
PHRAINEPHRAINE
 Computer Technology Enlightenment Without the Noise

http:/ /pearlyfreepress.madoshi.com/phraine/http:/ /pearlyfreepress.madoshi.com/phraine/

Richard Stallman (rms)

Editor's Corner

It hardly seems possible that another issue of PHARINE is fin-
ished and ready for release. It seems as if it was yesterday I was
searching for the best way to write and distribute the first issue
of PHRAINE, but it is not yesterday and another issue of PHRAINE
is ready.

In this issue of PHRAINE you will find an interview with Jim Hall
(FreeDOS project creator). JH took time out of busy schedule to
speak with us and we cannot thank him enough.

I hope that you, the reader, recognizes this issue of PHRAINE as
an improvement over the previous and that each subsequent one
is better than the last.

Enjoy.

Editor- in- Chief
Scott C. MacCallum
scm@madoshi.com

Vol. 1 Num. 2(4)
Summer/Fall 2004

$2.50

Policy

Free Flow of Information

PHRAINE believes in the free (as in freedom) flow of information,
even when this information has been deemed controversial.

Reader Advisory

Due to recent and questionable laws/lawsuits in the United
States and abroad over the right to freely experiment with tech-
nology, we advise our readers to research state and federal laws
before attempting any projects related to the information written
in this publication. Although no information in this publication
was written with the intent that its readers would engage in any
unlawful conduct, incorrect use of the information found in
PHRAINE might result in this.

Disclaimer

While every precaution has been taken in the preparation of this
electronic quarterly, the editor assumes no responsibility for er-
rors, omissions, misuse, or damages resulting from the use of
the information contained herein.

Opinions expressed in articles and letter submissions are not
necessarily those held by The Pearly Free Press (http: / / pearlyfree
press.madoshi.com/), PHRAINE (http: / /pearlyfreepress.madoshi.
com/phraine/), or Madoshi (http: / /www.madoshi.com/).

Submission

Article Submission

Do you have a computer, telephone, programming, or electrical
engineering article, commentary, or book review that you are the
owner of and that you think deserves publication in PHRAINE?
Please send it via e- mail in ASCII character format to scm@mado
shi.com . Please be sure to include "article" in the subject line of
your e- mail.

If we print your article, you get the satisfaction of "mission ac-
complished".

Letter Submission

Do you have a comment or question for PHRAINE? Did you find
an error that you feel should be corrected? Please send it via e-
mail in ASCII character format to scm@madoshi.com . Please be
sure to include “letter” in the subject line of your e- mail. If we
print your letter, you get the satisfaction of "immortalization".

Pen Names

PHRAINE believes in openness. We encourage those who submit
articles or letters for consideration in future publications to use
their own name as opposed to a computer nick- name, but this is
not required. If you would like your name withheld, please make
that known upon submission.

If you do not see either your article or letter appear in two sub-

1

sequent releases of PHRAINE, it is a good bet that it will not be
featured at all. Submitters of an article, letter, and/or program
source code(s) maintain their copyright; but submissions cannot
be returned.

By submitting the aforementioned material to PHRAINE, you
proclaim that you are indeed the copyright owner of the said
material and that any program source code(s) submitted are
compliant with the GNU General Public License as published by
the Free Software Foundation; either version 2 of the license or
(at your option) any later version (see the Copyright section of
this issue for more details).

Copyright

PHRAINE Copyright © Scott C. MacCallum. All Rights Reserved.

PHRAINE may not be reproduced in whole or part without
written permission.

PHRAINE is published quarterly by the Pearly Free Press
(http: / /pearlyfreepress.madoshi.com/).

Programs

Programs' source codes found in this publication are free soft-
ware; you can redistribute them and/or modify them under the
terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the license or (at
your option) any later version.

These programs are distributed in the hope that they will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

An ASCII copy of the GNU General Public License is located at
(http: / /www.gnu .or g/licenses/gpl.txt); if not write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA, 02111- 1307, USA.

Trade/Service Marks

All terms used in this publication that are known to be trade-
marks or service marks have been appropriately capitalized. The
Pearly Free Press cannot attest to the accuracy of this in-
formation. Use of a term in this publication should not be re-
garded as affecting the validity of any trademark or service mark.

Cited Material

Jargon

The definit ion of "hacker" adapted by Scott C. MacCallum for
PHARINE, Taken from "The Hacker Jargon File" version 4.4.7
(http ://www.catb.org/~esr/jargon/html/H/hacker.html).

The definition of "TM" adapted by Scott C. MacCallum for
PHARINE. Taken from "The Hacker Jargon File" version 4.4.7 (htt
p:/ /www.catb.org /~esr/ jargon/html /0 /TM.html).

Richard Stallman's Action Items

"Urgent action items and Long- term action items" adapted by
Scott C. MacCallum for PHRAINE. Taken from "Richard Stallman's
Personal Page" (http: / /www.stallman.org/). Please send com-
ments on these web- pages to rms at stallman period org.
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004 Richard Stallman. Verbatim copying and redistribution of
this entire page is permitted provided this notice is preserved.

Advertising

Only subscribers can submit ads for the “bazaar” section of
PHRAINE. Each subscriber is allowed one ad per issue. Ads for
reprint must be resubmitted by the deadline located in the
"bazaar" section of each issue.

PHRAINE reserves the right not to print any ad that it deems un-
suitable for the magazine and is not responsible for the pos-
sible lack of goodwill of the advertiser. Contact these individuals
at your own peril.

Jargon

Hacker: n.

1. A person who enjoys exploring the details of programmable
systems and how to stretch their capabilities, as opposed to
most users, who prefer to learn only the minimum necessary.

2. One who programs enthusiastically (even obsessively) or who
enjoys programming rather than just theorizing about pro-
gramming.

3. A person who is good at programming quickly.

4. An expert at a particular program, or one who frequently does
work using it or on it; as in a "Unix Hacker".

5. An expert or enthusiast of any kind. One might be an
electronics hacker, for example.

6. One who enjoys the intellectual challenge of creatively
overcoming or circumventing limitations.

Note

It is better to be described as a hacker by others than to describe
oneself that way. Hackers consider themselves something of an
elite grouping based on ability to which new members with sim-
ilar traits are gladly welcomed.

Origin

The term "Hacker" seems to have been first adopted as a badge
in the 1960's by the hacker culture surrounding the MIT's TMRC
(Tech Model Railroad Club) and AI (Artificial Intelligence) Lab.

(TM): / / [Usenet]

1. ASCII rendition of the ™ appended to phrases that the author
feels should be recorded for posterity.

2. Used ironically as a form of protest against the recent spate of
software and algorithm patents and look and feel lawsuits.

Hacker Biography: Richard Stallman

Our featured hacker for this issue of PHRAINE is Richard Stall-
man (rms). I think you would be hard pressed to find someone
that has contributed to the hacker culture in more positive ways
than he.

The following are two biographies, one from 1983 that was first
published in the Hacker Jargon File, and the other a more recent
one from his home- page.

1983 Biography

2

I was built at a laboratory in Manhattan around 1953, and moved
to the MIT Artificial Intelligence Lab in 1971. My hobbies include
affection, international folk dance, flying, cooking, physics,
recorder, puns, science fiction fandom, and programming; I ma-
gically get paid for doing the last one. About a year ago I split up
with the PDP-10 computer to which I was married for ten years.
We still love each other, but the world is taking us in different
directions. For the moment I still live in Cambridge, Mas-
sachusetts, among our old memories. "Richard Stallman" is just
my mundane name; you can call me "rms".

Recent Biography

Richard Stallman is the founder of the GNU Project , launched in
1984 to develop the free software operating system GNU. The
name ` `GNU'' is a recursive acronym for ` `GNU's Not Unix''.

GNU is free software: everyone is free to copy it and redistribute
it, as well as to make changes either large or small. Non- free
software keeps users divided and helpless, forbidden to share it
and unable to change it. A free operating system is essential for
people to be able to use computers in freedom.

Today, Linux- based variants of the GNU system, based on the
kernel Linux developed by Linus Torvalds, are in widespread use.
There are estimated to be some 20 million users of GNU/Linux
systems today.

Richard Stallman is the principal author of the GNU Compiler
Collection , a portable optimizing compiler which was designed
to support diverse architectures and multiple languages. The
compiler now supports over 30 different architectures and 7
programming languages.

Stallman also wrote the GNU symbolic debugger (gdb), GNU
Emacs, and various other programs for the GNU operating
system.

Stallman graduated from Harvard in 1974 with a BA in physics.
During his college years, he also worked as a staff hacker at the
MIT Artificial Intelligence Lab, learning operating system
development by doing it.

He wrote the first extensible Emacs text editor there in 1975. He
also developed the AI technique of dependency- directed back-
tracking, also known as truth maintenance. In January, 1984 he
resigned from MIT to start the GNU project.

Stallman received the Grace Hopper award for 1991 from the
Association for Computing Machinery, for his development of
the first Emacs editor. In 1990, he was awarded a MacArthur
Foundation Fellowship, and in 1996 an honorary doctorate from
the Royal Institute of Technology in Sweden. In 1998, he re-
ceived the Electronic Frontier Foundation's Pioneer Award along
with Linus Torvalds. In 1999, he received the Yuri Rubinski
award. In 2001, he received a second honorary doctorate, from
the University of Glasgow, and shared the Takeda Award for so-
cial/economic betterment with Torvalds and Ken Sakamura. In
2002, he was elected to the US National Academy of Engineering,
and in 2003 to the American Academy of Arts and Sciences. In
2003, he was named an honorary professor of the Universided
Nacional de Ingenieria in Peru, and received an honorary
doctorate from the Free University of Brussels.

C Programming: Hello, user x!

It is time for another lesson in the C language. Last time you
learned how to print “Hello, world!” to your computer's monitor.
This time you will learn how to write a C program that says hello
to you, the user, by giving the computer input.

Here is the C source code to do accomplish this:

(1) #include <stdio.h>
(2)
(3) int main(void)
(4) {
(5) char name[9];
(6)
(7) printf("What is your name: ");
(8)
(9) scanf("%s", name);
(10)
(11) printf("Hello, %s!\n", name);
(12)
(13) return(0);
(14) }

Source Code Breakdown

(1) Include the stdio header file in your program (required for
input /output).

(2) This is white space, we use it to make your code easier to
read.

(3) The main function (required for every C program) is re-
turning an integer type (null 0), and nothing (void) is being
sent to another function.

(4) This is an open brace, start your statements after it.

(5) We use a character variable type (char) with the designation
"name" to hold the name of the user upon input. Notice that
the variable can only hold nine characters ([9]), eight max-
imum for the users name and one for the null zero (/0).

(6) More white space for clarity.

(7) Use this, the print function, to print to the user's monitor.
This is where we ask for the name of the user for input.

(8) More white space for clarity.

(9) This is the scan function, it is used to scan what the user in-
puts as a string (%s) of characters and puts them into our
name character variable.

(10) More white space for clarity.

(11) Use this, the print function to print to the user's monitor.
 This is where we print the users inputed name found in the
 name variable.

(12) More white space for clarity.

(13) The return function, a null zero (0) , needs to be returned at
 the end of our program to show the program is finished.

(14) This is a close brace, use it when you have no more state-
 ments to add.

Interview with FreeDOS Creator Jim Hall

Q: Where are you from/reside?

A: I was born in Virginia, but I currently live in Minnesota, in St
Paul (part of the Twin Cities), I'm an American. :-)

Q: Do you have significant other in your life?

A: I am married to my high- school sweetheart. We've been

3

dating/married longer than half our lives.

Q: Do you own any animals?

A: I have three cats Linus, Murphy, and Vita.

Q: What kind of educational background do you have?

A: I have a BS in Physics, from the University of Wisconsin- River
Falls. I try to remain involved with the UW-RF Physics program,
and I attend the (mostly) annual alumni dinners that they have.

Q: What do you do for work?

A: I work at the University of Minnesota, where I'm the Manager
of Central Computing Operations' Systems Administration
groups, which includes: Solaris, AIX/PIA, Linux/Web, and Win-
dows/Novell.

At the University, I founded the Web Development Advanced
Labs. We officially retired the Labs in March 2003 when I moved
out of Web Development into my current role in Central Com-
puting Operations but work still goes on for Advanced Labs
(under other names).

Our last completed project may interest you, I created an ex-
periment to run Linux on my desktop half- time (dual- boot). It
was a good experiment since I was in my WebDev office for half
the day and my CCO office for the other half, I would run
Windows when in WebDev and Linux when in CCO. After a short
while, I stopped booting into Windows altogether, except to do a
few things that I can't do in Linux, like run Visio and change my
Novell password. I'm 99+% Linux at work now.

Q: When was your first computing experience, and what kind of
hardware and operating system were used?

A: Wow, that takes me back. My dad recognized very early that
computers were going to be very big. He borrowed some kind of
desktop computer from his work (this thing was huge!) and my
brother and I would take turns reading a programming manual,
and practice writing simple programs in BASIC. Really simple
math games mostly. Then we did some games that did primitive
text graphics (mazes and such).

My mom worked at Plato, a spin- off from Control Data Cor-
poration. She brought home a Plato terminal for a weekend. That
was amazing! The Plato terminal had a touch screen as well as a
keyboard, and there were some simple games that used the
touch screen and communicated with a mainframe over a
modem. I remember that I liked the horse racing game the best.
As I recall, you could even play against other people who were
also connected to the mainframe.

But I suppose the first time I really got into computers was when
my dad bought us a Franklin Ace 1000 (http: / /o ldcomputers.net
/ace1000.html) an early clone of the Apple][e. It had the same
hardware and ran the same software as an Apple, but was a bit
cheaper. I wrote lots of programs for it in BASIC, including a nu-
clear war simulator ala the "War Games" movie. At one time, my
brother and I tried to write a BBS, but that turned out to be too
much for us.

Later, my parents bought an IBM PC so they could do some work
at home, and I moved onto that. This was a huge leap, and I was
thrilled about the features of the IBM DOS. Commands could be
connected together using pipes, so now a simple batch file could
become (almost) like a program if you could connect the right
stuff together. There was a BASIC interpreter, so I was able to
convert most of my Apple BASIC programs to GW-BASIC and run
them on the IBM. But I didn't need to convert all of my BASIC
programs, since there were all these programs for DOS that I

could use, including some text processors and (gasp!) a spread-
sheet.

Q: Why did you begin the FreeDOS project?

A: I was still a student at UW-RF, and I did all my work using
DOS. I liked the simplicity that DOS offered. Anything that you
want to do on the PC is possible. Nothing is really stopping you,
other than hardware limitations. I found that this degree of free-
dom was nice to have.

But that year (1994) there was an announcement from Microsoft
that they would stop support for DOS, and a new version of Win-
dows was going to be released that completely removed DOS
from the picture. (Of course, this was Windows 95, and it still did
have DOS.) Everyone was pretty shocked. We didn't want to be
forced to use Windows, which at the time really sucked. In DOS,
everything is done on the command line, and a true command
line "guru" can do amazing things there. In Windows, you are
stuck with the mouse, and if the menus don't let you do some-
thing, it pretty much can't be done. So things were looking pretty
bleak. We were all very upset about Microsoft's decision to ditch
the DOS platform for this sucky version of Windows.

Then, I saw a discussion thread on the DOS newsgroups asking
"hey, why doesn't someone write their own free version of DOS?"
Remember, this was about three years after Linus Torvalds an-
nounced his work on the Linux kernel, and by 1993 Linux had
shown that free software can achieve incredible results. So in
1994, the suggestion that we could write our own free version of
DOS, and give it away with the source code so others could work
with it and improve it, really didn't sound all that far- fetched.

Unfortunately, no one did anything about it. The idea sort of sat
there, waiting. I didn't have tons of experience in writing C or
Assembly programs (most of my analytical work in physics was
limited to FORTRAN) but I had written some C programs. So I
sat down one weekend and hacked out code for a bunch of DOS
file utilities. I posted what I had done to the DOS newsgroups,
and announced that I intended to form a group on the Internet
to write our own free version of DOS. That's what became the
FreeDOS Project.

Q: How do you envision FreeDOS being used by others?

A: I don't really have a vision for how people should use
FreeDOS. I'm just thrilled that people still find it useful to them,
and they are able to do so many things with it.

Besides the obvious use of running old DOS programs on your
computer, FreeDOS is used in DOS emulators, and in embedded
systems. FreeDOS is also an invaluable resource for people who
would like to develop their own operating system. I still get
e- mail from students who are working on an operating systems
project, and they have found FreeDOS to be very helpful in un-
derstanding the basics. DOS is not a complicated operating sys-
tem, and is fairly easy to figure out.

Q: Why did you choose to go with the Borland C compiler and the
MASM assembler for FreeDOS's development?

A: These are decisions that were made fairly early in the project,
and by now the standards have changed, but I haven't updated
all the docs yet to reflect that. When we began, there wasn't a
free C compiler available for people to use. Sure, there was djgpp
(the GNU C Compiler, ported to DOS by DJ Delorie) but that
required at least an 80386 to run. We wanted to make Free- DOS
available on low- end hardware including the 8088, so we
needed to choose a different compiler.

Looking around at the contributors to FreeDOS at the time, most
people had a copy of Borland C (or a variant, such as Borland

4

Turbo C) and Microsoft's MASM. So, to make code sharing
easier, it was a fairly easy decision to settle on Borland C as the
default C compiler, and MASM as the default assembler. Arrow
ASM provided a superset of MASM instructions, and was freely
available, so that was an option for people who didn't have
Microsoft MASM. And Borland provides free copies of their Turbo
C compiler.

Of course, this didn't mean that you had to have either tool to
contribute to FreeDOS. Rather, this meant that any code
contributed must be compilable with Borland C 3.1 and MASM.

Today, the standard C compiler is OpenWatcom, and the stan-
dard assembler is NASM. Both are Free Software.

Q: Have you ever met any of the core development team in-
person?

A: I've only met two FreeDOS contributors in person: Joe
Cosentino and Russ Nelson. Joe Cosentino wrote several of the
base utilities that are distributed with FreeDOS, including the
current FreeDOS EDIT and Russ Nelson wrote Freemacs, a clone
of GNU emacs for DOS.

When we started the FreeDOS Project, Freemacs was our
replacement for MS-DOS EDIT, although later Joe wrote a
FreeDOS EDIT that could be used by non- programmers. Russ
also wrote the packet drivers that are used with FreeDOS.

Russ stopped by my session at the O'Reilly Open Source
Convention in 2001, and it was nice to chat with him for a while
before he had to run off to a meeting.

Joe's work brought him to the Twin Cities, and he e- mailed me
one day to say he'd be in town and did I want to meet. I thought
this was great, so I took him out to dinner, and we've been good
friends ever since. He's one of the few people in the FreeDOS
Project that I consider a close friend.

That said, there are lots of others in the FreeDOS Project that I'd
like to meet in person. Maybe one day I'll get to meet some of
them.

Q: What are some of the biggest challenges you have faced in
the development of FreeDOS?

A: Overall, I think the biggest challenge was being taken ser-
iously as a free software project. When you first start a project
like FreeDOS, the only people who take an interest in you are
other DOS users. It's hard to get others who might not consider
themselves DOS users to find your project interesting.

Q: Where do you stand on intellectual property i.e. do you favor
more of an individual whatever license works for a given piece
of software, or a free software for all position ?

A: No, I don't believe that one license fits all software. You have
to evaluate needs and demands when you choose a software
license. I'd prefer that all software remain free and open, but in
the end I do recognize that sometimes that's not possible. In my
personal life, I tend to use free and open software instead of
proprietary "closed source" software.

Q: What games would you love to see work in FreeDOS?

A: A lot of DOS games already work in FreeDOS. The ones that I
have always enjoyed are 'Epic Pinball' (works great in DOSEmu),
'DOOM' (works great!), 'Wolfenstein 3D' (works fine), 'Dark
Forces' (movies played very slow, last time I tried it), and the
'Commander Keen' series (works great!).

If I had an old- style joystick port on my IBM Thinkpad, I'd love to
try 'TIE Fighter' again, but alas I think that's a pipe dream!

Q: What is your position on abandonware, do you see such
softwares source code particularly useful to the FreeDOS project?

A: Depends on what you mean by "abandonware", I suppose.
There are two different meanings to that term: either as "ob-
solete" software that is now distributed freely (although illegally),
or as old software that the copyright owner has decided to dis-
tribute for free (but without support.) 'Lotus 1- 2- 3' would be an
example of the first type, and 'Turbo C' would be an example of
the second type.

I prefer that any software that is distributed be done so with the
copyright owner's permission. That is, I would like to see more
of the second type of abandonware. Even better would be if the
copyright owner decided to open up the source code to their
software, so that others could improve it.

Q: What do you tell people when they question the legitimacy of
working on a DOS operating system project since the most well
known DOS , MS-DOS , has now been abandon by Microsoft.

A: In the first few years of the FreeDOS Project, I got a lot of
emails asking me "why are you doing this?" or "why DOS?" The
answer is "because I find it interesting" and "because I like DOS",
but those kinds of answers don't move non- DOS users to
support you. But it's an honest answer, and there wasn't much I
could do to sway opinion.

Today, things are much different. Do a search on "FreeDOS" and
you'll find thousands of hits. FreeDOS gets mentioned in
documentation and on various web sites ala "you'll need a copy
of FreeDOS to run that." So we're a very common thing now,
which is quite a step up from the days when no one really took
us seriously.

Q: Do you think now that MS-DOS has been abandon by
Microsoft that its source code should be released, and if so do
think that source code would be of any significant use to the
FreeDOS project?

A: Yes, I think it would be great if Microsoft released the source
code for MS-DOS. However, I don't know that the source code
would be of too much value to the FreeDOS Project, since we've
somewhat diverged from the designs of MS-DOS, and our source
trees will look completely different making merging impossible.
But the MS-DOS source code could be useful to add better
compatibility to FreeDOS.

Q: Where does the FreeDOS project currently need the most
help?

A: We have needs in a few specific areas:- We're making the big
push towards the "1.0" release, finally. Aitor has created a list of
things that need to be finished before we can consider ourselves
at the "1.0" release point. So we need some help from developers
in finishing up the few things that should be done.

FreeDOS really needs a rock- solid GUI. There are several GUIs
available, including Desktop2, SEAL, and Octane. Unfortunately,
much effort seems to go into writing a "new" GUI for FreeDOS,
and not as much into improving an existing GUI and adding new
features.

Also, our documentation effort (http: / / fd - doc.sf.net/) needs an
overhaul. I tried to take this mini - project forward, but I wasn't
able to balance FD- DOC, the FreeDOS.org site, and all the little
things that go with the role of "coordinator". I'd like to see
someone (preferably someone who does professional technical
writing) come to the aid of FD- DOC and help make some major

5

updates to our documentation.

Q: Is there anything that you would like to clarify that you think
others have gotten wrong about the FreeDOS project?

A: I guess I'd like to reiterate the point that DOS is not dead. I
get that comment a lot from people. With Linux and Windows
being the popular operating systems these days, it's hard for
people to recognize the value in a text - based, single- tasking
operating system like FreeDOS.

DOS will be around for quite some time yet. DOS remains a great
environment to work in if you are building an embedded system,
for example. The operating system is light, so it will run well in a
device that doesn't have a lot of memory. You can burn it into
ROM, boot from a floppy, or a small micro- drive. There aren't
many operating systems that you can find these days that will
boot from a floppy, yet still leave you enough room on the disk
for your embedded program and maybe some room for data
files.

The embedded systems market is one of the markets that will
keep DOS alive, at least for several years to come. Look at some
of the alternatives that you have today if you want to build a
small embedded device, and you'll see that as footprint becomes
an issue for you, DOS is really the only way to go. Linux and
Windows both require too much overhead to build an efficient
embedded system.

Another thing that will keep DOS around, even behind the
scenes, is the PC market. A lot of companies that make com-
puter hardware (disk arrays, video cards, controller cards, etc.)
use some kind of basic BIOS. At some point, you'll need to pro-
vide a patch, and the user will need to flash the BIOS on their de-
vice. The hardware manufacturer may not know or care exactly
what operating system you use. If you are the hardware man-
ufacturer, how do you distribute a flash update to all your users?
Will you provide a different update program for every operating
system platform that might be using your hardware? For a lot of
companies, the answer is no. It's a lot simpler if they can give
their users a bootable DOS floppy disk that they put into their
computer, and the boot floppy automatically flashes the BIOS.
You see that in several places today, although you may not rea-
lize that you are booting FreeDOS.

Encryption from Addition

The idea to write a C program that enciphered a plain text
message by adding the values of each character in the plain text
message to those of secret key came to me one day. But how to
go about it in took some pondering.

The following is the C code that I came up with.

#define max_array_size 1000

#include <stdio.h>

int input_array(void);
int build_array_c(char array[], int array_size);
int build_array_k(char array[], int array_size);
int encipher(char message[], char key[]);
(
 int main(void)
 {
 input_array();

 return(0);
 }

 int input_array(void)

 {
 char message[max_array_size];
 char key[max_array_size];

 build_array_c(message, max_array_size);

 build_array_k(key, max_array_size);

 encipher(message, key);

 return(0);
 }

int index_c = 0;

int build_array_c(char array[], int array_size)
{
 int input;

 while(index_c < (array_size -1) && ((input =
 getchar()) != '\n'))
 {
 array[index_c] = input;
 index_c++;
 }

 array[index_c] = '\0';

 return(0);
}

int index_k = 0;

int build_array_k(char array[], int array_size)
{
 int input;

 while(index_k < (array_size -1) && ((input =
 getchar()) != '\n'))
 {
 array[index_k] = input;

 index_k++;
 }

 array[index_k] = '\0';

 return(0);
}

int encipher(char message[], char key[])
{
 int loop;
 int matrix_c = -1;
 int matrix_k = -1;
 int message_element_value;
 int key_element_value;
 int enciphered_element_value;

 char message_element;
 char key_element;
 char enciphered_message;

 for(loop = 0; loop < index_c; loop++)
 {
 matrix_c++;

 if(matrix_k < index_k)
 {
 matrix_k--;
 }

6

 matrix_k++;

 message_element = message[matrix_c];

 message_element_value = message_element;

 key_element = key[matrix_k];

 key_element_value = key_element;

 enciphered_element_value = key_element_value +
 message_element_value;

 enciphered_message = enciphered_element_value;

 printf("%c", enciphered_message);
 }

 return(0);
}

It worked very well when compiled with “gcc” in FreeBSD 4.8, but
for some reason when I compiled and ran it on a computer run-
ning Slackwae 10 GNU/Linux, it did not work. The ciphered text
results where not correct. Until I have sorted through the reason
for this, please feel free to give my code a try and write PHRAINE
with any suggestions.

For the next issue I will present the method to reverse the
process and decipher a enciphered message that uses this C
code.

Enciphering Your E- mail With GNU Privacy
Guard

With a recent court ruling in the First Circuit Court of Appeals in
Massachusetts that held that it was not a violation of federal,
criminal wiretap laws for the provider of an e- mail service to
monitor the content of users' incoming messages without their
consent, I decided that it was time to put an end to sending my
e- mails for someone other than the intended recipient to read.

I think that this court ruling should send the message home to
the reader, too. If you don't want your e- mails read by who
knows who at your Internet Service Provide or anyone else who
has intercepted them, then I think the choice is not why you
should encipher your e- mail- - but how to encipher it.

A program called Gnu Privacy Guard is freely available. It can be
downloaded at http: / /www.gnupg.org / . If you have gotten this
far with this article, I assume you would like to get started with
setting up in Gnu Privacy Guard to encipher you e- mail mes-
sages, so read on.

Once you have installed “gpg” type the following: gpg - - gen-
key . You should have something on you screen that looks like
the following:

you@yourbox:~$ gpg --gen-key
gpg (GnuPG) 1.2.4; Copyright (C) 2003 Free Software Founda-
tion, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (4) RSA (sign only)
Your selection?

The next step is to choose what kind of encipherment method
you would like to use. I will be choosing the default for this pur -
poses of this article. To do so, just press your Enter key.

You should now have something on you screen that looks like
the following:

DSA keypair will have 1024 bits.
About to generate a new ELGE keypair.
 minimum keysize is 768 bits
 default keysize is 1024 bits
 highest suggested keysize is 2048 bits
What keysize do you want? (1024)

The choice here is really yours. The higher the key size the
stronger the key (theoretically) is from from cracking. For our
purposes We will be going with the default by pressing the Enter
key.

You should now have something on you screen that looks like
the following:

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)

The next choice you will have to make is whether the key you
create expires. An expiring key theoretically adds security, but it
means you have to go through the process of creating another
key once it does expire. Again, this is your call here. We will be
going with the default by pressing the Enter key.

You should now have something on you screen that looks like
the following:

Key is valid for? (0)
Key does not expire at all
Is this correct (y/n)?

You should now press the y key followed by the Enter key.

You should now have something on you screen that looks like
the following:

You need a User-ID to identify your key; the software con-
structs the user id
from Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter)
<heinrichh@duesseldorf.de>"

Real name:

Now it is time to type your real name, a comment, and you e-
mail address. We typed each one inturn:

Real name: john doe
Email address: johndoe@private.org
Comment: key

You should now have something on you screen that looks like
the following:

You selected this USER-ID:
 "john doe (key) <johndoe@private.org>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

7

continued next issue...

Boolean Algebra Basics

Boolean algebra is the logical basis for computer operation. It
was originally developed as a way to analyze philosophical de-
bates. I have decided to use one of the biggest debates there is
to teach the three precise definitions boolean algebra utilizes:
“NOT”, “AND”, and “OR”. The philosophical debate we will be uti -
lizing is whether God exists.

In Boolean algebra, two conditions can be met: existence or
nonexistence. Each of these conditions is represented by a num-
ber: existence is a “1” and nonexistence is a “0”. Now that we
know this, we need a variable to represent God. It seems logical
to me to use the letter “g”. Knowing these things has prepared
us for the debate!

Let's say you believe in the existence of God, so to express this
side of the philosophical debate of whether God exists using
Boolean algebra you would write g = 1 which precisely states
that God “g” exists “1”. Now it is my turn to debate.

I believe in the nonexistence of God, so I would express this in
Boolean algebra as g = 0 which in Boolean algebra precisely
states God “g” does not exist “0”.

At this point, we are tired of arguing this debate and want an-
other way to state the position each of us has in the debate.

Let's say our positions in the debate are not the position of an-
other person. To express this in Boolean algebra, we would use
the NOT definition expressed with a line above the variable,
which in our case would look like g with line above it because
this mean NOT. We will sum up the belief in the existence of God
with Boolean Algebra as follows g = 0. In English, this says
God is not nonexistence but on the other side.

continued next issue...

Richard Stallman's Action Items

Urgent

In the US with a computer, a phone and some time? Help the
MPP's Montana medical marijuana initiative .

You can help the Starbucks Coffee workers unionize and
overcome the dirty tricks of their employer.
Sign the petition against execution of four Indian Dalits who
resisted a campaign of massacres by upper- caste landlord
armies.

A protest is planned in New York City on Sep 2 against Bush
policies in Iraq, Palestine, and Haiti.

US citizens: contact your senators to oppose a new law that
would to prohibit photocopiers, tape recorders, VCRs, CD
writers, peer- to- peer software, etc.

Call on the Olympic Games to insist on fair wages for the people
who make clothing for it .

US citizens: add your name to the letter to support and add
pressure to Senator Dayton's objections to some of the flaws in
the official 9/11 investigation.

Sign Ralph Nader's petition calling for impeachment of Bush.
US citizens: add your name to the pressure for voter- verified
paper ballots , to protect against theft of the coming election

through black box voting machines.

Long- term

Boycott Liberty Apparel- - for running sweatshops.

US voters, support Kucinich's campaign to create a Department
of Peace which would encourage nonviolent solutions to
international problems.

UK citizens: read about the mandatory ID card plan and then
sign Liberty's petition against it .

Support http: / /www.no2id.net .

Also see http: / /www.defy- id.org.uk/ for another action.
In France, people are vowing to boycott the record companies
due to the laws that they are lobbying for.

Evidence of wide- ranging and persistent FBI misconduct ,
including sheltering murderers, shows that other instances of
alleged FBI misconduct, such as the fabricated evidence against
Leonard Peltier, deserve fresh investigations. Sign this petition.

US citizens: you can sign your name to the campaign to repeal
part of the U.S.A. P.A.T. R.I.O.T. Act. This would make the police
once again have to get search warrants before they can get
information from bookstores or libraries about what you have
read or borrowed.

This is a step in the right direction, but it does not go far
enough. The PAT RIOT act was extended in December 2003 to
give the police equally easy access to many kinds of transaction
records about you. The PAT RIOT act attacks your freedom in
other ways, too, and not all of them will expire in 2005. See

http: / /www.aclu.org /safeandfree/ . MoveOn suggests
contributing to the campaign of Congressman Doggett .

UK citizens: renew your passport before 2005, so you can avoid
contributing your biometric to the national ID card plan. If you
don't have a passport, get one now!

Israelis who refuse military service in the occupation of Palestine
have trouble supporting their families. Yesh Gvul is asking for
donations of funds to help these families . (The idea is that this
will help more people decide to refuse.)

European citizens: tell your government you do not want digital
fingerprints in your passports . Push back against the US!
Why should you be treated like a criminal just to get permission
to leave your country?

Support the call for a Nobel Prize in Sustainable Development .
A proposal by Dave Winer to ask the leading Democratic
candidates to pledge to keep the Internet free from media
company control.

Citizens of Europe: sign the resolution that demands a voter-
verifiable audit trail for electronic voting machines.

Please sign the petition against unsafe computerization of
elections and careless purging of voter lists.
Boycott Coca Cola Company.

US voters: please ask your senators and representatives to
support the Truth in Trials Act, which would protect state-
authorized medical marijuana growers from federal prosecution.
Massachusetts citizens: help convince the legislature to pass a
bill to make emergency contraception available from pharmacies
without seeing a doctor first.

8

Support federal medical marijuana legislation .
Join the boycott of Chinese products to support human rights for
Tibetans and Chinese.
Residents of Massachusetts: the ACLU is collecting a petition (on
paper) asking the Massachusetts congressional delegation to
repeal the USA patriot act. Please help collect signatures. You
can get the form through the web from aclu-
mass.org/petit ion.html .

US voters: the US government is pushing a draconian law that
could put you in prison for 20 years just because someone
smokes pot in your back yard. It would also be used to shut
down political activity.

Precisely how the Bush team stole the Florida election is
documented. Florida Secretary of State Katherine Harris, who was
co- chair of the Bush campaign in Florida and a close associate of
Bush's brother, deliberately blocked careful checking of the list
of felons, with the result that thousands of Black people who
were not felons and were legally entitled to vote were blocked
from voting .

This gun is smoking enough for me. Dubya's forces stole the
election; Dubya should resign!

To follow any of the underlined text featured above, visit
(http: / / w w w.sta llman.org /) !

The Bazaar

The Free Software Foundation Needs Your Help

Help protect your rights to run, copy, distribute, study, change
and improve software by becoming an associate member of the
FFS by visiting the following link: (http: / /members.fsf.org /).

The board at Madoshi dot com

Join in on the discussions and games at (http: / /board.madoshi.c
om/) .

Subscribers add you computer related message here!

Send it to scm@madoshi.com; subject: “The Bazaar” by 11- 30-
04.

9

