An Introduction to Iwasawa Theory

Notes by Jim L. Brown






Contents

1 Introduction

2 Background Material
2.1 Algebraic Number Theory . . . . .. .. ... ... ... .....
2.2 Cyclotomic Fields. . . . .. .. .. ... .. oL
2.3 Infinite Galois Theory . . . . . .. ... ... ... ... ...
2.4 Class Field Theory . . . . . .. ... ... ... ... .......
2.4.1 Global Class Field Theory (ideals) . . . ... ... .. ..
2.4.2 Local Class Field Theory . . ... ... ... .. .....
2.4.3 Global Class Field Theory (ideles) . . ... ... ... ..

3 Some Results on the Sizes of Class Groups
3.1 Characters. . . . . . . . . o e
3.2 L-functions and Class Numbers . . . . . .. .. ... ... ....
3.3 p-adic L-functions . . . . . .. .. .o
3.4 p-adic L-functions and Class Numbers . . . . ... ... .. ...
3.5 Herbrand’s Theorem . . . . . . ... ... ... ... .......

4 Zp-extensions
4.1 Introduction . . . . . . . . . . . ...
4.2 Power Series Rings . . . . . . . . ... ...
4.3 A Structure Theorem on Ap-modules . . . . . ... ... ....
4.4 Proof of Iwasawa’s theorem . . . . . . ... ... ... ......

5 The Iwasawa Main Conjecture
5.1 Introduction. . . . .. . .. ... ... ... ..
5.2 The Main Conjecture and Class Groups . . . . . ... ... ...
5.3 Classical Modular Forms . . . . . . ... .. ... ... . .....
5.4 Converse to Herbrand’s Theorem . . . . . ... ... .. .....
5.5 A-adic Modular Forms . . . . . .. ... .. ... .........
5.6 Proof of the Main Conjecture (outline) . . . . . ... .. .. ...



CONTENTS



Chapter 1

Introduction

These notes are the course notes from a topics course in Iwasawa theory taught
at the Ohio State University autumn term of 2006. They are an amalgamation
of results found elsewhere with the main two sources being [Wash] and [Skinner].
The early chapters are taken virtually directly from [Wash] with my contribution
being the choice of ordering as well as adding details to some arguments. Any
mistakes in the notes are mine. There are undoubtably type-o’s (and possibly
mathematical errors), please send any corrections to jimlb@math.ohio-state.edu.
As these are course notes, several proofs are omitted and left for the reader to
read on his/her own time. The goal of the course was to give the students a
feel for the arithmetic side of Iwasawa theory as much as possible with the clear
goal of discussing the main conjecture. To this end, analytic arguments are
generally omitted entirely. The students were assumed to be familiar with basic
algebraic number theory and have been exposed to class field theory previously.
Background material is presented, though in more of a fact gathering framework.

Classically Iwasawa theory was concerned with the study of sizes of class
groups of cyclotomic fields and other related fields. More recent results are
phrased in terms of "main conjectures” of Iwasawa theory. These main con-
jectures relate the sizes of class groups, or more generally Selmer groups, to
p-adic L-functions. In these notes we will focus on the classical theory with the
ultimate goals of proving Iwasawa’s theorem about the sizes of class groups in
Z,-extensions and stating the main conjecture of Iwasawa theory for totally real
fields and outlining Wiles’ proof. We now give a brief overview of the two main
goals.

Let K,, = Q({pn) for n > 1 and Koo = Q((p=) = |JK,. Observe that
Gal(Ko/Q) = Z) via the map o +— a, € Z; where a, is determined by the
equation o(¢yn) = (7. Recall that one has an isomorphism

Z; > (Z/pL)* X Lp.
Set Qo = Kéf/”Z)X so that
Gal(Qu/Q) X Zp.

5



6 CHAPTER 1. INTRODUCTION

The extension Qo/Q is what is called a Zy-extension. Let v € Gal(K«/Q)
be such that v +— 1+ p € Z) in the above isomorphism. The image of v in
Gal(Qu/Q) is a topological generator and we still denote it as 7.

Let x : (Z/NZ)* — Q" be a primitive Dirichlet character. We view y as a
character of Gal(Q/Q) via

x : Cal(@/Q) — GalQ(¢y)/Q) = (Z/NZ)* — T

Let QX = chr *be the splitting field of . Observe this means that Gal(Q/QX) =2
ker y and so x can be viewed as a character of Gal(QX/Q). One should note
that often one will see QX written as Q. We use the superscript notation to
remind the reader this is the fixed field of ker x as well as to ease notation as we
will often be dealing with the subscripts that arise in dealing with Z,-extensions
as well.

Assume now that QX N Q. = Q. Set Fipy = QXQu. We have Gal(F,,/Q) =
I' x A where

A = Gal(F /Qu) = Gal(QX/Q)

so x can be viewed as a character of A and

I' = Gal(Fo/Qx0) = Gal(Qu /Q) =2 Z,

so we view 7 as an element of I'.

There are fields F,, C F, that correspond to the subgroups I'?" of T' (and Q,,
corresponding to the subgroups p"Z, of Z,) such that Gal(F,,/QX) = T'/TP" =
Z/p"Z. Let L, be the maximal unramified abelian p-extension of F,,. The
group X,, = Gal(L,,/F,) is isomorphic to A,,, the p-Sylow subgroup of the class
group of F,,. Set X = Gal(Ls/Fx) so we have the following diagram of fields:

Thus, X is a A x I'-module. In fact, X is a Z,[I']-module. One can show that
Zp[T] = A:=Z,[T]. Thus, X is a A-module. In fact, X is a finitely generated
torsion A-module so has that there exists a A-module homormophism

X - (6]9 A/p“i) & | DA/ fm™
j=1

=1



where the kernel and cokernel are A-modules of finite order, p;, m; > 0, and
the f;(T') are irreducible monic polynomials in Z,[T]. The terms p; and the
polynomial fx(T) =[] f;(T)™ are uniquely determined by X. The following
theorem tells us exactly how the size of the p-part of the class group grows in a
Zy-extension.

Theorem 1.1. (Twasawa’s Theorem) Let p°~ be the exact power of p dividing
the class group of F,,. There exists integers A > 0, u > 0, and v all independent
of n and no € N such that for n > ng one has
en = An+ up™ + v.

Set V = X ®z, @p. This is a finite dimensional vector space since V =

Qu(T)/ fx(T). Set
VX={veV:ov=x(o)v VoeA}

This is the x-isotypical piece of V. Let f,(T) be the characteristic polynomial
of v —1 acting on V,. Note that fx(T) is the characteristic polynomial of v —1
acting on V' so f,(T) | fx(T). If instead of tensoring with Q, we tensored with
Oy = Zp[x] we would also obtain a p, term corresponding to the power of w
occurring where w is a uniformizer of O,.

The main conjecture relates the characteristic polynomial f, (T') and pu, to

a p-adic L-function and an analytic u factor. Let 1 be any primitive Dirichlet
character. Set

Ho(T) = Y(1+p)(1+T)-1 1 = 1 or has conductor a power of p
LA 1 otherwise.

There exists Gy (T) € Oy[T] such that

Lo(1 = 5,8) = Gu((L+p) = )/Hy(L+p)° —1) (s €Z,)
such that

Lo(1=n,0) = (1= " )" L1 —npw™) (0> 1).

This is the “p-adic L-function” which we will discuss in more detail later. The
Weierstrass preparation theorem states that we can write

Gy(T) = "% gy (T)uy (T)
where pit > 0, gy (T) is a monic polynomial in Oy [T, and uy(7T') is a unit in
Oy[T1]-

Theorem 1.2. (Main Conjecture of Twasawa Theory) Let x be odd of order
prime to p and assume QX N Qu = Q. Then

(T) =g 1,1 +p)(+T)"" 1)
and

__ an
:LLX - :LLXfl(_u'
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We connect the main conjecture back to results on sizes of class groups by
proving the following theorem.

Theorem 1.3. Let p be an odd prime and let F' be an abelian imaginary exten-

sion of Q of degree prime to p. Let x : Gal(F/Q) — @: be an odd character.
Suppose x # w, then

[ AR = 10x/(Lp(0, x ™ w))]
where A%, is the x-isotypical piece of the p-part of the class group of F.



Chapter 2

Background Material

This chapter will contain a very brief review of some of the background material
necessary to understand the material in this course. It is assumed that you have
seen this material before and may need a quick refresher. If you are unfamiliar
with any of the results you should consult [CF], [Milnel], or [Milne2].

2.1 Algebraic Number Theory

Let L/K be a finite extension of number fields with ring of integers O, and Ok
respectively.

Theorem 2.1. FEvery non-zero proper ideal a C Ok admits a unique factoriza-
tion
a =il

with e; > 0 and the p; prime ideals.

Given a prime ideal p C Ok, we can consider the ideal pOp in Op. The
previous theorem allows us to factor this ideal into a product of prime ideals:

(2.1) pOL = P17
where the g, are prime ideals of Q. We make the following definition.

Definition 2.2. Given a factorization as in Equation 2.1, we call e; the ram-
ification index of p at p;. We denote the ramification index by e(p;/p). The
prime p is said to ramify in L if some e; > 1. The residue class degree of p at p;
is the dimension of the vector space Or/p; over Ok /p. We denote the residue

class degree by f(pi/p).
Proposition 2.3. A prime p in Ok ramifies in Oy, if and only if p| disc(Or,/Ok).

One has the following important theorem.

9



10 CHAPTER 2. BACKGROUND MATERIAL

Theorem 2.4. With the set-up as above,

T

Ze(m/@)f(m/@) =I[L: K].

i=1

In these notes we will only be interested in the case where L/K is a Galois
extension. This assumption allows us to simplify Theorem 2.4 considerably.

Corollary 2.5. Suppose L/K is Galois and 0 # o C Ok is a prime ideal.
Then e(pi/p) = e(p;/p) and f(pi/p) = f(pj/p) for alli,j as in Equation 2.1.
In particular, we have [L : K] =ref.

This corollary follows immediately from the following proposition.

Proposition 2.6. The Galois group Gal(L/K) acts transitively on the set of
prime ideals p; of Or lying over .

Proof. Suppose that o(p;) # g, for all ¢ € Gal(L/K). The Chinese remainder
theorem says that there exists * € Op such that x = O(mod ;) and =z =
1(mod o(gp;)) for all o € Gal(L/K). Observe that the norm

Ny k(z) = H o(x)

o€Gal(L/K)

is in Og N p; = p since p; is a prime ideal and by definition the norm lands
in Og. However, z ¢ o(p;) for any o € Gal(L/K), hence o(z) ¢ p; for any
o € Gal(L/K). Thus, [[o(z) ¢ Orx N p; = g, a contradiction. O

Definition 2.7. Let p be a prime of Oy,. The subgroup D, = {0 € Gal(L/K) :
o(p) = p} is called the decomposition group of p over K.

Proposition 2.6 gives the following Corollary.

Corollary 2.8. For L/K as above we have:

(a) [Gal(L/K) : Dy) = for any p|p

(b) Dy =1 if and only if pOy, is totally split

(¢) D, = Gal(L/K) if and only if pOr, =p™ for n =L : K]
(d) #Dp =ef

It is not difficult to see that one has a natural map D, — Gal((Or/p)/(Ok/p)).
It turns out that this map is also surjective ([Langl], Proposition 14). This leads
to the following definition.

Definition 2.9. The kernel I, C D, of the homomorphism D, — Gal((Or/p)/(Ok/p))
is called the inertia group of p over K.

It is then clear from Corollary 2.8 that we have:

Corollary 2.10. For L/K as above we have that #I, = e.
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Let ¢ = #Oxk/p. The theory of finite fields gives that for p|p there is an
automorphism @, of Or/p fixing Ok /p given by G,(x) = x9. This is often
referred to as the Frobenius automorphism. The isomorphism

Dy /1, = Gal((Or/p)/(Ok /p))

shows that we have a coset o,I, that corresponds to the Frobenius automor-
phism. Any element of this coset is called a Frobenius automorphism of p and
will be denoted Frob,. If I, is trivial, i.e., p is unramified, then there is a
well defined element Frob, € D,. It is of course important to be able to re-
late Frob,, to Froby, for different primes p;|p. We know that there exists
7 € Gal(L/K) so that 7p; = po. It is then easy to see that Dy, = 7Dy, 7!
and Froby, = 7 Frob,, 771, If Gal(L/K) is abelian and p unramified in L, we
are able to associate a unique element in Gal(L/K) lying in D, for all p|p. We
then call this element Frob,,.

It will also be necessary to use the following fact on decomposition groups.

Proposition 2.11. Let L/K be a finite Galois extension with p a prime of K
and p a prime of L with p|p. There is an isomorphism D, = Gal(L,/K,) where
L, and K, denote the completions.

2.2 Cyclotomic Fields

In this section we recall some basic facts about cyclotomic fields. These number
fields will be the primary focus of classical Iwasawa theory, so we give some of
the relevant details in this section.

Definition 2.12. A primitive n'® root of unity is a number ¢, € C such that
(" =1but ™ # 1 for every 0 < m < n. The field Q((,) is called the n'"
cyclotomic field.

Exercise 2.13. Show that (" is a primitive n'™ root of unity if and only if
ged(m,n) = 1.

Define the n'!' cyclotomic polynomial ®,,(x) by
eu0)= [ @-¢h).

0<m<n
(m,n) =1

Note that the roots of this polynomial are precisely the primitive n'" roots of
unity. It is clear that we have deg(®,,) = ¢(n). It is also true that ®,,(z) € Q[z].
This can be seen by using the fact that

(2.2) a" =1 =[] ®a(x)

d|n
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and induction on n. Observe that ®,,(¢,) = 0, so deg(Q(¢,)/Q) < w(n). We
also have that Q((,) is Galois over Q since @, (x) splits over Q((,).
Applying Mobius inversion to Equation 2.2 we obtain

D, (x) = H(:Ed — 1)nn/d),

d|n
In particular, for n = p”, one has

T
P —1

Pt =17

Ppr(z) =

Exercise 2.14. Prove the following are equivalent:

1. ® is irreducible over Q.

2. Gal(K/Q) acts transitively on the roots of ®y,.

3. Gal(K/Q) = (Z/nZ)* by (0 — m such that o((,) = 7).
1. #Gal(K/Q) = ¢(n).

Lemma 2.15. Suppose n = p" with p a prime. Then

1. deg(Q(¢r)/Q) = (") =p" —p" 1.

2. pOq¢,ry = (1 = Cpr)*"(pT) and (1 — Cpr) is a prime of Og(c,.)-
3. Oq(c,r) = ZGr]

4. Dgee,ry = dpp (ror=1)

Proof. First observe that clearly we have Z[(pr] C Ogc,r)-

If ¢~ is another p” th root of unity, then there exists s, ¢ € Z such that p { st and

G = (G )ts G = G Thus Q(¢pr) = Q(¢),) and Z[(yr] = Z[(,,-]. Moreover,

1— G o
1—Cp :1+Cpr+...+CpT1€Z[<pr]
p’l"
- — G 1=Gr . :
and similarly, o € Z[¢pr]. Thus T is a unit in Z[(pr], and hence is a
— ¢ —(pr
unit in OQ(%T).
Note
a? -1 -1 1
T = = = . p—1 — P
D, () T 1= 11 1+t+---4+tP 7, t=aF |
ie., @ (1) = p.

Using the definitions we see that

q)p’“(l)

I
—~
L
LY
>,
~—

Il
s
.
—_
|
L%
]
~—
b3
=
)
=
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with u a unit in Z[{,]. Therefore we have an equality of ideals in Oq(¢,r) given
by pOqg(c,-) = (1 = Cpr)?®"). Thus POq(c,) has at least ¢(p") prime factors in
Oq(¢,r)- Therefore we have deg(Q((pr)/Q) > ¢(p"). But we already had that
deg(Q(¢pr)/Q) < @(p"), therefore we have that

deg(Q(Gr)/Q) = (") =p" —p" "

Observe that we also have that (1—(,-) must generate a prime ideal for otherwise
we would have too many prime factors of pOg(c,.). This gives us part 2.

Now we compute (up to sign) disc(Z[(r]/Z). We have the formula (see for
example [Milnel], Prop. 2.33)

disc(Z[Cpr]/Z) = £ No,r) (P (Gpr)-

To get @, (Cpr), we differentiate (z'" " = 1)®pr(z) = 2P — 1 and substitute
Py
pr%. Clearly we have that
T - 1
p

T = Cpr to get @ (Gpr) =

No(¢,m)/0(Gr) = £1

and
No(e,y/0®") = (p7)#@) = pre@),

Claim: Ng,.)/o(1 — Cp y=pP, 0<s<r.

Pf: The minimal polynomial of 1 —(p,r is ®,~(1 —z), which has a constant term
of ®,-(1) = p, so Ng¢,.)/o(l = Gr) = £p. Now let s < r, {f; is a primitive

pr =t root of unity, so the computation we just did with r replaced by r — s

gives NQ(CP /Q( Cp ) = £p. Now using that Ny g = Nz /g 0Ny, for fields
K C L C M and the fact that Ny, z (o) = oMLl if o € L, we obtain

No(e,r)/ol = Gr) =

where i

a=[Q(¢r) : QG )] = (@) /(") = p°. O
Thus we have Ny, y/0(®)-(¢pr)) = £p© where ¢ = p"~!(pr —r —1). So we
have that disc(Z[(,r]/Z) is a power of p. Hence disc(Og(c,.)/Z) is a power of p
using the formula disc(Ogc,.)/Z)[Og(c,) : ZIGpr]]* = disc(Z[¢pr]/Z) ([Milnel],
Remark 2.24)

We also have that [Ogc,,) : Z[(r]] is a power of p, and hence pM (Og¢,.)/Z[¢pr]) =
0 for some M, i.e., pMOQ(cpT) C Z[(pr]. Now we use that for p = (1 — (pr) we
have f(p/p) =1 to get that the map

Z[pZ — Og(c,ry /(1 = Gpr)
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is an isomorphism. Thus Z + (1 — (»r)Oq(c,~) = Ogc,-) and so

(2.3) Z[Gpr] + (1 = Gpr)Oq¢,r) = Oare,r)-
This gives
(2-4) (1 - C;DT)Z[CPT] + (1 - CPT)QOQ(CPT) = (1 - C;DT)OQ(CPT)'

Now let @ € Og(c,»)- Then Equation 2.3 gives that a = o + v with o/ €
(1 = Gr)Oqc,-) and v € Z[(yr], and Equation 2.4 gives o/ = o/ + 7/ with
o € (1= Gpr)?Ogc,ry and v € Z[(pr]. Thus a = (v +7) + a”. So we get

Z[Gpr] + (1 = Gr)*Oge,r) = Ogieyr)-

We can iterate this to get Z[(pr ]+ (1 —Cpr )™ Oqc,r) = Ogc,r) for m € N. Since
(1 — ¢pr)?®") = p - unit, we have Z[(,r] +p"Oqc,) = Oqgc,r) for all m € N.
However, for large enough m, p™Ogq(c,.) € Z[Cpr]. Thus Z[Gpr] = Ogyc,.), i,
part 3 holds. Combining this with the above computation of disc(Z[(,r]/Z)
gives part 4 as well. O

We now generalize to the case of general n.

Proposition 2.16. Let ¢, be a primitive n' root of unity and let K = Q((y).
Then we have:

1. deg(K/Q) = ¢(n)

2. Ox = 7Z[G)

3. The prime p ramifies in K if and only if p | n (unlessn =2-odd and p = 2);
in particular, if n = p"m with ged(p,m) = 1, then

r

PO = (p1...ps)?¢")

in K with the p; distinct primes in K.

Proof. We proceed by induction on the number of primes dividing n. Consider
the fields:

K =0(G)
/ \
£=0(,) F = Q(Gw)
\ @ /

We look at how p factors in E and F’:
pOr = p?®") is totally ramified as given in the previous theorem.
pOp = p1...p, is unramified since p is relatively prime to the discriminant.
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Now we can consider the factorization of p in Ok by going up the tower in two
different ways. This shows that we must have deg(K/F) = ¢(p”) and that

pOk = (H qi)sa(pr)

where
piOx = q7?"

POk = qu'-

Therefore we have that deg(K/Q) = p(p")¢(m) = p(n) and we have part 1. To
finish the proof, we note the following lemma. O

and

Lemma 2.17. ([Milnel], Lemma 6.5) Let K and L be finite extensions of Q
such that

[KL:Q]=[K:Q]-[L:Q],
and let d = ged(disc(Ok /Z),disc(Or/Z)). Then

Ok, C dilOKOL.

Remark 2.18. Note that since p(p") = p"~(p—1), if n = 2 (odd number)and
p = 2 then it will happen that 2 divides n but does not ramify. One should also
note that Q(¢,) = Q(¢ap) if n in this case.

Remark 2.19. Let K = Q((p). The only roots of unity in K are those ¢ for
1 < s < p—1. This follows immediately from the fact that Q((,) NQ(¢,) = Q
if ged(m,n) = 1.

We can say a little more about how a prime p splits in Q(¢,) if p { n. First
we need the following lemma.

Lemma 2.20. Let p be a prime so that p{n. Let p be a prime of Q((,) lying
over p. Then the n'™ roots of unity are distinct modulo p.

Proof. This lemma follows immediately from the equation:

n—1

n=[]a-¢).

j=1
O

Note that this result does not hold for p | n. In particular, in Q(¢,) one has

Cp = 1(mod(1 —¢p)).

Lemma 2.21. Let p be a prime so that p f n. Let f be the smallest positive
integer so that pf = 1(modn). Then p splits into p(n)/f distinct primes in
Q(¢n), each of residue class degree f. In particular, p is completely split if and
only if p = 1(modn).
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Proof. Let p be a prime of Q((,) that lies over p. Recall from the previous
section the Frobenius automorphism of Q((,) that is defined by

op(z) = 2P (mod p)

for all z € Z[¢,]. We know that o, (¢,) is again an n'! root of unity. Therefore,
we can apply Lemma 2.20 to conclude that not only is 0, (¢,) = (¥ (modp), but
in fact 0y(¢,) = (2. We also have that the order of o, is the degree of the
residue class extension of (Z[(,]/pZ[¢n])/(Z/pZ). Thus

p/ = 1(modn) @(ﬁf =(p <:>U£ =1.

Recalling that the degree of Q(¢,)/Q is equal to the degree of the residue class
extension multiplied by the number of primes above p, we have the result. O

2.3 Infinite Galois Theory

It will often be necessary to talk about field extensions of infinite degree as
well as the corresponding Galois groups. We collect some basic facts here to
remind the reader of the similarities and differences between the Galois theory
of infinite extensions and the more familiar finite extensions.

Let K/k be a Galois extension of fields. As is custom, we write Gal(K/k) to
denote the set of automorphisms of K that leave k fixed pointwise. Let F' be a
field so that k C F' C K with F/k a finite extension. In particular, we have that
Gal(K/F) is of finite index in Gal(K/k). We define a topology on Gal(K/k) by
letting the sets Gal(K/F) form a basis of the neighborhoods of the identity in
Gal(K/k). With this topology one has that Gal(K/k) is profinite and

Gal(K/k) = lim Gal(K/k)/ Gal(K/F) = lim Gal(F'/k)
F F

where F' is running through the finite normal subextensions F/k or any subse-
quence so that UF = K. The ordering used is that of inclusion and the maps
are the natural maps Gal(F»/k) — Gal(Fy/k) for F; C F5. In this setting the
fundamental theorem of Galois theory reads:

Theorem 2.22. Let K/k be a Galois extension. There is a 1-1 correspondence
between closed subgroups H of Gal(K/k) and fields F with k C F C K such
that

H— K"

Gal(K/L) « L.
Open subgroups correspond to finite extensions.

Example 2.23. Let Q({p~) be the extension of Q obtained by adjoining all
p-power roots of unity. This extension will be very important to us as it is used
to produce the Z,-extension of Q. An element of Gal(Q(({p~)/Q) is completely
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determined by its action on the p-power roots of unity. Let n € N. For o €
Gal(Q(¢p=)/Q) we have o((pn) = (pn for some o, € (Z/p"7Z)*. Observe that
on = an_l(modpnfl) for all n > 1. In particular, this shows we obtain an
element of

2 = lim(Z/p"Z)* = lim Gal(Q(¢r)/Q).

Conversely, it is easy to see that given o € Z; one gets an element o €
Gal(Q(¢pe)/Q) given by the action o((pn) = (5. Thus we have Z,° = Gal(Q((p)/Q).
One should also note that the closed subgroup 1+ p"Z,, corresponds to its fixed

field @(Cp")

Exercise 2.24. Let F be a finite field and F its algebraic closure. Prove that
Gal(F/F) = Z.

Let K/k be a Galois extension, not necessarily finite. Let Ok and Oy be
the rings of integers of K and k respectively. We would like to discuss the rami-
fication of prime ideals as we did in the case of finite extensions. Unfortunately,
it is not true in general that Ok and Oy are even Dedekind domains.

Exercise 2.25. Show that for K = Q((p), Ok is not a Dedekind domain. It
may be helpful to consider the prime ideal p = ({, — 1,2 — 1,...) and its pth
power.

Since it is not possible to define the ramification of a prime in terms of its
prime factorization, we must find a new way. Recall that in the case of finite
extensions, if e is the ramification index of some prime ideal p at p, then we
have e = #I, where I, is the inertia group. We can use this fact to find a way
of defining ramification in infinite extensions.

As in the finite case, define the decomposition group D, of a prime ideal
p C Ok lying over p C Ok by

D, = {0 € Gal(K/k) : o(p) = p}.
The inertia group I, is defined by
I, ={o € D, : 0(a) = a(mod p) for all « € Ok }.

One can show that D, and I, are both closed subgroups of Gal(K/k). We now
define the ramification index of p at p to be e = #1,,.

The situation for infinite places is a little different. However, it turns out
that in the infinite case that e is always 1 or 2. In fact, I, is nontrivial in the
infinite case only when g is real and p is complex. In this case the inertia group
is generated by complex conjugation.
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2.4 Class Field Theory

Class field theory provides a description of abelian extensions of number fields.
For those unfamiliar with the subject or those needing a more thorough re-
fresher then that provided here are encouraged to consult [CF] or [Milne2]. We
provide here only a statement of results and only those results we will need in
this course. We begin by recalling the statements of global class field theory in
terms of ideals before treating the statements in the language of ideles. Finally,
we give the statements of local class field theory. The interested reader should
note that the statements and applications of class field theory are in general
much more important and useful then the proofs of the statements.

2.4.1 Global Class Field Theory (ideals)

Let k£ be a number field and let I = I, be the group of fractional ideals of k.
Let S be a finite set of places of k and I° the subgroup of I generated by the
prime ideals not in S. Let my = [] " be an integral ideal of k and ms be
a square-free product of real archimedean places of k. We call m = mymo, a
divisor of k. For a € Oy, we write a = 1(mod* m) if (1) vy, (o — 1) > ¢; for all
primes g;|my; and (2) a > 0 for all the real primes dividing meo. Set Py.1 to
be the set of principal ideals of O that are generated by an element a so that
a = 1(mod* m). We write S(m) to denote the primes dividing m.

Definition 2.26. Let m be a divisor of k. The group Cy, = IS(m)/PmJ is called
the ray class group of k modulo m.

Theorem 2.27. ([Milne2]) Let m = [[o™®) be a divisor of k. There is an
exact sequence

(2.5) 0 —U/Uns — Pn/Pn1— Cn —C—0

and canonical isomorphisms

Pu/Pai = [[{£} x [T (Ok/0™) = [[{£} x (Ox/mp)*,
ol

pfoo ploo
plm plm plm
where
Pn = {ack”:ordy(a) =0 for all p|my},
U - or,
Uw1 = UnN Pm71.

Example 2.28. Let m = 1. In this case the ray class group Cy, is nothing more
then the familiar ideal class group C.
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Example 2.29. Let n € N and set m = n. In this case we see that I°(™) is the
set of ideals generated by rational numbers relatively prime to n. If (x) € Py 1,
then we must have © = 1(modn) and = > 0. The exact sequence becomes

0 — {£1} — (Z/n2)* — Cn — 0.
Thus, we see that the ray class group is isomorphic to (Z/nZ)* /{+£}.
Exercise 2.30. Compute IS(m)/PmJ for k=Q and m =n.

Let K be a finite Galois extension of k. Further assume that K/k is abelian,
i.e.,, Gal(K/k) is an abelian group. Let p be a prime of Ok and p a prime of
Oy, with p|p. Recall from Section 2.1 that if p is unramified in K then there is
a well defined Frobenius element Frob,, in Gal(K/k). Let S be the set of prime
ideals in k that ramify in K. We can define the Artin map

Yk o 19 — Gal(K/k)

to be the map defined by
Yrn(pit - pir) = [ [ Frobg, .
i=1

Recall that one has a norm map Nmg/, : Ik — I} defined by Nmg/,(p) =
o/ ®#/9) where p = pN Oy. The following proposition follows from basic proper-
ties of the Frobenius element and how it behaves with respect to field extensions.

Proposition 2.31. Let L be an abelian extension of k so that k C K C L
and let S be any finite set of primes of k containing all those that ramify in L
and also the primes of K lying over primes of k in S. The following diagram
commutes:

P
I8 M Gal(L/K)
leK/k linclusion
P
I8 U Gal(L/k).

Corollary 2.32. Let L be an abelian extension of k. Then
Nmy, ,(I7) C ker(¢yy, : I° — Gal(L/k)).
Definition 2.33. Let ¢ : I° — G be a group homomorphism. We say v admits

a divisor if there exists a divisor m of k so that S(m) C S and ¥(Pn1) = 1, i€,
1 admits a divisor if and only if it factors through C,.
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Theorem 2.34. (Reciprocity Law) Let K be a finite abelian extension of k and
let S be the set of primes of k ramifying in K. The Artin map ¢k % —
Gal(K/k) admits a divisor m with S(m) = S and defines an isomorphism

17 /P NmK/k(IIS() = Gal(K/k).

One should note that this theorem does not imply that any abelian exten-
sions of k exist. It merely states that if you already have an abelian extension
that it is a quotient of the ray class group by a particular subgroup, namely,
the image of I3 under the norm map.

Definition 2.35. We say a subgroup H C I,f(m)

modulo m if Py C H C I;™.

is a congruence subgroup

Theorem 2.36. Let H be a congruence subgroup of Iks(m). There exists a
unique abelian extension K/k with its only possible ramification being at the
primes dividing m such that H = Py, 1 NmK/k(If{(m)) and I:(m)/H >~ Gal(K/k)
under the Artin map.

Note that this theorem shows that given H the associated field K is such
that
1. K is a finite abelian extension of k
2. m(p) = 0 implies that p is not ramified in K
3. the prime ideals not in S(m) that split in K are precisely those contained in H.

Observe that if one is given a divisor m one can set H = Py 1 and use the
theorem to conclude there exists a field Ky, so that Cy,, = Gal(Ky, /k). This field
Ky is called the ray class field. Note that the primes of k that ramify in Ky,
are precisely the primes dividing m. If we choose m = 1 then we obtain Cy,, = C
as noted above. In this case we call the associated ray class field the Hilbert
class field. The Hilbert class field is the maximal unramified abelian extension
of the field K. We will generally denote the Hilbert class field of a field K by H .

For a field K C K, set Nm(Cr,m) = P Nmg /(I ™) (mod P 1). We
then have the following corollary classifying abelian extensions.

Corollary 2.37. Fiz a divisor m. The map K — Nm(Ck w) is a bijection from
the set of abelian extensions of k contained in Ky, to the set of subgroups of Cy,.
We also have the following:

KiCcK, & Nm(CKl’m) D) Nm(CKZ’m)
Nm(CKlKg,m) e Nm(C’Klym) ﬂNHl(CKlym)
Nm(CKlﬂKg,m) = Nm(C’Klym) Nm(OK%m).
We end this section with a couple of applications that will be useful in these

notes. Let K/FE be a Galois extension of number fields. We know from our
discussion above that for a field K we have Cx = Gal(Hg /K) as groups where
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we include the K in the notation for the ideal class group to avoid any confusion.
We now show that they are in fact isomorphic as Gal(K/FE)-modules. Observe
that we have an action of Gal(K/FE) on Gal(Hgk/K) given as follows. Let
T € Gal(K/E) and o0 € Gal(Hg /K). Extend 7 to Gal(Hg /K) and denote this
extension by 7. The action is then given by 7-0 = 707~ !. Let p be a prime
ideal of K. Under the Artin map @ — Frob,. Thus, we have that 7p maps to
Frob,, = 7 Frob, Fl=7. Frob, as desired.

With K and E as above, assume that Hg N K = E. We wish to show that
the norm map Cx — Cg on ideal class groups is surjective and the following
diagram commutes:

Cx = Gal(Hp /K)
Norml lrest.
Ce = Gal(Hg/E).

First note that since HgNK = E we have that Gal(HgK/K) = Gal(Hg /E)
and since Hg K C Hg, we obtain that the map Gal(Hx/K) — Gal(Hg/F) is
onto. Therefore, if we can show the diagram commutes we will have that the
norm map on the ideal class groups is surjective. We leave the proof of the fact
that the diagram commutes as an exercise. It is merely an exercise in keeping
track of how the Frobenius acts, one that should be done though!

Exercise 2.38. Prove the diagram above commutes.

2.4.2 Local Class Field Theory

We would like to treat global class field theory from the idelic viewpoint. How-
ever, before we do that we need to review local class field theory.

Let k be a local field and let k2P be the maximal abelian extension of k. The
theorems of local class field theory are as follows.

Theorem 2.39. (Local Reciprocity Law) For any nonarchimedian local field k
there is a unique homomorphism

o+ kX — Gal(k* /k)

such that

1. for any prime w of k and any finite unramified extension K of k, pr(w) |k=
FI“ObK/k,'

2. for any finite abelian extension K of k, Nmy ,(K*) is contained in the
kernel of x — @i (x) |k and ¢k induces an isomorphism

ekt k) Nmgp (K*) — Gal(K/k);

3. one has
O/ (\Nmy,(0F) = I(K/k)
L
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where [(K/k) is the inertia subgroup of Gal(K/k) and L runs through all finite
subextensions of K/k.

The maps ¢ and @k, are referred to as the local Artin maps. Note that
part (2) of the local reciprocity theorem gives the following commutative dia-
gram:

R Gal(k® /k)

l lmu

kX N (K %) e Gal(K/k)

Theorem 2.40. (Local Existence Theorem) A subgroup N of k™ is of the form
Nmg /i, (K*) for some finite abelian extension K of k if and only if it is of finite
index and open.

Corollary 2.41. The map K — Nm(K™) is a bijection from the set of fi-
nite abelian extensions of k to the set of open subgroups of finite index in k*.
Moreover, one has

KiC K & Nm(K[)> Nm(K))
Nm((K;-K2)*) = Nm(K])NNm(K)
Nm((K1 NK2)*) = Nm(K])Nm(K,).

2.4.3 Global Class Field Theory (ideles)

We now give the theorems of global class field theory in terms of ideles. The
formulation in terms of ideles allows one to study all places at once as well as
to look at infinite degree field extensions. The idelic version also makes clear
the relationship betweeen the global and local theories. The material in this
subsection as well as a review of ideles can be found in [Milne2].

Let k be a number field. Recall that the group of ideles is defined to be

A ={(zy) € H k) |z, € OF for all but finitely many v}.
Let S be a finite set of primes that contain all the archimedean primes. We

write A} ¢ to denote
Ik =TT o
veS vgS

We put a topology on A} so that A;ﬁ g is open for all such S. This is accom-
plished by declaring sets of the form

H U — U, open in kX for all v;
| U, =0 for almost all v
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to be open sets.

Recall that k embeds in A} via the diagonal embedding. This allows one
to define the idele class group Cy of k to be A /k. Note that there is also a
canonical surjective homomorphism

id:A; — I
(@o) +— [ porer@)

vfoo

with kernel A} g where So, = {v[oo}. In particular, this gives a description of
the ideal class group in terms of ideles:

Ck%Ck/(ij X HO;;)

v|oo vfoo

In particular, note that this shows the ideal class group is a quotient of the idele
class group. Of course, we would like to have the same result for the ray class
groups as well. Fortunately, we do.

Let m be a divisor of k. For each prime v | m, we set

Wm (U) = m(v)

Rso v real
1+m, v finite.

Observe that
Pog =k 0 ][ Wa(v).

vjm
Set
Al = T]*2 <[] Wa) | nAf
vim v|m
and
Wi = [ &5 x [ Wav) < [] 03
vim v|m vim
v|oo Voo

One then has the following theorem:

Theorem 2.42. ([Milne2]) Let m be a divisor of k.
1. The map id : A,fﬁm — I3(™) defines an isomorphism

A;m/(PmJ W) 2 Chy.
2. The inclusion map A} — A} defines an isomorphism

A;m/Pm,l = AS R
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Note that by combining the two parts of the theorem we obtain the desired
result that the ray class groups can be realized as quotients of the idele class
group. Therefore, by studying the idele class group we are in essence studying
all of the ray class groups at once.

Let K be a finite extension of k. Let (y,,) € A be an idele. We define the
norm of (y.,) to be the idele (z,,) € A} with a, = HNmKw/kU Yoo

w|v
Proposition 2.43. There exists a unique continuous homomorphism
or + AY — Gal(k* /k)

with the following property: for any K C k*® with K/k finite and any prime w
of K so that w | v, the diagram

Pu

kX Gal(K,,/ky)

l |

A (zo)—er((z0)) |k Gal(K/k)

commutes.

Theorem 2.44. (Reciprocity Law) The homomorphism i has the following
properties:

1o pp(k*) =1;

2. for every finite abelian extension K/k the map ¢y, defines an isomorphism

prcsn s AL /(R Nm(A)) = Gal(K/k)
i.e., the map . defines an isomorphism
ik Cr/ Nm(Ck) = Gal(K/k).
The prime v is unramified in K/k if and only if OF C k> Nmg (A)).

Theorem 2.45. (Ezistence Theorem) Let k be a fized algebraic closure of k.
For every open subgroup N C Cy, of finite index, there exists a unique abelian

extension K /k contained in k so that Nmg/, Cx = N. The prime v is unram-
ified if and only if k* O /k* C N.

Corollary 2.46. The map K — Nm(Cgk) is a bijection from the set of fi-
nite abelian extensions of k to the set of open subgroups of finite index in Cy.
Moreover, one has

KiCcK, & Nm(CKl)DNm(CKz)

Nm(CKl.K2) = Nm(CKl) n Nm(CKl)
Nm(CKlﬁIQ) = Nm(CKl) Nm(CKz)'



Chapter 3

Some Results on the Sizes
of Class Groups

This chapter serves to introduce a wide variety of results on the sizes of class
groups of cyclotomic fields. Many of the major results will be presented without
proof as we focus more on their applications. The interested reader can find their
proofs in chapters 3-6 of [Wash].

The second main purpose of this chapter is to introduce some of the tools
that will be necessary in later chapters, namely, characters, L-functions, and
p-adic L-functions. We will see that p-adic L-functions play a crucial role in the
main conjectures as discussed in chapter 5.

3.1 Characters

In this section we briefly review the definitions associated with Dirichlet char-
acters. Most of the information is probably familiar and so this section can be
used more as a reference for the terminology used subsequently.

Definition 3.1. A Dirichlet character is a multiplicative homomorphism
X : (Z/mZ)* — C* where m is a positive integer.

Given such a Dirichlet character, it is easy to see that one obtains a Dirichlet
character (Z/nZ)* — C* for any integer n with m|n by merely composing with
the natural map (Z/nZ)* — (Z/mZ)* — C*. The minimal such m so that
X gives a map (Z/mZ)* — C* is called the conductor of x. We write m,, if
confusion may arise. We say a character is primitive if it is defined modulo
its conductor. Note that given any character xy we always have an associated
primitive character.

Observe that for a character x we have x(—1) = 1. This allows us to split
our characters into those that satisfy x(—1) = 1, the so called even characters,
and those that satisfy x(—1) = —1, the odd characters.

25
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Let x and 9 be two characters of conductors m, and my respectively. We
define their product x¢ as follows. Define ¢ : (Z/lem(m,,my))* — C* by
©(n) = x(n)(n). This character may or may not be primitive. We define 1)
to be the primitive character associated to ¢.

Exercise 3.2. Prove that if gcd(my, my) =1 then myy = mymy.

Exercise 3.3. Show that a character and the associated primitive character are
either both odd or both even.

It will often be useful for us to regard Dirichlet characters as Galois charac-
ters via the isomorphism Gal(Q(¢,,)/Q) = (Z/nZ)* which we recall is given by
o — a, where a, is such that o((,) = (2. Let x be a character of conductor
n regarded as a character of Gal(Q(¢,,)/Q). The kernel of x is then a subgroup
of Gal(Q(¢,)/Q) and thus the fixed field of ker x is a subfield of Q({,). We
generally refer to this field as the fized field of x and denote it by QX.

Example 3.4. Let x : (Z/12Z)* — C* be given by x(1) = x(7) = 1 and
x(5) = x(11) = —1. Thus ker x = {1,7}. This gives that QX must be a degree
2 extension of Q. However, it is easy to see that Q((3) is a degree 2 extension
of Q fixed by ker x. Thus, QX = Q(¢3) and so x must factor through (Z/3Z)*,
as one can easily check.

Exercise 3.5. Define x : (Z/8Z)* — C* by x(1) = x(5) = 1 and x(3) =
x(7) = —=1. Show that the fized field of x is Q((4) and hence x can be regarded
as a character of Gal(Q({y)/Q) = (Z/47)* .

Let X be a finite group of Dirichlet characters and let n be the least common
multiple of the conductors of the characters in X. Thus, X is a subgroup of
the group of characters of Q(¢,). Set K to be the intersection of all the kernels
of the characters in X and Q¥ to be the fixed field of . We call QX the
field belonging to X. We will finish this section by exhibiting a correspondence
between the subgroups of X and subfields of Q¥. First we need to recall some
basic facts about finite abelian groups and their groups of characters.

Let G be a finite abelian group. We write G to denote the group of multi-
plicative characters of G. We will use G to stand for a finite abelian group for
the remainder of this section.

Exercise 3.6. Prove that G = G".
Theorem 3.7. For G as above we have G = (GM)".

The map from G to (G™)" is given by g — (x — Xx(g)). The main point in
the proof of the above theorem is that if there exists a g so that x(g) = 1 for all
x € G, then g = 1. To see this, let H = (g). We see that every character in
G” factors through G/H and are all distinct on G/H by assumption. However,
there are #G such characters by the previous exercise and there should be only
#(G/H) distinct characters on G/H, thus H = 1, i.e., ¢ = 1. This same
argument shows that we have a perfect pairing

G xGN—C*
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given by (g,x) — x(9)-
Let H be a subgroup of G and set

HY={xe€G":x(h)=1VYhecH}
Exercise 3.8. Prove that H- = (G/H)".
Proposition 3.9. One has H" = G"/H".

Proof. We have the restriction map G — H” with kernel H+. To see the map
is surjective one just compares sizes. [l

Exercise 3.10. Prove that H = (H+)" .

We are now in a position to show the desired correspondence. First we show
that Q(¢,) actually belongs to a group of Dirichlet characters.

Proposition 3.11. The field Q(¢,,) is the field associated to the group of char-
acters X = {x : Gal(Q(¢,)/Q) — C*}.

Proof. Tt is clear that the field associated to X gives a subfield of Q({,). We
want to show that IC, the intersection of the kernels of the characters in X, is
actually 1. Let g € K. Then we have that x(g) = 1 for every x € X. Using
G = Gal(Q(¢,)/Q) and X = G, we see from the above results that this implies
g =1 as claimed. O

We continue with the notation that X is the group of characters associated
to Q(¢, ). Note we have a perfect pairing

Gal(Q(¢n)/Q) x X — C*.

Let K be a finite abelian field. (Recall the “finite abelian” refers to the Galois
group Gal(K/Q).) The Kronecker-Weber theorem shows that K C Q(¢,) for
some n. Set

Y={xeX:x(o)=1VoeGal(Q()/K)}.
Observe that

Y = Gal(Q(¢n)/K)*
~ (Gal(Q(Cn)/Q)/ Gal(Q(Cn) /K))"
= Gal(K/Q)".

Thus, given a field K we have associated a group of Dirichlet characters Y. Now
suppose we are given a subgroup Y of X. Let K be the fixed field of

Y! = {0 € Gal(Q()/Q) : x(0) =1 ¥ x € Y}
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where we have used the isomorphism G = (G")". Note this is our “K” from
before. Galois theory shows Y+ = Gal(Q(¢,)/K). Thus, we have

Y = (YL)L

= Gal(Q(¢n)/Q) ™
>~ Gal(K/Q)".

Thus, we have a 1-1 correspondence between subgroups of X and subfields of
Q(Ca) given by

K «— Gal(K/Q)"
Y — Q)"

For the remainder of these notes when we talk of the field belonging to a char-
acter or group of characters or the group of characters belonging to a field the
notions of this section are what is meant.

We now introduce the Teichmuller character. As usual we assume p is an
odd prime with the understanding that this can all be carried out in the case
of p = 2 but would require more notation.

Lemma 3.12. There are precisely p — 1 distinct (p — 1)th roots of unity in Z,.
Moreover, these roots of unity remain distinct modulo p.

Proof. Let f(xz) = xP~! — 1 € Qplz]. It is clear that f(z) can have at most
p— 1 roots in Q,. Let a € Z,, a # 0. We have that f(a) = 0(modp). Since
f'(a) # 0(mod p), Hensel’s lemma gives that there is a unique root of f(x) in
Z, that is congruent to a modulo p. This gives that there are p — 1 distinct
roots of unity in Zy, i.e., pp—1 C Z). O

Therefore, for each nonzero a € Z, we have that there corresponds to a a
well defined root of unity in Z,. We define w : Z — Z by setting w(a) to be
the root of unity corresponding to a. As usual one can extend this by 0 if one
wants a map Z, — Z,. Observe in the above construction that what happens is
a € Zp maps to a € F, and then is lifted back to Z, via Hensel’s lemma. This
shows that w is a p-adic Dirichlet character of conductor p. One could view this
as a complex Dirichlet character, but it is best to view it as a p-adic object.

Exercise 3.13. Show that w is an odd character.

The following proposition will be applied in the following sections to study
sizes of class groups.

Proposition 3.14. Let Y = {1,w? w*, ..., wP3}. The field determined by Y
is Q(Gp) T = QG+ )

Proof. Tt is easy to see that X = {1,w,w?, ...,wP~2} is the group of characters
corresponding to Q(¢,). (There are p — 1 of them and they are all distinct, so
must be all of Gal(Q({,)/Q)".) It is easy to see that we must have |Y1| =
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|X|/|Y] = 2. Since all the characters in Y are even characters we must have
that 1 and -1 comprise Y. The fixed field of this is then Q(¢,)" as this is the
totally real subfield of Q(¢,) and we want the largest field fixed by —1, i.e., by
complex conjugation. O

3.2 L-functions and Class Numbers

In this section we review some basic results about L-functions attached to char-
acters. The facts given here either will be used later or are included to illustrate
the analogy with p-adic L-functions. Proofs are omitted as the results are as-
sumed either to be familiar or can be taken on faith as the proofs will not be
used in these notes. The interested reader can consult [Jan] or [Wash] for the
proofs and more information on L-functions.

Let x be a Dirichlet character of conductor n extended to Z as indicated
above. The L-function attached to x is given by

L(s,x) = Zx(n)n_s, Re(s) > 1.

It is well known that L(s, x) can be analytically continued to the entire complex
plane if xy # 1. If x = 1 then L(s, x) is just the Riemann zeta function, which has
meromorphic continuation to the complex plane with a simple pole of residue 1
at s = 1. The L-function L(s, x) has a convergent Euler product given by

L(s,x) = H(1 —x(p)p~%)7", Re(s) > 1.

p

Remark 3.15. The L-function L(s,x) also satisfies a functional equation re-
lating L(s, x) to L(1 — s,%). However, we will not need the precise form of the
functional equation so omit a discussion of it.

Recall the Bernoulli numbers are defined by

m

t > t
et —1 :;Bmﬁ'

Similarly, we define the generalized Bernoulli numbers by

— XUt & tm
ent _ 1 - Z Bm,xﬁ

j=1 m=0

where x is a Dirichlet character of conductor n.

Exercise 3.16. Set § = 0 if x is even and 6 = 1 if x is odd. Prove that
By =0 if m # 6(mod 2) with the exception of By 1.
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The generalized Bernoulli numbers play a large role in arithmetic due to
their relation to the special values of L-functions. In particular, we have the
following theorem.

Theorem 3.17. ([Wash] Theorem 4.2) For m > 1 we have

Bm-,X
m

L(1—m,x)=—

We now come to Dirichlet’s class number formula. One should view this as
an example of a larger philosophy prevalent in number theory. In particular,
given an object of number theoretic interest (a “motivic” object) X, there is
associated to X an L-function L(s, X). This L-function is an analytic object and
can be studied using tools from complex analysis. One expects that the special
values of this L-function should then provide arithmetic information back about
X. In the current situation the object of interest is a number field K and the
arithmetic information we are interested in is the size of the class group of K.

Theorem 3.18. (Dirichlet’s Class Number Formula) Let K be a number field
and let X be the group of characters that K belongs to. We have

2" (2m)2 R
H L(1,x) = Mm{
X wi /| Dkl

x#1

where 1 is the number of real embeddings of K into C, ro is the number of pairs
of complex conjugate embeddings of K into C, Ry is the requlator of K, wk is
the number of roots of unity in K, Dy 1is the discriminant of K, and hy is the
size of the class group of K. For definitions of any of these terms please consult

[Milnel].

Remark 3.19. This formulation of the class number formula may not look like
the one presented in most algebraic number theory courses. We have used the

fact that
Ce(s) = T L(s,0)
xeX

and that {(s) has a simple pole with residue 1 at s = 1 to arrive at the present
formulation.

We now specialize to the case of K = Q((,). Note that Q({,) is a degree
2 extension of the field Q(¢, + ¢, !), a field that sits inside R. What we are
really using here is that Q({,) is a CM-field. Set h,, to be the class number of
Q(¢,) and A, to be the class number of Q(¢, +¢;, ). We will need the following
proposition.

Proposition 3.20. Let K/E be an extension of number fields so that there is
no nontrivial unramified subextension F/E with Gal(F/E) abelian. Then hg
divides hg .
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Proof. Let H be the maximal unramified abelian extension of E. From class field
theory we know that Gal(H/F) is isomorphic to the ideal class group of E. Our
assumption implies that K N H = E. Thus, we have hg = [H : E] = [HK : K]
where we use the fact that Gal(HK/K) = Gal(H/FE). This isomorphism also
gives that Gal(H K/K) is an unramified abelian extension of K and so sits inside
the maximal unramified abelian extension of K. Thus, hg|hk as claimed. O

Theorem 3.21. For n a positive integer we have that b\ | hy,.

Proof. This follows immediately from the previous proposition when one ob-
serves that Q((,)/Q(¢n + ¢, 1Y) is totally ramified at the real place. O

Definition 3.22. Define the relative class number of Q(¢,,) to be h,, := h,/h.

With some work one can show using Dirichlet’s class number formulae that
the following formula for h;, holds

1
hy =220 ] (—§Bl,x)

XEX
x(—1)=-1

where X is the group of characters associated to Q(¢,) and a is 0 if n is a prime
power and 1 otherwise. In particular, taking p to be prime we have

p—2 1
(3.1) hy =2p [ (—iBW) .
j=1

§ odd

We will use this formula in the following section to prove that p | A, if and only
if p| Bj for some j =2,4,...,p— 3.

3.3 p-adic L-functions

We give here a brief introduction to p-adic L-functions. Proofs that are purely
analytic in nature are omitted with appropriate references given. These L-
functions will be important when we discuss the main conjectures of Iwasawa
theory. Here we just give some basic facts and return to them when we come
to the main conjectures.

Theorem 3.23. (/Wash/, Theorem 5.11) Let x be a Dirichlet character. There
exists a p-adic meromorphic function (analytic if x # 1) Ly(s,x) defined on
{s€C,:|s| <p' "V PV} such that

—n n— Bn7 w*"l
L,(1—n,x)=—-(1—-xw"(p)p 1)#, n > 1.

If x =1 then L,(s,1) is analytic except for a pole at s = 1 with residue 1 —1/p.
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Remark 3.24. One should note that yw™" is the primitive character associated
to the character a — x(a)w™"(a). In general one does not have yw "(a) =

x(a)w™"(a).

One should view the p-adic L-function £,(s, x) as a p-adic interpolation of
the usual L-function L(s, x). In particular for n > 1 we have

Lpy(1=n,x) =1 —xw "(p)p" Ll —n,xw™").

Thus, if n = 0(mod p — 1) then we obtain

Ly(1=n,x) = (1= x(P)p" )L(1 = n,x) = L (1 =n,x).

The pth Euler factor must be removed in order for the p-adic L-function to
converge. In general, if p is allowed to divide 1/n® then the p-adic absolute
value of such terms would get arbitrarily large and so the sum of the terms
would not converge.

If x is an odd character it is easy to see that B, ,,~» = 0. Thus the p-adic
L-function of an odd character is identically 0. However, if x is even then the
p-adic L-function is not identically 0. The zeros of the p-adic L-function are not
well understood.

Though the proof of the existence of £, is omitted, it is not a difficult proof.
In general it is believed that one can associate p-adic L-functions to a wide class
of classical L-functions. Unfortunately, proving the existence of such p-adic
L-functions in other settings can be extremely difficult.

We conclude this section with some congruence results that follow from the
existence of the p-adic L-function as given in Theorem 3.23.

Theorem 3.25. Let x be a nontrivial character and suppose p*  m,. (Note
we are again ignoring the case of p = 2, though it can easily be handled!) One
has that

L,(s,x) =ag+ai(s—1)+ag(s—1)*+---

where |aglp, <1 and p | a; for all i > 1.

Proof. See ([Wash] Theorem 5.12). O

Corollary 3.26. Let m and n be integers with m = n(modp — 1) and n #
O(modp —1). Then one has

Proof. Note that since m = n(modp — 1) we have L,(s,w™) = L,(s,w™). We

know that
B,

Ly(1—m,w™)=—(1 —pmfl) -

and similarly for £,(s,w™). Using the previous theorem and the fact that m =
n # 0(modp — 1) we can write

Ly(s,w™) =ag+ai(s—1)+az(s—1)*+---
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where |agl, <1 and p | a; for all ¢ > 1. Thus,
L,(1—=m,w™) = ag + ai1(=m) + az(~=m*)* + - -- = ap(mod p)

and similarly for £,(1 — n,w™). Thus, £,(1 —m,w™) = L,(1 — n,w™)(mod p).
The result now follows. |

Corollary 3.27. Let m,n € Z and X a nontrivial character with p*> t my,. Then
one has that L,(m, x) is p-integral and

Ly(m, x) = Lp(n, x)(mod p).
Proof. This follows immediately from the previous theorem. O

Corollary 3.28. Let n be an odd integer and n Z —1(modp — 1). Then we
have

B,
Biwn = - _:i (mod p)
and both sides are p-integral.
Proof. We begin by observing that w"+! # 1 since n # —1(modp — 1). We also
have that w™ # 1 since n is odd and so w™(p) = 0. By Theorem 3.23 we have

n n Bn+1
Lp(—n,w™h) = —(1-p") =
and
L,(0,0" ) = —(1 = w"™(p)) B1 wn
== _Bl,w"-

Using these equalities and the facts that £,(—n,w™ ") and £,(0,w™ ™) are both
p-integral and congruent modulo p by Corollary 3.27 we obtain the result. O

Theorem 3.29. Let p be an odd prime. Then p | h, if and only if p | B; for
some j = 2,4,...,p— 3. Here it is understood that p|B; means that p divides
the numerator of Bj.

Proof. Recall from equation (3.1) that
p—2 1
h; = 2p H <_§Bl,wﬂ'> .
j=1
7 odd

1
We begin by studying 2p (—gBprz) = —pB; ,»—2. Note that B ,»—2 =
By ,-1. Using the definition of By ,,-1 one sees that
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Thus we have
1 =
_ —1
2p (—5317@2) = - ; aw ™ (a).
Modulo p we have that a = w(a) and so we obtain
1
2p (—531@;,2) = —(p—1) = 1(modp).

Thus,

p—4 1

h, = H (—5317“) (mod p).
Jj=1
7 odd

Now we apply the previous corollary to obtain

p—4 p—4
1 _ 1Bji1

j=1 =
J odd j odd
From this the theorem follows immediately. O

Definition 3.30. We say a prime p is #rregularif p | B; for some j = 2,4,...,p—
3. If a prime is not irregular it is said to be regular.

Note that the previous theorem shows that p is an irregular prime if and
only if p | h, . We will see in the next section that p | h,, if and only if p | B;
for some j = 2,4,...,p — 3. Thus, p is an irregular prime if and only if p | h,.
This is also often used as the definition of an irregular prime.

Theorem 3.31. There are infinitely many irreqular primes.

It is also believed that there are infinitely many regular primes. In fact,
numerical evidence suggests that around 61% of all primes are regular primes.
However, no one yet knows how to prove there are infinitely many regular primes.

3.4 p-adic L-functions and Class Numbers

We now give a short section on the p-adic class number formula. We include
this not only for the analogy with the classical Dirichlet class number formula,
but also because of its application to proving a result on class numbers. The
p-adic class number formula is usually developed in order to prove the following
result.

Theorem 3.32. Let x # 1 be an even Dirichlet character. Then L,(1,x) # 0.

However, since these notes are focused more on class numbers combined with
the fact that we did not pursue the analogous result for classical L-functions
L(s, x), we will have the following theorem as our goal.
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Theorem 3.33. Ifp | h,t, thenp | h, . In particular, p | hy, if and only if p | By
for some j=2,4,....,p—3.

We now state, but do not prove the p-adic class number formula. For a
complete proof and for a definition of the p-adic regulator R,(K) see ([Wash],
Chapter 5). We will not need the definition of R,(K) here.

Theorem 3.34. Let K be a totally real abelian number field with [K : Q] = n.
Let X be the group of Dirichlet characters corresponding to K. One has

_x@\ _ 2 'hiRy(K)

x#1
We will also need the following proposition. We again omit the proof.

Proposition 3.35. Suppose K is a totally real Galois number field. If there is
only one prime p of K such that p | p and if e(p/p) <p—1, then

LTI
VS
Proof. See ([Wash], Proposition 5.33). O

Proof. (of Theorem 3.33) Recall that the group of characters that corresponds
to Q(¢p) T is {1,w?,wh, ..., wP73}, ie., the even characters of Q((,). Set n =
(p —1)/2. Since Q((,)™" is a totally real abelian number field, the p-adic class
number formula gives

p—3 n—1p+ p+
) 2 h™R
£(1,07) = — 22
=2 Ap
j even

since w/(p) = 0 for j = 2,4,...,p — 3. We know that Q((,)" satisfies the
hypotheses of Proposition 3.35 so we have

oG ors| | B | |
Vas Ar|
P P
If p | hf, the we must have p | £,(1,w’) for some jo € {2,4,...,p — 3}.
Corollary 3.27 shows that

Jjo—1 -1
By ot = — (1 - w) By ot
, 5 :
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Thus, p | By ,0-1. Using that all the By i are p-integral and that we have

p—4 1
h, = H (—5317@) (mod p)

=1
i odd

we have that h, = 0(mod p), as desired. O
We conclude this section with the following open conjecture of Vandiver.

Conjecture 3.36. (Vandiver) For p a prime one has pfh;.

3.5 Herbrand’s Theorem

In this section we seek to prove a much stronger criterion then that given in
Theorem 3.33 by looking at “pieces” of the class group rather then the entire
class group. This description is known as Herbrand’s theorem. We will also state
the converse of this theorem which is due to Ribet ([Ribet]). We will return to
the proof of the converse in later chapters as it provides a nice overview of the
method Wiles used to prove the main conjecture of Iwasawa theory for totally
real fields ([Wiles2]).

Before we can state any results we need to formulate what we mean by
“pieces” of the ideal class group. We begin with some generalities. Let G be
a finite abelian group and G the group of multiplicative characters of G as
before. Let R be a commutative ring that contains |G|~! and all the values of
all the y € G*. We define the orthogonal idempotents of the group ring R[G]
to be the elements .

€y = @l Z x(o)o™t € R[G].

oeG

Exercise 3.37. Prove the following results:
1. &2 =gy
2. exey =0 if x £
3.3 e=1
xXEGN
4. exo = x(0)ey.

Proposition 3.38. Let M be a module over R[G]. Then we have M = P, e, M.

Proof. This proposition follows easily from the properties listed in the exercise.
O

Note that if we view o € G as acting on M, the space ¢, M are the
eigenspaces of this action with eigenvalue x(o).

We now specialize to the case that the module we are considering is an ideal
class group. Let C be the ideal class group of a finite abelian extension K/Q
and set G = Gal(K/Q). Choose n so that K C Q(¢,). The group ring Z[G]
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naturally acts on C. Given z = > z,0 € Z|G] and a a fractional ideal of K,
the action is given by

r-a= a:E = H(O—a)xa'
Now let A denote the p-Sylow subgroup of the class group C. We obtain an
action of Z,[G] on A. To see this, observe that Z, acts on A by

Qaw)-a =)
=0 j=1
due to the fact that p™A = 0 for large enough m.
For a real number z, let {z} denote the fractional part of z, i.e., x — {z} € Z
and 0 < {z} < 1.

Definition 3.39. The Stickelberger element of K is defined by
_ _ ay 1
6=6K)= S {n}a € Q[C]

a(mod n)
ged(a,n)=1
where g, is the element of Gal(Q({,)/Q) given by ¢, + (2 restricted to K. The
Stickelberger ideal I(K) of K is defined to be Z[G] N 0Z[G].

We require the following theorem that will be stated without proof.

Theorem 3.40. (Stickelberger’s Theorem) The Stickelberger ideal annihilates
the ideal class group of K, i.e., if a is a fractional ideal of K, 8 € Z[G] is such
that 50 € Z[G|, then (89) - a is principal.

Suppose now that K = Q((,) for p an odd prime. Recall that G = {w' :

0 < i< p-—2} We use the group ring Z,[G]. In this case the orthogonal

idempotents are
1 =

€ 1= i = —— w'(a)o,

p—1

for 0 <i < p— 2 and the Stickelberger element is given by

15~
0=- aoy k.

—1
a
a=1

Observe that we have

p—1
1 -1
g0 = — ag;o,
a=1
p—1
1 i —1
==Y aw'(o, e
pa:l
p—1
1 —i
==Y aw "(a)g
pa:l
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and similarly for ¢ € Z we have
gilc—0.)0 = (c — w'(c)) By ,-iei.
Proposition 3.41. Let ¢ € Z with ptc. Then (¢ —o.)0 € Z|G).

Proof. We begin by observing

(c—0.)0 =pz:lc{g}a;1 —pz:l{%}o—cagl.

a=1 a=1

It is easy to see that 0.0, ' = 0.,-1. Thus, by changing the index of summation

on the second sum we obtain

oS () 5]

a=1

Using that {%} = 2 and that z — {z} € Z we see that (c — 0.)0 € Z[G] as
desired. (|

Let A denote the p-Sylow subgroup of the class group of Q((,). As was
observed above, A is a Z,[G]-module and so we have the decomposition

where it is customary to write A; for £;A. Stickelberger’s theorem along with
the previous proposition imply that (¢ — o.)8 annihilates A and hence each A;
for p{ c. In particular, we have shown that (¢ — w’(c))B; - annihilates 4;.
Note that if 7 # 0 is even, then B; ,-i = 0 and so we have really shown
nothing new. For ¢ = 0 we get that (¢ — 1)/2 annihilates Ag for any ¢ with p t ¢,
and so it must be that Ay = 0. Now consider the case that i is odd. If i # 1,
then there exists a ¢ so that ¢ # w'(c)(mod p) and so we can ignore the factor
(c — w'(c)) and obtain that By ,,-: annihilates A;. If i =1, set ¢ = 1+ p. Then

(¢ —w(c))Byw-1 = pBru-

Since A; is necessarily a p-group we must have A; = 0. Thus, we have the
following proposition.

Proposition 3.42. The pieces of the class group Ag and Ay are both 0 and for
i=3,5,...,p— 2 we have that By ,—: annikilates A;.
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We now are ready to state Herbrand’s theorem. Suppose that A; # 0 for
somei=3,5,...,p—2, i.e., the i'? part of the p-Sylow subgroup of the ideal class
group of Q({p) is nontrivial. Since By ,-: annihilates this nontrivial p-group,
we must have that p | By ,,-:. However, we know that By ,-i = %(modp).
Thus we have Herbrand’s theorem.

Theorem 3.43. (Herbrand’s Theorem) Let i be odd and 3 < i < p— 2. If
A; #0, then p | Bp—;.

Note this is stronger then Theorem 3.33 in one direction. There it was stated
if p | hy then p divides some Bernoulli number. Here we get the exact Bernoulli
number in terms of which piece of the class group is nontrivial.

Theorem 3.44. ([Ribet]) Let i be odd with 3 < i <p—2. If p | Bp—;, then
A; #0.

Ribet is able to prove the converse to Herbrand’s theorem by actually con-
structing elements in the i*® part of the p-Sylow subgroup of the class group
of Q(¢p). He accomplishes this by using modular forms. In particular, he pro-
duces a congruence between an Eisenstein series and a cusp form and then uses
this congruence and some results on Galois representations to find an element
of order p in the appropriate piece of the class group. We will return to this
argument later in the notes.

We close this chapter with the following strengthening of the result p | h;
implies p | h,, .

Theorem 3.45. Let ¢ be even and j odd with i + j = 1(modp — 1). Then
p-rank(A;) < p-rank(A;) < 1+ p-rank(A;)

where the p-rank of a finite abelian group G is the dimension of G/pG as a
vector space over IFp.

To actually see this is a strenghtening of the result p | h;{ implies p | h,,
requires some work. Recall that we defined h; to be the size of the class group
of Q(¢p)*. We then showed h.f | hy, and so defined h, = h,/h}. We will now
show that h; and h,, are sizes of pieces of the class group of Q((p).

We denote complex conjugation o_; € Gal(Q(¢,)/Q) by J as is customary.
Write C), for the class group of Q((,) and C,+ for the ideal class group of Q(¢,) ™.
Let C, be the (—1)-eigenspace of C), for the action of J, i.e.,

C,={acCy:(1+J)-a=1}

Recall that in the class field theory section we proved that if Hgc,)+ NQ((p) =
Q(¢p) T, then the norm map C, — C,,+ is surjective where Hgc,)+ is the Hilbert
class field of Q(¢,)". However, we know that Q((,) is ramified over Q(¢,)" at
the archimedean primes, so this condition is satisfied. Now we observe that we
have an exact sequence
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1 o Op Norm Cp+ 1.

p

To see that C is precisely the kernel of the norm map see ([Milnel], page 63)
for properties of the norm map and recall that Gal(Q((,)/Q(¢) 1) = {1,J}.
Thus we see that h, is the order of C, a piece of the class group of Q((p).
Since we are concerned with only the p-divisibility in the above theorem, we
1-J

can restrict to working with the p-part of the class group. Define e = 5= and

£y = LQJ It is an elementary calculation to show that the (—1)-eigenspace of
J acting on A is precisely e_A. Thus we write A~ = ¢_A and similarly we
define AT = ¢, A. We have that A = A~ @& AT. The above result then shows

that AT is precisely the p-part of Cp+ as desired. One can show that

and
E_ = Z Eiy
i odd
ie.,
AT=A10A:® - D Ap_s
and

At =4y As® - Ap_s.

The fact that the above theorem generalizes the statement p | h; implies p | h,
is now clear.



Chapter 4

Zp—extensions

4.1 Introduction

Let p be an odd prime. All of the results in this chapter follow if p = 2 as well,
but we restrict ourselves to odd primes in order to simplify the notation. For
the general results one should consult [Wash].

Given a number field K, a Zy-extension of K is a field extension Ko, of K
such that Gal(K«/K) = Z,. Note here that we are looking at the additive
group of p-adic integers. It is important in Iwasawa theory to keep track of
which structures one is using.

First we need to show that any given number field actually has at least one
Z,-extension. We begin with Q. Recall that one has

Gal(Q(Gpr1)/Q) = (2/p" L) = (Z/pL)* x (L/p"L).

Let Q, be the fixed field of (Z/pZ)*, i.e., Q, = Q(Cpnr1) /P2, From Galois
theory we know that Gal(Q,/Q) = Z/p"Z. Let Qo = |JQn. Then we have
that

Gal(Qwo/Q) = lim(Z/p"Z) = Zy.

Thus, the rational numbers have a Z,-extension.

To show that the general number field K has a Z,-extension, set Ko, =
KQoo. Thus we have that Gal(Ko/K) 22 Gal(Qoo /K N Q). We now use that
Gal(Qw/K NQy) is a closed subgroup of Gal(Qs/Q) and so of the form p"Z,
for some n € N. Thus, Gal(K+/K) = p"Z, = Z, as desired. This Zy-extension
is known as the cyclotomic Z,-extension of K. It is possible that K has other
Z,-extensions as well, but we now know that every number field has at least
one Zy-extension.

Let Ko, now be any Zy-extension of K. We wish to show that it is possible
to consider K, as a union of a sequence of intermediate fields:

K=KyCK C-CKyg=|JKn

41
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where one has
Gal(K,/K) = 7Z/p"Z.

Recall from the section on infinite Galois theory that the intermediate fields
correspond precisely to the closed subgroups of Z,. Let H be such a closed
subgroup and let h € H be the element with minimal valuation. Observe that
hZ is necessarily contained in H. Since H is closed we obtain that hZ, is
actually in H. However, since we chose h to have minimal valuation, it must
be that H = hZ, = p"Z, for some n. Thus, we have the intermediate fields as
desired.
The main theorem we will prove in this chapter is the following.

Theorem 4.1. Let Ko /K be a Zy,-extension and let e,, be the integer so that
p°||hy, where hy, is the order of the class group of K,. There exist integers
A>0, u>0, v, and ng so that

en=An+ up" +v

for all n > nog where A\, i, and v are all indepedent of n.

4.2 Power Series Rings

One of the main objects of study in Iwasawa theory is the Iwasawa algebra
A = Z,[T], i.e., the power series ring in T" with coeflicients in Z,. We devote
this section to establishing a few general results that will be needed in subsequent
sections.

Let K/Q, be a finite extension, O := Ok the ring of integers of K, p the
maximal ideal of O, and w a uniformizer, i.e., p = (w). We begin by proving a
division algorithm for the algebra Ap := O[T].

Proposition 4.2. Let f,g € Ao with f = ag + a1T + --- with a; € p for
0<i<n-—1anda, € OF. Then there exists a unique ¢ € Ao and r € O[T
with degr < n —1 so that

g=aqf +r.

Proof. We begin by defining a shifting operator 7, := 7 : Ap :— Ap defined by

i=0 i=n
This operator is clearly O-linear. Furthermore, one has

o T(T"NW(T))=nT)
e 7(h(T)) =0 if and only if  is a polynomial of degree < n —1

By our description of f(7T') we have P(T') and U(T) so that

(4.1) F(T) = wP(T) + T"U(T)
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where P(T) is a polynomial of degree less then or equal to n — 1 and U(T) is
invertible in Ay since the leading coefficient is a,, € O*. Set

The definition is a bit difficult to interpret, so for example we have

(7)o = (7 (7 ((Few)))):

The presence of the w’ forces this to converge, so it is in Ap. Using equation
(4.1) we have
qf = wqP +T"qU.

Applying 7 we have
(4.2) m(qf) = @w7(qP) + 7(T"qU) = @w7(qP) + qU.
Now we examine w7 (¢P):

o0

wr(gP) =wr [ £ S (-1’ <T o g)j o 7(g)

=0

- i@(—l)jwﬂ‘“ & §)j+1 o (g)
—w<7'o§> or(g) — @ (Tog)on(gH...

= () - <T<g>—w(ro§>of<g>+w2 (To§)2o7<g>+--->

Plugging this into equation (4.2) we obtain

m(af) = 7(9)-

Thus we have that 7(qf) and 7(g) differ only by a polynomial of degree less then
n. To see uniqueness, suppose there exists q1, g2, 71, and ro with g =q1 f+71 =
g2 f +r2. Thus we have that (¢1 —g2) f+ (r1 —r2) = 0. Suppose that g1 # ¢ and
r1 # ro. Then we may assume that @t (¢1 — g2) or @w ¢t (11 — r2). Now reduce
modulo w, giving us that r; = ro(mod @) since w|a; for 1 < i < n — 1. Thus
wl|(q1 — q2)f. But we know w1 f since a,, € O, so we must have w|(q1 — g2),
a contradiction. O

Definition 4.3. Let P(T) =T" +ap, 1T" '+ -+ a1T + ag € O[T]. We call
P(T) distinguished if a; € p for 0 <i <n— 1.
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Theorem 4.4. (p-adic Weierstrass Preparation Theorem) Let f(T) = Z a;T' €
i=0

Ao and suppose there exists n € N with a; € p for 0 <i <n—1 but a, € O*.
Then there exist a unique U(T) € Ao a unit and a unique P(T) € O[T] a
distinguished polynomial of degree n so that

If f(T') € Ao is nonzero, then there exists a unique p € Z, u > 0, P(T) € O[T
a distinguished polynomial of degree at most n, and a unit U(T) € Ao so that

f(T) = =" P(T)U(T).
Proof. We begin by applying Proposition 4.2 to g(T) = T™ and f(T') to obtain
q(T) = i ¢T" € Ap and r(T) € O[T] with
i=0
(4.3) T" = f(T)q(T) +r(T)
where degr(T) <mn — 1. If we consider this equation modulo w we see that
T" = ¢(T)(anT" + an 1 T" 4+ ) + 7(T)(mod w).

Since degr(T) < n — 1, we must have r(T) = O(modw). Thus, T" — r(T) is
a distinguished polynomial, call it P(T"). Looking back at equation (4.3) and
looking at the coefficients of T" we have gga, = 1(mod w). Thus, @ 1 g9, which
implies that ¢o € O*, i.e., ¢(T) is a unit. So we have

T" —r(T) = f(T)q(T)

i.e.,

where U(T) = q(T)~ L.

The uniqueness statement is not difficult. Any distinguished polynomial can be
written as P(T) = T™ — r(T). Then translate the equation f(T) = P(T)U(T)
into an equation of the form T™ = f(T)q(T) + r(T) and use the uniqueness in
Proposition 4.2.

For the last statement, just factor out the largest power of w possible. o

Corollary 4.5. Let f(T) € Ao be nonzero. There are only finitely many z € C,
with |z|p, < 1 and f(z) = 0.

Proof. Write f(T) = w™P(T)U(T). Since U is a unit, U(z) # 0. Thus it must

be that P(z) = 0. Since P is a polynomial we have the result. O
Lemma 4.6. Let P(T) € O[T] be distinguished and let g(T) € O[T]. Suppose
9(T) 9(T)
that = € Ao, then == € O[T].
a P(T) € No, en P(T) € [ ]
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Proof. Let f(T) € Ao so that ;E;; = f(T), ie., g(T)= f(T)P(T). Let z be a
root of P(T). Then

0 = P(z) = 2" + (multiple of w)

since P is distinguised. Then w|z implies |z|, < 1. Thus we have f(T') con-
verges at z and so g(z) = 0, i.e., (T — 2)|g(T). Continuing in this pattern,
possibly enlarging O to contain all the roots of P(T'), we see that P(T)|g(T) as
polynomials. [l

4.3 A Structure Theorem on Ap-modules

We continue with the notation of the last section. Note that from the previous
section we have that Ap is a UFD whose irreducibles are @ and irreducible
distinguished polynomials. The units are elements in Ap whose constant term
is in O*.

In this section we state a powerful structure theorem allowing us to determine
the structure of finitely generated Ap-modules. We will use this to study certain
Galois groups in the following section.

Lemma 4.7. Let f,g € Ao be relatively prime. The ideal (f,g) generated by f
and g is of finite index in Ap.

Proof. Let h € (f,g) have minimal degree. We can write h(T) = w"H(T)
for some integer n and where H = 1 or H is a distinguished polynomial (by
Weierstrass preparation theorem). If H # 1 we can write f = gH + r with
degr < deg H. This gives us

w'f = qw'H+o"r
= qh+w"r

However, this shows that @w”r € (f,g) and has smaller degree then h, a con-
tradiction. Now suppose that H = 1 and so h = @w”™. We may assume that
w 1 f for if it does divide f we can use g instead since f and g are relatively
prime. We may also assume that f is distinguished for if not we can just look at
P(T) = f(T)/u(T) by the Weierstrass preparation theorem since this generates
the same ideal. We have that (w”, f) C (f,g) and so Ao /(@w", f) 2 Ao/ (g, f).
The division algorithm shows that everything in A is congruent modulo (@™, f)
to a polynomial of degree less then the degree of f with coefficients modulo
w". However, there are only finitely many choices for such polynomials and so
(w™, f) has finite index, and hence so does (f, g). O

Lemma 4.8. Let f,g € Ao be relatively prime. Then:
1. the natural map

Ao/(fg) — Ao/(f) & Ao /(9)
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s an injection with finite cokernel;
2. there is an injection

Ao/(f)®Ao/(g9) — Ao/(fg)

with finite cokernel.

Proof. 1. The fact that this map is an injection follows immediately from the
fact that Ap is a UFD. It remains to show that the cokernel is finite. Consider
(a(mod f),b(mod g)). Suppose that a —b € (f,g). Then there exists a, 5 so
that a —b= fa+gB. Set y =a — fa = b+ gf and observe that v = a(mod f)
and v = b(mod g). Thus, v is in the image of the map. Let r1,...,r, be the
representatives of Ap/(f,g). This is a finite set by the previous lemma. We
then have that
{(0(mod f),r;(mod g) : 1 <i<n}

is a set of representatives for the cokernel of the map.

2. Set M = Ao/(fg) and N = Ao/(f) ® Ao/(g). We know that M C N of
finite index by what we have just shown. Let P be a distinguished polynomial
in Ao that is relatively prime to fg. Note that in Ap, P*¥ — 0 (where we use

that ﬂ (w,T)" ™ = 0) and so we have P*N C M for some k. Now suppose
n=0

that (P*¥z, P*y) = 0 in N for some (x,y) € N. We must have that f | Pz and

g | PPy. We chose P so that ged(P, fg) = 1 and so we have that necessarily

flzand g|y. Thus, (z,y) =0 in N. Hence, the map is injective:

N5

The image of the map contains (P* - 1, P* - 0) = (P*,0) = (P*, fg). This is of
finite index by the previous lemma, so the cokernel must be finite. O

Next we determine the prime ideals of Ap as well as show it has a unique
maximal ideal.

) and the ideals (P(T))

Proposition 4.9. The primes of Ao are 0, (w,T), (w
,T) is the unique mazximal

for P(T) irreducible and distinguished. The ideal (w
ideal.

Proof. 1t is easy to see that the given ideals are prime ideals; it remains to show
they are the only prime ideals. Let p C Ap be a non-zero prime ideal. Let
h € p have minimal degree. Using the Weierstrass preparation theorem we can
write h = w™H with H =1 or H € p. If H =1 then we cannot have H € g for
then o = Ap. Suppose H # 1 and H € p. In this case H must be irreducible
by the minimality of the degree of h. Thus, (H) C p. If (H) = p we are done.
Assume (H) # p so that there exists g € p with H t g. Since H is irreducible
we must have that H and g are relatively prime. Now apply Lemma 4.7 to
conclude that (H,g), and hence g, is of finite index in Ap. Thus, Ap/p is a
finite O-module and so @? € g for some large N. Since p is prime this implies



4.3. A STRUCTURE THEOREM ON Ap-MODULES 47

that @ € p. We also have that 7% = T7(mod p) for some i < j since g is of
finite index. However, 1 — 77~ € A implies that T' € p. Thus we have that
(w,T) C p. However, Ap/(w,T) = O/w and so (w,T) is maximal and hence

p=(w,T).
One sees that this argument gives the case where H = 1 and @w”™ € p as well.
Now since all primes are contained in (,T') it is the only maximal ideal. O

Lemma 4.10. Let f € Ao — Aj5. Then Ao/(f) is infinite.

Proof. Assume f # 0. The Weierstrass preparation theorem allows us to write
f=w"H with H = 1 or distinguished. Observe that (f) C (w) or (f) C (H)
and so it is enough to consider f = w and [ distinguished. If f is distinguished
one applies the division algorithm to get the result. If f = w, Ap/(w) =
(O/w)[T], which is infinite. O

Lemma 4.11. The ring Ao is a Noetherian ring.

Proof. Since O is Noetherian we apply the standard fact from algebra that A
Noetherian implies A[T] is Noetherian. O

Definition 4.12. Two Ap-modules M and N are said to be pseudo-isomorphic,
written M ~ N, if there is an exact sequence

0—A—M-—N—-—B—0
with A and B finite Ap-modules.

Remark 4.13. One should note that M ~ N does not imply that N ~ M.
However, it is equivalent if they are finitely generated Ap-torsion Ap-modules.

Exercise 4.14. Show that (p,T) ~ A but A = (p,T).

We conclude this section with the structure theorem that will be instrumen-
tal in proving Theorem 4.1.

Theorem 4.15. Let M be a finitely generated Ao-module. Then
s t
1~ 855 (@ or(=) @ | Dol
i=1 j=1

where r,s,t,n; and m; are in in Z and f;(T) are distinguished and irreducible.
This decomposition is uniquely determined by M.

Proof. The proof is essentially the same proof as the structure theorem for mod-
ules over a PID. One uses row and column operations. See ([Wash], Theorem
13.12) for the details. O
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4.4 Proof of Iwasawa’s theorem

In this section we prove Theorem 4.1. We do this by making use of the structure
theorem of the last section. Let K be a number field and K, /K a Z,-extension
with K = Ko C K1 C -+ C Ky with Gal(K,,/K) = Z/p"Z as Section 4.1.
Write I' = Gal(K/K) and let vy be a topological generator of I'. Note that
the isomorphism Z, = I is given by  — ~§. Let L,, be the maximal unramified
abelian p-extension of K,. Set X, = Gal(L,/K,) so that X,, is the p-Sylow
subgroup of the ideal class group of K,. Note that what we are interested
in is studying the power of p dividing the order of X,. Let L = J,,~oLn,
X = Gal(L/K), and G = Gal(L/K). Note that it is not uncommon for some
authors to refer to L as Lo,. However, we have reserved the subscript co to
denote a Z,-extension. We have the following diagram of fields (including their
Galois groups):

L

>

=
8
Q

r

K

Observe that if we take K,, for any n > 0 we have that K, /K, is still a
Z,-extension and we have the same X as for K. This will be important as we
wish to reduce our arguments to the case where any prime that ramifies in K,
is totally ramified. We will accomplish this by replacing K with K, for some n.
We will then obtain results on X and it is important to know that this “new”
X is the original one we are interested in.

Exercise 4.16. Prove that the X one obtains from the Z,-extension Ko /K,
is the same X as one obtains from the Z,-extension K /K for any n > 0.

Proposition 4.17. All Z,-extensions are unramified away from p, i.e., if X is
a prime of K which does not lie above p, then K /K is unramified at X.

Proof. Let Iy C Gal(K/K) be the inertia group of A\. We know the inertia
group is a closed subgroup, so in this case we have I is either 0 or p"Z, for
some n. If Iy = 0 we are done, so assume that Iy = p"Z, for some n. The
inertia group of an archimedian prime must have order 1 or 2 and since Iy
has infinite order we can rule out the case that A is a ramified archimedian
prime. For each m choose a place \,, so that A, lies over \,,_1; and so on
setting \g = A\. We can complete each field K,, at )\, and obtain a tower
of fields Ky = Ko\ C K1y, C ---. Set Koo = U,,50 Km.,,. Observe that

I, C Gal(Kx/K)). Now let U be the units of K. We know from local
class field theory that there is a surjective map U — I, i.e., a surjective map
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U — p"Z,. However, the local unit theorem from algebraic number theory gives
that U 2 (finite group) x Z¢ for some a € Z and some prime ¢ C Z with A | £.
However, we know that p"Z, has no torsion, so we must have a continuous
surjective map Zj — p"Z,. Combining this with the natural projection map we
obtain a continuous surjective map

28— "2y "2,

However, this would give a closed subgroup of index p in Z§, which cannot
happen. Thus it must be that Iy = 0. [l

Proposition 4.18. At least one prime ramifies in the extension Ko /K and
there is an m > 0 such that every prime that ramifies in Koo /K, is totally
ramified.

Proof. 1t is easy to see that at least one prime must ramify. The maximal abelian
unramified extension is a finite extension and K., /K is an infinite extension, so
at least one prime must ramify.

We know from the previous proposition only the primes lying over p can possibly

ramify, call these primes that ramify 1, ..., o, and the corresponding inertia
groups I,...,I.. Since each I; is a closed subgroup, so is () I;. Thus we have
that there is some m € Z so that

(L =p"Zy.
Recall that Gal(K,,,/K) & Z/p™Z = Z,,/p™Z,, so we have that Gal( Koo/ K,,) =
p™Zy and so is contained in I; for all ¢ = 1,...,r. Thus, we see that p; must
be totally ramified in K /K, foralli=1,...,r. O

We now fix an m be as in Proposition 4.18.
Exercise 4.19. For n > m prove that K11 N L, = K,,.

We now make the simplifying assumption that m = 0. We will see how to
remove this assumption shortly, but for now it makes the notation much easier.
This assumption is in effect in all the lemmas as well until stated otherwise. The
previous exercise shows that we have Gal(L,,/K,) = Gal(L,K,11/K,) using
the following diagram of fields:

LnKnJrl
L, K

LN Kyt



50 CHAPTER 4. Zp-EXTENSIONS

Since we know that X, 11 = Gal(L,t1/Kn+1) and L, Kp41 C Lyy1, we see that
Gal(L,Kpnt1/Knt1), and hence X,,, is a quotient of X, ;. Thus we have an
onto map X, 11 — X,. Similarly, if we take K, in the above exercise we have
that

X, =Gal(L,/K,) 2 Gal(L, K /Ks)

and so we have
lim X,, = lim Gal(L,,/K},)
— —
> lim Gal(L, Koo/ Koo)
—

= Gal((| JLnKw)/Kx)
= Gal(L/K)
= X.

Thus we have that X is a projective limit of the groups X,. Recall that
I, = T/T?" = 7/p"Z = Gal(K,/K). The important thing to note is that
the structure on I';, is multiplication. Let v,, € T';,. We extend ~,, to an element
An € Gal(L,/K). Let x,, € X,,. There is an action of 7,, on x,, given by

Exercise 4.20. Check that this action is well-defined. It may help to recall that
X, is abelian!

This gives that X,, is a Z,[I',]-module. (It has a Z,-action because it is a p-
group!) Since we have shown that X 2 lim X,,, we can represent elements of
X in the form (xg,z1,...,Zn,...) with z; € X;. Using that A = @ZP[Fn], we
define an action of A on X componentwise so that X is a A-module. As before,

ify eI and z € X, define
1

v-r =y
where 4 is an extension of v to Gy, := Gal(L/K,,).

Let p1,...,ps be the primes which ramify in K. /K. Fix a prime p; of L
lying over ;. As usual, let I; = I(p;/p;) C G be the inertia group. By definition
we have that L/K is unramified, so necessarily we have I; N X = {e}. Thus we
have an injection I; — G/X = T'. Now we use that K. /K is totally ramified
at g; to conclude that this injection is a surjection and hence an isomorphism.
Thus,

G=LX=XI

for i = 1,...,s. Let o; € I; be the element that maps to the topological
generator 7o in I'. This gives that o; is a topological generator of I;. Now using
that G = XI; we have that I; C XI; fori =1,...,s. Thus there exists a; € X
so that

g; = Q;071.

Lemma 4.21. We have
(GG = (3 —1)- X =TX.
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Proof. We identify I" with I; and define the action of I' on X via this identifi-

cation, i.e.,
_ -1
YT =Ty .

Let g1,92 € G. Using that G = I'’X we have elements v1,v2 € " and 1,22 € X
so that g1 = v1x1 and g = y9x2. We have

919291 '95 " = ma1yemeay 'y ey by !
= (11 - w)nyeweay 'y Ty s !

= (- 21)((m72) - (w2zy ) (2 - 23 )
where we have used that I' is abelian. Also observe that
(T=y2)71 - 21) (1 — D2 22) = (1 = 72) - mzryy D — 1) -yezeys

= (mz1y D (ener ' e Dy ) (exy g )
= (11 - 2)((m72) - (@227 ")) (2 - 23 ")

where we have used that I' and X are abelian. Thus we have

919297 95 = (1 —72)v1 - 1) (11 — 1)y - 22).

In particular, if we set 79 = e and ;3 = 79 we have that (yo — 1) - 22 € [G, G].
Thus,

Now let v € I be arbitrary. Since 7y is a topological generator, there exists
¢ € Zy so that v = ~§. Thus,

l—y=1-7
=1-(1+17)°
> C
=1- T" € TA
% ()

where we have used that -y corresponds to 1 + 7. Thus we have that
(I=92)n-r1€(w—-1)X

and
(I=m)y2 72 €(p0—1) X
Thus, we have that [G,G] C (70 — 1) - X. O

Note here that the corresponding statement in [Wash] is in terms of the
closure of the commutator and not the commutator itself. However, we have
shown that TX = [G,G] and TX is closed (it is the image of the compact set
X), so we have that [G, G] is its own closure.

For n > 0, define

vp=1+y0+-+~8 N
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Observe that

-
-1
1/,1277O
Y — 1

1+ T) -1

— 7 ,

Let Yy be the Z,-submodule of of X that is generated by {a; : 2 < ¢ < s} and
TX. Note here that we do not include a;. Set Y,, = v, -Yy. The following lemma
is crucial for proving Theorem 4.1 as it allows to relate information about X
back to information about X,,.

Lemma 4.22. Forn > 0 we have
X, 2 X/Y,.

Proof. We begin with the base case of n = 0. In this case we know that
K C Ly C L and that L is the maximal abelian unramified p-extension of K.
Since L/K is also a p-extension, it must be that Lo/K is the maximal abelian
unramified p-subextension of L/K. Thus, we must have that Gal(L/Ly) is gen-
erated by by G and all of the inertia groups I;,1 <1 < s. In particular, we have
that Gal(L/Lg) is the closure of the subgroup generated by (v —1)- X, I, and
{a; : 2 < i < s}. Thus, we have

XQ = Gal(Lo/K)
= G/ Gal(L/Lo)
= X11/<(’}/0 — 1) . X,CLQ, .. .,CLS,Il>

=2 X/ {(v—-1)-X,a2,...,as)
X/,

Thus we have the case n = 0. Now suppose n > 1. We only need to translats
the above proof into this case. Replace K by K, and so 7o is replaced by ~}
since Gal(K /K,) = TP". In particular, this changes the o; to o7 . We have
that

k41 _
0y

_ (aio_l)kJrl

= aialaiaflafaian .. ~Jfaiafkalf+l

=1 +o0o14-+0¥) - a0l

Thus,

n n
o = (vpa;) - of .

This shows we should replace a; in the above argument with v, - a;. It is clear
that we should replace (o —1)- X by (72" —1)-X = v, (70 —1)- X. (Incidently,
this shows how to proceed with the above proofs if one does not want to simplify
to the case of n = 0!) Thus, the Yy becomes Y,, and we are done. O
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Lemma 4.23. Let M be a compact A-module. If M/(p, T)M is finitely gener-
ated, then M is a finitely generated A-module. In particular, if M/(p, T)M is
finite, then M is a finitely generated A-module.

Proof. Let U be a neighborhood of 0 in M. We have already seen that (p, T)" —
0in A. Thus, given any m € M there is a neighborhood U,, so that (p, T)"U,, C
U for large enough n. Now we use that M is compact to conclude we can choose
a finite cover of M. Therefore, taking N to be the maximum n needed for this
finite set we have that (p,T)YM C U. Since U is an arbitrary neighborhood
of 0, we have that N((p, T)"M) = 0. Now let mq, ..., my generate M/(p,T)M.
Set N = Amj +---Am,, C M. Observe that N is compact since it is the image
of A, thus it is closed. This implies that M/N is a compact A-module. Our
assumption that myq, ..., m, generates M/(p, T)M gives that N+ (p, T)M = M.
Thus we have

(p, T)(M/N) = (N + (p,T)M)/N = M/N.

Hence,

(p,T)"(M/N) = (M/N)
for all n > 0. Now from what we’ve shown above we get that M/N = 0, i.e.,
mi, ..., My, generate M. ([l

Corollary 4.24. The A-module X = Gal(L/K ) is a finitely generated module.

1+7T)P -1
Proof. Recall that 11 = % It is clear that v1 € (p,T). Thus we
have that Yy/(p, T)Y) is a quotient of Yy/v1 - Yo = Yo/Y1 € X/Y1 = X;. We
know that X7 is a finite set and so we get that Yy /(p, T)Y) is finite and applying
Lemma 4.23 we get that Yy is finitely generated. Now X/Yp = Xj, which is
finite, thus X itself must be finitely generated as a A-module. (|

Of course all of these results have been shown under the assumption that
K /K is totally ramified at the primes that ramify. We now remove this
assumption. Let K. /K be a Z,-extension and let K,, be as in Proposition
4.18. Recall that X is the same for K as for K,,. Therefore we have that X is
a finitely generated A-module by Corollary 4.24. For n > m, we replace v, by
Vp,m given by

Un

Um

=1+75 +7%7 +-+ay 7

Vnm =

Note that this works out because Gal(Ky/K,,) = T'?" is generated by ”ygm.
Making these appropriate substitutions we obtain

Lemma 4.25. Let K /K be a Z,-extension. One has X is a finitely generated
A-module and there exists m > 0 so that

X0 2 X/Vnm - Vim

for every n > m where Y, is defined as above.
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We are now in a position to apply our structure theorem on finitely generated
A-modules (Theorem 4.15) to X as well as Y,,,. Observe that we obtain the same
answer whether we use X or Y,,,. This is because X/Y,, is finite and the theorem
is given in terms of a pseudo-isomorphism. Thus, we have

(44 X ~Yu~d s (DA/e) e (DA/HD™).

Our next step is to calculate M /vy, - M for each summand M on the right side
of equation (4.4). We will be able to use this to obtain the bounds we desire on
| X .

Case 1: M =A

Observe that vy, ,, is not a unit in A, in fact, it is a distinguished polynomial!
In particular, we can apply Lemma 4.10 to conclude that A/(vy, ) is infinite.
However, we already know that Y;,, /v m - Yoy, is finite. Thus we must have that
r=0.

Case 2: M = A/(p") for some k > 0.

In this case we need to investigate A/ (pk, Vn.m)- 1t was remarked above that vy, ,
is a distinguished polynomial. We can apply the division algorithm to conclude
that the elements of A/(p*, v, m) are precisely the polynomials modulo p* of
degree less then deg vy, ,, = p™ — p™. Hence,

|M/’/n,mM| = (pk)pnipm = pkpmrc

where ¢ = —kp™, a constant depending on the field K.

Case 3: M =A/(f(T)")

Let g(T) = f(T)". Suppose g has degree d. Since f is a distinguished polyno-
mial, so is g. Thus we have that

T* = p- (poly)(mod g)

for k > d. Note that we will use “poly” to stand for a polynomial several times
in this argument, it is not meant to be the same polynomial at each step. Let
p" > d. We have

n n

(1+T)» =1+p-(poly) +1?
=1+p- (poly)(modg).

In particular, we see that

A+T)P" = (L + 1)y
(1+p- (poly))?(mod g)

=1+ p* - (poly)(mod g).
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Set P,(T) = (1+T)?" — 1. We have

n+2

Poo2(T)=(14+T) -1
—(+T)P" A+ A+ TP (T D)
= Popt (M)A + A+ TP oo (L Ty 07D
= Pora(T)(1+ -+ + 14 p” - (poly))(mod g)
= Poa (T)(p+ p* - (poly)) (mod g)
=p(1+p- (poly))Pp+1(T)(mod g).
Using that 14 p- (poly) is necessarily a unit in A, we see that 7?1:?5;) acts on

A/(g) as p times a unit as long as p" > d.
Assume now that we have ng > m, p™ > d, and n > ng. Observe that

Vn+2,m _ Un+2 o Pn+2

VnJrl,m VUn+41 PnJrl
Thus,

Pn+2

Vn_;,_g)mM = Vn-‘rl,mM

n+1
= PUnt+1,mM.
Therefore we have

|M/Vn+2,mM| = |M/pM| ' |pM/an+1,mM|'

Note that since g is a distinguished polynomial we have ged(p,g) = 1. In
particular, this means that multiplication by p is an injective map. Thus,

|pM/an+l,mM| = |M/Vn+1,mM|-

We also have
M/pM = A/(p,g) = A/ (p, TY),
and so |M/pM| = p®.

Exercise 4.26. Prove that
|M/Vn,mM| = pd(n_no_l) |M/Vno+1,mM|
forn >ng+1.

Therefore, if |M /vy, m M| is finite for all n we obtain |M /v, ,, M| = p@"*e for
n > ng + 1 and ¢ a constant depending on the field K. If M/v, ,, M is infinite
for any n, then M cannot occur as was observed in Case 1. Thus we have shown
the following.
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Proposition 4.27. Suppose

N =1 (Dasm) @ (Da/a))

where each f; is distinguished. Let p1 =" pu; and A=Y _deg f;. If N/vypmN is
finite for all n, then r = 0 and there exists ny and ¢ such that

|N/Vn,mN| _ pup"Jn\nJrc
for all m > ng.

We know that Y, is pseudo-isomorphic to an appropriate N as given in
the previous proposition. We also know the order of N/v, ,n, N for all n > ng.
Therefore, it remains to relate this order to the order of Yy, /vy mYm. The
issue here is that the “A” and “B” we obtain in using the definition of pseudo-
isomorphism could vary with n. We know from the above lemma that the order
of Yy /Vn mYm is determined as we want it up to the order of A and B, so we
need to show that for large enough n the orders of these are constant as well.
The main work left is contained in the following lemma, which is essentially an
exercise in applying the Snake Lemma.

Lemma 4.28. Suppose M and N are A-modules with M ~ N and M /vy M
18 finite for all m > m. For some constant a and some ngy one has

| M /v, M| = p*|N/vpmN|
for all n > ng
Proof. The fact that M ~ N implies that t we have an exact sequence

0 ker ¢ M ? N coker p —— ()

with ker ¢ and coker ¢ finite. Using this exact sequence we obtain the following
commutative diagram
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0 0 0
ker ¢!, ker ¢ ker ¢!
()—>Vn)mM M M/Van—>()
o, ¢ by
00— I/nymN N N/I/mmN —(
coker ¢!, coker ¢ coker ¢
0 0 0

Our goal is to prove that for large enough n we have | ker ¢//| and | coker ¢/ | are
constant. We prove this by showing each is bounded and decreasing. We begin
by showing each is bounded. It is clear that |coker ¢!'| < |coker ¢| since one
obtains representatives of coker ¢!’ from those of coker¢. To see that |ker @]
we apply the snake lemma to obtain the long exact sequence

0 ker ¢!, ker ¢ ker ¢!/

coker ¢/, — coker ¢p —— coker ¢/ — 0.

From this we see that

| ker ¢, | < |ker ¢| - | coker ¢, |
< |ker ¢| - | coker ¢|

where we have used that | coker ¢/, | < | coker ¢|, which follows from the fact that
one obtains representatives of coker ¢/, by multiplying those of coker ¢ by vy, m.
Thus, |ker ¢//| is bounded as well.

We now show that |coker ¢!’| is decreasing. Let n’ > n > 0. Then we have

| coker ¢,| < |coker ¢!!| since vp N = vy m (V”'—m) N C vy, N. Thus, we

have for large enough n that | coker ¢//| is constant.
It only remains to show that | ker ¢”| is constant for large enough n. Using
the snake lemma we have

|ker ¢, | - | ker @] - | coker ¢| = |ker ¢| - | coker ¢, | - | coker @],
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Thus, we need to show that for large enough n one has |ker ¢/, | and | coker ¢/, |
are constants. It is clear from the commutative diagram that ker ¢!, C ker ¢, so
we easily obtain that |ker ¢/, | is bounded. To see it is decreasing, just observe
that vy M C vy . M, which in turn implies that ker ¢/, C ker ¢/,.

We now deal with |coker¢),|. The fact that |coker¢,| < |coker¢| was
mentioned above. Now we need to show that |coker¢/ | is decreasing. Let
Un' mY € Vn,mN. Fix a set of representatives of coker ¢/, and let z € vy, ,, N be
the representative for vy, .,y in coker ¢},. Observe that

UnmlY — 2 = ¢(Vn7mx)

/
n

Un''m Un':m Un''m
’ VnmlY — : = : ¢(Vn,m$)a
Vn,m Vn,m Vn,m

Uyt
Un'.mY — (M> 2 = (V' mT)

Vn,m

for some x € M since it is necessarily in im(¢},) and this injects into im(¢).

Thus we have

i.e., we have

= (b;z’(yn’,mx)'

Un' m

Thus, by multiplying representatives of coker ¢/, by we obtain represen-

n,m
tatives for coker ¢/ ,, which proves that |coker ¢/,| < |coker¢/,|.

n’s

Summarizing, we have the exact sequence

0 ——=ker¢!! —— M /vy ;M —— N/vy, ;y N —— coker ¢! —— 0.

and ng so that if n > ng then the terms |ker ¢//| and | coker ¢//| are constant
and thus we obtain the result. (|

It is now simple to complete the proof of Theorem 4.1. We have shown that
there exists integers ng, v, A > 0, and p > 0 so that

pen — |X’Il|

= |X/Yinl - Yo /Vnm Y]

= pb|N/Vn,mN|
_ p)\nJr,upnqu
for all n > ny.

We close this section with some applications of the work we have done.
Recall that X,, & A,, where A, is the p-Sylow subgroup of the ideal class group
of K,. In general we continue to use X, in our notation with the exception
of incorporating the common notation that h, denotes the order of the class
group of K,. In particular, the order of A, is the p-part of h,. We will also
need Nakayama’s Lemma.
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Lemma 4.29. (Nakayama’s Lemma) Let M be a finitely generated R-module
and I an ideal of R contained in the Jacobson radical of R. Then IM = M
implies M = 0.

Proof. See Proposition 2.6 in [AM]. O

Proposition 4.30. Let Koo/K be a Zy-extension in which exactly one prime
ramifies. Moreover, assume the prime that ramifies is totally ramified. Then we
have

X, =2 X/(1+T)P —1)X
and p1 ho if and only if pt hy, for alln > 0.

Proof. We begin by observing that K. /K satisfies the assumption we were
working under when we proved Lemma 4.22. In particular, s = 1 and so Yy =
TX. Thus,

Y, =v,TX

_ ((1+TT)P" —1)TX’

which clearly gives the first result.
Suppose p { ho. In particular, this gives that Xy = 0, i.e., X/TX = 0. However,

this implies that X/(p, T)X = 0. Combining this with Nakayama’s Lemma we
have that X = 0 and we are done. (|

One should observe that we cannot apply Theorem 4.1 directly to conclude
the statement about divisibility of h, because Theorem 4.1 is only true for
n > ng for some ng and not all n > 0.

Definition 4.31. Let A be a finite abelian group. The p-rank of A is given by
p-rank(A) = dimg,,7(A/pA).

Lemma 4.32. Let N be given by

s t
v (@are) o (@assiny
i=1 j=1
where the f; are distinguished polynomials. Set =" k;. Then p = 0 if and
only if p-rank (N/vnmN) is bounded as n — oo.

Proof. Recall that v, ,, is a distinguished polynomial of degree p™ —p"™. There-
fore, if take n large enough so that p™ — p™ is larger then the maximum of the
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degrees of the f;, we have

N/, vn,m)N = (@ A/ (p, Vnml)) D <@ A/ (p, f5, Vn,m))
= (@ A/ (p, T”"‘pm)> ® <EB A/(p,Tdegff)>
=1 i=1

= (2/pz)y "

for A = 3" deg f;. From this last equation it is clear that the p-rank is bounded
if and only if s =0, i.e., if and only if u = 0. O

Proposition 4.33. Let u be as in Theorem 4.1. Then p = 0 if and only if
p-rank (X,,) is bounded as n — co.

Proof. The previous lemma implies that p = 0 if and only if p-rank (N/vy, ., N)
is bounded where N is as above. Recall we have an exact sequence

0 ker ¢!/ Yo [V Yom O, N/vy ;N —— coker @) — ()

where we know | ker ¢”| and | coker ¢!'| are bounded independent of n for large
enough n. This implies that = 0 if and only if p-rank (Y, /vpn,mYm) is bounded.
However, we know that X,, = X /v, ,,Y,,, and X/Y,, = X,, is finite. Thus, X,
differs from Y, /vy mYm by a finite group bounded independent of n. The result
now follows. o



Chapter 5

The Iwasawa Main
Conjecture

5.1 Introduction

In this section we will give the necessary background and then state the Iwasawa
main conjecture. The goal is to understand the statement of the main conjecture
for totally real fields as well as to outline Wiles’ proof. We will state the main
conjecture for totally real fields, but then restrict ourselves to the case of Q to
outline the proof. The main conjecture was known for abelian extensions of Q
by work of Mazur and Wiles ([MW]) by geometric methods, but we outline here
the methods used to prove the conjecture for totally real fields. Our restriction
to Q is one of convenience, allowing us to work with classical rather then Hilbert
modular forms. For the general case the reader should consult Wiles’ original
paper [Wiles2]. Though this section is phrased in terms of totally real fields,
one should keep in mind the corresponding statements for abelian extensions as
these are the ones that will be used in section 5.2.

Let F be a totally real number field and let F' C F} C --- C F be the cy-
clotomic Zy-extension of F. Let vy € Gal(Fu/F) be the element corresponding
to 1 € Z, under the isomorphism Gal(Fu/F) = Z,, so that vy is a topological
generator of Gal(F/F). One should observe that Fi,, and hence all the F,, is
totally ramified at p. Thus, the inertia group at p is the entire Galois group.

Let x be a p-adic valued Artin character of F' and F'X the associated field.
Recall this means that y factors through Gal(FX/F). Following Wiles we say
X is of type S if FXN Fy = F and of type W if FX C F. Note that in [Wash]
these are referred to as type 1 and type 2. We will assume throughout that FX
is totally real as well.

Exercise 5.1. Let F = Q and x : (Z/NZ)* — @; be a primitive Dirichlet

character. Prove that x is type S if and only if ord,(N) < 1. It may be helpful
to consider the ramification of p.

61
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Assume now that y is of type S. Set FX = F,,FX so that FX = F FX =
\J FX. The fact that x is of type S gives the isomorphisms

I = Gal(FX/FX) = Gal(Fw /F) 2 Z,

and
A = Gal(FX /Fy) — Gal(FX/F)

One obtains similar isomorphisms replacing FX and Fu, by F)X and F;, respec-
tively. We think of g as an element of I'. We have the following diagram.

FX
VRN
FX Foo
N
F

As in chapter 4 we let L, denote the maximal abelian unramified pro-p
extension of FX. Set X, = Gal(L,/FX) so that X,, is isomorphic to the p-
Sylow subgroup of the ideal class group of FX. Let L = |J L, F)X and observe
we have

X = Gal(L/FX)
— lim Gal(L, . /F)
= lim Gal(L,,/F))
—

=~ lim X,
—

as in chapter 4. We have the following diagram of fields:
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As before we have that Gal(FX /F) =2 AxT acts on X via conjugation. Since
X is pro-p we also have a natural action of Z, on X. Thus X is a Z,[A x I'[-
module and hence a Z,[I']-module. We will again make use of the fact that
Zp[T] = A =Zp[T] via o — 1+ T. Recall we saw in chapter 4 that

(1) X~@BM@M>@EBMm@WU

with the f;(T') irreducible and distinguished in Z,[T".
Set V = X ®z, Q,. We have

v = @T,T/(HT™)

as tensoring with @p kills the kernel, cokernel, and the A/(p"i)’s in equation
(5.1). Thus, V is a finite dimensional vector space. Setting

£x() = [ £y0)™

and recalling that 7' < -y — 1 under the isomorphism A = Z,[I'] we see that
fx(T) is the characteristic polynomial of 79 — 1 acting on V. We can gain more
information by recalling our previous work on orthogonal idempotents. The
vector space V is clearly a Q,[A]-module, so we have

V=P eV

PEAN

Recall that we can view y as a character of Gal(FX/F) =2 A. We are interested
in
VX=e,V={veV:iov=x(o)v Yo e A}

It is clear that VX is still a I-module (7o acts as 1+1T as before.) Set f, (T') to be
the characteristic polynomial of 79 — 1 acting on VX. Note that f\(T) | fx(T).
This characteristic polynomial gives us half of the information we need to state
the main conjecture. Before moving to the other half, one should observe that
by tensoring up with @p we lose all of the information contained in p, = > u;
in equation (5.1). We will return to this and see how we can reformulate the
above approach to preserve this data.

It is now necessary to revisit p-adic L-functions. For the field Q these were
introduced in chapter 3. In this chapter the basic properties such as the inter-
polation of classical L-functions was stated. Given a character ¥ of a totally
real field F so that F'¥ is again totally real Deligne and Ribet ([DR]) proved the
existence of a p-adic L-function £,(s, 1)) associated to i generalizing the one
already discussed for Q with the same interpolation properties. Define

Hy(T) = P(y)(1+T)-1 1 of type W or trivial
4 - 1 otherwise.
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Deligne and Ribet also proved that there exists Gy (T') € Zp[][T] such that

Lp(1=5,¢) =Gy((1+p)° = 1)/Hy((1 +p)° = 1)

where Oy := Zy[¢] is the ring generated over Z, by the values of . We will
use the notation Ay to denote Oy [T7]. We will also need that if p is a character
of type W then

Gyp(T) = Gy(p(ro) (1 +T) - 1).

Let x be an odd character and set ¢ = Y~ 'w where w again denotes the

Teichmuller character. Since v is an even character we have the existence of
the p-adic L-function along with Gy. Applying the Weierstrass preparation
theorem to Gy ((1+p)(1 +7T)~! — 1) we have

an

Gy((1+p)(1+T)7" = 1) = @ gy (T)uy(T)

where w is a uniformizer of Oy, g, (T) is a distinguished polynomial, and w.(7T")
is a unit in Ay. Note that the “an” is added to the p, to distinguish it as the
“analytic” p-invariant. Observe that if x is of type S then Hy(T') = 1 unless

X = w.

Theorem 5.2. (Main conjecture of Iwasawa theory) For x odd of type S and
p an odd prime one has

fX(T> = gxflw(T)'

For what is known in the case of p = 2 the reader should consult [Wiles2].
Note we do not need the assumption that y is of type S for the abelian extensions
of Q. See [MW] for the statements in this case.

As was mentioned above, because of the fact that we formed a vector space
V from X by tensoring up with @p we lost the information contained in p, and
p" in the main conjecture. We now describe another approach so as to retain
this information. Suppose now that in addition to being odd of type S that x
also has order prime to p. We write XX to denote (X ®z, O, )X where

(X ®z, O)X ={r € X ®z, Oy :0x = x(0)r Yo € A}
= X ®z,a) Oy-

where O, is viewed as a Z,[A]-module via the ring homomorphism induced by
X. One should note that it is necessary for us to tensor with Z,[x] for this to
make sense. In particular, without tensoring up with Z,[x] the term x(o)z does
not make sense. We have that XX is a finitely generated torsion A,-module and
has characteristic polynomial of form w/x f, (T).

Theorem 5.3. (u-invariant conjecture) Let p be an odd prime and x an odd
character of order prime to p of type S. Then

P = 3
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The strong form of the p-invariant conjecture also asserts that these u-
invariants are 0 for cyclotomic Z,-extensions. For abelian extensions the strong
version of the conjecture is know, see ([Wash], Theorem 7.15) for example. How-
ever, it is known that for non cyclotomic Z,-extensions that the p-invariants may
not be zero. For example, Iwasawa constructed a non-cyclotomic Z,-extension
with ¢ > 0 in [Iwasl].

There is a more compact way to state main conjectures that captures The-
orems 5.2 and 5.3 in one statement. Let M be a module so that

u~ (@) o (@)

with the f;(T) irreducible and distinguished. The ideal generated by the charac-
teristic polynomial p#i ]| f;(T)™ is called the characteristic ieal of M and we
write it as chara (M). The main conjecture can then be stated as the following
equality of ideals in A,

chary, (XX) = (Gy—1,((1 +p)(1 + T)"' —1)).

Note here that the u,-1,,(7") that occurs in the application of Weierstrass prepa-
ration to Gy-1,((1 4+ p)(1 +T)~* —1) is a unit in A, so plays no role in the
above equality.

Proving a “main conjecture” is a very difficult task. Currently there are two
basic methods used to proved main conjectures. The easiest one to apply is the
use of an Euler system. Unfortunately, constructing an Euler system is very
difficult in its own right and very few Euler systems are known. Kolyvagin was
able to significantly simplify Mazur and Wiles’ proof of the main conjecture
for Q by using an appropriate Euler system. For more information on Euler
systems the reader is urged to consult [Rubin].

The other method is the “geometric” method. In this method one uses
congruences and p-adic representations coming from modular forms. This is
the method we will be concerned with. We will develop some of the neces-
sary background material in the following sections before giving an outline of
the argument used. However, before we develop the background we give one
application of the main conjecture to the size of class groups in the next section.

5.2 The Main Conjecture and Class Groups

Let p be an odd prime and let F' be an abelian imaginary extension of Q of degree
prime to p. Let x : Gal(F/Q) — Oy be an odd character. Set A = Gal(F/Q).

We view x as a character on Gal(Q/Q). Let g = [O, : Z,]. Write Ap for the
p-Sylow subgroup of the class group of F. As usual, we write A%, to denote the
x-isotypical piece of A, namely,

A? = Ap ®7,[A] OX'
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The goal of this section is to use the main conjecture to prove the following
result.

Theorem 5.4. Suppose x # w, then

|A§| = |Ox/(£p(0=X71 DI

In particular,
vp(|AF]) = gup(L(0,x71))

where vp(a) denotes the p-adic valuation of a.

Though the theorem is true as stated, the case that x(p) = 1 is much more
difficult to prove so we stick to the case that x(p) # 1. See ([MW], Chapter 1 §
10).

We begin by reducing to the case that FF = QX. To see this we prove
something slightly more general. Let K/FE be an abelian extension of number
fields with [K : E] prime to p and x factors through Gal(E/Q). We show that
the natural mapping

Af, — A%

is in fact an isomorphism. Once this is shown it is easy to see we may reduce
to the case F' = QX by setting K = F and E = QX. We begin by showing the
following elementary result.

Lemma 5.5. Let K/E be a Galois extension of number fields with [K : E] =n
and ged(n, hg) = 1. Then the natural map Cp — Ck is an injection.

Proof. The natural map Crp — Ck arises from the map Ip — Ix given by
a — aOg where Ig denotes the fractional ideals of O and similarly for Ix.
Let a € Ig be such that a becomes principal in Ik, i.e., there exists an o € K
so that aOk = («). Recall that if we map a into Ix and then back to Ig via
the norm map we obtain Nm(aOg) = alf*Fl. We also have that since aO
is principal, Nm(aOx) = (Nm(a)). Thus, we see that al®**] = (Nm(a)), i.e.,
alf*El is 0 in the class group of E. Thus, we must have that the order of a
divides [K : E] as well as hy. However, these were assumed to be relatively
prime so it must be that the order of a is 1 and so the map is injective. o

Using this lemma we see that A}, injects into A%. The fact that x factors
through Gal(E/Q) means that x is trivial on Gal(K/FE). In particular, using
the definition of A% applied to the o € Gal(K/E) we see that Gal(K/FE) leaves
the ideals in A}, fixed. In particular, for any prime ideal p in A}, we have that
op = p fpr every o € Gal(K/E). However, we know that Gal(K/FE) permutes
the primes p lying over p in E. Thus, there is only one prime over p for each
prime ideal p € A},. This shows that the above map is also a surjection and
hence an isomorphism as claimed.

Let L,, L, X,, and X be defined as in the previous section. In particular,
our goal is to determine the p-adic valuation of |X[|. By our choice of x we
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have that X = (X/TX)X = XX/TXX. Recall that XX is a finitely generated
torsion Ay-module. Set w to be a uniformizer of O,. Recall that we have

XX (69 Ax/wﬂw> & | DA/ (Fs(D™)

where we set p, = > py; and the f, ; are all irreducible distinguished polyno-
mials. In fact, since we are assuming y is an odd character we have that the
above pseudo-isomorphism is actually an injection with finite cokernel C. For a
proof of this, see ([Wash], Proposition 13.28). Thus we have

0—= XX —= (@, A/m) & (B A/ (fus(T)™) ) —= € —=0

7 lT@) 7(3)

0 — XX —= (@, A/ ) & (@, A/ (f1g(T)™)) —= C —=0

where T() is just multiplication by T
Lemma 5.6. The kernel of the map T is 0.

Proof. Suppose ker T # 0. Then we must have T | [1; fx.;(T)™s. The main
conjecture then implies that T' | Gy -1, ((1 +p)(1 +T)~! — 1), i.e., we have

0= folw((l +p) - 1)
=L£,(0,x 'w)
=1 -x""@)LO.x)
where we have used that x # w to conclude that H, -1, = 1. However, we know
that x(p) # 1 by assumption and L(0,x ') # 0 since x is odd. Thus the kernel
must be 0. |

We can now apply the Snake lemma as well as the fact that ker T(®) = 0 to
conclude we have an exact sequence

0 —— ker T(® — coker T)) — coker T(® — coker T(3) — 0.

We also have the exact sequence

0 C[T) c—Ls¢ c/TC 0

where C[T] = {c € C : Tc = 0}. We now use the fact that given an exact
sequence of finite groups
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0 A B C D 0

we have that |A| - |B|-|C|7! - |D|~! = 1 to conclude that |C[T]| = |C/TC)|.
Now, observing that C[T] = ker T®) and C/TC = cokerT®® we obtain that
| coker TM)| = | coker T®)|. Thus, we have the following string of equalities.
A = 1X5]
= [XX/TXX|
= | coker 7|
= | coker T®|

= 1D A& D) | B A (s (T, 7))

(1) = [Ay/(x(T), T)|
= 10x/1(0)]

(2) = |Ox/Gy—10 (D)l
= 0x/L£p(0,x ™ w)|

where we used in equation (1) that p, = 0 by the main conjecture since this
is an abelian field and we used the main conjecture in equation (2) as well. In
particular, we have that

|03/ Lp(0, x ™ w)| = Oy (L0, x 1) (1 = x"(p))I.
Thus,
up(A%) = vp (|0 /(L(0, x (1 =x" P))]) = g - vp(L(0,x™ 1))

as claimed.

5.3 Classical Modular Forms

In this section we give a very brief overview of the theory of classical modular
forms. It is assumed the reader is familiar with the theory and we include this
section to set notation mainly. Those wishing to read a more complete account of
the theory are encouraged to consult any of the following: [DS], [Kob], [Milne3],
or [Miyake]. For a more advanced overview that contains references to proofs
one should consult [DI].

We denote the complex upper half plane by h. The group GLJ (R) acts on b

- . . . b
via linear fractional transformations, i.e., for g = ) € GL$ (R) and 2z € b

d
The two subgroups of SLa(Z) that we will be interested in

To(N) = {(ﬁc Z) € SLQ(Z)}

az+b
cz+d*

we have gz =
are
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and
a b
I'(N)= {(Nc d> €SLy(Z):a=d= 1(modN)}.
Define j(g,z) = ¢z + d.

Exercise 5.7. For g1,g2 € GL] (Z) and z € b, show

J(9192,2) = (91, 922)7 (92, 2)-

For f a complex valued function on h and k£ > 0 an integer we write

(f1k9)(2) = (det 9)""%j(g,2) 7" f(92).

A modular form of weight k and level N on T'1(N) is a holomorphic function
f b — C so that fl|rg = f for every g € T'1(N) and f is holomorphic at
the cusps, i.e., f is holomorphic at the points in P*(Q). We write M (T'1(NV))
to denote the complex vector space of modular forms of weight & on I';(N).
Observe that if f € My(T'1(N)), then f is periodic of period 1 and so has a
Fourier expansion. We write this expansion as

F2)=) ar(n)q"

where ¢ = €*™%. For a ring O, we write My (I'1(V), O) to indicate the space of
modular forms that have Fourier coefficients lying in O.

Observe that I'y (V) C T'g(/N) and is a normal subgroup. In fact, one has
To(N)/T1(N) = (Z/NZ)* via the map <J\(;c Z) — d. We have an action of
To(N) on My(T1(N)) via f — flgg for g € T'o(N). This gives an action of
(Z/NZ)* on M(T'1(N)) and so we can decompose this space with respect to
the characters of (Z/NZ)*. Write

M (N, x) = {f € Mg(T'1(N)) : fleg = x(d)f Vg € ['o(N)}.

Then we have
My(T1(N)) = @ Mi(N, ).
X

The space My (N, x) is referred to as the space of modular forms of weight k,
level N and character x.

A modular form f is called a cusp form if it vanishes at all the cusps. We
write Si(I'1(N)) for the subspace of My (I'1(N)) of cusp forms. Note that for a
cusp form f, the Fourier coeffience af(0) = 0. Similarly we can define Si (I, x)
and have a decomposition

SkT1(N)) = @D Sk(N, x).
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Hecke operators are linear operators that act on each space of modular forms
so far defined. We omit their precise definition and content ourselves with listing
relevant properties. The reader who has never encountered Hecke operators is
urged to read the brief account given in [Kob] as a quick introduction. For each
n € N there is an associated Hecke operator T),. For gcd(n, N) = 1 there is also
an operator (n). Note the following facts:

(1) Hecke operators commute.
(2) For ged(n,m) =1, Ty = T Ton-
(3) Let £ be a prime. Then

Tyr = (TE)T 14 | N
O Ty — 0 Ty—2 LFN.

(4) Let f € M(N,x). The action of Ty on f is given by

Tof = { oo af(fn)g" (| N
S ar(tn)g" + x (O ap(n)g™  CfN.

Let T(k,N) C Endc(My(T'1(N)) denote the Z-subalgebra generated by the
T,.’s, or equivalently by the Ty’s and (¢)’s. We will drop the k& and N when they
are clear from the context. Given an integer M, we write T™) to denote the
subalgebra generated by the T,,’s with ged(n, M) = 1. There is a perfect pairing

Se(T1(N)) x T — C

given by (f,t) — air(1). In particular, we can use this perfect pairing and
the fact that Si(T'1(N),0) is a Tp := T ® O-module to conclude that we have
Sk (Fl(N), O) = Home (T, O).

Let f € Sk(I'1(N)) and g € My(T1(M)). There is an inner product known
as the Petersson product given by

g =l [ e

where z = x + 4y. This integral always converges. The Petersson product is
a perfect pairing on S (I'1(N)) x Sg(T'1(N)). The orthogonal complement of
Sk(T1(N)) in My (T'1(N)) is the space of Eisenstein series denoted by Ej(T'1 (N)).
The Petersson product is Hecke equivariant, i.e., for £ 4 N we have (Ty f, g}y =
(f,{()Tyg)n. Note that for f € Sg(N,x) one has (£)f = x(¢)f. One can
use these results to conclude that TV) can be simultaneously diagonalized on
Sk(N,x), i.e., Se(N,x) has a basis of simultaneous eigenforms for T!V). Thus
we can write S, (N, x) = @ V; where each V; is an eigenspace for the action of
TO). For each V; there exists a unique M | N and a unique f € Sy(M,x) so
that f € V; and satisfies the following properties:
(1) ag(1) = 1
(2) f is a simultaneous eigenform for all T; and (¢) (including ¢ | M)
(3) The set {f(ez):e| 4} forms a basis of V;. (Note: If M = N then V; is
1-dimensional. Also observe that if ¢ | N but ¢ { M then Ty is not the same
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on Sp(N,x) as on Si(M,x). So while f is an eigenform for Ty (M) it is not
necessarily an eigenform for Tx(N).)

(4) Tof = as(0)F.

The forms f where V; is 1-dimensional are referred to as newforms. They are
“new” in the sense that they do not come from a form on a space of lower level.
The following fact will also be useful. Let fi,..., f be a basis of newforms for
Spev(I'y(NV)) and suppose each of these newforms has coefficients in some num-
ber field L. The action of T(k, N) on the space of newforms gives the following
isomorphism

T®L%ﬁL.
i=1

Let f € My(T'1(N)). Associated to f is a complex analytic function L(s, f)
defined by

L(s, f) = Zaf(n)n_s,

which converges in some right half plane. This L-function has analytic continu-
ation to C if f € Si(T'1(N)) and meromorphic continuation to C with the only
possible poles at s = 0, k in general. There is also a functional equation, but we
will not make use of it so omit it. Suppose now that f is an eigenform for T. In
this case L(s, f) has an Euler product given by

L(s, /) = [[(1 = ag (@t +x(@ 1 72) 7 [ —ap(0)e—) 7

HN (N

We will also require the following information about Eisenstein series. Recall
the space E(T'1(NN)) is the orthogonal complement to the space of cusp forms
in My(T1(N)). Let x1 and x2 be Dirichlet characters of conductor M; and M,
respectively. We assume that either both characters are primitive or if k = 2
and x1 and xo are both trivial then M; = 1 and Ms is prime. Define terms
a(n) by

3 a(n)n® = L(s, x1))L(s — k + 1, x2),
n=1

i.e.

a(n) = Y xi/d)xz2(d)d*"  (n=1).

0<d|n
Note this gives a(f) = x1(£) + x2(£)¢*~1 for primes ¢. Define a(0) by

—i(l—Mg) ifk=2and xy1 =1= x>

0) — 0 ifk#1and xy; #1
a(0) = 0 X1 7# 1# X2
L(lfk,xlxz)

5 otherwise.
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Then there exists a modular form

Ed. () = Za(”)qn € My (M1 Ma, x1X2)-
n=0

(M Mz)

In fact, this modular form is a normalized eigenform for T . Moreover,

EL(N,x) = <E§<’?,X2(62) rel ;X = X1X2>'

My M,
Exercise 5.8. (For the representation theory people.) Reconcile the above state-
ments about Fisenstein series with what you know from representation theory.

Let f € Sip(N,x) be a normalized eigenform for T, i.e., ay(1) = 1 and
T.f = as(n)f for all n. We shall make use of the fact that there exists a
number field Ky such that af(n) € Ky for all n. In fact, one can show that
ay(n) € Oy := Ok, for all n. Fix an embedding Q — Q@ for £ a prime. Let A
be a prime of Oy lying over £ and let Oy ) denote the completion of Oy at A.
There exists a continuous representation

PfX - Gal(@/@) — GLQ(Of))\)

where GLa(Oy ) gets the topology inherited from Oy, and Gal(Q/Q) gets
the profinite topology. This map is a continuous homomorphism of topological
groups such that

(1) py,a is unramified at all p{ N (action of inertia group at p is trivial)

(2) det py,a(Froby) = x(p)p"~* for pt N

(3) trace(py.(Frob,)) = ay(p) for p{ (N

(4) py,x is irreducible.

There are also Galois representations attached to Fisenstein series but these are
no longer irreducible.

Let K be a finite extension of QQ; for some prime ¢. Let O denote the ring of
integers of K and set k = O/w where w is the maximal ideal of O. We fix the
appropriate embeddings: K — Q,, Q — Q,, and Q — C. The Hecke algebras
Tk and Ty are Artinian and so only have a finite number of prime ideals, all
of which are maximal. The Hecke algebra T is finitely generated and free as
an O-module. Thus, the maximal ideals are those lying over w of O and the
minimal primes are those lying over (0) C O. This is a consequence of the going
up and going down theorems, see ([Mats], Theorems 9.4, 9.5). Thus, the natural
maps To — To ®0 K 2Tk and Tp - To ®p k = Ty, give bijections

{maximal ideals of Tk} <> {minimal primes of T}

{maximal ideals of Ty} < {maximal primes of Tp}.

Using the fact that O is complete we can apply ([Mats] Theorems 8.7, 8.15) to
conclude that the natural map

To — H Tom
m
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is an isomorphism where the product is over the finite set of maximal ideals of
To. Each To « is a complete local O-algebra which is finitely generated and
free as an O-module. Moreover, each minimal prime p of Ty is contained in a
unique m.

We now connect the ideals of the Hecke algebras back to what they tell us
about eigenforms. Let f € Si(IN, K) be a normalized eigenform for T. One has
that the map T, — a¢(n) from T — K induces a K-algebra homomorphism
Tx — K. The image is the finite extension of K generated by the Fourier
coefficients of f. The kernel of this map is a maximal ideal of T that depends
only on the Gal(K /K )-conjugacy class of f. Thus, a Gal(K /K ) conjugacy class
of normalized eigenforms gives rise to a maximal ideal of Tx. The analogous
statement for Ty holds as well. In fact, we have the following result.

Theorem 5.9. The following diagram commutes with the vertical maps being
bijective and the horizontal maps being surjective. Note the top horizontal map
is nothing more then the Deligne-Serre lifting lemma ([DS], Lemma 6.11).

normalized eigenforms in normalized eigenforms in
Sm (N, K) modulo — Sm(N, k) modulo
Gal(K /K)-conjugacy Gal(k/k)-conjugacy
1
{mazimal ideals of Tk} {mazimal ideals of Ty}
{minimal primes of To} — {mazimal primes of To}

We will mainly be interested in “ordinary” modular forms. .

Definition 5.10. Let Ky be a number field containing all the Fourier coef-
ficients of f € Sk(N,x) and Oy be the ring of integers of K. We say f is
ordinary at p if ar(p) € O;,p for every prime p|p in Oy.

Exercise 5.11. Prove that f being ordinary at p is equivalent to the statement

that

z® — ag(p)x + x(p)p

has at least one root that is a unit modulo o for each p|p in Oy.

k—1

An important feature of ordinary forms is the fact that given an eigen-
form f € Sk(N,x) that is ordinary at p one has that the Galois representation
attached to f has the following nice form when restricted to the absolute de-

composition group D, of p:
X1 *
pilon = (0 X2)

where o is unramified at p and satisfies

unit root of 22 — af(p)x + x(p)p** ptN

xz(Erob,) = { af(p) pIN.
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Note here that the ~ means that ps|p, can be conjugated into this form.

We will also need Hida’s ordinary projector e. To avoid confusion we adopt
the convention that we will write U, for T}, when we are thinking of T}, in T(k, N)
with p | N. Let O be a finite extension of Z, and K the field of fractions of O.
Set

e= lim U".
This is well defined and acts on My(To(Np”), O) where r > 1 ([Hidal], page
236). In fact, e is an idempotent. Given an eigenform f, ef is nonzero if and
only if f is ordinary at p.

Exercise 5.12. Prove that ef is nonzero if and only if f is ordinary at p.

Let f be an ordinary form of level N. If p{ N, we can still consider f as an
element of My (T'o(Np)) and so have an action of e on f. One has then that ef
is an eigenform of level Np if p f N and an eigenform of level N if p|N. The
eigenform ef has the same eigenvalues as f away from p (Hecke operators T,
commute with U, for p{n) and has the unit root of 2% — as(p)z + x(p)p*~! as
its eigenvalue at p. The form ef is called the p-stabilized newform associated to
f-

We write MP(Do(N), K) for eMy(T'o(N), K) and likewise for Sp. It is con-
vention to refer to M (Io(N), K) as the ordinary forms. However, one should
be aware that this is an abuse of language as an ordinary form does not nec-
essarily lie in here. What is true is that if f is an ordinary form, then ef is
nonzero and in M2(To(N), K). So MJ(To(N),K) consists of the p-stabilized
newforms associated to the ordinary forms in My (To(N), K).

We will need the following theorem when we study A-adic modular forms.

Theorem 5.13. ([Wiles1], page 539) For fized N, dimg M,go)(FO(Np),K) is
bounded independent of k.

Proof. We give here an outline of the proof of this theorem, leaving many of
the details to the reader. The main idea is to make use of the Eichler-Shimura
isomorphism:

My (T, C) @ S (T',C) — H(T, Ly,—2(C))

where we have group cohomology on the right with Lg_2(C) denoting the sym-
metric polynomial algebra in two variables of degree k — 2 over C. The ac-
tion of T' on L;_2(C) is given by v - P(z,y) = P((x,y)y 'dety). It is possi-
ble to define Hecke operators on the cohomology group corresponding to the
Hecke operators on modular forms. The point here is that My (To(Np),C) —
H'(To(Np), Ly_2(C)), so we can prove the theorem by bounding the dimension
of H(To(Np), L1,_2(C)). Observe that we can define e as above since we have
the appropriate Hecke operator acting on the cohomology group. With O as
above we have an exact sequence

0 — Lj—2(0) —> Ly _2(0) — Lj_»(F) —=0
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where F = O/w. This gives an injection
eH' (To(Np), Li—2(0)) @ F — eH*(T'o(Np), Li_2(F))
where we have used that tensoring with F kills off the kernel. Thus, we have
dimc(eH' (To(Np), Li,_2(C))) < ranke (eH' (To(Np), Lr_2(0)))
< dimg(eH" (T'o(Np), Li—2(F))).

Thus, it remains to bound the dimension of eH' (I'g(Np), Lj_»(F)) independent
of k. Define j : Ly_o(F) — F by

k—2
ZAmxkizimym'_)AO-
m=0

This is a map of I'o(Np)-modules that compatible with the action of (2(; (1)>
Thus we have a map
Je : HH(To(Np), Li—2(F)) — H'(To(Np), F)

that is Up-equivariant. If we can show that j, is injective on eH' (T (Np), Lx_o(TF))
we will be done because everything will be bounded by the dimension of H*(To(Np), F).
To show j. is injective one shows that one can define a map

I:H'(To(Np),F) — H'(To(Np), Li—2(F))

so that Toj, = j.ol = U,. This proves that j. is injective on eH" (I'o(Np), Ly—2(F))
because U, is invertible on eH' (T (Np), Ly_2(F)). (Think U, acts by a unit here
since the eigenvalues are the unit roots!) The map I is defined as follows. Let

g= (g ?) Observe that gLy_2(F) 2 gF = F since g kills everything except

the first coefficient. To ease notation set I' = I'g(Np). We have maps
H'(D,F) —"> H'(T 1 gTg~", gF) — = H'(T N gLy, F)

it

HY(T'Nglg™!, gLy—o(F))

H'(T'Nglg™!, Li—2(F))

cores

HY(T', Ly_o(F)).

Define I to be the composition of these maps. It is then left to check I satisfies
the properties claimed, which is left as a long tedious exercise. O
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5.4 Converse to Herbrand’s Theorem

In this section we will outline the Ribet’s proof of the converse of Herbrand’s
theorem. We include this here as it provides a “classical outline” of Wiles’
proof of the main conjecture. Understanding this proof will give one a good
foundation to understand Wiles’ proof which relies on the same method using
A-adic modular forms instead of classical modular forms. Recall Theorem 3.44
which we state here in a more general form then that due to Ribet.

Theorem 5.14. Let p be a fized odd prime and x : (Z/NZ)* — @; an even
primitive Dirichlet character of order prime to p. Set ) = xw and F = QY.
If L(—1,x) is not a unit in @p, then Afjl = Ar ®z,[a] F,(¢~1) # 0 where
A = Gal(F/Q) and we write Fp(1p=1) to denote F,, with an action of A by ¢~1.

Remark 5.15. One can replace Q¥ in the above theorem with any abelian
extension of Q of order prime to p that contains Q¥ and the result remains
valid.

Exercise 5.16. Show that Theorem 3.44 follows from this theorem.

Our goal is to construct a nontrivial unramified extension of F' on which
A acts by ¥»~!. This is accomplished by constructing an appropriate Galois
representation.
Consider the Eisenstein series E§2>)( (z). We will drop the superscript (2) as it
will not change throughout the argument. Recall the constant term of E4 ,(z)
is given by M and the ¢ Fourier coefficient is cg(¢) = 1+ x(£){. Let O be
the ring of integers of some finite extension of Q,, that contains all the values of x
and let @ be a uniformizer of O. The first step in Ribet’s argument is to produce
an ordinary newform f so that the eigenvalues of f are congruent to those of
E1 4 (z) modulo a prime w that divides L(—1,x). Note that modulo w the
Eisenstein series is a semi-cusp form, i.e., it is a modular form with a constant
term of 0 in the Fourier expansion about the cusp infinity. One can show that
there is a modular form g € My(M, x) with constant term 1 for some M with
N | M by studying the geometry of the modular curve X;(p). In fact, one can
choose M so that ord,(M) < 1 and if £|M with £ { Np, then x(Frob,) # ¢=2

modulo any prime above p. One then sets h(z) = E1,(z) — Mg(z) The
modular form A is congruent to E; , modulo w and is in fact a semi-cusp form.
Note that h is not necessarily an eigenform, it is only an eigenform modulo w.
One then applies the Deligne-Serre lifting lemma to obtain a semi-cusp form f’
that is an eigenform and congruent to £y, modulo w. A short argument then
yields an ordinary newform f that is congruent to E; ,, modulo w.

Before we show how such a congruence can yield information about class
groups, we rephrase this in terms of Hecke algebras as opposed to applying the
Deligne-Serre lifting lemma itself. The reason for this is that a similar argument
using A-adic forms will be used in the proof of the main conjecture. We look
at the Hecke algebra ’IFEDM) = ']I‘EQM)(I@, M). Assume that L(—1,x) ¢ O*. Recall
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that h = E y(mod w), i.e., for any t € TEQM) if tEy \(2) = ce(t)E1 y(2), then
th = cp(t)h(modw). Note we remove the places dividing M to avoid any
difficulty with the fact that F, , is of level N. In fact, we could just remove
the primes dividing % and achieve the same effect, but removing the ones at
M causes no difficulty. Define & : ']I‘EoM) — O/(L(-1,x)) by t — cg(t). This
is easily seen to be a homomorphism and ®(Ty) = 1+ x(¢)¢ for £ + M. Set
m = ® !(w). We can extend this ideal to an ideal of T, call this extended
ideal mp, .. We know from Theorem 5.9 that there exists a minimal prime
¢ C mg, . The minimal prime g corresponds to a newform f of level M and
character x. To see f is congruent to E; , away from M, observe that one can
define a maximal ideal my by defining a map 7 : To — O by t — af(n). The
minimal prime p C my as well, and so mpg, , = my.

Exercise 5.17. Let f and g be eigenforms. Show that f = g(mod @) if and
only if my = mg.

Note in this case it is easy to see f is ordinary at p as ®(T},) = 1, so in
particuar @ t af(p). The kernel of ® contains I = (T; — 1 — x(¢)¢). This ideal
is referred to as the Fisenstein ideal ([Mazur]). It is a maximal ideal and thus
we have the following isomorphism:

TOD /T = O/(L(~1, X))

Even though our congruence is only at the places away from M, we can use the
Chebotarev density theorem to obtain the isomorphism of Galois representations
we are interested in so this poses no difficulties.

The reason one cares about such a congruence in terms of gaining information
about class groups is because of what it tells in terms of Galois representations.
We continue with the same set-up as above. Let K := Q,({ay(n)}), i.e., the fi-
nite extension of Q, generated by the Fourier coefficients of f. Let O be the ring
of integers of K. Let p; : Gal(Q/Q) — GLy(F) be the residual representation
obtained upon composing py with the natural map O — F = O/w. Observe
that the congruence to Ej ,(z) modulo w gives trace(p(Froby)) = W =
1+ x(0)¢(mod w) for £t M. Thus, combining the Chebotarev density theorem
and Brauer-Nesbitt theorem we obtain that semi-simplification of p; is given by
p7 = 1® ¢ where ¢ = xw. Thus, there exists M € GLz(F) so that MﬁfM_l

is one of the following matrices: (é *>, (é 2}), or (i 2}) Note we are
assuming that the forms that have a “x” are nonsplit, i.e., they cannot be di-
agonalized. Note that since p | cond(v), we have that ¥|;, # 1. Pick o € I, so
that ¢(o) # 1. This shows that the eigenvalues of p;(o) are distinct in F and
so the matrix can be diagonalized. In particular, the eigenvalues are roots of
the characteristic polynomial and so exist in O by Hensel’s lemma. Thus, ps(0)
) with « # (. Using this fact one has

can be diagonalized, say ps(o) = (g g

that o
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This equation implies that A must be a diagonal matrix, which in turn implies

_ . 1 =% 1 0 1 0
that p; itself must be of the form (0 w), <O w), or <* w).
S ose that p, is of the fo 10 o 1o This implies we have
uppos Py is rm (o " |, w) is implies w Vi

_ (alg) b9 T -
prlg) = (c(g) d(g)) with b(g) € wO for all ¢ € Gal(Q/Q). The Galois

representation py is irreducible, so there exists g € Gal(Q/Q) so that b(g) # 0.
Let n be the minimum of ord, (b(g)) over g € Gal(Q/Q). Necessarily we have

n > 0 and finite. Conjugate ps by (1) won . Call this new representation p¢

as well. This still has entries in O and now p; = (é ;Z) with * possibly 0.

However, one can show this is non-split since p;(0) = (g %) with @ # B.
Thus, we can always choose p; to be non-split of the form ((1) ;Z)
Exercise 5.18. Prove that if there exist o so that p;(o) = <(g %) with @ # 3,

then py is necessarily non-split.

The Galois representation that will produce our extension is ﬁf|Gal(@ /F) =

0 1
ramified everywhere and then show how it produces the appropriate extension.
The only possibility for ramification for ps is at primes ¢|Mp. We begin by
looking at ¢ = p. Recall that since f is ordinary at p one has that the Galois
representation attached to f has the following nice form when restricted to the
absolute decomposition group D,, of p:

X1 Ok
Pf|Dp2<O X2>

where X2 is unramified at p and satisfies

(1 *> However, we still need to prove that this Galois representation is un-

unit root of z? — ar(p)x + X(p)pk—l pIN
Frob,) =
xalfrobs) { ag(p) p|N.

We claim that we have
c * 0
pf|Dp - * * :

We use the o € I, C D), as above so that p¢(o) with a # . The

(a0
=0 3
fact that f is ordinary at p implies there is a matrix A so that

Aps(r)A™H = (Xlé” ;j%)
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for every 7 € D, and

App(o)A~" = <‘g 2) .

From these two equations it is a short calculation to see the claim is true. We

now combine this fact with the fact that p; is of the form <1 *> to conclude

0 v
- 1 0
pf|Dp = (O w) :

Thus, D¢|qa @, r) 18 trivial when restricted to Dy since ¢ is trivial on Gal(Q/F).

that

Since I, C Dy, we see ﬁﬂGal(@/F) is unramified at p.
Let ¢ be a prime. Recall that we have a factorization of the inertia group I,
into tame and wild parts:

0 e I Igme ——,

The wild part, I;Vild, is the maximal pro-¢ subgroup of I;. In other words,
elements in I}''!d have orders that are powers of £ and elements in I{*™¢ have
orders that are prime to /.

We also have the exact sequence

0 I, Dy 7 0.

1

Let oy € Dy be any lift of Frob, € Z, ie, op-x=opv0o, = zt for any = € I.

Let 8¢ = v(0¢) so that p,(o¢) = (é ;e)
Let £ be a prime so that ¢|M but ¢ f N. This gives 1(I;) = 1 and so

Pl € {((1) I) } Suppose there exists € Iy so that p;(z) # 1, i.e., there
1 b

exists b # 0 so that pg(r) = <O 1

> . We have

-1
((1) 621 b) :ﬁf(UE)ﬁf(I)ﬁf(ag)_l

=p j’(Ie)

(1 b

-0 ¥)
Thus, we have that 6[1 = (. If we look at 9(Froby) in F we obtain that
x(Frob,) = ¢=2. However, our choice of M was such that this could not happen.
Thus, it must be that p; is trivial on I, and so we are unramified here.

Let ¢ be a prime so that ¢||N. Using the fact that w is unramified away
from p we see that the order of ¢(/;) is prime to ¢. Thus, p,;(z) has order
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prime to ¢ for every x € I,. This shows that ﬁj"]e factors through I;*™°, i.e.,
pp(le) = py(I;2™°). However, we know that I;*™° is abelian, so we must have
that p,(I) is abelian as well. Since /|N, we have 1|5, # 1 and so p;|s, is

diagonalizable. Thus, 7|7, ~ ((1) 3}) Since we are interested in pf'Gal(@/F)’

we see that this is trivial on I, since v is trivial on Gal(Q/F). Thus, Prla@/r)
is unramified at primes ¢||N.

Exercise 5.19. 1. If ¢|N, show that v|;, # 1.

2. Show if |1, # 1 and p;(I;) is abelian, then p;|1, is diagonalizable. (Hint:
Let o € I such that (o) # 1. For any T € Iy, write *(7) in terms of ¥(7) and
some constant depending upon o.)

Finally, let £ be a prime so that £2|N. In this case we see that ¢ (I}'ld) =£ 1.
Thus, ﬁf(IZ’“d) C {((1) Il)} and is an ¢-group. We claim that it is a cyclic
: 2

group as well. To see this, observe that we have a homomorphism from p ;(1}* ildy

0 1
which can easily be realized as a subgroup of F. However, the kernel is then a
subgroup of a group of an /-group and a group with p-power order, thus it must
be trivial. So we see p; (I;'1d) injects into F* and hence is cyclic. Arguing as

to F* given by mapping to *3. The kernel of this homomorphism is { (1 *1) },

above we see that ﬁf| [y is diagonalizable and nontrivial. Recalling that I}* ild

is a normal subgroup of I, we see that ﬁf(I}””d) is stable under conjugation
by ﬁf(Ig). This in turn implies that ﬁf| 1, is diagonalizable. Thus, as above we
obtain that ﬁf'Gal(@ /) is unramified at such an £.

We have shown that ﬁﬂGal(@ /F) 18 unramified at all primes. Recall that we

showed that p; is non-split, i.e., there is a o € Gal(Q/Q) so that *(o) # 0.
However, * not being zero is an open condition so there is an open subgroup of
Gal(Q/Q) on which * does not vanish. In particular, since Gal(F/Q) is a finite
group and all open subgroups are infinite, we get that ﬁf'Gal(@ /F) is non-split
as well. Define a map h : Gal(Q/F) — F by h(c) = x(0) where x is given by
ﬁf|Gal(@ JF) = ((1) T . The map h is clearly a nontrivial homomorphism. Let
Q" be the splitting field of h and set H = Gal(Q"/F). Then h: H — F is an
injective homomorphism. This shows that H is an abelian p-group as it is a
subgroup of . The fact that h(Iy) = 0 for any prime £ (p| Gal(@ F) 15 unramified

everywhere) implies that I,(Q"/F) = 0 for every £ since h is injective. Thus, we
have that Q" is a nontrivial unramified abelian p-extension of F so sits inside
Ap. This shows that the p-part of the class group of F' is nontrivial. Observe
that for § € A and = € H one has

p(0)p;(2)p,(0)~" = ((1) w_l((i)h(x)> :

Thus, h(§2671) = ¥~1(d)h(x). This shows that A acts on H via v~!. In
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particular, we see that H injects into H ®z,_ (] F(1p~1), which in turn sits inside

of A?il. This completes the proof of the theorem.

5.5 A-adic Modular Forms

In this section we introduce A-adic modular forms, or what have come to be
known as Hida families as they were first introduced by Hida. As in section
5.3 we content ourselves with definitions and statements, leaving the inter-
ested reader to consult the references for proofs. For details one should consult
[Wilesl] or [Wiles2].

Let p be a fixed odd prime and fix embeddings Q into @p and C. Let N > 1
with ord,(N) < 1. Let x : (Z/NZ)* — @; be a Dirichlet character (not
necessarily primitive). Let O be the ring of integers of some finite extension of
Qp so that Zy[x] C O. Set Ap = O[T]. Set X = {(k,{) : k € Z,k > 2,( €
ppet. For each (k,¢) € X, let v ¢ : Ao — O[¢] be the homomorphism given
by vk c(1+T) = ((1 + p)*~2. Define a character ¥ : (Z/p"Z)* — @: by
Ye(1+ p) = (. We make the following definition.

Definition 5.20. A Ap-adic modular form with character x is a collection
F={cn(T)eAo:n=0,1,2,...}

such that for (k,¢) € X with k£ > 2 and ¢ € p,~ one has

Vo (F) = vikelen(T))q" € Mi(Np", xw? *1¢, O[¢])
n=0

for all but finitely many pairs (k, () € X. We denote the space of such forms by
M(N, x). We say Fis a Ao-adic cusp form if vy ¢ (F) € Si.(Np", xw? ¢, O[C])
for all but finitely many (k,{) € X. We write S(IV, x) to denote the space of
such forms.

Exercise 5.21. Prove that M(N,x) is a torsion-free Ao-module.

We give the following example of a Ap-adic modular form to establish such
forms actually exist. It has the added benefit of being one of the main examples
we will be interested in.

Example 5.22. Let x : (Z/N'Z)* — O* be a primitive Dirichlet character
with N’ = N or Np and ged(N,p) = 1. For £ # p define a, as follows. Recall
that

(Z/pZ)" x Zp =2
via the map (d,a) — §(1 + p)*. Then ay is defined by the equation

(5.2) 0= w(t)(1+ p)e.
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We define the ¢, (T)’s as follows where £ is a prime not equal to p.
C1 (T) =1
co(T) =1+ x(0)e(1+T)*
cer(T) = co(T)eg—1(T) = x(OU(L+T)*cpr—2(T)  (r=2)
cn(T) = ¢y (T) e (T)  (ged(n,p) =1, n=[]4")
eprn(T) = ( ) (ged(n,p) =1)
1 Gy (T)
“0 2 am

where G (T') = G2 (14p)2(14+T) —1) and H,(T) = Hy2 (1+p)*(1+T)—1).

Note that we have cp(T) =cp1(T) = c1(T) = 1. We will use this fact later!
Suppose that x # w2 so that H (T) =1. Set &, = {c,(T)}. We wish to

show that &, is a A-adic modular form We compute vy ¢ (co(T)) and vy ¢ (ce(T)):

I/kﬁg(CO(T)) = % I/kﬁg(waz((l —|—p)2(1 + T) — 1))
= 2 G (1490 42 )
1

=-Ly(1—- k,xw21/)<)

and

vic(ce(T)) = vic(1+ x(O)0(1 +T)*)
=1+ x(OC™ (14 p) 2
= 1+ X(Olpc(0)(1 + )2
=1+ xw? Fape (0)0F 1.
It is then easy to see that the values vy ¢(ce(T")) give the Fourier coefficients

of the Eisenstein series E( )w2 ke (z) for £ # p. Unfortunately, the coefficient

v c(co(T)) as well as those I/kﬁg(cm(T)) where p | m do not match up with the
Fourier coefficients of this Eisenstein series. However, this can be overcome by
considering the following modular form:

k _
E(2) = B oy (2) = xw? Fue(p)p B oy (02),

Exercise 5.23. Check that the Fourier coefficients of E match up with the
values vy ¢(cn(T)) for alln > 0.

Thus, &, is in fact a Ap-adic modular form.
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Before we proceed we extend our notion of Ap-adic modular form. The
reason for this is that we wish to realize cuspidal newforms as specializations of
Ap-adic forms as was just done for Eisensteins series. Let Fj, be the fraction
field of Ap and let L be a finite extension of Fi,. Let Or, be the integral closure
of Ap in L. Note that O, is a finite free Ap-module. Set

XL ={p:0L — Q, | ¢ extends vy for some (k,¢) € X}.

Then
F={c, €0L:n=0,1,2,...}

is an Op-modular form if

> plen)d™ € My(Np", xw® ¥4, p(O1))

n=0

for all but finitely many ¢ € X1. We write M, (Op) to denote the space of Op-
modular forms with character x. The space of Op-cusp forms with character x
is defined analogously and denoted S, (Or).

As was the case with classical forms we can define Hecke operators on these
spaces. Of course for this to be a useful notion it is important that it commutes
with specialization from a Ap-adic form to a classical form. Let F = {¢,} €
M, (Or) and define T F = {c], € Or} where the ¢], are defined by

ch = co+ x(O(1+T)*c

;. 0 ff'an'pr
n = Ctn { XL+ T)*cnye Ln, L1 Np
e = cm {|Np.

Using the same type of calculations we used above on the Eisenstein series one
sees that (TpF) = Tep(F). Thus we can define an action of T;, on M, (OL)
and S, (Or). In fact, S, (OL) is stable under this action.

The problem we now have is that in general M, (Op) and S, (Oyr) are not
finitely generated Op-modules. To remedy this problem we cut the spaces down
via the ordinary projector. Define

M?((OL) ={FeM,(0r):p(F) e M,g(NpT,Xw%kz/JC,cp((’)L)) for a.e. ¢ € X1}

Similarly we define SY(0r) € M%(Or). Alternatively one can extend Hida’s
ordinary projector e to the space of A-adic forms and define the ordinary parts
this way. See ([Wilesl], Prop. 1.2.1) for a proof of this fact.

Proposition 5.24. The spaces MY (Or) and SY(OL) are finitely generated
torsion-free Or-modules.

Proof. Note that these are torsion free from a previous exercise. Let Fy,...,F, €
M, (Or) be linearly independent over L. Write F; = {c%,}. The fact that these
are linearly independent means we can find ny, . .., n, so that D = det(c, )i<i j<r #

7



84 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

0. Thus, we can find ¢ € X, so that p(F;) € MX(Np", xw? F1p¢, O[¢]) and
¢(D) = det(p(c),)) # 0. From this it follows that ¢(F1),...,¢(F,) are linearly
independent in MP(Np", xw? *y¢, O[¢]). However, we know that the dimension
of MP(Np", xw? *1¢, O[¢]) is bounded independent of k by Theorem 5.13. Thus
we must have that r is bounded. Now assume that r is such that the linearly
independent set above is maximal. Let F € M, (Op). The fact that r is maxi-
mal implies there exist z; € L so that F = >"!_, z;F;. Thus, z = *(21,...,2,)
is a solution of the equation (¢} )z = (cn,(F)) and so Dz; € Op for each
1 <4 < r. Hence DM?C(OL) C Y OrF;. Since Of is Noetherian, if follows
that DMS(Oy) is finitely generated ([Mats], page 15). Since we are torsion free,
multiplication by D is an isomorphism so we obtain that M9(Op) is finitely
generated. O

Lemma 5.25. The eigenvalues of Ty acting on M(OL) ®o, L are integral
over Or,. Note we tensor with L here to ensure we have a vector space over L.
Since J\/l?((OL) is torsion free, we don’t lose anything.

Proof. We have from the previous proposition that M%((’)L) is a finitely gen-
erated Or-module. Let Fi,...,F, be the Oy, generators and let M = (a; ;) €
M, (Or) be the matrix giving the action of T; on the F;’s. Set P(z) =
det(z — M). Then P(x) is a monic polynomial in Of[x] and satisfies P(Ty) = 0
on M9(Opr). Thus, the eigenvalues of T, are the roots of P(x), and so integral
over Orp,. O

Recall the following fact about classical modular forms. If ord,(M) =
ordg(cond(t))) with ¢ a Dirichlet character modulo M, then Ty can be diag-
onalized on My (M,,C). We have the following analogous result in the current
setting.

Lemma 5.26. If £ = p or ord,(N) = ord(x), then T; can be diagonalized on
MQ(OL) ®o, L.

Proof. Let p(z) be the minimal polynomial of Ty acting on M (O) ®o, L.
We know that T is diagonalizable if and only if p(x) has all simple roots. Let
aq,...,a, be the distinct roots of p(z) and consider the polynomial ¢(z) =
[1(z — ;). We wish to show that ¢(T;) = 0. Let L’ be an extension of L so that
a; € Op for i =1,...,7. We know such an L’ exists by the previous lemma.
Consider

X={pe X :pextends vy ¢,ord,(Np") = ordg(cond(xw2_k1/)<)) and
O(F) € My(Np", xw? e, p(Or)) for all F € M?(((’)L/)}.

Note that X is an infinite set. Observe that ¢(p(T%)) acts on p(MS(OL/)) as 0
for all ¢ € X. Using our result from the classical modular forms case we have
that T is diagonalizable on (M9 (Or/)). Thus, ¢(q(T¢)) = 0 on (M (OL:))
for every ¢ € X. Since X is infinite, this implies ¢(7;) = 0 and we are done. O
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Definition 5.27. We say that F = {c,} € M, (OL) is an eigenform for T,
if T)F = ayF for some ay € L. We say F is a simultaneous eigenform if it is
an eigenform for all Ty and it is said to be normalized if ¢; = 1. In this case
cn = a, as in the classical case.

We have the following standard corollaries. Their proofs proceed in the same
manner as in the classical case.

Corollary 5.28. The space MQ(OL) ®o, L is spanned by forms that are si-
multaneous eigenforms for all Ty with £1 N.

Corollary 5.29. If x is a primitive character modulo N or modulo Np then
M?((OL) ®o,, L is spanned by forms that are simultaneous eigenforms for all
Ty.

Corollary 5.30. If F € ./\/lg)((OL) is a simultaneous eigenform for a collection
{Ty,} of Hecke operators, the eigenvalues a; are integral over A and generate a
finite extension of A.

We conclude this section with the following two results about Galois repre-
sentations attached to F € S, (Or) a normalized simultaneous eigenform with
x a Dirichlet character of conductor N’ with N’ = Np®, ged(N,p) = 1 and
a < 1. One should consult [Wiles1] for the proof of these theorems.

Theorem 5.31. There exists a representation pr : Gal(Q/Q) — GLa(L) such
that

1. pF is continuous, i.e., there exists a finitely generated Oy -submodule M C L?
stable under the action of Gal(Q/Q) and such that this action is continuous

2. pr is unramified at all 1 Np

3. trace(px(Froby) = ¢¢ for all £4 Np

4. det(pz(Frobg) = x(£)£(1 + T)* where ay is defined as before

5. pr is irreducible and odd (det(pz(complex conjugation)) = —1).

Theorem 5.32. If F € 8Y(OL), then

€1 *
pf|Dp2 0 e

with €9 unramified and e3(Froby) = ¢p.

5.6 Proof of the Main Conjecture (outline)

Our goal in this section is to outline a proof of the fact that for xy an odd
character of type S and p an odd prime one has

Fx(T) = g1 (T).

One accomplishes this by showing that if p is a prime ideal of A, then

ordg (fx(T) = ordg(gy -1, (T))-
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Recalling that all of the prime ideals of A, are of the form 0, (w), (P(T))
for P(T) irreducible and distinguished, or (z,T), we see that we only need to
prove the equality of orders for height 1 prime ideals as these constitute all of
the possible prime factors of our polynomials. We will make use of the following
classical result of Iwasawa which he obtained as an application of the analytic

class number formula:
D mg(@) = Y ny(9)

pe AN Ppe AN
¢ odd ¢ odd

where m,(¢) = ordy,(fe(T)) and ny(¢) = ordy,(ge-1,(T)). Thus, it is enough
to show that mg(¢) > n,(¢) for every p and ¢. One can accomplish this by
constructing a subspace of VX on which <y — 1 has characteristic polynomial
(T — a,)"*(®) where a, is the root of f,(T) corresponding to .

There are two types of primes p that must be dealt with separately; o =
(T'—p) and p = (T — (¢ — 1)) for ¢ some p-power root of unity. These are
referred to as the exceptional primes. The primes of the form (7' — ({ — 1)) can
be dealt with using class field theory and we will say nothing more about them
here. If p = (T' - p) and ¢ # w, then we obtain that ord(gy-1,(T)) = 0 from
the fact that £,(1,¢ 'w) # 0. If p = (' —p) and ¢ = w, then the result follows
from the fact that £,(s,1) has a simple pole at s = 1. If G1(0) = 0 we would
have a contradiction to having a pole at s = 1. Thus, in either case we obtain
ordg(ge-1,(T)) = 0.

We now must deal with the non-exceptional primes. Let ¢ = " lw™!. Fix
a p-power root of unity 7 such that Gy (T) and Gy (7 (1 +p)~'(1+T) — 1)
have no zeroes in common where we recall that Gw(T) is defined by

1

Gy(T) = Gz (1 +p)?(1+T) - 1).

This is possible by the Weierstrass preparation theorem. Suppose 7 is a p°-th
root of unity and let O be such that it contains O, and 7. Recall that G (T
and Hy(T) are both in Ap and Hy(T) = 1if ) # w2, Let T C Enda,, S (Ao)
be the Hecke algebra generated over Ap by the T),’s.

Definition 5.33. The Fisenstein ideal I C T is the ideal generated by the set

{Th — cy(n), Gy(T)}
where n ranges over all positive integers.
We then have the following proposition.

Proposition 5.34. Suppose ) # w2 and let p C Ao be any prime divisor of

Gy(T) such that p & o, o # (1+p)*(1+T) = 1), and p # (1+p)(1+T) = ¢).
(Note that these last two types correspond to the exceptional primes under this
normalization.) Then there ezists a Ao, ,-isomorphism

To/T = Ao/ (Gy(T)).
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Moreover, if we define P to be the kernel of the map
T — Ao,/ (Gy(T)) — Aop/p

then we have the Ao ,-isomorphism

Ty/I == Ao,e/(Gy(T)).
Before we prove this proposition we need the following lemma.

Lemma 5.35. Let ¢ be a p"~'-th root of unity, k > 2, and x a character so
that N|cond(x). Define

w=e[[TuT] — e (O) (1 + p)*eh =)
(N

where h = p(Np). If f € M(Np", xw* *1p¢) with ay(0) = 0, then wf is a cusp
form.

Proof. Write f = F + E where F is a cusp form and F is in the span of the
Eisenstein series. We can write

E=3"c(1,e2)E,

where 111 = xw? F1p¢ and cond(t1) cond () = Np".
If p| cond(¢)1), then eEF )w = 0 because the p-th Fourier coefficient is 15 (p)p*~!
and so Eq(pkl{% is not ordinary at p.

If ¢ # p is a prime with ¢| cond(%);) and £¢| cond(t)2), then TgEg?wz = 0 because
the /-th eigenvalue is 0.
If £ # p is a prime with £| cond(¢1) and £ 1 cond(t)z), then we have TfEfpl)um =
Yo (0) 0k~ 1E¢1 b, Thus,
hp(k) k—1\h (k)
T, Eﬂllﬂllz = (b2(O)F ) Ewl 2
= a0 @O ) 1+ p) VB,

where we have used that w(f)" = 1 since w has conductor p. Observe that
Vo (€) = ¢ (0) and that (1 + p)®hF=1) = ¢h(1 4 p)ah(k=2)  Thus, we see that

k a
TZhE1(IJ1)1¢2 = gth (ﬂ)(l + p) eh(k= 2)E1(111)¢27

in particular we have that T — £%4¢(£)(1 + p)2"*=2) kills E( )

From this we can conclude that unless ¢; has conductor equal to 1 ie., i is

trivial, we must have that Ef/; )w is killed by w. Thus we have

wE = c(1, xw?~ kwc)wEl ;wg ke

— J/g®

1 XWZ ka
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for some constant ¢’. However, we have that wf and wF both must have
constant term 0 and i
wf =wF + c’Eii

w2—kw<

- 2k
where c’Eik;wz,ka has constant term c’w. Thus, ¢ = 0 and so
wf = wkF is a cusp form as claimed. O

Proof. (of Proposition 5.34) Set
G(T) = Go(T) = Byl) 1 (2) €y (L4 9) (14 T) = 1),

Let the Eisenstein series £,,,-1((1 + p)~Y(1 +T) — 1) be defined by the data
{cpyp-1(n)}. We claim that G is a Ap-adic modular form. We show this by
looking at specializations. Let ¢ be a primitive p”-th root of unity and vy ¢ :
Ao — OJ(] a specialization map. Then we have

1 k_l max(r,s —
019 = B GBSy () € MNP

as desired. Let G be defined by the data {c(n,G)}. We have
L0, gy Gy (L)1 +T) — 1)
2 2
1 R
=7 L, Yrw ) Gy(r (L +p) T+ T) - 1).

¢(0,9) =

Set Fo = ¢(0,G)Ey—cy(0)G. This is a Ap-modular form. Write Fo = {c(n, Fo)}
and observe that by construction we have ¢(0, Fy) = 0. If we apply the previous
lemma we obtain that

F = ¢(0,GQ)wEy — ¢y (0)wG
is a cusp form. So we obtain
F = ¢(0, G)wEy(mod ¢y (0)).

We would like to show that ¢(1,F) is a g-unit as this will allow us to conclude
that F is part of a Ao c-basis of S)(Ao),. Observe that we have ¢(1,F) =
¢(0,G)c(1, wEy)(mod ¢y (0)). Thus, we need to look at w&y; more closely. Note
that e€y = &y since ¢y (1) = 1 and this is the eigenvalue when T}, acts on &.

Exercise 5.36. For { | N = cond(v)), TiEy = Ey.
Thus, we have that
wey = [[( - 01+ Ty,
(N

B c(1,F) = c(0,6) [ (1 = €"(1 + T)*")(mod ¢y (0)).
(N
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However, our choice of 7 and the fact that p ¢ p gives that ¢(0,G) is a unit
modulo p. (The fact that p ¢ p implies that p must be of the form (P(T))
for a distinguised polynomial, and hence p { L(0,9,w™!).) Since we assumed
that o is not an exceptional prime we obtain that J[, (1 — (1 + T)uh) is a
unit modulo p as the exceptional primes are the only possible prime divisors of
[Ty (1 — £4(1 + T)oeh),

So we have shown that we can choose F to be part of a Ap -basis of
S’SJ(A@)Q. Let Ho = F,H1,...,H, be a basis of SSJ(A@)@. Let t € T, and
write tF = ) A\ (t)H; for some X;(t) € Ao . Consider the map

Ty — Ao./(Gy)

defined by t — Ao(t). This is a surjective Ap ,-module map as 1 +— 1. Observe
that A\g(T}, — cy(n)) = 0. This is because of the fact that

(T = ey (n))F = (Tn = ¢y (n))c(0, G)wEy + (Tn — cy(n))cy (0)wG

and (T, — ¢y (n))Ey = 0 and ¢y (0) = %Gdj, which is 0 modulo G\,. Thus we
have that Ao(T%) = cy(n) and so Ao(TnTm) = Ao(Tn)Ao(Thm). Hence, Ao is a
surjective Ap o-algebra map. We also have shown that I C ker A\g and since
is necessarily a maximal ideal we have the result. O

Recall that S))(Ao) @ao Fa, is spanned by eigenforms where Fj,, is the
fraction field of Ap. Thus, there exists a finite extension L of Fj, so that
ng(Ao) ®Ae L is spanned by eigenforms Fi, ..., F, € 83 (Aop). Let L; C L be
the field extensions of Fy, generated by the eigenvalues of F;. Let {F;}ics be
the representatives of conjugacy classes where we say F; ~ F; if there exists an
isomorphism o : L; — L; over Fj,, taking F; to F;. Set A =][..; Li. One has
that T is naturally a subring of A via the map

ts [ e(1,t7).

icJ

ieJ

As in the case of classical modular forms, one obtains an isomorphism of L
aglebras
T@AoLi’A(@AOLi’HL-
icJ
In particular, by counting dimensions one obtains

T ®rp Frp — A.

Set W to be the T-module A® A and Wy to be the Tp-module Ay @ Ag. Write

Agp = Tlic, cs Li-

Let pr, be ‘the Galois representation associated to F;. Set n = det pp,. As
in the classical case, observe that 7 is independent of i. Fix o¢ € I, such that
n(oo) # 1(mod p). Fix a basis of pz, such that

L. pF,(00) = (%Z g)
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wé“ 0 ()
o =1
br ( « P va I

3. pr, 1 Gal(Q/Q) — GL2(Oy, ., ) where g; is some fixed prime over .

2. PF;

We put a Galois action on Wy via @ie gy, pr,. This action commutes with the
action of Tys.

Definition 5.37. A submodule £ C Wy is a lattice if it is a finitely generated
Tp-module such that £ ®a, Faoo, = Wy We say the lattice is a stable lattice
if it is also stable under the action of Gal(Q/Q).

Lemma 5.38. ([Wiles2], Lemma 5.1) Let £ be any stable lattice in Wes. Sup-
pose that V is any irreducible subquotient of £ /1.£. Then V has one of the
following two types:

1. V=5 T /PTos with trivial Galois action (V is of type 1.)

2.V = T /BTy with Galois acting by n (V is of type n.)

Proof. This is essentially an application of the Brauer-Nesbitt theorem. To see
this, observe that on .Z one has

(Froby)? — Ty Froby +1(f) = 0

as this holds for each pz, and that on £ /1% one has Ty = 1+ n(¢). Thus
(Frob, —1)(Frob, —n(¢)) =0

on L/1.ZL. O

Definition 5.39. Let M be a Ty[Gal(Q/Q)]-module. We say M is of type-1
(resp. type-n) if it has Jordan-Holder series decomposition with all successive
quotients of type-1 (resp. type-n.)

Let
f(; = H OLi,m ® Top.
i€Jy

One can show that this is a stable lattice by using the properties used in defining
the bases of the pr,. We actually want a slightly different lattice. Note that by
our choice of bases above for pr, that if we write

ay by
p(U):@pfi:(c d)’
i€Jy c 77

then a, and d, lie in Ty. Using that the Galois representations are continuous,
we have that there exists # € Ap,, so that xc, € Ty, If we replace p by
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1 0 1 0 . . .
0 =z p 0 xl)’ then the ¢, and d, we obtain from this are both in Tg.

Calling this new Galois representation p as well, we see that the lattice

1
Lo = H Eolmpi @ Typ

i€Jy

is a stable lattice. We wish to find a stable lattice . C %, with filtration

0 — (type-1) ——= Z/1.L —— (type-n) —=0

so that £ /1% has no type-1 quotient. Note that the filtration is the analogy
of finding a lattice so that

— 1 %

e <0 w)

in section 5.4 and the lack of a type-1 quotient is the analogy of p,; being
nonsplit.

Proposition 5.40. ([Wiles2], Proposition 5.2) Let £ be a stable lattice. There
ezists a stable sublattice L' C £ such that

1. Z/% has type-1
2. If " C £ is a stable sublattice such that £/ L" has type-1, then L' C
z".
One also has the corresponding statement for type-n.

Proof. We begin by noting that if % and % both satisfy that £/.% and
¥ | %L are of type-1, then so is £/ N %,. Suppose we have a collection of
stable sublattices {%;}iez such that £ /% is of type-1 for each i € Z. Set
N =N;ez Zi- We want to be able to set £/ = N. If N is a lattice we can do
this and we will be done.

Suppose A is not a lattice. We have that £ /A is finitely generated as a
Ao, g-module and (Z/N) ®rp Fap # 0. We know that (Z/N) ®ap Fap is
a quotient of Wiy, so as a Gal(Q/Q)-module its irreducible components come
from the pz,’s. Write

(5'3) (X/N) Qo Frp = @ PF;-
i€y
Set
(ZLIN)D =[x e LN : ooz = n(o0)x}.
Equation 5.3 gives that (.£/N)™ # 0. On the other hand,
ZIN = [[2/%

i€l
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where each % /.%; is of type-1. Since we have that 1(co) # 1(modB), (£ /N)™)
maps to 0 in .Z/.%;. Thus, (Z/N)™ = 0. This contradiction shows that A/
must be a lattice and we are done. (|

We apply Proposition 5.40 to teh stable lattice %4 constructed above and
set £ = Z;. The minimality of the lattice . shows that £ /I.Z has no type-1
quotients. Set E = £/I1.¥ and let E; be the maximal type-1 submodule of
E. Set E; = E/FE; and observe that Fy # 0 as F is not purely type-1 by
Proposition 5.40 applied to type-n. Let E, be the maximal type-n submodule
of Ey and observe that E, # 0 by the maximality of Ej.

Lemma 5.41. For FEy and E, as above, Ex = F).

Proof. Suppose Ey # E,. We can use the facts that FE,/E, has no type-n
submodule and F5 has no type-1 quotient to conclude that there exists E’ and
E” so that

1. E,CE CE'"CE,
2. E'/E, is type-1 and maximal with respect to this property
3. E"/FE’ is type-n and irreducible.

Recall that we fixed o so that n(cg) Z 1(mod*P). Using that E”/E’ is irre-
ducible, we have
(0o — 1)E"/E' = E"|E.

Let 2’ € E” be a Ty-generator of E”/E’. Set z = (09 — 1)z’ € E” and observe
this is still a generator. Recall that (o — 1)(0 —n(0)) annihilates £ = £ /1.
for every o € Gal(Q/Q). In particular,

(00 = n(00))z = (00 — 1(00))(00 — 1)z" =0
in B”. Thus,
(5.4) o0z = n(00)z

in EQ.
Claim: (o9 — 1)(0 — n(0))z = 0 in Ey for every o € Gal(Q/Q).
Proof: We begin by observing that

(000 = 0)((0 —=n(a)) + (00 — 1)(0 — n(0)))z = (000 — 1)(000 — 00n(0))2
= (00 — 1)(090 — n(0o00))
=0

where we have used equation 5.4 and that (o — 1)(0 — n(0)) annihilates E. If
we expand the left hand side of the first equation above we obtain

(o000 —1)(0 —n(0))z + (00 — 1)(0g — 1)(0 — n(0))z = 0.
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Observe that

(000 = 1)(0 = 1(0))z = 0o (0 —1(0))z = (0 = n(0))2
=00(0 =1(9))z = (o = n(0))>
= (00 = 1)(0 = n(0))z
where we have used that o acts as 1 on (0 — n(0))z by virtue of the fact that
(0 —1)(6 — n(0)) annihilates E. Thus, we have
(00 = 1)(0 = 1(0))z + (000 = 1)(00 — 1)(0 = n(0))z = 0
ie.,
ooo(og — 1)(c —n(o))z = 0.
Thus, (6o — 1)(c — n(c))z = 0 (act on each side by (coo)~! to see this.) This
completes the proof of the claim.

Observe that

(0" =n(e")(o = n(0)) = (o'0 = n(c’e)) — n(o’) (o —n(a)) —n(o)(s" —n(a")).

Thus, applying the claim we obtain that

(5.5) (00 = 1)(o" = n(0")) (0 = n(o))z =0

for every 0,0’ € Gal(Q/Q).

Let M be the Ty-span of E, and the (0 — n(0))z. Note that M C Ej
and M is a Gal(Q/Q)-module. To see that M is a Gal(Q/Q)-module, observe
that Gal(Q/Q) acts via 1 on E'/E, and E, is a Gal(Q/Q)-module. We also
have that E, C M C E’ because if we had N = E,, then E, + Typz is a
Ty [Gal(Q/Q)]-module of type 7 larger then E;,.

Let H = kern. Note that for h € H we have (h —1)E,, =0 and (h—1)(c —
n(0))z € E;. Thus, equation 5.5 gives that

(00 = 1)(h = 1)(0 —n(0))z =0

and so

(00 = 1)(h = 1)(0 = n(0))z = (n(o0) = 1)(h —1)(o —n(c))z = 0.
Using that ((oo) — 1) is a unit on E,, we have that

(h=1)(c =n(0))z=0

for every h € H. Thus, (h —1)M =0 for every h € H.
Let U = M Nker(og — 1). Note that U # 0 because (69 —1)M C E, C M.
Let u € U and g € Gal(Q/Q). Observe that

cogu = (00905 g~") (9o0u) = goou = gu.

Thus, gU C U and so U is a Gal(Q/Q)-module. However, any irreducible
module in U is of type-1. This is a contradiction as it gives a submodule of F5
of type-1. Thus, we must have Ey = E,,. O
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Proposition 5.42. There is an ezact sequence of Ty [Gal(Q/Q)]-modules

0 Ey E E, 0

such that Ey is of type-1 and E,) = Ty /1 is of type-n.

Proof. The only thing that remains to be shown in this proposition is that F, =
Ty/I. Recall from our definition of %, that we can write % = .Zo(l) D f()(")
where %)) M) = =110, and f(") Tg. Observe that og acts on .,2”0(1)/1 by 1
and on .Z\" /I by n(oo). Using that .%/.Z is of type-1 we have that £\ C .Z.
Write . = 20 @ 20 with £ C fo(l) and £ C fo(n) & Ty. Similarly,
we can split E up as E = E) + EM. Now just observe that by construction
we must have E( = E,. Thus, E, = Ty/I as desired. (]

Set Hoo = QX({p=)Qos0. Recalling that n(Frobe) = ¢(£)¢(1 + T)%, we see
that 7 is trivial on Gal(Q/QX((,~)) as we lose the x because of the QX and we
lose the rest by observing that the field Q((pe ) is the fixed field of Z. In par-
ticular, 7 is trivial on Gal(Q/H,,). Let N be the splitting field of the lattice
F over the field H, i.e., N is the field extension of H., for which the action
of Gal(Q/N) on E is trivial. Let G = Gal(No/Ho) and note that 1 is trivial
on G and so G acts trivially on E,. We have the following diagram of fields.

Noo

/
\

/\/Q

where IV 2 T' 2 Z,, and we set A’ = Gal(QX({p~)/Q).
Observe that we have a map

(]5 G — Hom'ﬂ*m/](En,El)

given by ¢(o)(e,) = oe — e where e € E is any lift of e, € E,. Using that
G acts trivially on FE,, one shows this is well-defined and an injective ho-
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momorphism. Recall that E, = Ty /I and so we get an injection of G into
Ey =2 Homr,, /;(Ty /1, E1). This shows that G is abelian.

The group Gal(Hw /Q) acts on G' by conjugation and acts on Homr,, /1 (Ey, E1)
vian~'. To see the action on Homy,, /;(E,, E1), observe that for h € Gal(Ho/Q),
f € Homry, /1 (Ey, E1), and e, € E, we have

h-flen) = hf(h™"ey)
= f(h'ey) (f(h™ley) € En)
= f(n(h)*len) (eq € Ey)
=n(h) " f(en)-

Lemma 5.43. The map ¢ is Gal(Hs/Q)-equivariant, i.e., ¢(h - g)(e,) =
n(h)~1é(g)(ey) for all h € Gal(Hx/Q), g € G, and e, € E,,.

Proof. This is essentially just a long string of equalities:

o(h-g)(en) = (hgh™")(ey)

=hgh~le —e (e € E any lift of e,)
=hg(n(h ™ He+e¢') —e (for some €’ € Ey)

= (n(h Hh)ge+¢ —e (since e’ € Ey)
=(h ™ Hh)(e+e) +e —e (for some e; € Ey)
=n(h Hhe+n(h Hey +¢ —e

=n(h YHnh)e+nh e +n(h e +¢ —e ( for some €” € F)
=(e+nh e +¢€)+nh e —e
=h(h™e)+n(h Hes —e

=n(h)ler

=n(h)~ (ge —¢)

=n(h)~"¢(9)(e)

Lemma 5.44. The extension No/Hso is unramified.

Proof. We begin by noting that N, /Hs is unramified at all £ Np as all the
pr, are unramified at such ¢ and these Galois representations give the action of
Gal(Q/Q). Thus, it remains to consider the cases £ = p and £ | N.

Let ¢ be a prime so that £ | N. Let Lo be the maximal unramified abelian
p-extension of H.,, LY be the maximal abelian p-extension of H,, unramified
outside of N, and L’  the maximal subextension of LY which is unramified
over Hy, at ¢. Let H, » be the completion of H,, at a prime A C H,, dividing
£. Using the identification of the inertia at A with O;In,A provided by class field

theory, we have that Gal(LY /L% ) is isomorphic to a quotient of

: X
]£1 H OHn,)\ .
nooAe
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We now use that LY /L!_ is a p-extension and £ # p to conclude that in fact we
must have that Gal(LY /L)) is isomorphic to a quotient of

k= @Hk:A
noAe

where k,, » is the residue field of H,, 5. The inertia group I, acts trivially on k
by the definition of inertia and so

(Gal(LZ/Ly,) @z, Q)X =0

as we assumed x has conductor divisible by N and so x(Iy) # 0. This in turn
implies that

(Gal(LY / Hoo) ®z, Q,)X = (Gal(L:,/Hs) ®z, Q)X

which gives the unramified condition for ¢ | N. Since ¢ was an arbitrary prime
dividing N, we have the result for all primes dividing N.

Consider the case where { = p. Let N, be the completion of N, at a
prime above p and likewise for H, ,,. We have the following sequences of Galois
groups:

1 —— Gal(No/Ho)

Gal(Noo/Q)
U U U
1— Gal(Noo,p/Hoo,p) — Gal(Noo,p/@p) — Gal(Hoo,p/Qp) — 1

Gal(Hy /Q) ——1

We have that Gal(Q/Q) actions on Gal(Nu/Hos) via conjugation as well as
through Gal(H/Q). We also have a compatible action of Gal(Q,/Qp) on
Gal(Neo,p/Hoo,p) that factors through Gal(Hw,,/Qp). We will compute this
action in two different ways to show that we cannot have ramification at p. We
have already seen that Gal(Q/Q) acts on Gal(Ns/Hos) via =%, We can also
compute the local action on Gal(N,p/Hoop) by using our information about
the restrictions of pr, restricted to the decomposition group D,. Recall that
since we are working with ordinary forms we have up to equivalence that

~ €1 *
Dp= 0 eo
where 5 is unramified at p and e2(Frob,) = ¢,(F;) (see Theorem 5.32.) Thus,
as a Dp-module we must have that E has a filtration as in Proposition 5.42
only with submodule of type-n and quotient of type-1. Thus, we must have that

ox =n(o)z for z € Gal(Neo p/Hoop) and o € Gal(Q,/Q,). We also know that
the inertia group of Gal(H/Qp) has finite index in Gal(Hoo, Q) (this is true

for all number fields, not just Q.) In particular, the inertia group contains *yé’l

PF;
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for some i. Thus we have two actions for 751 and combining them gives that

”ygpl must act trivially on Gal(Nw,p/Hsop). This gives that Gal(Neo,p/Hoo p)
is a torsion Ap-module. Thus, the only zeroes which could possibly be ramified
at p are of the form ¢ — 1 for { some p-power root of unity. But we have
already excluded such exceptional zeroes, so we must have that the extension is
unramified at p as desired. O

Observe that we have a surjective homomorphism

Zp[Gal(Hoo /Q)] — Zp[X][TT]

via o +— n(c) 1. This gives that ¢(G) is stable under multiplication by Z,[x][T],
ie., ¢(G) is a Zpy[x][T]-module. Let M be the O-span of ¢(G). Note this is
equivalent to the Ap-span, as well as the Ty-span. We have that M is a Ap o-
module (Mg is a Te-module.) Then M C Homr,, /;(E,, E1) and M, = My.
In fact, one has that

M@ = HOme/](En, El)

Suppose not. Then there exists a submodule E{ C Ej so that

¢(G) - HOme/] (En, E{)

We have that the exact sequence

0— E1/E} E/Ey Ey 0

splits over Hoo. Using that Gal(Hs/Q) is abelian, we can write E/E] as
E/E] = ker(Frob, —1) & ker(Frob, —n(¢))

for any ¢ with n(¢) # 1(mod p). This is in fact a splitting of Gal(Q/Q)-modules
and so gives that E has a type-1 quotient, a contradiction. Thus we obtain
that M, = E; as a Tg-module. Looking back at how E, and hence E; was
constructed, we see that we can write

M, = @ Ao,p/p"

i=1

for some positive integers m and r;.

Our goal is to determine Y. 7; in terms of ord,, (G (T)). To do this we need
to use Fitting ideals, which we now briefly review. For a more substantial treat-
ment of Fitting ideals one should consult [MW] or [Northcott]. Let R be a
commutative ring and M a finitely generated R-module. There exists r € Z,
N C R" so that we have an exact sequence
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0 N—2spgr—2s 0.

Definition 5.45. The Fitting ideal Fittg(M) is the ideal in R generated by the
elements det(©) for all © where © is an r x r matrix of the form

O(z1)
0= :
()
where (z1,...,2,) runs through all r-tuples of elements in N.

One can show that Fittg(M) is independent of r and o so depends only on
the module M. We now state the relevant facts about Fitting ideals.

1. If M = R/a, where a is an ideal of R, then Fittg(M) = a.
2. If a is an ideal of R, then Fittg,q(M/aM) = Fittg(M)(mod a).
3. If M = M1 X Mg, then FittR(M) = FittR(Ml)FittR(Mg).

4. If a is a finitely generated ideal of R and M is a faithful R-module, then
Fittgr(M/aM) C a.

Lemma 5.46. With the set-up as above, we have 3 r; > ordy,(Gy(T)).

Proof. Observe that the above properties give us Fitta,, , (M) = ©2"i. Thus,
if we can show that Fitta, ,(M,) C (G (T)) we will be done. Write . =
LW @ 2™ as in the proof of Proposition 5.42. The submodule £ of £ is a
faithful Tsg-module and so Fittr,, (-2 (1)) = 0 using property 4 above with a = 0.
Applying property 2 we obtain Fittr,, (£M/I) = 0(mod I). We now need to
translate this into a statement about M,,. Recall that To/I = Ao, /(G (T))
as Ao, -algebras, Fy = .,2”(1)/[ as a Ty /I-module, and that M, = E; as a
Ts/I-module. Using these isomorphisms, we obtain that

Fitty, @y (£ /(Gy(T))) = 0(mod Gy (T))
and
Fitty, a0 /(Gu(T) 2 Fitty 6y (BL)
= Fitty o (6 (Mo)-

Thus, we have that Fitt, g o) (M) € (Gy(T)). Using that Fitta, , (M) =
Fitty o) (M), we have the result. (Note that this follows from the defin-
tion of the Fitting ideal along with the fact that (Gy(T)) C p.) O
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Observe that there is an isomorphism Ofz] & Ao given by 1 + x — (1 +
p)~Y(1+T)~L. This allows us to rephrase the lemma as follows.

Corollary 5.47. With the set-up as above, we have ) r; > ordgy (gy—1,())
where o' C O[z] is the prime corresponding to p under the isomorphism Ofx] =
Ao.

Proof. To see this, just change variables in the lemma using the given isomor-
phism and that we assumed p ¢ p to transfer to a statement about g, -1,,(x). O

We now have a relation between the order of a zero of g, -1,, and the size of
M, which in turn measures the size of G = Gal(Ns/Hoo). One should think of
this as saying the order of the zero of g, -1,, gives a lower bound on the size of the
extension N, /Hoo. The goal is to connect this information back to arithmetic
information.

Lemma 5.48. The group Gal(No/QX)) is abelian.

Proof. Observe that A’ 2 Gal(Ho/Qo) acts on G via n~1, which restricts to
x on A’. We already know that Gal(H.,/QX) and G are abelian, so it only
remains to show that for ¢ € Gal(Hw/QX) and g € G, we have ogo~! = g.
However, we know that o - g = ogo~! and this is x(0)g since A’ acts via
Xx. However, x restricted to Gal(Ho/QX,)) is trivial, so we obtain the desired

result. O

Exercise 5.49. Prove there exists an extension N’ /QX so that G = Gal(N._ /QX.).
(Hint: Use class field theory that the fact that Gal(Ne /QX,) is abelian and that

G is a subgroup of Gal(Nso /QX.).) In particular, Gal(N._ /QX,) is an unramified
abelian p-extension on which A acts by x.

We can now apply the fact that x is odd to conclude that we have a surjection
of I'-modules
X~ —» Gal(N_/QX) ¢ G.

Thus, we have a surjection of O[z]-modules
X~ ®z,A] 0—-aG ®z,A] 0=G ®z, A1 O — M.

Let fy be the characteristic polynomial of X~ ®z (o] O as a O[x]-module and
£ the characteristic polynomial of M as an Oz]-module. The above surjection
implies that far | fy. Write far = [[; f; where f; are distinguished polynomials
as before. Observe that we have

EBO[[x]]pf/(fj(x)) = Mg
=~ M,
o @@[[xﬂp,/p/ordp/(fj)

= P Olaly /9.
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Thus, we have that
ordp/(fx) Z ordp/ (fM)
= Z Tj
J
> ordy (9,1, ().

This completes the proof of the main conjecture in the case of F' = Q using
that we know p, = p3® = 0 in this case. In the case of general totally real
number fields, one must make further arguments to deal with the p-invariants,
a topic we do not address here.
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