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THE EMPTY SET, THE SINGLETON, AND THE ORDERED PAIR
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Dedicated to the memory of Burton S. Dreben

For the modern set theorist the empty set ∅, the singleton {a}, and the
ordered pair 〈x, y〉 are at the beginning of the systematic, axiomatic de-
velopment of set theory, both as a field of mathematics and as a unifying
framework for ongoing mathematics. These notions are the simplest build-
ing blocks in the abstract, generative conception of sets advanced by the
initial axiomatization of Ernst Zermelo [1908a] and are quickly assimilated
long before the complexities of Power Set, Replacement, and Choice are
broached in the formal elaboration of the ‘set of’ {} operation. So it is
surprising that, while these notions are unproblematic today, they were once
sources of considerable concern and confusion among leading pioneers of
mathematical logic like Frege, Russell, Dedekind, and Peano. In the devel-
opment of modern mathematical logic out of the turbulence of 19th century
logic, the emergence of the empty set, the singleton, and the ordered pair as
clear and elementary set-theoretic concepts serves as a motif that reflects and
illuminates larger and more significant developments in mathematical logic:
the shift from the intensional to the extensional viewpoint, the development
of type distinctions, the logical vs. the iterative conception of set, and the
emergence of various concepts and principles as distinctively set-theoretic
rather than purely logical. Here there is a loose analogy with Tarski’s recur-
sive definition of truth for formal languages: The mathematical interest lies
mainly in the procedure of recursion and the attendant formal semantics in
model theory, whereas the philosophical interest lies mainly in the basis of
the recursion, truth and meaning at the level of basic predication. Circling
back to the beginning, we shall see how central the empty set, the singleton,
and the ordered pair were, after all.

§1. The empty set. A first look at the vicissitudes specific to the empty
set, or null class, provides an entrée into our main themes, particularly the
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differing concerns of logical analysis and the emerging set theory. Viewed as
part of larger philosophical traditions the null class serves as the extensional
focus for age-old issues about Nothing and Negation, and the empty set
emerged with the increasing need for objectification and symbolization.
The work of George Boole was a cresting of extensionalism in the 19th
century. He introduced “0” without explanation in his The Mathematical
Analysis of Logic [1847:21], and used it forthwith as an “elective symbol”
complementary to his “1” denoting the “‘Universe”. However, both “0” and
“1” were reconstrued variously, as predicates, classes, states of affairs, and as
numerical quantities. Significantly, he began his [1847:3] with the assertion
that in “Symbolical Algebra . . . the validity of the processes of analysis does
not depend upon the interpretation of the symbols which are employed,
but solely upon the laws of their combination.” In his better known An
Investigation into the Laws of Thought [1854] he had “signs” representing
“classes”, and incorporating the arithmetical property of 0 that 0 · y = 0 for
every y, assigned [1854:47] to “0” the interpretation “Nothing”, the class
consisting of no individuals.1 However shifting his interpretations of “0”, it
played a natural and crucial role in Boole’s “Calculus”, which in retrospect
exhibited an over-reliance on analogies between logic and arithmetic. It can
be justifiably argued that Boole had invented the empty set. Those following
in the algebraic tradition, most prominently Charles S. Pierce and Ernst
Schröder, adopted and adapted Boole’s “0”.
Gottlob Frege, the greatest philosopher of logic since Aristotle, aspired to
the logical analysis of mathematics rather than the mathematical analysis of
logic, and what in effect is the null class played a key role in his analysis of
number. Frege in hisGrundlagen [1884] eschewed the terms “set” [“Menge”]
and “class” [“Klasse”], but in any case the extension of the concept “not
identical with itself” was key to his definition of zero as a logical object.
Schröder, in the first volume [1890] of his major work on the algebra of
logic, held a traditional view that a class is merely a collection of objects,
without the {} so to speak. In his review [1895] of Schröder’s [1890], Frege
argued that Schröder cannot both maintain this view of classes and assert
that there is a null class, since the null class contains no objects.2 For Frege,
logic enters in giving unity to a class as the extension of a concept and thus
makes the null class viable.

1Earlier Boole had written [1854:28]: “By a class is usually meant a collection of indi-
viduals, to each of which a particular name or description may be applied; but in this work
the meaning of the term will be extended so as to include the case in which but a single
individual exists, answering to the required name or description, as well as the cases denoted
by the terms ‘nothing’ and ‘universe,’ which as ‘classes’ should be understood to comprise
respectively ‘no beings,’ ‘all beings.’ ” Note how Boole had already entertained the singleton.
2Edmund Husserl in his review [1891] of Schröder’s [1890] also criticized Schröder along

similar lines. Frege had already lodged his criticism in the Grundgesetze [1893:2–3] and
written that in Husserl’s review “the problems are not solved.”
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Giuseppe Peano [1889], the first to axiomatize mathematics in a symbolic
language, used “Λ” to denote both the falsity of propositions (Part II of
Logical Notations) and the null class (Part IV). He later [1897] provided a
definition of the null class as the intersection of all classes, making it more
explicit that there is exactly one null class. More importantly, [1897] had
the first occurrence of “∃”, used there to indicate that a class is not equal
to the null class. Frege had taken the existential quantifier to be derivative
from the universal quantifier in the not-for-all-not formulation; in Peano’s
development, the first indication of the existential quantifier is intimately
tied to the null class. Thus, in the logical tradition the null class played a
focal and pregnant role.
It is among the set theorists that the null class, qua empty set, emerged to
the fore as an elementary concept and a basic building block. Georg Cantor
himself did not dwell on the empty set. Early on in his study of “pointsets”
[“Punktmengen”] of real numbers Cantor did write [1880:355] that “the
identity of two pointsets P and Q will be expressed by the formula P ≡ Q”;
defined disjoint sets as “lacking intersection”; and then wrote [1880:356] “for
the absence of points . . . we choose the letterO; P ≡ O indicates that the set
P contains no single point.” So, “≡ O” is arguably more like a predication
for being empty at this stage.
Richard Dedekind in his groundbreaking essay on arithmetic Was sind
und was sollen die Zahlen? [1888:(2)] deliberately excluded the empty set
[Nullsystem] “for certain reasons”, though he saw its possible usefulness in
other contexts.3 Indeed, the empty set, or null class, is not necessary in his
analysis: Whereas Frege the logician worked to get at what numbers are
through definitions based on equi-numerosity, Dedekind the mathematician
worked to define the number sequence structurally, up to isomorphism or
“inscrutability of reference.” Whereas zero was crucial to Frege’s logical
development, the particular “base element” for Dedekind was immaterial
and he denoted it by the symbol “1” before proceeding to define the numbers
“by abstraction.”
Ernst Zermelo [1908a], the first to provide a full-fledged axiomatization of
set theory, wrote in his Axiom II: “There exists a (improper [uneigentliche])
set, the null set [Nullmenge] 0, that contains no element at all.” Something
of intension remained in the “(improper [uneigentliche])”, though he did
point out that because of his Axiom I, the Axiom of Extensionality, there is
a single empty set.
Finally, Felix Hausdorff, the first developer of the transfinite after Cantor
and the first to take the sort of extensional, set-theoretic approach to math-
ematics that would dominate in the years to come, unequivocally opted for
the empty set [Nullmenge] in his classic Grundzüge der Mengenlehre dedi-
cated to Cantor. However, a hint of predication remained when he wrote

3But see footnote 10.
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[1914:3]: “. . . the equation A = 0 means that the set A has no element,
vanishes [verschwindet], is empty.” In a footnote Hausdorff did reject the
formulation that the set A does not exist, insisting that it exists with no
elements in it. The use to which Hausdorff put “0” in the Grundzüge is much
as “∅” is used in modern mathematics, particularly to indicate the extension
of the conjunction of mutually exclusive properties.
The set theorists, unencumbered by philosophical motivations or tradi-
tions, attributed little significance to the empty set beyond its usefulness.
Interestingly, there would be latter-day attempts in philosophical circles to
nullify the null set.4 Be that as it may, just as zero became basic to numerical
notation as a place holder, so also did ∅ to the algebra of sets and classes to
indicate the empty extension.5

§2. Inclusion vs. membership. In 19th century logic, the main issue con-
cerning the singleton, or unit class, was the distinction between a and {a},
and this is closely connected to the emergence of the basic distinction be-
tween inclusion,⊆, andmembership,∈, a distinction without which abstract
set theory could not develop.
Set theory as a field of mathematics began, of course, with Cantor’s [1874]
result that the reals are uncountable. But it was only much later in [1891]
that Cantor gave his now famous diagonal proof, showing in effect that
for any set X the collection of functions from X into a two-element set is
of a strictly higher cardinality than that of X . In retrospect the diagonal
proof can be drawn out from the [1874] proof, but in any case the new
proof enabled Cantor to dispense with the earlier topological trappings.
Moreover, he could affirm [1891: para. 8] “the general theorem, that the
powers [cardinalities] of well-defined sets have no maximum.”
Cantor’s diagonal proof is regarded today as showing how the power set
operation leads to higher cardinalities. However, it would be misleading to
assert that Cantor himself used power sets. Rather, he was expanding the
19th century concept of function by ushering in arbitrary functions. His
theory of cardinality was based on one-to-one correspondence [Beziehung],
and this had led him to the diagonal proof which in [1891] was first rendered
in terms of sequences “that depend on infinitely many coordinates”. By
the end of [1891] he did deal explicitly with “all” functions with a specified
domain L and range {0, 1}.
The recasting of Cantor’s diagonal proof in terms of sets cannot be car-
ried out without drawing the basic distinction between ⊆, inclusion, and ∈,
membership. Surprisingly, neither this distinction nor the related distinction

4See for example Carmichael [1943] [1943a].
5Something of the need of a place holder is illustrated by the use of {} in the computer

typesetting program TEX. To render
!2, {}must be put in as a something to which ! serves

as a superscript: ${}^\omega 2$
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between a class a and its unit class {a} was generally appreciated in logic
at the time of Cantor [1891]. This was symptomatic of a general lack of
progress in logic on the traditional problem of the copula (how does “is”
function?), a problem with roots going back at least to Aristotle. George
Boole, like his British contemporaries, only had inclusion, not even distin-
guishing between proper and improper inclusion, in his part-whole analysis,
and he conflated individuals with their unit classes in his notation. Cantor
himself, working initially and mostly with real numbers and sets of real num-
bers, clearly distinguished inclusion and membership from the beginning for
his sets, and in his Beiträge [1895], his mature presentation of his theory
of cardinality, the distinction is clearly stated in the passages immediately
following the oft-quoted definition of set [Menge]. The first to draw the
inclusion vs. membership distinction generally in logic was Frege. Indeed,
in his Begriffsschrift [1879] the distinction is manifest for concepts, and in
his Grundlagen [1884] and elsewhere he emphasized the distinction in terms
of “subordination” and “falling under a concept.” The a vs. {a} distinction
is also explicit in his Grundgesetze [1893: §11], in a functional formulation.
For Peirce [1885: III] the inclusion vs. membership distinction is unambigu-
ous. Although Schröder drew heavily on Peirce’s work, Schröder could not
clearly draw the distinction, for he maintained (as we saw above) that a class
is merely a collection of objects. Also, Schröder [1890:35] was concerned
about “the representation [Vorstellung] of the representation of horse”, and
remained undecided about a traditional infinite regress problem. With an
intensional approach there is an issue here, but if a is the extensional rep-
resentation of horse, then {a} is representation of the representation and
hence avowedly distinct from a. In Zermelo’s axiomatization paper [1908a]
the inclusion vs. membership distinction is of course basic. In his Axiom
II he posited the existence of singletons, and he pointed out in succeeding
commentary that a singleton has no subset other than itself and the empty
set. Thus, Zermelo would have understood that his Axiom I, the Axiom of
Extensionality, ruled out having a = {a}, at least when a has more than one
element.6

However acknowledged the a vs. {a} distinction, there was still uncer-
tainty and confusion in the initial incorporation of the distinction into
the symbolization,7 as we point out in describing in detail the writings of
Dedekind and Peano:
6However, Zermelo’s [1908a] axiomatization does not rule out having some sets a satisfying

{a} = a; see our §4. Zermelo in the earliest notes about axiomatization found in hisNachlass,
written around 1905, took the assertionM /∈ M as an axiom (see Moore [1982:155]), and
this of course rules out having {a} = a for any set a.
7While we use the now familiar notation {a} to denote the singleton, or unit class, of a,

it should be kept in mind that the notation varied through this period. Cantor [1895] wrote
M = {m} to indicate that M consists of members typically denoted by m, i.e., m was a
variable ranging over the possibly many members of M . Of those to be discussed, Peano
[1890:192] used "a to denote the unit class of a. Russell [1903:517] followed suit, but from
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Dedekind in Was sind und was sollen die Zahlen? [1888:(3)] appears to
have identified the unit class {a}with, or at least denoted it by, a—writing in
that case (in modern notation) a ⊆ S for a ∈ S.8 This lack of clarity about
the unit class would get strained: For a set [System] S and transformation
[Abbildung] φ : S → S, he formulated what we would now call the closure
of an A ⊆ S under φ and denoted it by Ao. Then in the crucial definition
of “simply infinite system”—one isomorphic to the natural numbers—he
wrote N = 1o, where 1 is a distinguished element of N . Here, we would
now write N = {1}o . In his Grundgesetze [1893:2–3] Frege roundly and
soundly took Dedekind to task for his exclusion of the null class and for his
confusion about the unit class, seeing this to be symptomatic of Dedekind’s
conflation of the inclusion vs. membership distinction. As in his criticism of
Schröder, Frege railed against what he regarded as extensional sophistries,
firmly convinced about the primacy of his intensional notion of concept.9

Dedekind in a revealing note entitled “Dangers of the Theory of Systems”
written around 1900 and found in his Nachlass drew attention to his own
confused paragraph [1888:(3)] in order to stress the danger of confounding
a with {a}:

Suppose that a has distinct elements b and c, yet {a} = a; since
the principle of extensionality had been assumed, it follows that
b = a = c, which is a contradiction.

He mentioned raising the singleton problem in conversation, briefly with
Felix Bernstein on 13 June 1897 and then with Cantor himself on 4 Sep-
tember 1899 pointing out the contradiction.10 It is hard to imagine such a

his [1908] on he used "‘a. Frege [1893:§11] wrote a boldface backslash before a to denote its
unit class. It was Zermelo [1908a:262] who introduced the now familiar use of {a}, having
written just before: “The set that contains only the elements a, b, c, . . . , r will often be
denoted briefly by {a, b, c, . . . , r}.”
8At the beginning of the paragraph [1888:(3)] Dedekind wrote: “A system A is said to be

part of a systemS when every element ofA is also an element of S. Since this relation between
a system A and a system S will occur continually in what follows, we shall express it briefly
by the symbol A " S.” At the end, he wrote: “Since further every element s of a system S by
(2) can itself be regarded as a system, we can hereafter employ the notation s " S.” In the
immediately preceding paragraph (2), Dedekind had written: “For uniformity of expression
it is advantageous to include also the special case where a system S consists of a single (one
and only one) element a, i.e., the thing a is an element of S, but no thing different from a is
an element of S.”
9Against Dedekind’s description of a system (set) as different things “put together in the

mind” Frege [1893:2] had written: “I ask, in whose mind? If they are put together in one
mind but not in another, do they form a system then? What is supposed to be put together in
my mind, no doubt must be in my mind: then do the things outside myself not form systems?
Is a system a subjective figure in the individual soul? In that case is the constellation Orion a
system? And what are its elements? The stars, or the molecules, or the atoms?”
10See Sinaceur [1971]. In the note Dedekind proposed various emendations to his essay

to clarify the situation. Undercutting the exclusion of the empty set [Nullsystem] in the
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conversation taking place between the two great pioneers of set theory, years
after their foundational work on arithmetic and on the transfinite!
The following is the preface to the third, 1911 edition of Dedekind [1888],
with some words italicized for emphasis:11

When Iwas asked roughly eight years ago to replace the second edi-
tion of this work (which was already out of print) by a third, I had
misgivings about doing so, because in the mean time doubts had
arisen about the reliability [Sicherheit] of important foundations
of my conception. Even today I do not underestimate the impor-
tance, and to some extent the correctness of these doubts. But my
trust in the inner harmony of our logic is not thereby shattered;
I believe that a rigorous investigation of the power [Schöpferkraft]
of the mind to create from determinate elements a new determinate,
their system, that is necessarily different from each of these ele-
ments, will certainly lead to an unobjectionable formulation of the
foundations of my work. But I am prevented by other tasks from
completing such an investigation; so I beg for leniency if the paper
now appears for the third time without changes—which can be
justified by the fact that interest in it, as the persistent inquiries
about it show, has not yet disappeared.

Thus, Dedekind did draw attention to the distinction between a system and
its members, implicitly alluding to his confounding of a and {a} in the text.
This preface is remarkable for the misgivings it expresses, especially in a
work that purports to be foundational for arithmetic.
It was Peano [1889] who first distinguished inclusion and membership
with different signs, and it is to him that we owe “∈”, taken as the initial for
the Greek singular copula ’ε%&".12 In Part IV of his introduction of logical
notations, Peano wrote: “The sign ∈ signifies is. Thus a ∈ b is read a is a
[est quoddam] b; . . . .” In the preface he warned against confusing “∈” with
the sign for inclusion. However, at the end of part IV he wrote, “Let s be a
class and k a class contained in s ; then we say that k is an individual of class
s if k consists of just one individual.” He then proceeded to give his formula

essay ([1888:(2)]) he also pointed out the importance of having the empty set [Nullsystem].
However, the emendations were never incorporated into later editions of [1888].
Interestingly, the second, 1887 draft of Dedekind [1888] had contained the following

passage: “A system can consist in one element (i.e., in a single one, in one and only one),
it can also (contradiction) be void (contain no element).” Ferreirós [1999:227ff] points this
out and also that Dedekind in a manuscript written in the 1890’s did introduce the empty set,
denoting it by “0”, and used “[a]” for the singleton of a (see Dedekind [1932:450–60]).
11cf. Ewald [1996:796]. This preface does not appear in Dedekind [1963], which is an

English translation of the second edition of Dedekind [1888].
12Actually, the sign appearing in Peano [1889] is only typographically similar to our “∈”,

and only in Peano [1889a] was the Greek noted. The epsilon “ε” began to be used from then
on, and in Peano [1891:fn. 8] the ’ε%&" connection was made explicit.
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56, which in modern notation is:

k ⊆ s → (k ∈ s ↔ (k *= ∅& ∀x ∈ k ∀y ∈ k (x = y))).
Unfortunately, this way of having membership follow from inclusion under-
cuts the very distinction that he had so emphasized: Suppose that a is any
class, and s = {a}. Then formula 56 implies that s ∈ s . But then s = a,
and so {a} = a.13 This was not intended by Peano:
In the paper that presented his now well-known existence theorems for
ordinary differential equations, Peano introduced the sign “"” as follows
[1890:192]:

Let us decompose in effect the sign = into its two parts is and
equal to; the word is is already represented by ε; let us represent
also the expression equal to by a sign, and let " (initial of ’"%o') be
that sign; thus instead of a = b one can write a ε "b.

It is quite striking how Peano intended his mathematical notation to mirror
the grammar of ordinary language. If indeed a = b can be rendered as
a ε "b, then the grammar dictates that "b must be a class, the unit class of
b. " is the initial of ’"%o', “same”, and any member of "b is the same as
b. That this is how “"b” is autonomously used is evident from a succeeding
passage, the first passage in print that drew the a vs. {a} distinction (and also
described the unordered pair) [1890:193]: “To indicate the class constituted
of individuals a and b one writes sometimes a ∪ b (or a + b, following the
more usual notation). But it is more correct to write "a ∪ "b; . . . .” Peano
had let “=” range widely from the equality of numerical quantities and of
classes to the equivalence of propositions. He introduced “"” to analyze his
overworked “=”, and this objectification of the unit class emerged from a
remarkable analysis of one form of the copula, equality, in terms of another,
membership.14 While today we take equality and membership as primitive
notions and proceed to define the singleton, in Peano’s formulation the unit
class played a fundamental role in articulating these notions, just as the null
class did for “∃” (as we saw above).
The lack of clarity about the distinction between inclusion and member-
ship in the closing years of the 19th century reflected a traditional reluctance
to comprehend a collection as a unity and was intertwined with the absence
of the liberal, iterative use of the “set of” {} operation. Of course, set theory
13Van Heijenoort [1967:84] alluded specifically to formula 56, but did not point out how

it leads to {a} = a for every a.
14In [1894:§31] Peano again described the “"” analysis of “=”andmoreover emphasized the

difference between “0” and “"0” for arithmetic. Interestingly, Zermelo [1908a] reflected this
Peano analysis of equality in his discussion of definite [definit] properties, those admissible
for use in his Axiom (Schema) of Separation. Zermelo initially took a ε b to be definite and
derived that a = b is definite: After positing singletons in Axiom II he wrote: “The question
whether a = b or not is definite (No. 4), since it is equivalent to the question of whether or
not a ε {b}.”
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as a mathematical study of that operation could only develop after a sharp
distinction between inclusion and membership had been made. This devel-
opment in turn would depend increasingly on rules and procedures provided
by axiomatization. On the logical side, the grasp of the inclusion vs.member-
ship distinctionwas what spurred BertrandRussell to hismain achievements.

§3. Russell. The turn of the century saw Russell make the major advances
in the development of his mathematical logic. As he later wrote in [1944]:
“The most important year in my intellectual life was the year 1900, and the
most important event in this year was my visit to the International Congress
of Philosophy in Paris.” There in August he met Peano and embraced his
symbolic logic, particularly his use of different signs for inclusion and mem-
bership. During September Russell (see [1901]) extended Peano’s symbolic
approach to the logic of relations. Armed with the new insights, in the rest
of the year Russell completed most of the final draft of The Principles of
Mathematics [1903], a book he had been working on in various forms from
1898. However, the sudden light would also cast an abiding shadow, for by
May 1901 Russell had transformed Cantor’s diagonal proof into Russell’s
Paradox.15 In reaction he would subsequently formulate a complex logical
systemof orders and types inRussell [1908] whichmultiplied the inclusion vs.
membership distinction many times over and would systematically develop
that system in Whitehead and Russell’s Principia Mathematica [1910–3].
For Russell of The Principles mathematics was to be articulated in an
all-encompassing logic, a complex philosophical system based on universal
categories.16 He had drawn distinctions within his widest category of “term”
(but with “object” wider still17) among “propositions” about terms and
“classes” of various kinds corresponding to propositions. Because of this,
Russell’s Paradox became a central concern, for it forced him to face the
threat of both the conflationof his categories and the loss of their universality.
With the inclusion vs. membership distinction in hand, Russell had infor-
matively recast Cantor’s diagonal argument in terms of classes,18 a formu-
lation synoptic to the usual set-theoretic one about the power set. Cantor’s

15See Grattan-Guinness [1978], Garciadiego [1992], Moore [1995] and Kanamori [1997]
for more on the evolution of Russell’s Paradox.
16Russell [1903:129] wrote: “The distinction of philosophy and mathematics is broadly

one of point of view: mathematics is constructive and deductive, philosophy is critical, and
in a certain impersonal sense controversial. Wherever we have deductive reasoning, we have
mathematics; but the principles of deduction, the recognition of indefinable entities, and the
distinguishing between such entities, are the business of philosophy. Philosophy is, in fact
mainly a question of insight and perception.”
17Russell [1903:55n] wrote: “I shall use the word object in a wider sense than term, to cover

both singular and plural, and also cases of ambiguity, such as ‘a man.’ The fact that a word
can be framed with a wider meaning than term raises grave logical problems.”
18See Russell [1903:365ff].
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argument has a positive content in the generation of sets not in the range
of functions f : X → P(X ) from a set into its power set. For Russell how-
ever, with U the class of all classes, P(U ) ⊆ U so that the identity map
is an injection, and so the Russellian {x ∈ U | x /∈ x } ⊆ U must satisfy
{x ∈ U | x /∈ x } ∈ U , arriving necessarily at a contradiction. Having
absorbed the inclusion vs. membership distinction, Russell had to confront
the dissolution of that very distinction for his universal classes.
Russell soon sought to resolve his paradox with his theory of types, adum-
brated in The Principles. Although the inclusion vs. membership distinction
was central to The Principles, the issues of whether the null class exists and
whether a term should be distinct from its unit class became part and par-
cel of the considerations leading to types. Early on Russell had written
[1903:23]:

If x is any term, it is necessary to distinguish from x the class
whose only member is x: this may be defined as the class of terms
which are identical with x. The necessity for this distinction,
which results primarily from purely formal considerations, was
discovered by Peano; I shall return to it at a later stage.

But soon after, Russell [1903:68] distinguished between “class” and “class-
concept” and asserted that “there is no such thing as the null-class, though
there are null class-concepts . . . [and] that a class having only one term is
to be identified, contrary to Peano’s usage, with that one term.” Russell
then distinguished between “class as one” and “class as many” and asserted
[1903:76] “an ultimate distinction between a class as many and a class as
one, to hold that the many are only many, and are not also one.”
Next, in an early chapter (X, “The Contradiction”) discussing his paradox
Russell decided that propositional functions, while defining classes as many,
do not always define classes as one, else they could participate qua terms for
self-predication as in the paradox. There he first proposed a resolution by
resorting to a difference in type [1903:104–5]:

We took it to be axiomatic that the class as one is to be found
wherever there is a class as many; but this axiom need not be
universally admitted, and appears to have been the source of the
contradiction. . . . A class as one, we shall say, is an object of the
same type as its terms . . . . But the class as one does not always
exist, and the class as many is of a different type from the terms of
the class, even when the class has only one term . . .

Reversing himself again Russell concluded [1903:106] “that it is necessary to
distinguish a single term from the class whose only member it is, and that
consequently the null-class may be admitted.”
Russell only discussed Frege’s work in an appendix, having absorbed it
relatively late. Of this Russell had actually forewarned the reader in the
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Preface [1903:xvi] revealing moreover that he had latterly discovered errors
in the text; “these errors, of which the chief are the denial of the null-class,
and the identification of a term with the class whose only member it is,
are rectified in the Appendices.” In the appendix on Frege, Russell alluded
to an argument, from Frege’s critical review [1895] of Schröder’s work, for
why a should not be identified with {a}: In the case of a having many
members, {a} would still have only one member—the same and obvious
concern Dedekind had, as we saw above. Russell observed [1903:514]: “. . . I
contended that the argument was met by the distinction between the class as
one and the class as many, but this contention now appears to memistaken.”
Russell continued [1903:514]: “. . . it must be clearly grasped that it is not
only the collection as many, but the collection as one, that is distinct from
the collection whose only term it is.” Russell went on to conclude [1903:515]
that “the class as many is the only object that can play the part of a class”,
writing [1903:516]:

Thus a class of classes will be many many’s; its constituents will
each be only many, and cannot therefore in any sense, one might
suppose, be single constituents. Now I find myself forced to main-
tain, in spite of the apparent logical difficulty, that this is precisely
what is required for the assertion of number.

Russell was then led to infinitely many types [1903:517]:

It will now be necessary to distinguish (1) terms, (2) classes, (3)
classes of classes, and so on ad infinitum; we shall have to hold that
no member of one set is a member of any other set, and that x ∈ u
requires that x should be of a set of a degree lower by one than
the set to which u belongs. Thus x ∈ x will become a meaningless
proposition; in this way the contradiction is avoided.

And he wrote further down the page:

Thus, although we may identify the class with the numerical con-
junction of its terms [class as many], wherever there are many
terms, yet where there is only one term we shall have to accept
Frege’s range [Werthverlauf] as an object distinct from its only
term.

Reading such passages from the Principles it does not seem too outlandish
to draw connections to and analogies with the high scholastics, relating the
“class as many” vs. “class as one” distinction to the traditional pluralism
vs. monism debate. The a vs. {a} distinction is inextricably connected for
Russell, but it is now time to invoke a simple point. The following result is
provable just in first-order logic with equality and the membership relation,
with the usual definitions of ⊆ and {a}.
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Theorem. ∀a (a = {a}) is equivalent to:

∀a ∀b (a ⊆ b ←→ a ∈ b).(∗)

Proof. Suppose first that a = {a}. Then for any b, a ⊆ b if and only if
{a} ⊆ b. But {a} ⊆ b if and only if a ∈ b, and hence we can conclude that
a ⊆ b if and only if a ∈ b.
For the converse, first note that since a ∈ {a}, (∗) implies that a ⊆ {a}.
But also, since a ⊆ a, (∗) implies that a ∈ a, so that {a} ⊆ a. Hence we
can conclude that a = {a}. /
In other words, the identification of classes with their unit classes is equiv-
alent to the very dissolution of the inclusion vs. membership distinction that
Russell so assiduously cultivated and exploited! And this is arguably near
the surface of that by-now notorious paragraph from Dedekind [1888:(3)].
Years later, Russell was firm about the danger of confusing a class with its
unit class, but still on the basis of a conflation of type. In his A History of
Western Philosophy he wrote [1945:198]:19

Another error into which Aristotle falls . . . is to think that a pred-
icate of a predicate can be a predicate of the original subject . . .
The distinction between names and predicates, or, in metaphysi-
cal language, between particulars and universals, is thus blurred,
with disastrous consequences to philosophy. One of the resulting
confusions was to suppose that a class with only one member is
identical with that one member.

One direction of the above theorem is implicit here. However, Russell subse-
quentlywrote in his retrospectiveMyPhilosophicalDevelopment [1959:66–7]:

The enlightenment that I derived from Peano came mainly from
two purely technical advances of which it is very difficult to ap-
preciate the importance unless one has (as I had) spent years in
trying to understand arithmetic . . . The first advance consisted
in separating propositions of the form ‘Socrates is mortal’ from
propositions of the form ‘All Greeks are mortal’ [i.e., distinguish-
ing membership from inclusion] . . . neither logic nor arithmetic
can get far until the two forms are seen to be completely different
. . . The second important advance that I learnt from Peano was
that a class consisting of one member is not identical with that one
member.

Russell may still have been unaware, as onemight presume from this passage,
that the a vs. {a} distinction follows from the inclusion vs. membership dis-
tinction, let alone that they are equivalent, according to the above theorem.
In view of the considerable mathematical prowess exhibited by Russell in the

19My thanks to Nimrod Bar-Am for bringing this passage to my attention.
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Principia Mathematica this is surely an extreme case of metaphysical preoc-
cupations beclouding developments based on “purely technical advances.”
Whether here, or Peano’s formula 56, or the analysis of the ordered pair to
be discussed below, there is a simple mathematical argument that crucially
informs the situation. It is simple for us today to find such arguments, since
for us logic is mathematical, and we are heir to the development of set theory
based on the iterated application of the “set of” {} operation and axioms
governing it. This development was first fostered by Zermelo; it is notewor-
thy that he discovered the argument for Russell’s paradox independently and
that it served as the beginning of a progress that in effect reverses Russell’s:

§4. Classes and singletons. The first decade of the new century saw Zer-
melo at Göttingen make his major advances in the development of set the-
ory.20 His first substantial result in set theory was his independent discovery
of Russell’s Paradox. He then established [1904] the Well-Ordering Theo-
rem, provoking an open controversy about this initial use of the Axiom of
Choice. After providing a second proof [1908] of the Well-Ordering Theo-
rem in response, Zermelo also provided the first full-fledged axiomatization
[1908a] of set theory. In the process, he ushered in a new abstract, generative
view of sets, one that would dominate in the years to come.
Zermelo’s independent discovery of the argument for Russell’s Paradox
is substantiated in a note dated 16 April 1902 found in Edmund Husserl’s
Nachlass.21 According to the note, Zermelo pointed out that any set M
containing all of its subsets as members, i.e., P(M ) ⊆ M , is “inconsistent”
by considering {x ∈ M | x /∈ x }. Schröder [1890:245] had argued that
Boole’s “class l” regarded as consisting of everything conceivable is incon-
sistent, and Husserl in a review [1891] had criticized Schröder’s argument
for not distinguishing between inclusion and membership. That inclusion
may imply membership is of course the same concern that Russell had to
confront, but Zermelo did not push the argument in the direction of paradox
as Russell had done. Also, Zermelo presumably came to his argument inde-
pendently of Cantor’s diagonal proof with functions. ThatP(M ) has higher
cardinality thanM is evidently more central than P(M ) *⊆M , but the con-
nection between subsets and characteristic functions was hardly appreciated
then, and Zermelo was just making the first moves toward his abstract view
of sets.22

20Peckhaus [1990] provides a detailed account of Zermelo’s years 1897–1910 at Göttingen.
21See Rang-Thomas [1981].
22In Zermelo’s axiomatization paper [1908a], the first result of his axiomatic theory was

just the result in the Husserl note, that every set M has a subset {x ∈ M | x /∈ x } not
a member of M , with the consequence that there is no universal set. Modern texts of set
theory usually take the opposite tack, showing that there is no universal set by reductio to
Russell’s Paradox. Zermelo [1908a] applied his first result positively to generate specific sets
disjoint from given sets for his recasting of Cantor’s theory of cardinality.
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ReversingRussell’s progress fromCantor’s correspondences to the identity
map inclusion P(U ) ⊆ U , Zermelo considered functions F : P(X ) → X ,
specifically in the form of choice functions, those F satisfying F (Y ) ∈ Y
for Y *= ∅. This of course was the basic ingredient in Zermelo’s [1904]
formulation of what he soon called the Axiom of Choice, used to establish
his Well-Ordering Theorem. Russell the metaphysician had drawn elaborate
philosophical distinctions and was forced by Cantor’s diagonal argument
into a dialectical confrontation with them, as well as with the concomitant
issues of whether the null class exists and whether a term should be distinct
from its unit class. Zermelo the mathematician never quibbled over these
issues for sets and proceeded to resolve the problem of well-ordering sets
mathematically. In describing abstract functions Cantor had written in the
Beiträge [1895:§4]: “. . . by a ‘covering [Belegung] of N withM ,’ we under-
stand a law . . . ”, and thus had continued his frequent use of the term “law” to
refer to functions. Zermelo [1904:514] specifically used the term “covering”,
but with his choice functions any residual sense of “law” was abandoned by
him [1904]: “. . . we take an arbitrary covering ( and derive from it a definite
well-ordering of the elements ofM .” It is here that abstract set theory began.
The generative view of sets based on the iteration of the “set of” {}
operation would be further codified by the assumption of the Axiom of
Foundation in Zermelo’s final axiomatization [1930], the source of the now-
standard theory ZFC. Foundation disallows a ∈ a, and hence precludes
{a} = a, for any set a. In any case, having any sets a such that {a} = a
is immediately antithetical to the emerging cumulative hierarchy view or
“iterative conception” of set, and this scheme would become dominant in
subsequent set-theoretic research. Nonetheless, having sets a satisfying
{a} = a has a striking simplicity in bearing the weight of various incentives,
and the idea of having some such sets has been pivotal in the formal semantics
of set theory.
Paul Bernays [1941:10] announced the independence of the Axiom of
Foundation from the other axioms of his system and provided [1954:83]
a proof based on having a’s such that {a} = a. Ernst Specker in his
Habilitationsschrift (cf. [1957]) also provided such a proof. Moreover, he
coordinated such a’s playing the role of individuals in his refinement of the
Fraenkel-Mostowski method for deriving independence results related to the
Axiom of Choice. Individuals, also known as urelemente or atoms, are ob-
jects distinct from the null set yet having no members and capable of belong-
ing to sets. Zermelo [1908a][1930] had conceived of set theory as a theory
of collections built on a base of individuals. However, Abraham Fraenkel
[1921][1922:234ff] from the beginningof his articles on set theory emphasized
that there is no need for individuals and generally advocated a minimalist
approach as articulated by his Axiom of Restriction [Beschränktheit]. In-
dividuals have since been dispensed with in the mainstream development of
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axiomatic set theory owing to considerations of elegance, parsimony, and
canonicity: Retaining individuals would require a two-sorted formal system
or at least predication for sets, with, e.g., the Axiom of Extensionality stated
only for sets; set theory surrogates were worked out for mathematical ob-
jects; and the cumulative hierarchy view based on the empty set provided a
uniform, set-theoretic universe. Nevertheless, individuals have continued to
be used for various adaptations of the set-theoretic view. Fraenkel [1922]
himself, in the Hilbertian axiomatic tradition and notwithstanding his own
Axiom of Restriction, concocted a domain of individuals to argue for the
independence of the Axiom of Choice, in the inaugural construction of the
Fraenkel-Mostowski method.
Stipulating that all individuals are formally to satisfy {a} = a has been
a persistent theme in the set-theoretic work of the philosopher and logician
Willard V. Quine, and is arguably a significant reflection of his philosophy.
Already in [1936:50] Quine had provided a reinterpretation of a type theory
that associated individuals with their unit classes. In his [1937] Quine for-
mulated a set theory now known as New Foundations (NF), and in his book
Mathematical Logic [1940] he extended the theory to include classes.23 In
§22 of [1940] Quine extended the “x ∈ y” notation formally to individuals
(“non-classes”) y by stipulating for such y that “x ∈ y” should devolve to
“x = y”. In §25 Quine gave a rationale in the reduction of primitive notions:
He defined “x = y” in terms of ∈ via extensionality, ∀z (z ∈ x ↔ z ∈ y),
and this now encompassed individuals x and y since via ∀z (z = x ↔ z = y)
one gets x = y. For individuals y, through the peculiarity of assimilating
one form of the copula, “x ∈ y”, into another, “x = y”, there is a for-
mal identification of y with {y}. While acknowledging that he himself had
no occasion for entertaining “non-classes”, Quine regarded this as a way
of assimilating them into classes: Now every entity is a class, some are
“individuals” satisfying {a} = a, and the Axiom of Extensionality serves
all. Thus, Quine’s pragmatism in simply stipulating that individuals satisfy
{a} = a served his extensionalism, with identity defined in terms of mem-
bership becoming universal, encompassing even individuals! In his later text
Set Theory and its LogicQuine [1964:§4] carried out his stipulatory approach
and emphasized how it leads to the seamless incorporation of individuals.
Stimulated by Quine’s discussion of his “individuals” Dana Scott [1962]
showed how to transform models of NF into models having a satisfying
{a} = a. Moreover, his technique has led to a spate of recent results.24

23As in vonNeumann’s set theory [1925] as recast byBernays [1937], in Quine’s systemonly
some classes are membership-eligible, i.e., capable of appearing to the left of the membership
relation, and these “elements” correspond to the sets of Quine’s NF.
24See Forster [1995:92ff]. He wrote that the technique introduced by Scott is of great

importance in set theories with a universal set, “for many of which it is the only independence
technique available.”
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Many years later in Pursuit of Truth [1992:33] Quine wrote, diffusing on-
tology: “We could reinterpret ‘Tabitha’ as designating no longer the cat,
but the whole cosmos minus the cat; or, again, as designating the cat’s sin-
gleton, or unit class.” This comes in the wake of his discussion of “proxy
functions” as exemplifying the “inscrutability of reference.” Such functions
are one-to-one correspondences for the objects of the purported universe,
correspondences that preserve predication and so provide different ontolo-
gies “empirically on a par.” But a transposition of a with {a} that keeps
all other sets fixed is exactly what Scott [1962] had used to generate a’s sat-
isfying {a} = a in models of NF. To paraphrase a paraphrase of Quine’s,
philosophy recapitulates mathematics! There is no longer a confounding of
a and {a}, yet the a posteriori identification has served mathematical, even
philosophical, purposes.
Finally, despite all the experience with the iterative conception of set,
ruminations as to the mysteriousness of the singleton and even the non-
existence of the null class have resurfaced in recent mereology, the reincar-
nated part-whole theory, like an opaque reflection of the debates of a century
ago.25

§5. The ordered pair. We now make the final ascent, up to the ordered
pair. In modern mathematics, the ordered pair is basic, of course, and is
introduced early in the curriculum in the study of analytic geometry. How-
ever, to focus the historical background it should be noted that ordered
pairs are not explicit in Descartes and in the early work on analytic geom-
etry. Hamilton [1837] may have been the first to objectify ordered pairs in
his reconstrual of the complex numbers as ordered “couples” of real num-
bers. In logic, the ordered pair is fundamental to the logic of relations and
epitomized, at least for Russell, metaphysical preoccupations with time and
direction. Given the formulation of relations and functions in modern set
theory, one might presume that the analysis of the ordered pair emerged
from the development of the logic of relations, and that relations and func-
tions were analyzed in terms of the ordered pair. Indeed, this was how the
historical development proceeded on the mathematical side, in the work of
Peano and Hausdorff. However, the development on the logical side, in the
work of Frege and Russell, was just the reverse, with functions playing a key
initial role as a fundamental notion. The progression was to the ordered
pair, and only later was the inverse direction from the ordered pair to func-
tion accommodated, after the reduction of the ordered pair itself to classes.
While the approach of the logicians is arguably symptomatic of their more
metaphysical preoccupations, the approach on the mathematical side was
directed toward an increasingly extensional view of functions regarded as
arbitrary correspondences.

25See Lewis [1991].
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Frege [1891] had two fundamental categories, function and object, with a
function being “unsaturated” and supplemented by objects as arguments. A
concept is a function with two possible values, the True and the False, and a
relation is a concept that takes two arguments. The extension of a concept is
its graph or course-of-values [Werthverlauf], which is an object, and Frege
[1893:§36] devised an iterated or double course-of-values [Doppelwerthver-
lauf] for the extension of a relation. In these involved ways Frege assimilated
relations to functions.
As for the ordered pair, Frege in hisGrundgesetze [1893:§144] provided the
extravagant definition that the ordered pair of x and y is that class to which
all and only the extensions of relations to which x stands to y belong.26 On
the other hand, Peirce [1883], Schröder [1895], and Peano [1897] essentially
regarded a relation from the outset as just a collection of ordered pairs.27

Whereas Frege was attempting an analysis of thought, Peano was mainly
concerned about recasting ongoing mathematics in economical and flexible
symbolism andmademany reductions, e.g., construing a sequence in analysis
as a function on the natural numbers. Peano from his earliest logical writings
had used “(x, y)” to indicate the ordered pair in formula and function
substitutions and extensions. In [1897] he explicitly formulated the ordered
pair using “(x; y)” and moreover raised the two main points about the
ordered pair: First, equation 18 of his Definitions stated the instrumental
property which is all that is required of the ordered pair:

〈x, y〉 = 〈a, b〉 if and only if x = a and y = b.(∗)

Second, he broached the possibility of reducibility, writing: “The idea of
a pair is fundamental, i.e., we do not know how to express it using the
preceding symbols.”
Peano’s symbolism was the inspiration and Frege’s work a bolstering for
Whitehead and Russell’s Principia Mathematica [1910–3], in which relations
distinguished in intension and in extension were derived from “proposi-
tional” functions taken as fundamental and other “descriptive” functions
derived from relations. They [1910:∗55] like Frege defined an ordered pair
derivatively, in their case in terms of classes and relations, and also for a
specific purpose.28 Previously Russell [1903:§27] had criticized Peirce and
Schröder for regarding a relation “essentially as a class of couples,” although

26This definition, which recalls the Whitehead-Russell definition of the cardinal number 2,
depended on Frege’s famously inconsistent Basic Law V. See Heck [1995] for more on Frege’s
definition and use of his ordered pair.
27Peirce [1883] used “i” and “j” schematically to denote the components, and Schröder

[1895:24] adopted this and also introduced “i : j”. For Peano see below.
28Whitehead and Russell had first defined a cartesian product by other means, and only

then defined their ordered pair x↓y as {x} × {y}, a remarkable inversion from the current
point of view. They [1910:∗56] used their ordered pair initially to define the ordinal number 2.
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he overlooked this shortcoming in Peano.29 Commenting obliviously on
Principia Peano [1911,1913] simply reaffirmed an ordered pair as basic, de-
fined a relation as a class of ordered pairs, and a function extensionally as a
kind of relation, referring to the final version of his Formulario Mathematico
[1905–8:73ff] as the source.
Capping this to and fro Norbert Wiener [1914] provided a definition of
the ordered pair in terms of unordered pairs of classes only, thereby reducing
relations to classes. Working in Russell’s theory of types, Wiener defined the
ordered pair 〈x, y〉 as

{{{x},Λ}, {{y}}}
when x and y are of the same type and Λ is the null class (of the next
type), and pointed out that this definition satisfies the instrumental property
(∗) above. Wiener used this to eliminate from the system of Principia the
Axiom of Reducibility for propositional functions of two variables; he had
written a doctoral thesis comparing the logics of Schröder and Russell.30

Although Russell praised Sheffer’s stroke, the logical connective not-both,
he was not impressed by Wiener’s reduction. Indeed, Russell would not
have been able to accept it as a genuine analysis. After his break with
neo-Hegelian idealism, Russell insisted on taking relations to have genuine
metaphysical reality, external to the mind yet intensional in character. On
this view, order had to have a primordial reality, and this was part and parcel
of the metaphysical force of intension. Years later Russell [1959:67] wrote:

I thought of relations, in those days, almost exclusively as in-
tensions. . . . It seemed to me—as indeed, it still seems—that,
although from the point of view of a formal calculus one can re-
gard a relation as a set of ordered couples, it is the intension alone
which gives unity to the set.

On the mathematical side, Hausdorff’s classic text, Grundzüge der Men-
genlehre [1914], broke the ground for a generation ofmathematicians in both
set theory and topology. A compendium of a wealth of results, it empha-
sized mathematical approaches and procedures that would eventually take
firm root.31 Making no intensional distinctions Hausdorff [1914:32ff, 70ff]

29In a letter accepting Russell’s [1901] on the logic of relations for publication in his
journalRevista, Peano had pointedly written “The classes of couples correspond to relations”
(see Kennedy [1975:214]) so that relations are extensionally assimilated to classes. Russell
[1903:§98] argued that the ordered pair cannot be basic and would itself have to be given
sense, which would be a circular or an inadequate exercise, and “It seems therefore more
correct to take an intensional view of relations . . . ”.
30See Grattan-Guinness [1975] formore onWiener’s work and his interaction withRussell.
31Hausdorff’s mathematical attitude is reflected in a remark following his explanation of

cardinal number in a revised edition [1937:§5] of [1914]: “This formal explanation says what
the cardinal numbers are supposed to do, not what they are. More precise definitions have
been attempted, but they are unsatisfactory and unnecessary. Relations between cardinal
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defined an ordered pair in terms of unordered pairs, formulated functions
in terms of ordered pairs, and ordering relations as collections of ordered
pairs. (He did not so define an arbitrary relation, for which there was then
no mathematical use, but he was first to consider general partial orderings,
as in his maximality principle.32) Hausdorff thus made both the Peano
[1911,1913] and Wiener [1914] moves in mathematical practice, completing
the reduction of functions to sets.33 This may have been congenial to Peano,
but not to Frege nor Russell, they having emphasized the primacy of func-
tions. Following the pioneering work of Dedekind and Cantor Hausdorff
was at the crest of a major shift in mathematics of which the transition from
an intensional, rule-governed conception of function to an extensional, ar-
bitrary one was a large part, and of which the eventual acceptance of the
Power Set Axiom and the Axiom of Choice was symptomatic.
In his informal setting Hausdorff took the ordered pair of x and y to be

{{x, 1}, {y, 2}}
where 1 and 2 were intended to be distinct objects alien to the situation. It
should be pointed out that the definition works even when x or y is 1 or 2
to maintain the instrumental property (∗) of ordered pairs. In any case, the
now-standard definition is the more intrinsic

{{x}, {x, y}}
due toKazimierzKuratowski [1921:171]. Notably, Kuratowski’s definition is
a by-product of his analysis of Zermelo’s [1908] proof of the Well-Ordering
Theorem. Not only does the definition satisfy (∗), but it only requires
pairings of x and y.
The general adoption of the Kuratowski pair proceeded through the ma-
jor developments of mathematical logic: Von Neumann initially took the
ordered pair as primitive but later noted [1928:338] [1929:227] the reduction
via the Kuratowski definition. Gödel in his incompleteness paper [1931:176]
also pointed out the reduction.34 Tarski in his [1931:n. 3], seminal for its pre-
cise, set-theoretic formulation of a first-order definable set of reals, pointed
out the reduction and acknowledged his compatriot Kuratowski. In his

numbers are merely a more convenient way of expressing relations between sets; we must
leave the determination of the ‘essence’ of the cardinal number to philosophy.”
32Before Hausdorff and going beyond Cantor, Dedekind was first to consider non-linear

orderings, e.g., in his remarkably early, axiomatic study [1900] of lattices.
33As to historical precedence, Wiener’s note was communicated to the Cambridge Philo-

sophical Society, presented on 23 February 1914, while the preface to Hausdorff’s book is
dated 15March 1914. Given the pace of book publication then, it is arguable that Hausdorff
came up with his reduction first.
34In footnote 18, Gödel blandly remarked: “Every proposition about relations that is

provable in [PrincipiaMathematica] is provable also when treated in this manner, as is readily
seen.” This stands in stark contrast to Russell’s labors in Principia and his antipathy to
Wiener’s reduction of the ordered pair.
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recasting of von Neumann’s system, Bernays [1937:68] also acknowledged
Kuratowski [1921] and began with its definition for the ordered pair. It is re-
markable that Nicolas Bourbaki in his treatise [1954] on set theory still took
the ordered pair as primitive, only later providing the Kuratowski reduction
in the [1970] edition.35

As with the singleton, we end here with a return to philosophy through
Quine. In Principia MathematicaWhitehead and Russell had developed the
theory of monadic (unary) and dyadic (binary) relations separately and only
indicated how the theory of triadic (ternary) relations and so forth was to
be analogously developed. Quine in his 1932 Ph.D. dissertation showed
how to develop the theory of n-ary relations for all n simultaneously, by
defining ordered n-tuples in terms of the ordered pair. Again, a simple
technical innovation was the focus, but for Quine such moves would be
crucial in an economical, extensional approach to logic and philosophy,
already much in evidence in his dissertation.36 In its published version
Quine acknowledged in a footnote [1934:16ff] having become aware of the
reduction of the ordered pair itself, which he had taken to be primitive, to
classes. Significantly, Quine wrote of the “Wiener-Kuratowski” ordered pair,
though their definitions were quite different; the possibility, rather than the
particular implementation, was for Quine the point. And unlike for Russell,
for whom a reduction was metaphysically unacceptable, for Quine it was
merely a question of how the reduction could be worked in.
Quine in his major philosophical work Word and Object [1960:§53] de-
clared that the reduction of the ordered pair is a paradigm for philosoph-
ical analysis. Perhaps for Quine the Wiener-Kuratowski reduction loomed
particularly large because of his encounter with it after the labors of his
dissertation. After describing the Wiener ordered pair, Quine wrote:

This construction is paradigmatic of what we are most typically
up to when in a philosophical spirit we offer an “analysis” or
“explication” of some hitherto inadequately formulated “idea” or
expression. We do not claim synonymy. We do not claim to
make clear and explicit what the users of the unclear expression
had unconsciously in mind all along. We do not expose hidden
meanings, as the words ‘analysis’ and ‘explication’ would suggest;
we supply lacks. We fix on the particular functions of the unclear
expression that make it worth troubling about, and then devise
a substitute, clear and couched in terms to our liking, that fills
those functions. Beyond those conditions of partial agreement,
dictated by our interest and purposes, any traits of the explicans
come under the head of “don’t cares” . . .

35See Mathias [1992] for the ignorance of Bourbaki.
36See Dreben [1989] for more on Quine and his dissertation.
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Quine went on to describe the Kuratowski ordered pair but emphasized
that as long as a definition satisfies the instrumental property (∗), the par-
ticular choice to be made falls under the “don’t care” category. Quine then
wrote:

A similar view canbe takenof every case of explication: explication
is elimination. We have, to begin with, an expression or form of
expression that is somehow troublesome. It behaves partly like a
term but not enough so, or it is vague in ways that bother us, or it
puts kinks in a theoryor encourages one or another confusion. But
also it serves certain purposes that are not to be abandoned. Then
we find away of accomplishing those same purposes through other
channels, using other and less troublesome forms of expression.
The old perplexities are resolved.
According to an influential doctrine of Wittgenstein’s, the task
of philosophy is not to solve problems but to dissolve them by
showing that there were really none there. This doctrine has its
limitations, but it aptly fits explication. For when explication
banishes a problem it does so by showing it to be in an important
sense unreal; viz., in the sense of proceeding only from needless
usages.

The ordered pair may be a simple device in set theory, but it is now carrying
the weight of what “analysis” is to mean in philosophy.
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[1880] , Über unendliche, lineare Punktmannigfaltigkeiten. II,Mathematische An-

nalen, vol. 17, pp. 355–358; reprinted in Cantor [1932] below, pp. 145–148.



294 AKIHIRO KANAMORI
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