsplit, i.e., they cannot be di-
agonalized. Note that since p | cond(ψ), we have that ψ|Ip 6= 1. Pick σ ∈ Ip so
that ψ(σ) 6= 1. This shows that the eigenvalues of ρf (σ) are distinct in F and
so the matrix can be diagonalized. In particular, the eigenvalues are roots of
the characteristic polynomial and so exist in O by Hensel’s lemma. Thus, ρf (σ)

can be diagonalized, say ρf (σ) =

(

α 0
0 β

)

with α 6= β. Using this fact one has

that

Aρf (σ)A−1 =

(

α 0

0 β

)

.
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This equation implies that A must be a diagonal matrix, which in turn implies

that ρf itself must be of the form

(

1 ∗
0 ψ

)

,

(

1 0
0 ψ

)

, or

(

1 0
∗ ψ

)

.

Suppose that ρf is of the form

(

1 0
0 ψ

)

or

(

1 0
∗ ψ

)

. This implies we have

ρf (g) =

(

a(g) b(g)
c(g) d(g)

)

with b(g) ∈ ̟O for all g ∈ Gal(Q/Q). The Galois

representation ρf is irreducible, so there exists g ∈ Gal(Q/Q) so that b(g) 6= 0.
Let n be the minimum of ord̟(b(g)) over g ∈ Gal(Q/Q). Necessarily we have

n > 0 and finite. Conjugate ρf by

(

1 0
0 ̟n

)

. Call this new representation ρf

as well. This still has entries in O and now ρf =

(

1 ∗
0 ψ

)

with ∗ possibly 0.

However, one can show this is non-split since ρf (σ) =

(

α 0

0 β

)

with α 6= β.

Thus, we can always choose ρf to be non-split of the form

(

1 ∗
0 ψ

)

.

Exercise 5.18. Prove that if there exist σ so that ρf (σ) =

(

α 0

0 β

)

with α 6= β,

then ρf is necessarily non-split.

The Galois representation that will produce our extension is ρf |Gal(Q/F ) =
(

1 ∗
0 1

)

. However, we still need to prove that this Galois representation is un-

ramified everywhere and then show how it produces the appropriate extension.
The only possibility for ramification for ρf is at primes ℓ|Mp. We begin by
looking at ℓ = p. Recall that since f is ordinary at p one has that the Galois
representation attached to f has the following nice form when restricted to the
absolute decomposition group Dp of p:

ρf |Dp ≃
(

χ1 ∗
0 χ2

)

where χ2 is unramified at p and satisfies

χ2(Frobp) =

{

unit root of x2 − af (p)x+ χ(p)pk−1 p ∤ N
af (p) p|N.

We claim that we have

ρf |Dp ⊆
{(

∗ 0
∗ ∗

)}

.

We use the σ ∈ Ip ⊂ Dp as above so that ρf (σ) =

(

α 0
0 β

)

with α 6= β. The

fact that f is ordinary at p implies there is a matrix A so that

Aρf (τ)A
−1 =

(

χ1(τ) ∗(τ)
0 χ2(τ)

)
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for every τ ∈ Dp and

Aρf (σ)A−1 =

(

α 0
0 β

)

.

From these two equations it is a short calculation to see the claim is true. We

now combine this fact with the fact that ρf is of the form

(

1 ∗
0 ψ

)

to conclude

that

ρf |Dp =

(

1 0
0 ψ

)

.

Thus, ρf |Gal(Q/F ) is trivial when restricted to Dp since ψ is trivial on Gal(Q/F ).

Since Ip ⊆ Dp, we see ρf |Gal(Q/F ) is unramified at p.
Let ℓ be a prime. Recall that we have a factorization of the inertia group Iℓ

into tame and wild parts:

0 // Iwild
ℓ

// Iℓ // Itame
ℓ

// 0.

The wild part, Iwild
ℓ , is the maximal pro-ℓ subgroup of Iℓ. In other words,

elements in Iwild
ℓ have orders that are powers of ℓ and elements in Itame

ℓ have
orders that are prime to ℓ.

We also have the exact sequence

0 // Iℓ // Dℓ
// Ẑ // 0.

Let σℓ ∈ Dℓ be any lift of Frobℓ ∈ Ẑ, i.e., σℓ · x = σℓxσ
−1
ℓ = xℓ for any x ∈ Iℓ.

Let βℓ = ψ(σℓ) so that ρf (σℓ) =

(

1 ∗
0 βℓ

)

.

Let ℓ be a prime so that ℓ|M but ℓ ∤ N . This gives ψ(Iℓ) = 1 and so

ρf |Iℓ ⊆
{(

1 ∗
0 1

)}

. Suppose there exists x ∈ Iℓ so that ρf (x) 6= 1, i.e., there

exists b 6= 0 so that ρf (x) =

(

1 b
0 1

)

. We have

(

1 β−1
ℓ b

0 1

)

= ρf (σℓ)ρf (x)ρf (σℓ)
−1

= ρf (x
ℓ)

=

(

1 ℓb
0 1

)

.

Thus, we have that β−1
ℓ = ℓ. If we look at ψ(Frobℓ) in F we obtain that

χ(Frobℓ) = ℓ−2. However, our choice of M was such that this could not happen.
Thus, it must be that ρf is trivial on Iℓ and so we are unramified here.

Let ℓ be a prime so that ℓ||N . Using the fact that ω is unramified away
from p we see that the order of ψ(Iℓ) is prime to ℓ. Thus, ρf (x) has order



80 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

prime to ℓ for every x ∈ Iℓ. This shows that ρf |Iℓ factors through Itame
ℓ , i.e.,

ρf (Iℓ) = ρf (I
tame
ℓ ). However, we know that Itame

ℓ is abelian, so we must have
that ρf (Iℓ) is abelian as well. Since ℓ|N , we have ψ|Iℓ 6= 1 and so ρf |Iℓ is

diagonalizable. Thus, ρf |Iℓ ≃
(

1 0
0 ψ

)

. Since we are interested in ρf |Gal(Q/F ),

we see that this is trivial on Iℓ since ψ is trivial on Gal(Q/F ). Thus, ρf |Gal(Q/F )

is unramified at primes ℓ||N .

Exercise 5.19. 1. If ℓ|N , show that ψ|Iℓ 6= 1.
2. Show if ψ|Iℓ 6= 1 and ρf (Iℓ) is abelian, then ρf |Iℓ is diagonalizable. (Hint:
Let σ ∈ Iℓ such that ψ(σ) 6= 1. For any τ ∈ Iℓ, write ∗(τ) in terms of ψ(τ) and
some constant depending upon σ.)

Finally, let ℓ be a prime so that ℓ2|N . In this case we see that ψ(Iwild
ℓ ) 6= 1.

Thus, ρf (I
wild
ℓ ) ⊆

{(

1 ∗1
0 ∗2

)}

and is an ℓ-group. We claim that it is a cyclic

group as well. To see this, observe that we have a homomorphism from ρf (I
wild
ℓ )

to F× given by mapping to ∗2. The kernel of this homomorphism is

{(

1 ∗1
0 1

)}

,

which can easily be realized as a subgroup of F. However, the kernel is then a
subgroup of a group of an ℓ-group and a group with p-power order, thus it must
be trivial. So we see ρf (I

wild
ℓ ) injects into F× and hence is cyclic. Arguing as

above we see that ρf |Iwild
ℓ

is diagonalizable and nontrivial. Recalling that Iwild
ℓ

is a normal subgroup of Iℓ, we see that ρf (I
wild
ℓ ) is stable under conjugation

by ρf (Iℓ). This in turn implies that ρf |Iℓ is diagonalizable. Thus, as above we
obtain that ρf |Gal(Q/F ) is unramified at such an ℓ.

We have shown that ρf |Gal(Q/F ) is unramified at all primes. Recall that we

showed that ρf is non-split, i.e., there is a σ ∈ Gal(Q/Q) so that ∗(σ) 6= 0.
However, ∗ not being zero is an open condition so there is an open subgroup of
Gal(Q/Q) on which ∗ does not vanish. In particular, since Gal(F/Q) is a finite
group and all open subgroups are infinite, we get that ρf |Gal(Q/F ) is non-split

as well. Define a map h : Gal(Q/F ) → F by h(σ) = ∗(σ) where ∗ is given by

ρf |Gal(Q/F ) =

(

1 ∗
0 1

)

. The map h is clearly a nontrivial homomorphism. Let

Qh be the splitting field of h and set H = Gal(Qh/F ). Then h : H → F is an
injective homomorphism. This shows that H is an abelian p-group as it is a
subgroup of F. The fact that h(Iℓ) = 0 for any prime ℓ (ρf |Gal(Q/F ) is unramified

everywhere) implies that Iℓ(Q
h/F ) = 0 for every ℓ since h is injective. Thus, we

have that Qh is a nontrivial unramified abelian p-extension of F so sits inside
AF . This shows that the p-part of the class group of F is nontrivial. Observe
that for δ ∈ ∆ and x ∈ H one has

ρf (δ)ρf (x)ρf (δ)
−1 =

(

1 ψ−1(δ)h(x)
0 1

)

.

Thus, h(δxδ−1) = ψ−1(δ)h(x). This shows that ∆ acts on H via ψ−1. In
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particular, we see that H injects into H ⊗Zp[∆] F(ψ−1), which in turn sits inside

of Aψ
−1

F . This completes the proof of the theorem.

5.5 Λ-adic Modular Forms

In this section we introduce Λ-adic modular forms, or what have come to be
known as Hida families as they were first introduced by Hida. As in section
5.3 we content ourselves with definitions and statements, leaving the inter-
ested reader to consult the references for proofs. For details one should consult
[Wiles1] or [Wiles2].

Let p be a fixed odd prime and fix embeddings Q into Qp and C. Let N ≥ 1

with ordp(N) ≤ 1. Let χ : (Z/NZ)× → Q
×

p be a Dirichlet character (not
necessarily primitive). Let O be the ring of integers of some finite extension of
Qp so that Zp[χ] ⊂ O. Set ΛO = OJT K. Set X = {(k, ζ) : k ∈ Z, k ≥ 2, ζ ∈
µp∞}. For each (k, ζ) ∈ X, let νk,ζ : ΛO → O[ζ] be the homomorphism given

by νk,ζ(1 + T ) = ζ(1 + p)k−2. Define a character ψζ : (Z/prZ)× → Q
×

p by
ψζ(1 + p) = ζ. We make the following definition.

Definition 5.20. A ΛO-adic modular form with character χ is a collection

F = {cn(T ) ∈ ΛO : n = 0, 1, 2, . . .}

such that for (k, ζ) ∈ X with k ≥ 2 and ζ ∈ µpr one has

νk,ζ(F) =
∞
∑

n=0

νk,ζ(cn(T ))qn ∈Mk(Np
r, χω2−kψζ ,O[ζ])

for all but finitely many pairs (k, ζ) ∈ X. We denote the space of such forms by
M(N,χ). We say F is a ΛO-adic cusp form if νk,ζ(F) ∈ Sk(Npr, χω2−kψζ ,O[ζ])
for all but finitely many (k, ζ) ∈ X. We write S(N,χ) to denote the space of
such forms.

Exercise 5.21. Prove that M(N,χ) is a torsion-free ΛO-module.

We give the following example of a ΛO-adic modular form to establish such
forms actually exist. It has the added benefit of being one of the main examples
we will be interested in.

Example 5.22. Let χ : (Z/N ′Z)× → O× be a primitive Dirichlet character
with N ′ = N or Np and gcd(N, p) = 1. For ℓ 6= p define aℓ as follows. Recall
that

(Z/pZ)× × Zp ∼= Z×
p

via the map (δ, a) 7→ δ(1 + p)a. Then aℓ is defined by the equation

(5.2) ℓ = ω(ℓ)(1 + p)aℓ .
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We define the cn(T )’s as follows where ℓ is a prime not equal to p.

c1(T ) = 1

cℓ(T ) = 1 + χ(ℓ)ℓ(1 + T )aℓ

cℓr(T ) = cℓ(T )cℓr−1(T )− χ(ℓ)ℓ(1 + T )aℓcℓr−2(T ) (r ≥ 2)

cn(T ) = cℓr11 (T ) · · · cℓrss (T ) (gcd(n, p) = 1, n =
∏

ℓrii )

cprn(T ) = cn(T ) (gcd(n, p) = 1)

c0(T ) =
1

2

Ĝχ(T )

Ĥχ(T )

where Ĝχ(T ) = Gχω2 ((1+p)2(1+T )−1) and Ĥχ(T ) = Hχω2((1+p)2(1+T )−1).
Note that we have cp(T ) = cp·1(T ) = c1(T ) = 1. We will use this fact later!

Suppose that χ 6= ω−2 so that Ĥχ(T ) = 1. Set Eχ = {cn(T )}. We wish to
show that Eχ is a Λ-adic modular form. We compute νk,ζ(c0(T )) and νk,ζ(cℓ(T )):

νk,ζ(c0(T )) =
1

2
νk,ζ(Gχω2((1 + p)2(1 + T )− 1))

=
1

2
Gχω2((1 + p)2ζ(1 + p)k−2 − 1)

=
1

2
Lp(1− k, χω2ψζ)

=
1

2
L(1− k, χω2−kψζ)(1 − χω2−kψζ(p)p

k−1)

and

νk,ζ(cℓ(T )) = νk,ζ(1 + χ(ℓ)ℓ(1 + T )aℓ)

= 1 + χ(ℓ)ℓζaℓ(1 + p)aℓ(k−2)

= 1 + χ(ℓ)ℓψζ(ℓ)(1 + p)aℓ(k−2)

= 1 + χω2−kψζ(ℓ)ℓ
k−1.

It is then easy to see that the values νk,ζ(cℓ(T )) give the Fourier coefficients

of the Eisenstein series E
(k)

1,χω2−kψζ
(z) for ℓ 6= p. Unfortunately, the coefficient

νk,ζ(c0(T )) as well as those νk,ζ(cm(T )) where p | m do not match up with the
Fourier coefficients of this Eisenstein series. However, this can be overcome by
considering the following modular form:

E(z) := E
(k)

1,χω2−kψζ
(z)− χω2−kψζ(p)p

k−1E
(k)

1,χω2−kψζ
(pz).

Exercise 5.23. Check that the Fourier coefficients of E match up with the
values νk,ζ(cn(T )) for all n ≥ 0.

Thus, Eχ is in fact a ΛO-adic modular form.
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Before we proceed we extend our notion of ΛO-adic modular form. The
reason for this is that we wish to realize cuspidal newforms as specializations of
ΛO-adic forms as was just done for Eisensteins series. Let FΛO

be the fraction
field of ΛO and let L be a finite extension of FΛO

. Let OL be the integral closure
of ΛO in L. Note that OL is a finite free ΛO-module. Set

XL = {ϕ : OL → Qp | ϕ extends νk,ζ for some (k, ζ) ∈ X}.

Then
F = {cn ∈ OL : n = 0, 1, 2, . . .}

is an OL-modular form if

∞
∑

n=0

ϕ(cn)q
n ∈Mk(Np

r, χω2−kψζ , ϕ(OL))

for all but finitely many ϕ ∈ XL. We writeMχ(OL) to denote the space of OL-
modular forms with character χ. The space of OL-cusp forms with character χ
is defined analogously and denoted Sχ(OL).

As was the case with classical forms we can define Hecke operators on these
spaces. Of course for this to be a useful notion it is important that it commutes
with specialization from a ΛO-adic form to a classical form. Let F = {cn} ∈
Mχ(OL) and define TℓF = {c′n ∈ OL} where the c′n are defined by

c′0 = c0 + χ(ℓ)ℓ(1 + T )aℓc0

c′n = cℓn +

{

0 ℓ ∤ n, ℓ ∤ Np
χ(ℓ)ℓ(1 + T )aℓcn/ℓ ℓ|n, ℓ ∤ Np

c′n = cℓn ℓ|Np.

Using the same type of calculations we used above on the Eisenstein series one
sees that ϕ(TℓF) = Tℓϕ(F). Thus we can define an action of Tn on Mχ(OL)
and Sχ(OL). In fact, Sχ(OL) is stable under this action.

The problem we now have is that in general Mχ(OL) and Sχ(OL) are not
finitely generated OL-modules. To remedy this problem we cut the spaces down
via the ordinary projector. Define

M0
χ(OL) = {F ∈Mχ(OL) : ϕ(F) ∈M0

k (Npr, χω2−kψζ , ϕ(OL)) for a.e. ϕ ∈ XL}.

Similarly we define S0
χ(OL) ⊆ M0

χ(OL). Alternatively one can extend Hida’s
ordinary projector e to the space of Λ-adic forms and define the ordinary parts
this way. See ([Wiles1], Prop. 1.2.1) for a proof of this fact.

Proposition 5.24. The spaces M0
χ(OL) and S0

χ(OL) are finitely generated
torsion-free OL-modules.

Proof. Note that these are torsion free from a previous exercise. Let F1, . . . ,Fr ∈
Mχ(OL) be linearly independent over L. Write Fi = {cin}. The fact that these
are linearly independent means we can find n1, . . . , nr so thatD = det(cjni)1≤i,j≤r 6=
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0. Thus, we can find ϕ ∈ XL so that ϕ(Fi) ∈ M0
k (Np

r, χω2−kψζ ,O[ζ]) and
ϕ(D) = det(ϕ(cjni)) 6= 0. From this it follows that ϕ(F1), . . . , ϕ(Fr) are linearly
independent in M0

k (Np
r, χω2−kψζ ,O[ζ]). However, we know that the dimension

ofM0
k (Npr, χω2−kψζ ,O[ζ]) is bounded independent of k by Theorem 5.13. Thus

we must have that r is bounded. Now assume that r is such that the linearly
independent set above is maximal. Let F ∈Mχ(OL). The fact that r is maxi-
mal implies there exist xi ∈ L so that F =

∑r
i=1 xiFi. Thus, x = t(x1, . . . , xr)

is a solution of the equation (cjni)x = (cni(F)) and so Dxi ∈ OL for each
1 ≤ i ≤ r. Hence DM0

χ(OL) ⊆ ∑OLFi. Since OL is Noetherian, if follows
that DM0

χ(OL) is finitely generated ([Mats], page 15). Since we are torsion free,
multiplication by D is an isomorphism so we obtain that M0

χ(OL) is finitely
generated.

Lemma 5.25. The eigenvalues of Tℓ acting on M0
χ(OL) ⊗OL L are integral

over OL. Note we tensor with L here to ensure we have a vector space over L.
Since M0

χ(OL) is torsion free, we don’t lose anything.

Proof. We have from the previous proposition that M0
χ(OL) is a finitely gen-

erated OL-module. Let F1, . . . ,Fr be the OL generators and let M = (ai,j) ∈
Mr,r(OL) be the matrix giving the action of Tℓ on the Fi’s. Set P (x) =
det(x−M). Then P (x) is a monic polynomial in OL[x] and satisfies P (Tℓ) = 0
onM0

χ(OL). Thus, the eigenvalues of Tℓ are the roots of P (x), and so integral
over OL.

Recall the following fact about classical modular forms. If ordℓ(M) =
ordℓ(cond(ψ)) with ψ a Dirichlet character modulo M , then Tℓ can be diag-
onalized on Mk(M,ψ,C). We have the following analogous result in the current
setting.

Lemma 5.26. If ℓ = p or ordℓ(N) = ordℓ(χ), then Tℓ can be diagonalized on
M0

χ(OL)⊗OL L.

Proof. Let p(x) be the minimal polynomial of Tℓ acting on M0
χ(OL) ⊗OL L.

We know that Tℓ is diagonalizable if and only if p(x) has all simple roots. Let
α1, . . . , αr be the distinct roots of p(x) and consider the polynomial q(x) =
∏

(x−αi). We wish to show that q(Tℓ) = 0. Let L′ be an extension of L so that
αi ∈ OL′ for i = 1, . . . , r. We know such an L′ exists by the previous lemma.
Consider

X = {ϕ ∈ XL′ : ϕ extends νk,ζ , ordℓ(Np
r) = ordℓ(cond(χω2−kψζ)) and

ϕ(F) ∈Mk(Np
r, χω2−kψζ , ϕ(OL′)) for all F ∈M0

χ(OL′)}.

Note that X is an infinite set. Observe that ϕ(p(Tℓ)) acts on ϕ(M0
χ(OL′)) as 0

for all ϕ ∈ X. Using our result from the classical modular forms case we have
that Tℓ is diagonalizable on ϕ(M0

χ(OL′)). Thus, ϕ(q(Tℓ)) = 0 on ϕ(M0
χ(OL′))

for every ϕ ∈ X. Since X is infinite, this implies q(Tℓ) = 0 and we are done.
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Definition 5.27. We say that F = {cn} ∈ Mχ(OL) is an eigenform for Tℓ
if TℓF = aℓF for some aℓ ∈ L. We say F is a simultaneous eigenform if it is
an eigenform for all Tℓ and it is said to be normalized if c1 = 1. In this case
cn = an as in the classical case.

We have the following standard corollaries. Their proofs proceed in the same
manner as in the classical case.

Corollary 5.28. The space M0
χ(OL) ⊗OL L is spanned by forms that are si-

multaneous eigenforms for all Tℓ with ℓ ∤ N .

Corollary 5.29. If χ is a primitive character modulo N or modulo Np then
M0

χ(OL) ⊗OL L is spanned by forms that are simultaneous eigenforms for all
Tℓ.

Corollary 5.30. If F ∈ M0
χ(OL) is a simultaneous eigenform for a collection

{Tℓi} of Hecke operators, the eigenvalues ai are integral over Λ and generate a
finite extension of Λ.

We conclude this section with the following two results about Galois repre-
sentations attached to F ∈ Sχ(OL) a normalized simultaneous eigenform with
χ a Dirichlet character of conductor N ′ with N ′ = Npa, gcd(N, p) = 1 and
a ≤ 1. One should consult [Wiles1] for the proof of these theorems.

Theorem 5.31. There exists a representation ρF : Gal(Q/Q)→ GL2(L) such
that
1. ρF is continuous, i.e., there exists a finitely generated OL-submodule M ⊂ L2

stable under the action of Gal(Q/Q) and such that this action is continuous
2. ρF is unramified at all ℓ ∤ Np
3. trace(ρF (Frobℓ) = cℓ for all ℓ ∤ Np
4. det(ρF (Frobℓ) = χ(ℓ)ℓ(1 + T )aℓ where aℓ is defined as before
5. ρF is irreducible and odd (det(ρF (complex conjugation)) = −1).

Theorem 5.32. If F ∈ S0
χ(OL), then

ρF |Dp≃
(

ε1 ∗
0 ε2

)

with ε2 unramified and ε2(Frobp) = cp.

5.6 Proof of the Main Conjecture (outline)

Our goal in this section is to outline a proof of the fact that for χ an odd
character of type S and p an odd prime one has

fχ(T ) = gχ−1ω(T ).

One accomplishes this by showing that if ℘ is a prime ideal of Λχ, then

ord℘(fχ(T ) = ord℘(gχ−1ω(T )).
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Recalling that all of the prime ideals of Λχ are of the form 0, (̟), (P (T ))
for P (T ) irreducible and distinguished, or (̟,T ), we see that we only need to
prove the equality of orders for height 1 prime ideals as these constitute all of
the possible prime factors of our polynomials. We will make use of the following
classical result of Iwasawa which he obtained as an application of the analytic
class number formula:

∑

φ∈∆∧

φ odd

m℘(φ) =
∑

φ∈∆∧

φ odd

n℘(φ)

where m℘(φ) = ord℘(fφ(T )) and n℘(φ) = ord℘(gφ−1ω(T )). Thus, it is enough
to show that m℘(φ) ≥ n℘(φ) for every ℘ and φ. One can accomplish this by
constructing a subspace of V χ on which γ0 − 1 has characteristic polynomial
(T − α℘)n℘(φ) where α℘ is the root of fχ(T ) corresponding to ℘.

There are two types of primes ℘ that must be dealt with separately; ℘ =
(T − p) and ℘ = (T − (ζ − 1)) for ζ some p-power root of unity. These are
referred to as the exceptional primes. The primes of the form (T − (ζ − 1)) can
be dealt with using class field theory and we will say nothing more about them
here. If ℘ = (T − p) and φ 6= ω, then we obtain that ord℘(gφ−1ω(T )) = 0 from
the fact that Lp(1, φ−1ω) 6= 0. If ℘ = (T −p) and φ = ω, then the result follows
from the fact that Lp(s, 1) has a simple pole at s = 1. If G1(0) = 0 we would
have a contradiction to having a pole at s = 1. Thus, in either case we obtain
ord℘(gφ−1ω(T )) = 0.

We now must deal with the non-exceptional primes. Let ψ = χ−1ω−1. Fix
a p-power root of unity τ such that Ĝψ(T ) and Ĝψ(τ−1(1 + p)−1(1 + T ) − 1)

have no zeroes in common where we recall that Ĝψ(T ) is defined by

Ĝψ(T ) = Gψω2((1 + p)2(1 + T )− 1).

This is possible by the Weierstrass preparation theorem. Suppose τ is a ps-th
root of unity and let O be such that it contains Oψ and τ . Recall that Ĝψ(T )

and Ĥψ(T ) are both in ΛO and Ĥψ(T ) = 1 if ψ 6= ω−2. Let T ⊂ EndΛO
S0
ψ(ΛO)

be the Hecke algebra generated over ΛO by the Tn’s.

Definition 5.33. The Eisenstein ideal I ⊂ T is the ideal generated by the set

{Tn − cψ(n), Ĝψ(T )}

where n ranges over all positive integers.

We then have the following proposition.

Proposition 5.34. Suppose ψ 6= ω−2 and let ℘ ⊆ ΛO be any prime divisor of
Ĝψ(T ) such that p /∈ ℘, ℘ 6= ((1 + p)2(1 +T )− 1), and ℘ 6= ((1 + p)(1 +T )− ζ).
(Note that these last two types correspond to the exceptional primes under this
normalization.) Then there exists a ΛO,℘-isomorphism

T℘/I
≃−→ ΛO,℘/(Ĝψ(T )).
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Moreover, if we define P to be the kernel of the map

T −→ ΛO,℘/(Ĝψ(T )) −→ ΛO,℘/℘

then we have the ΛO,℘-isomorphism

TP/I
≃−→ ΛO,℘/(Ĝψ(T )).

Before we prove this proposition we need the following lemma.

Lemma 5.35. Let ζ be a pr−1-th root of unity, k ≥ 2, and χ a character so
that N | cond(χ). Define

w = e
∏

ℓ|N

Tℓ(T
h
ℓ − ℓhψζ(ℓ)(1 + p)aℓh(k−2))

where h = ϕ(Np). If f ∈Mk(Np
r, χω2−kψζ) with af (0) = 0, then wf is a cusp

form.

Proof. Write f = F + E where F is a cusp form and E is in the span of the
Eisenstein series. We can write

E =
∑

c(ψ1, ψ2)E
(k)
ψ1,ψ2

where ψ1ψ2 = χω2−kψζ and cond(ψ1) cond(ψ2) = Npr.

If p| cond(ψ1), then eE
(k)
ψ1,ψ2

= 0 because the p-th Fourier coefficient is ψ2(p)p
k−1

and so E
(k)
ψ1,ψ2

is not ordinary at p.

If ℓ 6= p is a prime with ℓ| cond(ψ1) and ℓ| cond(ψ2), then TℓE
(k)
ψ1,ψ2

= 0 because
the ℓ-th eigenvalue is 0.

If ℓ 6= p is a prime with ℓ| cond(ψ1) and ℓ ∤ cond(ψ2), then we have TℓE
(k)
ψ1,ψ2

=

ψ2(ℓ)ℓ
k−1E

(k)
ψ1,ψ2

. Thus,

T hℓ E
(k)
ψ1,ψ2

= (ψ2(ℓ)ℓ
k−1)hE

(k)
ψ1,ψ2

= ψ2(ℓ)
h(ω(ℓ)k−1)h(1 + p)aℓh(k−1)E

(k)
ψ1,ψ2

where we have used that ω(ℓ)h = 1 since ω has conductor p. Observe that
ψ2(ℓ) = ψζ(ℓ) and that (1 + p)aℓh(k−1) = ℓh(1 + p)aℓh(k−2). Thus, we see that

T hℓ E
(k)
ψ1,ψ2

= ℓhψζ(ℓ)(1 + p)aℓh(k−2)E
(k)
ψ1,ψ2

,

in particular we have that T hℓ − ℓhψζ(ℓ)(1 + p)aℓh(k−2) kills E
(k)
ψ1,ψ2

.
From this we can conclude that unless ψ1 has conductor equal to 1, i.e., ψ1 is

trivial, we must have that E
(k)
ψ1,ψ2

is killed by w. Thus we have

wE = c(1, χω2−kψζ)wE
(k)

1,χω2−kψζ

= c′E
(k)

1,χω2−kψζ
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for some constant c′. However, we have that wf and wF both must have
constant term 0 and

wf = wF + c′E
(k)

1,χω2−kψζ

where c′E
(k)

1,χω2−kψζ
has constant term c′

L(1−k,χω2−kψζ)
2 . Thus, c′ = 0 and so

wf = wF is a cusp form as claimed.

Proof. (of Proposition 5.34) Set

G(T ) = Gτ (T ) = E
(1)
1,ψτω−1(z) Eψψ−1

τ
((1 + p)−1(1 + T )− 1).

Let the Eisenstein series Eψψ−1
τ

((1 + p)−1(1 + T ) − 1) be defined by the data
{cψψ−1

τ
(n)}. We claim that G is a ΛO-adic modular form. We show this by

looking at specializations. Let ζ be a primitive pr-th root of unity and vk,ζ :
ΛO → O[ζ] a specialization map. Then we have

vk,ζG = E
(1)
1,ψτω−1(z)E

(k−1)

1,ψψ−1
τ ω3−kψζ

(z) ∈Mk(Np
max(r,s)+1, ψψζω

2−k)

as desired. Let G be defined by the data {c(n,G)}. We have

c(0,G) =
L(0, ψτω

−1)

2

Ĝψψ−1
τ

((1 + p)−1(1 + T )− 1)

2

=
1

4
L(0, ψτω

−1) Ĝψ(τ−1(1 + p)−1(1 + T )− 1).

Set F0 = c(0,G)Eψ−cψ(0)G. This is a ΛO-modular form. Write F0 = {c(n,F0)}
and observe that by construction we have c(0,F0) = 0. If we apply the previous
lemma we obtain that

F = c(0,G)wEψ − cψ(0)wG

is a cusp form. So we obtain

F ≡ c(0,G)wEψ(mod cψ(0)).

We would like to show that c(1,F) is a ℘-unit as this will allow us to conclude
that F is part of a ΛO,℘-basis of S0

ψ(ΛO)℘. Observe that we have c(1,F) ≡
c(0,G)c(1, wEψ)(mod cψ(0)). Thus, we need to look at wEψ more closely. Note
that eEψ = Eψ since cψ(1) = 1 and this is the eigenvalue when Tp acts on Eψ.

Exercise 5.36. For ℓ | N = cond(ψ), TℓEψ = Eψ.

Thus, we have that

wEψ =
∏

ℓ|N

(1 − ℓh(1 + T )aℓh)Eψ,

i.e.,

c(1,F) ≡ c(0,G)
∏

ℓ|N

(1− ℓh(1 + T )aℓh)(mod cψ(0)).
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However, our choice of τ and the fact that p /∈ ℘ gives that c(0,G) is a unit
modulo ℘. (The fact that p /∈ ℘ implies that ℘ must be of the form (P (T ))
for a distinguised polynomial, and hence ℘ ∤ L(0, ψτω

−1).) Since we assumed
that ℘ is not an exceptional prime we obtain that

∏

ℓ|N(1 − ℓh(1 + T )aℓh) is a
unit modulo ℘ as the exceptional primes are the only possible prime divisors of
∏

ℓ|N (1− ℓh(1 + T )aℓh).
So we have shown that we can choose F to be part of a ΛO,℘-basis of

S0
ψ(ΛO)℘. Let H0 = F ,H1, . . . ,Hr be a basis of S0

ψ(ΛO)℘. Let t ∈ T℘ and
write tF =

∑

λi(t)Hi for some λi(t) ∈ ΛO,℘. Consider the map

T℘ −→ ΛO,℘/(Ĝψ)

defined by t 7→ λ0(t). This is a surjective ΛO,℘-module map as 1 7→ 1. Observe
that λ0(Tn − cψ(n)) = 0. This is because of the fact that

(Tn − cψ(n))F = (Tn − cψ(n))c(0,G)wEψ + (Tn − cψ(n))cψ(0)wG

and (Tn − cψ(n))Eψ = 0 and cψ(0) = 1
2 Ĝψ, which is 0 modulo Ĝψ. Thus we

have that λ0(Tn) = cψ(n) and so λ0(TnTm) = λ0(Tn)λ0(Tm). Hence, λ0 is a
surjective ΛO,℘-algebra map. We also have shown that I ⊆ kerλ0 and since I
is necessarily a maximal ideal we have the result.

Recall that S0
ψ(ΛO) ⊗ΛO

FΛO
is spanned by eigenforms where FΛO

is the
fraction field of ΛO. Thus, there exists a finite extension L of FΛO

so that
S0
ψ(ΛO) ⊗ΛO

L is spanned by eigenforms F1, . . . ,Fr ∈ S0
ψ(ΛO). Let Li ⊆ L be

the field extensions of FΛO
generated by the eigenvalues of Fi. Let {Fi}i∈J be

the representatives of conjugacy classes where we say Fi ∼ Fj if there exists an
isomorphism σ : Li → Lj over FΛO

taking Fi to Fj . Set A =
∏

i∈J Li. One has
that T is naturally a subring of A via the map

t 7→
∏

i∈J

c(1, tFi).

As in the case of classical modular forms, one obtains an isomorphism of L
aglebras

T⊗ΛO
L

≃−→ A⊗ΛO
L

≃−→
∏

i∈J

L.

In particular, by counting dimensions one obtains

T⊗ΛO
FΛO

≃−→ A.

Set W to be the T-module A⊕A and WP to be the TP-module AP⊕AP. Write
AP =

∏

i∈JP⊆J Li.
Let ρFi be the Galois representation associated to Fi. Set η = det ρFi . As

in the classical case, observe that η is independent of i. Fix σ0 ∈ Ip such that
η(σ0) 6= 1(mod℘). Fix a basis of ρFi such that

1. ρFi(σ0) =

(

αi 0
0 βi

)
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2. ρFi |Dp=
(

ψ
(i)
2 0

∗ ψ
(i)
1

)

, ψ
(i)
2 |Ip= 1

3. ρFi : Gal(Q/Q) −→ GL2(OLi,℘i) where ℘i is some fixed prime over ℘.

We put a Galois action on WP via ⊕i∈JP
ρFi . This action commutes with the

action of TP.

Definition 5.37. A submodule L ⊆WP is a lattice if it is a finitely generated
TP-module such that L ⊗ΛO

FΛO
= WP. We say the lattice is a stable lattice

if it is also stable under the action of Gal(Q/Q).

Lemma 5.38. ([Wiles2], Lemma 5.1) Let L be any stable lattice in WP. Sup-
pose that V is any irreducible subquotient of L /IL . Then V has one of the
following two types:

1. V
≃−→ TP/PTP with trivial Galois action (V is of type 1.)

2. V
≃−→ TP/PTP with Galois acting by η (V is of type η.)

Proof. This is essentially an application of the Brauer-Nesbitt theorem. To see
this, observe that on L one has

(Frobℓ)
2 − Tℓ Frobℓ +η(ℓ) = 0

as this holds for each ρFi and that on L /IL one has Tℓ = 1 + η(ℓ). Thus

(Frobℓ−1)(Frobℓ−η(ℓ)) = 0

on L /IL .

Definition 5.39. Let M be a TP[Gal(Q/Q)]-module. We say M is of type-1
(resp. type-η) if it has Jordan-Hölder series decomposition with all successive
quotients of type-1 (resp. type-η.)

Let

L
′
0 =





∏

i∈JP

OLi,℘i



⊕ TP.

One can show that this is a stable lattice by using the properties used in defining
the bases of the ρFi . We actually want a slightly different lattice. Note that by
our choice of bases above for ρFi that if we write

ρ(σ) =
⊕

i∈JP

ρFi =

(

aσ bσ
cσ dσ

)

,

then aσ and dσ lie in TP. Using that the Galois representations are continuous,
we have that there exists x ∈ ΛO,℘ so that xcσ ∈ TP. If we replace ρ by
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(

1 0
0 x

)

ρ

(

1 0
0 x−1

)

, then the cσ and dσ we obtain from this are both in TP.

Calling this new Galois representation ρ as well, we see that the lattice

L0 =





∏

i∈JP

1

x
OLi,℘i



⊕ TP

is a stable lattice. We wish to find a stable lattice L ⊆ L0 with filtration

0 // (type-1) // L /IL // (type-η) // 0

so that L /IL has no type-1 quotient. Note that the filtration is the analogy
of finding a lattice so that

ρf =

(

1 ∗
0 ψ

)

in section 5.4 and the lack of a type-1 quotient is the analogy of ρf being
nonsplit.

Proposition 5.40. ([Wiles2], Proposition 5.2) Let L be a stable lattice. There
exists a stable sublattice L ′ ⊆ L such that

1. L /L ′ has type-1

2. If L ′′ ⊆ L is a stable sublattice such that L /L ′′ has type-1, then L ′ ⊆
L ′′.

One also has the corresponding statement for type-η.

Proof. We begin by noting that if L1 and L2 both satisfy that L /L1 and
L /L2 are of type-1, then so is L /L1 ∩L2. Suppose we have a collection of
stable sublattices {Li}i∈I such that L /Li is of type-1 for each i ∈ I. Set
N =

⋂

i∈I Li. We want to be able to set L ′ = N . If N is a lattice we can do
this and we will be done.

Suppose N is not a lattice. We have that L /N is finitely generated as a
ΛO,℘-module and (L /N ) ⊗ΛO

FΛO
6= 0. We know that (L /N ) ⊗ΛO

FΛO
is

a quotient of WP, so as a Gal(Q/Q)-module its irreducible components come
from the ρFi ’s. Write

(5.3) (L /N )⊗ΛO
FΛO

∼=
⊕

i∈J′

P

ρFi .

Set
(L /N )(η) = {x ∈ L /N : σ0x = η(σ0)x}.

Equation 5.3 gives that (L /N )(η) 6= 0. On the other hand,

L /N →֒
∏

i∈I

L /Li
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where each L /Li is of type-1. Since we have that η(σ0) 6≡ 1(modP), (L /N )(η)

maps to 0 in L /Li. Thus, (L /N )(η) = 0. This contradiction shows that N
must be a lattice and we are done.

We apply Proposition 5.40 to teh stable lattice L0 constructed above and
set L = L

′
0. The minimality of the lattice L shows that L /IL has no type-1

quotients. Set E = L /IL and let E1 be the maximal type-1 submodule of
E. Set E2 = E/E1 and observe that E2 6= 0 as E is not purely type-1 by
Proposition 5.40 applied to type-η. Let Eη be the maximal type-η submodule
of E2 and observe that Eη 6= 0 by the maximality of E1.

Lemma 5.41. For E2 and Eη as above, E2 = Eη.

Proof. Suppose E2 6= Eη. We can use the facts that E2/Eη has no type-η
submodule and E2 has no type-1 quotient to conclude that there exists E′ and
E′′ so that

1. Eη ⊂ E′ ( E′′ ⊂ E2

2. E′/Eη is type-1 and maximal with respect to this property

3. E′′/E′ is type-η and irreducible.

Recall that we fixed σ0 so that η(σ0) 6≡ 1(mod P). Using that E′′/E′ is irre-
ducible, we have

(σ0 − 1)E′′/E′ = E′′/E′.

Let z′ ∈ E′′ be a TP-generator of E′′/E′. Set z = (σ0 − 1)z′ ∈ E′′ and observe
this is still a generator. Recall that (σ − 1)(σ − η(σ)) annihilates E = L /IL
for every σ ∈ Gal(Q/Q). In particular,

(σ0 − η(σ0))z = (σ0 − η(σ0))(σ0 − 1)z′ = 0

in E′′. Thus,

(5.4) σ0z = η(σ0)z

in E2.
Claim: (σ0 − 1)(σ − η(σ))z = 0 in E2 for every σ ∈ Gal(Q/Q).
Proof: We begin by observing that

(σ0σ − 0)((σ − η(σ)) + (σ0 − 1)(σ − η(σ)))z = (σ0σ − 1)(σ0σ − σ0η(σ))z

= (σ0 − 1)(σ0σ − η(σ0σ))

= 0

where we have used equation 5.4 and that (σ − 1)(σ − η(σ)) annihilates E. If
we expand the left hand side of the first equation above we obtain

(σ0σ − 1)(σ − η(σ))z + (σ0σ − 1)(σ0 − 1)(σ − η(σ))z = 0.
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Observe that

(σ0σ − 1)(σ − η(σ))z = σ0σ(σ − η(σ))z − (σ − η(σ))z

= σ0(σ − η(σ))z − (σ − η(σ))z

= (σ0 − 1)(σ − η(σ))z

where we have used that σ acts as 1 on (σ − η(σ))z by virtue of the fact that
(σ − 1)(σ − η(σ)) annihilates E. Thus, we have

(σ0 − 1)(σ − η(σ))z + (σ0σ − 1)(σ0 − 1)(σ − η(σ))z = 0

i.e.,
σ0σ(σ0 − 1)(σ − η(σ))z = 0.

Thus, (σ0 − 1)(σ − η(σ))z = 0 (act on each side by (σ0σ)−1 to see this.) This
completes the proof of the claim.

Observe that

(σ′ − η(σ′))(σ − η(σ)) = (σ′σ − η(σ′σ)) − η(σ′)(σ − η(σ)) − η(σ)(σ′ − η(σ′)).

Thus, applying the claim we obtain that

(5.5) (σ0 − 1)(σ′ − η(σ′))(σ − η(σ))z = 0

for every σ, σ′ ∈ Gal(Q/Q).
Let M be the TP-span of Eη and the (σ − η(σ))z. Note that M ⊆ E2

and M is a Gal(Q/Q)-module. To see that M is a Gal(Q/Q)-module, observe
that Gal(Q/Q) acts via 1 on E′/Eη and Eη is a Gal(Q/Q)-module. We also
have that Eη ( M ⊂ E′ because if we had N = Eη, then Eη + TPz is a
TP[Gal(Q/Q)]-module of type η larger then Eη.

Let H = ker η. Note that for h ∈ H we have (h− 1)Eη = 0 and (h− 1)(σ −
η(σ))z ∈ Eη. Thus, equation 5.5 gives that

(σ0 − 1)(h− 1)(σ − η(σ))z = 0

and so

(σ0 − 1)(h− 1)(σ − η(σ))z = (η(σ0)− 1)(h− 1)(σ − η(σ))z = 0.

Using that (η(σ0)− 1) is a unit on Eη, we have that

(h− 1)(σ − η(σ))z = 0

for every h ∈ H . Thus, (h− 1)M = 0 for every h ∈ H .
Let U = M ∩ ker(σ0 − 1). Note that U 6= 0 because (σ0 − 1)M ⊆ Eη ⊆ M .

Let u ∈ U and g ∈ Gal(Q/Q). Observe that

σ0gu = (σ0gσ
−1
0 g−1)(gσ0u) = gσ0u = gu.

Thus, gU ⊆ U and so U is a Gal(Q/Q)-module. However, any irreducible
module in U is of type-1. This is a contradiction as it gives a submodule of E2

of type-1. Thus, we must have E2 = Eη.



94 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

Proposition 5.42. There is an exact sequence of TP[Gal(Q/Q)]-modules

0 // E1
// E // Eη // 0

such that E1 is of type-1 and Eη ∼= TP/I is of type-η.

Proof. The only thing that remains to be shown in this proposition is that Eη ∼=
TP/I. Recall from our definition of L0 that we can write L0 = L

(1)
0 ⊕L

(η)
0

where L
(1)
0 =

∏

1
xOLi,℘i and L

(η)
0 = TP. Observe that σ0 acts on L

(1)
0 /I by 1

and on L
(η)
0 /I by η(σ0). Using that L0/L is of type-1 we have that L

(η)
0 ⊆ L .

Write L = L (1) ⊕L (η) with L (1) ⊆ L
(1)
0 and L (η) ⊆ L

(η)
0
∼= TP. Similarly,

we can split E up as E = E(1) + E(η). Now just observe that by construction
we must have E(η) ∼= Eη. Thus, Eη ∼= TP/I as desired.

Set H∞ = Qχ(ζp∞)Q∞. Recalling that η(Frobℓ) = ψ(ℓ)ℓ(1 + T )aℓ , we see
that η is trivial on Gal(Q/Qχ(ζp∞)) as we lose the χ because of the Qχ and we
lose the rest by observing that the field Q(ζp∞) is the fixed field of Z×

p . In par-

ticular, η is trivial on Gal(Q/H∞). Let N∞ be the splitting field of the lattice
E over the field H∞, i.e., N∞ is the field extension of H∞ for which the action
of Gal(Q/N∞) on E is trivial. Let G = Gal(N∞/H∞) and note that η is trivial
on G and so G acts trivially on Eη. We have the following diagram of fields.

N∞

G

H∞

Γ′

uuuuuuu
uu

DD
DD

DD
DD

Qχ(ζp∞)

IIIIIIIII
Qχ

∞

Γ

zz
zz

zz
zz

DD
DD

DD
DD

Qχ

∆ DD
DD

DD
DD

D
Q∞

Zp

zz
zz

zz
zz

z

Q

where Γ′ ∼= Γ ∼= Zp and we set ∆′ = Gal(Qχ(ζp∞)/Q).
Observe that we have a map

φ : G −→ HomTP/I(Eη, E1)

given by φ(σ)(eη) = σe − e where e ∈ E is any lift of eη ∈ Eη. Using that
G acts trivially on Eη, one shows this is well-defined and an injective ho-
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momorphism. Recall that Eη ∼= TP/I and so we get an injection of G into
E1
∼= HomTP/I(TP/I, E1). This shows that G is abelian.
The group Gal(H∞/Q) acts onG by conjugation and acts on HomTP/I(Eη, E1)

via η−1. To see the action on HomTP/I(Eη, E1), observe that for h ∈ Gal(H∞/Q),
f ∈ HomTP/I(Eη, E1), and eη ∈ Eη we have

h · f(eη) = hf(h−1eη)

= f(h−1eη) (f(h−1eη) ∈ E1)

= f(η(h)−1eη) (eη ∈ Eη)
= η(h)−1f(eη).

Lemma 5.43. The map φ is Gal(H∞/Q)-equivariant, i.e., φ(h · g)(eη) =
η(h)−1φ(g)(eη) for all h ∈ Gal(H∞/Q), g ∈ G, and eη ∈ Eη.
Proof. This is essentially just a long string of equalities:

φ(h · g)(eη) = φ(hgh−1)(eη)

= hgh−1e− e (e ∈ E any lift of eη)

= hg(η(h−1)e+ e′)− e (for some e′ ∈ E1)

= (η(h−1)h)ge+ e′ − e (since e′ ∈ E1)

= (η(h−1)h)(e+ e1) + e′ − e (for some e1 ∈ E1)

= η(h−1)he+ η(h−1)e1 + e′ − e
= η(h−1)η(h)e+ η(h−1)e′′ + η(h−1)e1 + e′ − e ( for some e′′ ∈ E1)

= (e+ η(h−1)e′′ + e′) + η(h−1)e1 − e
= h(h−1e) + η(h−1)e1 − e
= η(h)−1e1

= η(h)−1(ge− e)
= η(h)−1φ(g)(e).

Lemma 5.44. The extension N∞/H∞ is unramified.

Proof. We begin by noting that N∞/H∞ is unramified at all ℓ ∤ Np as all the
ρFi are unramified at such ℓ and these Galois representations give the action of
Gal(Q/Q). Thus, it remains to consider the cases ℓ = p and ℓ | N .
Let ℓ be a prime so that ℓ | N . Let L∞ be the maximal unramified abelian
p-extension of H∞, LN∞ be the maximal abelian p-extension of H∞ unramified
outside of N , and Lℓ∞ the maximal subextension of LN∞ which is unramified
over H∞ at ℓ. Let Hn,λ be the completion of Hn at a prime λ ⊂ Hn dividing
ℓ. Using the identification of the inertia at λ with O×

Hn,λ
provided by class field

theory, we have that Gal(LN∞/L
ℓ
∞) is isomorphic to a quotient of

lim←−
n

∏

λ|ℓ

O×
Hn,λ

.
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We now use that LN∞/L
ℓ
∞ is a p-extension and ℓ 6= p to conclude that in fact we

must have that Gal(LN∞/L
ℓ
∞) is isomorphic to a quotient of

k = lim←−
n

∏

λ|ℓ

k×n,λ

where kn,λ is the residue field of Hn,λ. The inertia group Iℓ acts trivially on k
by the definition of inertia and so

(Gal(LN∞/L
ℓ
∞)⊗Zp Qp)

χ = 0

as we assumed χ has conductor divisible by N and so χ(Iℓ) 6= 0. This in turn
implies that

(Gal(LN∞/H∞)⊗Zp Qp)
χ ≃−→ (Gal(Lℓ∞/H∞)⊗Zp Qp)

χ

which gives the unramified condition for ℓ | N . Since ℓ was an arbitrary prime
dividing N , we have the result for all primes dividing N .

Consider the case where ℓ = p. Let N∞,p be the completion of N∞ at a
prime above p and likewise for H∞,p. We have the following sequences of Galois
groups:

1 // Gal(N∞/H∞) //

S

Gal(N∞/Q) //

S

Gal(H∞/Q) //

S

1

1 // Gal(N∞,p/H∞,p) // Gal(N∞,p/Qp) // Gal(H∞,p/Qp) // 1.

We have that Gal(Q/Q) actions on Gal(N∞/H∞) via conjugation as well as
through Gal(H∞/Q). We also have a compatible action of Gal(Qp/Qp) on
Gal(N∞,p/H∞,p) that factors through Gal(H∞,p/Qp). We will compute this
action in two different ways to show that we cannot have ramification at p. We
have already seen that Gal(Q/Q) acts on Gal(N∞/H∞) via η−1. We can also
compute the local action on Gal(N∞,p/H∞,p) by using our information about
the restrictions of ρFi restricted to the decomposition group Dp. Recall that
since we are working with ordinary forms we have up to equivalence that

ρFi |Dp≃
(

ε1 ∗
0 ε2

)

where ε2 is unramified at p and ε2(Frobp) = cp(Fi) (see Theorem 5.32.) Thus,
as a Dp-module we must have that E has a filtration as in Proposition 5.42
only with submodule of type-η and quotient of type-1. Thus, we must have that
σx = η(σ)x for x ∈ Gal(N∞,p/H∞,p) and σ ∈ Gal(Qp/Qp). We also know that
the inertia group of Gal(H∞,p/Qp) has finite index in Gal(H∞,Q) (this is true

for all number fields, not just Q.) In particular, the inertia group contains γp
i

0
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for some i. Thus we have two actions for γp
i

0 and combining them gives that

γ2pi

0 must act trivially on Gal(N∞,p/H∞,p). This gives that Gal(N∞,p/H∞,p)
is a torsion ΛO-module. Thus, the only zeroes which could possibly be ramified
at p are of the form ζ − 1 for ζ some p-power root of unity. But we have
already excluded such exceptional zeroes, so we must have that the extension is
unramified at p as desired.

Observe that we have a surjective homomorphism

ZpJGal(H∞/Q)K ։ Zp[χ]JT K

via σ 7→ η(σ)−1. This gives that φ(G) is stable under multiplication by Zp[χ]JT K,
i.e., φ(G) is a Zp[χ]JT K-module. Let M be the O-span of φ(G). Note this is
equivalent to the ΛO-span, as well as the TP-span. We have that M℘ is a ΛO,℘-
module (MP is a TP-module.) Then M ⊆ HomTP/I(Eη, E1) and M℘ = MP.
In fact, one has that

M℘ = HomTP/I(Eη, E1).

Suppose not. Then there exists a submodule E′
1 ( E1 so that

φ(G) ⊂ HomTP/I(Eη, E
′
1).

We have that the exact sequence

0 // E1/E
′
1

// E/E′
1

// Eη // 0

splits over H∞. Using that Gal(H∞/Q) is abelian, we can write E/E′
1 as

E/E′
1 = ker(Frobℓ−1)⊕ ker(Frobℓ−η(ℓ))

for any ℓ with η(ℓ) 6≡ 1(mod℘). This is in fact a splitting of Gal(Q/Q)-modules
and so gives that E has a type-1 quotient, a contradiction. Thus we obtain
that M℘

∼= E1 as a TP-module. Looking back at how E, and hence E1 was
constructed, we see that we can write

M℘
∼=

m
⊕

i=1

ΛO,℘/℘
ri

for some positive integers m and ri.
Our goal is to determine

∑

ri in terms of ord℘(Ĝψ(T )). To do this we need
to use Fitting ideals, which we now briefly review. For a more substantial treat-
ment of Fitting ideals one should consult [MW] or [Northcott]. Let R be a
commutative ring and M a finitely generated R-module. There exists r ∈ Z,
N ⊂ Rr so that we have an exact sequence



98 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

0 // N
ϑ

// Rr
̺

// M // 0.

Definition 5.45. The Fitting ideal FittR(M) is the ideal in R generated by the
elements det(Θ) for all Θ where Θ is an r × r matrix of the form

Θ =







ϑ(x1)
...

ϑ(xr)







where (x1, . . . , xr) runs through all r-tuples of elements in N .

One can show that FittR(M) is independent of r and ̺ so depends only on
the module M . We now state the relevant facts about Fitting ideals.

1. If M = R/a, where a is an ideal of R, then FittR(M) = a.

2. If a is an ideal of R, then FittR/a(M/aM) = FittR(M)(mod a).

3. If M ∼= M1 ×M2, then FittR(M) = FittR(M1) FittR(M2).

4. If a is a finitely generated ideal of R and M is a faithful R-module, then
FittR(M/aM) ⊂ a.

Lemma 5.46. With the set-up as above, we have
∑

ri ≥ ord℘(Ĝψ(T )).

Proof. Observe that the above properties give us FittΛO,℘(M℘) = ℘
P

ri . Thus,

if we can show that FittΛO,℘(M℘) ⊆ (Ĝψ(T )) we will be done. Write L =

L (1)⊕L (η) as in the proof of Proposition 5.42. The submodule L (1) of L is a
faithfulTP-module and so FittTP

(L (1)) = 0 using property 4 above with a = 0.

Applying property 2 we obtain FittTP/I(L
(1)/I) = 0(mod I). We now need to

translate this into a statement about M℘. Recall that TP/I ∼= ΛO,℘/(Ĝψ(T ))
as ΛO,℘-algebras, E1

∼= L
(1)/I as a TP/I-module, and that M℘

∼= E1 as a
TP/I-module. Using these isomorphisms, we obtain that

FittΛO,℘/(Ĝψ(T ))(L
(1)/(Ĝψ(T ))) = 0(mod Ĝψ(T ))

and

FittΛO,℘/(Ĝψ(T ))(L
(1)/(Ĝψ(T ))) ∼= FittΛO,℘/(Ĝψ(T ))(E1)

∼= FittΛO,℘/(Ĝψ(T ))(M℘).

Thus, we have that FittΛO,℘/(Ĝψ(T ))(M℘) ⊆ (Ĝψ(T )). Using that FittΛO,℘ (M℘) =

FittΛO,℘/(Ĝψ(T ))(M℘), we have the result. (Note that this follows from the defin-

tion of the Fitting ideal along with the fact that (Ĝψ(T )) ⊆ ℘.)
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Observe that there is an isomorphism OJxK ∼= ΛO given by 1 + x 7→ (1 +
p)−1(1 + T )−1. This allows us to rephrase the lemma as follows.

Corollary 5.47. With the set-up as above, we have
∑

ri ≥ ord℘′(gχ−1ω(x))
where ℘′ ⊂ OJxK is the prime corresponding to ℘ under the isomorphism OJxK ∼=
ΛO.

Proof. To see this, just change variables in the lemma using the given isomor-
phism and that we assumed p /∈ ℘ to transfer to a statement about gχ−1ω(x).

We now have a relation between the order of a zero of gχ−1ω and the size of
M , which in turn measures the size of G = Gal(N∞/H∞). One should think of
this as saying the order of the zero of gχ−1ω gives a lower bound on the size of the
extension N∞/H∞. The goal is to connect this information back to arithmetic
information.

Lemma 5.48. The group Gal(N∞/Q
χ
∞) is abelian.

Proof. Observe that ∆′ ∼= Gal(H∞/Q∞) acts on G via η−1, which restricts to
χ on ∆′. We already know that Gal(H∞/Q

χ
∞) and G are abelian, so it only

remains to show that for σ ∈ Gal(H∞/Q
χ
∞) and g ∈ G, we have σgσ−1 = g.

However, we know that σ · g = σgσ−1 and this is χ(σ)g since ∆′ acts via
χ. However, χ restricted to Gal(H∞/Q

χ
∞) is trivial, so we obtain the desired

result.

Exercise 5.49. Prove there exists an extension N ′
∞/Q

χ
∞ so that G ∼= Gal(N ′

∞/Q
χ
∞).

(Hint: Use class field theory that the fact that Gal(N∞/Q
χ
∞) is abelian and that

G is a subgroup of Gal(N∞/Q
χ
∞).) In particular, Gal(N ′

∞/Q
χ
∞) is an unramified

abelian p-extension on which ∆ acts by χ.

We can now apply the fact that χ is odd to conclude that we have a surjection
of Γ-modules

X−
։ Gal(N−

∞/Q
χ
∞) ∼= G.

Thus, we have a surjection of OJxK-modules

X− ⊗Zp[∆] O ։ G⊗Zp[∆] O = G⊗Zp[∆′] O ։ M.

Let fχ be the characteristic polynomial of X− ⊗Zp[∆] O as a OJxK-module and
fM the characteristic polynomial ofM as anOJxK-module. The above surjection
implies that fM | fχ. Write fM =

∏

j fj where fj are distinguished polynomials
as before. Observe that we have

⊕

j

OJxK℘′/(fj(x)) = M℘′

∼= M℘

∼=
⊕

j

OJxK℘′/℘′ord℘′ (fj)

∼=
⊕

j

OJxK℘′/℘′rj .
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Thus, we have that

ord℘′(fχ) ≥ ord℘′(fM )

=
∑

j

rj

≥ ord℘′(gχ−1ω(x)).

This completes the proof of the main conjecture in the case of F = Q using
that we know µχ = µan

χ = 0 in this case. In the case of general totally real
number fields, one must make further arguments to deal with the µ-invariants,
a topic we do not address here.



Bibliography

[AM] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Alge-
bra, Perseus Books, Cambridge, Mass. (1969).

[CF] J.W.S. Cassels and A. Frohlich, Algebraic Number Theory, Academic
Press Inc., Washington, D.C. 1967.

[DR] P. Deligne and K. Ribet, Values of abelian L-functions at negative in-
tegers over totally real fields, Invent. Math. 59, 227-286 (1980).

[DS] P. Deligne and J-P Serre, Formes modulaires de poids 1, Ann. Scient.
Ec. Norm. Sup., 4e serie 7, 507-530 (1974).

[DI] F. Diamond and J. Im, Modular forms and modular curves, Seminar
on Fermat’s Last Theorem, CMS Conference Proceedings Volume 17,
39-134 (1995).

[DS] F. Diamond and J. Shurman, A First Course in Modular Forms, Grad-
uate Texts in Mathematics 228, Springer-Verlag (2000).

[Hida1] H. Hida, On congruence divisors of cusp forms as factors of the special
values of their zeta functions, Invent. Math. 64, 221-262 (1981).

[Iwas1] K. Iwasawa, On the µ-invariants of Zℓ-extensions, Number theory, Al-
gebraic Geometry, and Commutative Algebra (in honor of Y. Akizuki),
Kinokuniya: Tokyo, 1-11 (1973).

[Jan] G. Janusz, Algebraic Number Fields, Graduate Studies in Mathematics
Vol. 7, AMS (1996).

[Kob] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Grad-
uate Texts in Mathematics 97, Springer-Verlag (1991).

[Lang1] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics
110, Springer-Verlag (1986).

[Lang2] S. Lang, Cyclotomic Fields I and II, Graduate Texts in Mathematics
121, Springer-Verlag (1990).

101



102 BIBLIOGRAPHY

[Mats] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Ad-
vanced Mathematics 8, (1994).

[Mazur] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Etudes
Sci. Publ. Math. 47, 33-186 (1977).

[MW] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent.
Math. 76, 179-330 (1984).

[Milne1] J.S. Milne, Algebraic Number Theory, http://www.jmilne.org.

[Milne2] J.S. Milne, Class Field Theory, http://www.jmilne.org.

[Milne3] J.S. Milne, Modular Functions and Modular Forms,
http://www.jmilne.org.

[Miyake] T. Miyake, Modular Forms, Spinger-Verlag (1989).

[Northcott] D.G. Northcott, Finite Free Resolutions, Cambrdige Univ. Press,
Cambridge-New York 1976.

[Skinner] C. Skinner, Iwasawa theory course notes, University of Michigan, win-
ter semester (2002).

[Ribet] K. Ribet, A modular construction of unramified p-extensions of Q(µp),
Invent. Math. 34, 151-162 (1976).

[Rubin] K. Rubin, Euler Systems, Hermann Weyl Lectures, The Institute for
Advanced Study, Annals of Mathematics Studies 147, Princeton Uni-
versity Press (2000).

[Wash] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in
Mathematics 83, Second Edition, Springer (1991).

[Wiles1] A. Wiles, On ordinary λ-adic representations associated to modular
forms, Invent. Math. 94, 529-573 (1988).

[Wiles2] A. Wiles, The Iwasawa conjecture for totally real fields, Annals of
Math. (2) 131 no. 3, 493-540 (1990).


