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In this paper we present an algorithm for finding a “closed-form™ solution of the differential
equation y” +ay'+ by, where a and b are rational functions of a complex variable x, provided a
“closed-form™ solution exists, The algorithm is so arranged that if no solution is found, then
no solution can exist.

1. Introduction

In this paper we present an algorithm for finding a “‘closed-form™ solution of the
differential equation y"+ay’+by, where a and b are rational functions of a complex
variable x, provided a “‘closed-form” solution exists. The algorithm is so arranged that if
no solution is found, then no solution can exist.

The first section makes precise what is meant by “closed-form™ and shows that there
are four possible cases. The first three cases are discussed in sections 3, 4 and 5
respectively. The last case is the case in which the given equation has no “closed-form”
solution. It holds precisely when the first three cases fail.

In the second section we present conditions that are necessary for each of the three
cases. Although this material could have been omitted, it seems desirable to know in
advance which cases are possible,

The algorithm in cases 1 and 2 is quite simple and can usually be carried out by hand,
provided the given equation is relatively simple. However, the algorithm in case 3
involves quite extensive computations. It can be programmed on a computer for a specific
differential equation with no difficulty. In fact, the author has worked through several
examples using only a programmable calculator. Only in one example was a computer
necessary, and this was because intermediate numbers grew to 20 decimal digits, more
than the calculator could handle. Fortunately, the necessary conditions for case 3 are
quite strong so this case can often be eliminated from consideration.

The algorithm does require that the partial fraction expansion of the coefficients of the
differential equation be known, thus one needs to factor a polynomial in one variable
over the complex numbers into linear factors. Once the partial fraction expansions are
known, only linear algebra is required.

Using the MACSYMA computer algebra system, see, for example, Pavelle & Wang
(1985), Bob Caviness and David Saunders of Rensselear Polytechnic Institute
programmed the entire algorithm (sce Saunders (1981)). Meanwhile, the algorithm has
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been implemented also in the MAPLE computer algebra system, see, for example, Char et
al. (1985), by Carolyn Smith (1984).

This paper is arranged so that the algorithm may be studied independently of the
proofs. In section 1, parts 1 and 2 are necessary to understand the algorithm, parts 3 and
4 are devoted to proofs. In the other sections, part 1 describes the algorithm, part 2
contains examples, and the remaining parts contain proofs.

Since the first appearance of this paper as a technical report, a number of papers have
appeared on the same problem: Baldassarri (1980), Baldassarri & Dwork (1979), Singer
(1979, 1981, 1985).

Special thanks are due to Bob Caviness and David Saunders of RPI for their
encouragement and assistance during the preparation of this paper.

1. The Four Cases

In the first part of this section we define precisely what we mean by “‘closed-form”
solution. In the second part we state the four possible cases that can occur. These cases
are treated individually in the latter sections. The third part is devoted to a brief
description of the Galois theory of differential equations. This theory is used in the proofs
of the theorems of the present chapter and those of sections 4 and 5. Part 4 contains a
proof of the theorem stated in part 2.

1.1. LIOUVILLIAN EXTENSIONS

The goal of this paper is to find “closed-form” solutions of differential equations. By a
“closed-form™ solution we mean, roughly, one that can be written down by a first-year
calcujus student. Such a solution may involve esponentials, indefinite integrals and
solutions of polynomial equations. (As we are considering functions of a complex
variable, we need not explicitly mention trigonometric functions, they can be written in
terms of exponentials. Note that logarithms are indefinite integrals and hence are
allowed.) A more precise definition involves the notion of Liouvillian field.

DEermITION. Let F be a differential field of functions of a complex variable x that contains
C(x). (Thus F is a field and the derivation operator ' (= d/dx) carries F into itself). F is
said to be Liouvillian if there is a tower of differential fields

Cx)=FycF,c --cF, =F
such that, for each i=1, ..., n,

either F,=F,_(¢) whered'/aeF;_,
(F, is generated by an exponential of an integral over F,_ )
or F,=F,_(x) where d’eF,_,
(W, is generated by an integral over F;_)
or F,is finite algebraic over F,_,.

A function is said to be Liouvillian if it is contained in some Liouvillian differential field.
Suppose that » is a (non-zero) Liouvillian solution of the differential equation
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¥’ +ay' + by, where a, be C(x). It follows that every solution of this differential equation is
Liouvillian. Indeed, the method of reduction of order produces a second solution, namely
1 {(e~1%/n*). This second solution is evidently Liouvillian and the two solutions are
linearly independent. Thus any solution, being a linear combination of these two, is
Liouvillian.

We may use a well-known change of variable to eliminate the term involving ' from
the differential equation. Set z = e*/°y, Then z”+(b—%a®>~4a)z = 0. This new equation
still has coefficients in C(x) and evidently y is Liouvillian if and only if z is Liouvillian,
Thus no generality is lost by assuming that the term involving y' is missing from the
differential equation.

1.2 THE FOUR CASES
In the remainder of this paper we shall consider the equation
y' =ry, reCx).

We shall refer to this equation as “the DE”. To avoid triviality, we assume that r¢C. By
a solution of the DE is always meant a non-zero solution.

THEOREM. There are precisely four cases that can occur.

Case 1. The DE has a solution of the form e!® where w e C(x).

Case 2. The DE has a solution of the form e'® where w is algebraic over C(x) of degree
2, and case 1 does not hold.

Case 3. All solutions of the DE are algebraic over C(x) and cases 1 and 2 do not hold.
Case 4. The DE has no Liouvillian solution.

It is evident that these cases are mutually exclusive, the theorem states that they are
exhaustive. The proof of this theorem will be presented in part 1.4.

1.3. THE DIFFERENTIAL GALOIS GROUP

Here we present a brief summary of the Picard—Vessiot theory of differential equations
(see Kaplansky (1957), or Chapter 6 of Kolchin (1973)), which is tailored specifically to
the DE y" =ry.

Suppose that #,{ is a fundamental system of solutions of the DE (where #,{ are
functions of a complex variable x). Form the differential extension field G of C(z)
generated by #, {, thus

G= C(X)<7’], C> = C(x)(r” ’7', ¢, CI)

Then the Galois group of G over C(x), denoted by G(G/C(x)), is the group of all
differential automorphisms of G that leave C(x) invariant. (An automorphism ¢ is
differential if o(a’) = (ca) for every ae G.) We refer the reader to the references cited
above for a proof that the Fundamental Theorem of Galois Theory holds in this context.

There is an isomorphism of G(G/C(x)) with a subgroup of GL(2), the group of
invertible 2 x 2 matrices with coefficients in C. Let ¢ e G(G/C(x)). Then

(on)" = 0(n") = o(rn) = ron.
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Hence, o7 is also a solution of the DE and so is a linear combination on = a,n+c,{, a,,
¢, & C, of ,{. Similarly, a{ =b,n-+d,{ for some b,,d,eC.

Cr s a, b:r
07 \e, d,

is immediately seen to be an injective group homomorphism.

This representation ¢:G(G/C(x))— GL(2) certainly does depend on the choice of
fundamental system #, {. If 1, {; is another fundamental system, then there is a matrix
X e GL(2) such that (n, {{) = (1, {)X. Therefore,

G = CO)<m O = C)<ny, {1 and ¢y(0) = X c(0)X.

The representation G(G/C(x)) - GL(2) is determined by the DE only up to conjugation.
By abuse of language, we allow ourselves to speak of any one of these conjugate groups as
the Galois group of the DE. If a fundamental system #,{ is fixed, then we refer to
o(G(G/C(x))) = GL(2) as the Galois group of the DE relative to #, {.

Fix a fundamental system 7, { of solutions of the DE and let G < GL(2) be the Galois
group relative to n, {. Let W =n{’—n'{ be the Wronskian of #, {. A simple computation,
using the DE, shows that W' =0, so W is a (non-zero) constant and is left fixed by any
element of G(G/C(x)). Let 0 € G(G/C(x)), then, using the notation above,

W=oW = (a,,n + CGC)(bG’T, + dcrc,) _(aanl +c¢rC,)(ba’7 + daC)
= (a,d,—b,c,)W = det c(c) - W.
Thus G < SL(2), the group of 2 x 2 matrices with determinant 1,

Recall that a subgroup G of GL(2) is an algebraic group if there exist a finite number of
polynomials

b
P,...,PeC[X, X, X3, X,] such that (Z d)eG

if and only if

P(a,b,¢,d)=---=Pfa,b,c,d)=0.
One of the principal facts in the Picard—Vessiot theory is that the Galois group of a
differential equation is an algebraic group. For a proof in all generality, see the references
cited above. Here we sketch a proof in the special case that we are considering.

Let Y,Z,Y,,Z, be indeterminates over C(x) and consider the substitution
homomorphism

C[x: Y’ Zs Y15 Zl] - C[xa 117 éa 77” CI]
The kernel of this mapping is a prime ideal p. Any element
ab
A=
(¢
of SL(2) induces an automorphism of C[x, Y, Z, Y;, Z,] over C[x] by the formula
Y,Z,Y,Z)—> (@Y +cZ,bY+dZ,aY, +cZ,, bY, +dZ)).

Moreover, A€ G if and only if p is carried into itself. The ideal p is finitely generated, say
p={(q;,....q,), where q,, ..., g, are linearly independent over C. Let n be the maximum
of the degrees of q;,...,q,in x, Y, Z, ¥;, Z, and let V be the vector space over C of all
polynomials in C[x, Y, Z, Y;, Z,] of degree n or less. Evidently the action of SL(2) on
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Clx, Y, Z, Y, Z]restricts to V. If g;, .. ., 45, Gs 1 - - -» 4, 18 @ basis of V, then there exist
polynomials P;;e C[ X, X,, X3, X,] such that the result of the action of 4 on ¢; is

1
'21 Pi(a, b, c,d)g;.
i=

It follows that AeG if and only if Py(a,b,c,d)=0 for i=1,...,s, j=s+1,.. ¢
Therefore G is an algebraic group.

1.4. PROOF

In this section we shall prove the theorem that was stated in 1.2. We shall use several
facts about algebraic groups, Suitable references are Borel (1956), Kaplansky (1957), and
Chapter 5 of Kolchin (1973). The following result is contained in Kaplansky (1957, p. 31).

LEMMA. Let G be an algebraic subgroup of SL(2). Then one of four cases can occur.

Case 1. @ is triangulisable.
Case 2. G is conjugate to a subgroup of

D' = {(; C(_)l) ceCc# O}U{(—S‘l (C)>

and case 1 does not hold.
Case 3. G is finite and cases 1 and 2 do not hold.
Case 4. G=SL(2).

ceC,c#O},

Proof. Denote the component of the identity of G by G°. First we note that any two-
dimensional Lie algebra is solvable, hence either dim G = 3 (in which case G = SL(2)) or
else G° is solvable. In the latter case, G° is triangulisable by the Lie~Kolchin Theorem.
Assume that G° is triangular.

. . 1 .
If G° is not diagonalisable, then G° contains a matrix of the form (0 T) with a # 0
(since an algebraic group contains the unipotent and semi-simple parts of all of its
. o s . . . 1 a\. .
elements). Since G° is normal in G, any matrix in G conjugates 01 into a triangular

matrix. A direct computation shows that only triangular matrices have this property.
Thus G itself is triangular, This is case 1.

Assume next that G° is diagonal and infinite, so G° contains a non-scalar diagonal
matrix 4. Because G° is normal in G, any element of G conjugates A into a diagonal
matrix. A direct computation shows that any matrix with this property must be contained
in D', Therefore either G is diagonal, this being case 1, or else G is contained in D', this
being case 2.

Finally we observe that if G° is finite (and therefore G°={1}), then G must also be
finite. This is case 3. This proves the lemma.

We shall now prove the theorem of section 2.

Let , { be a fundamental system of solutions of the DE and let G be the Galois group
relative to #, {. Set G =C(x){n, {>.

Case 1. G is triangulisable. We may assume that G is triangular. Then, for every
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o e G(G/C(x)), an=c,n, where ¢,eC, ¢, 0. Therefore cw = w, where w=7n'/y, which
implies that w e C(x).

Case 2. G is conjugate to be a subgroup of D'. We may assume that G is a subgroup of
DY If w=1n'/n and ¢ ={/{, then, for every oe G(G/C(x)), either cw =w, a¢p=¢ or
aw = ¢, a¢p = w. Thus w is quadratic over C(x).

Case 3. G is finite. In this case G has only a finite number of differential automorphisms
Oy, ..., 0, Since the elementary symmetric function of o9, ..., 6,7 are invariant under
G(G/C(x)), n is algebraic over C(x). Similarly, { is algebraic over C(x). Because every
solution of the DE is contained in G, every solution of the DE is algebraic.

Case 4. G = SL(2). Suppose that the DE had a Liouvillian solution. Then, as pointed
out in 1.1, every solution of the DE is Liouvillian. Thus G is contained in a Liouvillian
field. It follows that G° is solvable (Kolchin, 1973, p. 415). Since G°= SL(2) is not
solvable, the DE can have no Liouvillian solution.

This proves the theorem.

2. Necessary Conditions

In this section we discuss some easy conditions that are necessary for cases 1, 2, or 3 to
hold. These conditions give a sufficient condition for case 4 to hold (namely when the
necessary conditions for cases 1, 2, and 3 fail). Throughout, we shall consider the DE
Y =ry, reC(x).

2.1. THE NECESSARY CONDITIONS

Since r is a rational function, we may speak of the poles of r, by which we shall always
mean the poles in the finite complex plane C, If r = s/f, with s, te C[x], relatively prime,
then the poles of r are the zeros of t and the order of the pole is the multiplicity of the zero
of t. By the order of r at co we shall mean the order of co as a zero of r, thus the order of r
at oo is degt—degs.

THEOREM. The following conditions are necessary for the respective cases to hold.

Case 1. Every pole of r must have even order or else have order 1. The order of r at o
must be even or else be greater than 2.

Case 2. r must have at least one pole that either has odd order greater than 2 or else has
order 2.

Case 3. The order of a pole of r cannot exceed 2 and the order of v at oo must be at
least 2. If the partial fraction expansion of r is

— % B;
= Yoyt Sy

then \/1+40;€Q, for each i,y f,=0, and if
7
Y= Za(+ Eﬁjdj’
i J

then /1 +4ye@.
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2.2. EXAMPLES

Airey’s Equation y" = xy has no Liouvillian solution (i.e. case 4 holds). This is clear
because the necessary conditions for cases 1, 2, and 3 all fail. More generally, y" = Py,
where PeC[x] has odd degree, has no Liouvillian solution.

For Bessel's Equation
_ 4(n?—x)—1
h 4x?

(in self-adjoint form), only cases 1, 2, and 4 are possible.
For Weber’s Equation

i

y, neC

y' = @Ex*—i-n)y, neC,

only cases 1 and 4 are possible.

2.3. PROOF

In this section we prove the theorem of Section 1.

Case 1. In this case the DE has a solution of the form # =e!® where we C(x). Since
n' =ry, it follows that o' +w? =r (the Riccatti Equation). Both w and r have Laurent
series expansions about any point ¢ of the complex plane, for ease of notation we take
¢=0. Say

w=>bx'+---, ueZ, b#0
r=ox"+-, veZ, oa#0.

(The dots represent terms involving x raised to powers higher than that shown.) Using
the Riccatti Equation, we find that

pbxH T s DA M A =xT

As we need to show that every pole of r either has order 1 or else has even order, we may

assume that v<{—3. Since a#0, =32 v>2min (u—1, 2y). It follows that y < —1 and

2u < p—1. Since b2 #0, 2u = v, which implies that v is even. For use in section 3.3, we

remark that if  has a pole of order 2 > 4 at ¢, then o must have a pole of order u at c.
Now consider the Laurent series expansions of r and w at co.

w=>bxt++, ueZ, b#0
r=ax"+--, veZ, a#0.

(The dots represent terms involving x raised to a power lower than that shown. The order
of r at oo is —v.) As we need to show that either the order of r at oo is =3 or else is even,
we may assume that v > — 1. Using the Riccatti Equation, we have '

/,be”_l-f'"'+b2x2"+"'=0lxv+"'-.

Just as above, —1 <v<max (u—1,2u), p>—1, 2u>pu—1. Since b2 #£0, 2u=v, so v is
even. For use in section 3,3, we remark that if » has a pole of order 24> 0 at oo, then @
has a pole of order y at co.

This verifies the necessary conditions for case 1.

Case 2. We analyse this case by considering the differential Galois group that must
obtain. By section 1.4 the group must be conjugate to a subgroup G of D', which is not
triangulisable (otherwise case 1 would hold). Let n,{ be a fundamental system of
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solutions of the DE relative to the group G. For every oe G(G/€(x)), either oy = ¢,7,
ol =c; or on=—c; ', a{=c,n. Evidently #?{* is an invariant of G(G/C(x)) and
therefore n2(%e C(x). Moreover, n{ ¢ C(x), for otherwise G would be a subgroup of the
diagonal group, which is case 1.
Writing
2 =Tl (x—c)* (ee2),

we have that at least one exponent ¢; is odd. Without loss of generality we may assume
that

e = xe [] (x—e)®
and that e is odd. Let

6= (n0)/(n0) = YLV I = hex ™1+,

where the dots represent terms involving x to non-negative powers. Since #” =¥y and
=1,
0" +36'0+60° = 4r6+2r.

Letr=ax"+ - be the Laurent series expansion of r at 0, where « #0 and ve Z. From
the equation above we obtain

(e—3e* +§ed)x 34 - =2afe+v)x "+ .

If v>—2, then 0 = 8¢—6e? +e3 =e(e—2)(e—4). This contradicts the fact that e is odd.
Therefore v< —2. If v< —2, then e+v =0, so v is odd.

This verifies the necessary conditions for case 2.

Case 3. In this case the DE has a solution # that is algebraic over C(x). # has a
Puiseaux series expansion about any point ¢ in the complex plane, for ease of notation we
take ¢=0. Then =ax*+ ---, where aeC, a#0, ucQ. Since reC(x), r=ox"+ -,
where « # 0 and ve Z. The DE implies that

pp—Daxt=2 4 - =qax®Th4 -

It follows that v>—2, i.e. r has no pole of order greater than 2. If v=—2, then

p(p—1) = a. Because peQ, we must have ./1+40eQ.
So far we have shown that the partial fraction expansion of r has the form

7 X

o .
Tt TP
where Pe C[x] and \/m €@ for each i.
Next, we consider the series expansions about oo,
N=axt+- -, r=yx'+---,
where the dots represent lower powerslof x than those shown. From the DE we obtain

plp—1)axt =2+ - = ypax T4 -
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Just as above, we obtain v < —2 and therefore P = 0. But
- % B
= emer T hig
= (Zﬁf)x_1+7x_2+ T

where y = Zoc +Zp’dj Therefore Zﬂ, 0 and p(p—1)=1y. Since ue@, ./1+4yeQ.
This completes the proof of the theorem stated in section 2.1.

3, The Algorithm for Case 1

The first part of this section is devoted to a description of the algorithm. It is somewhat
complicated to describe in full generality, yet, as the examples in part 2 show, it is often
quite easy to apply. The third part is devoted to a proof that the algorithm is correct.

3.1. DESCRIPTION OF THE ALGORITHM

The goal of this algorithm is to find a solution of the DE of the form 5 = Pe!®, where
PeC[x] and weC(x). Since § may be written as #=el®/P+®) this is of the form
described in section 1.2, The first step on the algorithm consists of determining ““parts” of
the partial fraction expansion of . In the second step we put these “parts” together to
form a candidate for . The maximum number of candidates possible is 2°*! where p is
the number of poles of r. If there are no candidates, then case 1 cannot hold. The third
and last step is applied to each candidate for w and consists of searching for a suitable
polynomial P. If one is found, then we have the desired solution of the DE. If, for each
candidate for w, we fail to find a suitable P, then case 1 cannot hold.

We assume that the necessary condition of section 2.1 for case 1 holds, and we denote
by I the set of poles of r.

Step 1. For each ceI'u {0} we define a rational function [\/;]c and two complex
numbers o, o, as described below.

(¢;) IfceT and cis a pole of order 1, then

[\/?]c=0, af = =1.

(¢;) If ceT and cis a pole of order 2, then

[Vl =0.

Let b be the coefficient of 1/(x—¢)? in the partial fraction expansion for r, Then

af =344 /1+4b.

(¢;) If ceT and c is a pole of order 2v = 4 (necessarily even by the conditions of
section 2.1), then [ﬁ]t is the sum of terms involving 1/(x—c)' for 2<i < v in the
Laurent series expansion of \/17 at ¢. There are two possibilities for [\/;_']c, one
being the negative of the other, either one may be chosen. Thus

d
e A =
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In practice, one would not form the Laurent series for ﬁ, but rather would

determine [\/;]c by using undetermined coefficients. Let b be the coefficient of
1/(x~c¢)**! in r minus the coefficient of 1/(x—¢)*** in ([, /r],). Then

=124,
c T 2\7a )

(coy) If the order of r at co is >2, then

[ﬁ]w =0, af=0, aZ=1.
(c0,) If the order of r at co is 2, then

[/]w =0.

Let b be the coefficient of 1/x* in the Laurent series expansion of r at co. (If
r =s/t, where s, te C[x] are relatively prime, then b is the leading coefficient of s
divided by the leading coefficient of ¢.) Then

ot =4 +3./1+4b.

(o0,) If the order of r at co is —2v < 0 (necessarily even by the conditions of section
2.1), then [\/;]m is the sum of terms involving x’ for 0 <i<v in the Laurent
series for \/;_ at oo. (Either one of the two possibilities may be chosen.) Thus

[\/)—‘]w= ax*+ -+ +d.

Let b be the coefficient of x*~* in r minus the coefficient of x"~* in ([\/r]«)>

Then
1 b
b I e o~ — .

Step 2. For each family s = (s(¢))cero(e0)» Where s(c) is + or —, let

d=osP— 3 o,
cel’

If d is a non-negative integer, then
w=), (S(C)[\/ﬁﬂr > +5(00) /T 1w
cel

is a candidate for w. If 4 is not a non-negative integer, then the family s may be removed
from consideration.

Step 3. This step should be applied to each of the families retained from Step 2, until
success is achieved or the supply of families has been exhausted. In the latter event, case |
cannot hold.

For each family, search for a monic polynomial P of degree d (as defined in Step 2) that
satisfies the differential equation

s(c)
o‘c

X—C

P’ 4 20wP + (' + w?* )P = 0.

This is conveniently done by using undetermined coefficients and is a simple problem in
linear algebra, which may or may not have a solution. If such a polynomial exists, then
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n=Pe!® is a solution of the DE. If no such polynomial is found for any family retained
from Step 2, then Case 1 cannot hold.

3.2. EXAMPLES

Example 1. Consider the DE y” = ry where

3 4x5 —8x5+12x* +4x3 +Tx2 —20x + 4
N 4x
7 5 1

1
= x?—2x 43+ =+ — o
X X+ +x+4x2 el

’

Since r has a single pole (at 0) and the order there is 4, the necessary conditions of
section 2.1 for case 2 do not hold. Evidently the necessary conditions for case 3 also do
not hold. We apply the algorithm for case 1 to this DE.

The order of r at the pole 0 is 2v = 4. Therefore [\/;]0 = a/x?, and a®> = 1. We choose
a=1,50 [\/rlo=1/x% b=—5-0=~5, and therefore af = }(£(~5/1)+2), which gives
af =—3/2 and oy =7/2.

At 0, v=1, and [\ﬂ]w=ax+d. Comparing » and [ﬁ]i=a2x2+2adx+d2 we see
that a® =1 and 2ad = —2. We choose a=1, d = —1. Thus [\/r],=x-1. b=3~1=2,
and a*® =1/2, o= —3/2.

There are four families to consider.

SO) =+, s()=+, d=12—(=3/2) =2

O =+, s(@)=—, d=-32-—(=3/2)=0
s0)=—, s(0)=+, d=1/2-7/2 =-3
S0 =—, s(o)=—, d=-32-72 =-5.

Only the first two remain for consideration.
We shall treat the second family first, since d = 0 in that case. The candidate for o is

_ % /=L 3
W= [\/7]04- p [\/7]03 =35 x+1.
We now search for a monic polynomial P of degree 0 such that
P"4+2wP + (o' +w?*—r)P = 0.

Since P = 1, the existence of P is a question of whether or not @'+ w?—r=0. But the
coefficient of 1/x in ' +w?—r is —6. Thus no such polynomial P can exist.
The only remaining family is the first family. The candidate for w is

_ og I
w—[\/;]o—t- . +[\/;]°°_x2 o +x—1

We now search for a monic polynomial P of degree 2 that satisfies the linear differential
equation given above. Writing P = x?+ax+b, we easily determine that a=0, b=—1
provides a solution.
Therefore a solution of the DE is given by
n= Pe_[cu — (xz - l)e.f(llx2 =-3/(2x}+x—1)
=x" 3/2(x2 — l)e— 1/x+x2/z—x_
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Example 2. In this example we begin the discussion of Bessel’s Equation

L, (4?1
y = (W —-I)Va neC.

The necessary conditions of section 2.1 imply that case 3 cannot hold. Here we consider
case 1, case 2 is worked out in section 3.2.
The only pole of r is at ¢ =0 and the order there is 2. Thus

[Vlo=0, b=@n*~1)/4, af=3}+4/1+4b=14n,

At oo, r has order 0 and [\/;]m= i. Bvidently b=0 so a% =0,
There are four families to consider.

s0)=+, s(@)=+, d=—12—n

s(0) = +, 5(c0) = —, d=—1/2—n
5(0) = —, 5(c0) =+, =—1/24n
$(0) = —, §(0) = —, =—1/2+n.

A necessary condition that case | holds is that —1/24»n be a non-negative integer, i.c.
that » be half an odd integer. We claim that this condition is also sufficient.

If nis negative, and half an odd integer, then m = —1/2—ne N. This corresponds to the
first family, in which case w = —m/x+1i. We need to find a polynomial P of degree m such
that

0=P'+20P +{w' +w>—r)P
- P”+2(~— o +i> pmp,
x x
It is straightforward to verify that

- 1 @m-pt
P A T i)

is the desired polynomial. A solution to Bessel’s Equation is given by n = x"™Pe™.

If n is positive, then m = —1/2+n is a non-negative integer. This corresponds to the
third family. In this case w = —m/x +1i, and we are back to the case considered above.

Example 3. In this example we treat the general situation where r is a polynomial of
degree 2. We may write r = (ax+d)?+b for some a, b, deC (¢ and d are determined by r
only up to sign, we choose either of the two possibilities). We claim that the DE has a
Liouvillian solution if and only if b/a is an odd integer.

The necessary condition of section 2.1 implies that only cases 1 and 4 are possible. We
consider case 1.

Evidently [\/;]00 =ax-+d and aE = }(+(b/a)— 1). There are no poles. Thus d equals ¢}
or o, s0 one of these two numbers must be a non-negative integer for case 1 to hold. It
follows that b/a must be an odd integer, which is the necessity part of our claim.

For sufficiency, we may assume that b/a = 2n+ 1 is positive, since a may be replaced by
—a. Case 1 will hold provided that there is a monic polynomial P of degree n such that

0=P'+2wP +(w' +w?—r)P
= P"+2(ax +d)P'—2naP.
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If we write

and substitute, we obtain a system of linear equations in Py, ..., P,_, (P,=1) that has a
solution, namely

_ @Cr+D3+1) P i+2(+1)

P. .
! n—i LT 2an—i) TR

i=n—-1,...,0)

where P, =0 and P,=1.
A special case of this example is Weber’s Equation

y' = (@Ex?—1-n)y, neC.

Here a= —1/2, b=—1/2—n, d=0. Thus b/a=2n+1 is an odd integer if and only if n is
an integer.

3.3. PROOF

In case 1, the DE has a solution of the form 7 =e!’, with 8eC(x). Since #” = rny, we
have

0 +6%=r (Riccatti Equation).

We shall determine the partial fraction expansion of # using the Laurent series expansion
of r and this Riccatti Equation,
For ce C, we denote the “component at ¢” of the partial fraction expansion of § by

o

o v g
[O]+ X—¢ =,-=Zz (x—c) *

ot x—c

In order to simplify the notation, we assume that ¢ =0 and drop the subscript “‘0”. We
shall also need to consider the Laurent series expansion of 8 about 0

0=[0]+> +0.
X

Here §=*+*x+ -+ -, where the * denotes a complex number whose particular value is
irrelevant to our discussion.

We assume that the necessary conditions for case 1 (see section 2.1) are satisfied, in
particular we assume that the poles of r are either of even order or else of order 1. We
split our proof into parts, depending on the nature of r at 0. This parallels the division of
Step 1 of the algorithm.

(cy) Suppose that 0 is a pole of r of order 1, so r=*/x+ ---. The Riccatti equation
becomes

< b

va,
——x.—\,.ﬁ+...+

*
o= —t -

HID

Since a2 £ 0, v< 1 and [6]=0.
Substituting 8 = a/x + 8 into the Riccatti Equation, we have

o = o 20~ *
— =40+ S+ =0+ ==+
X X X X
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Therefore —a+a2=0, $0 a=0 or & =1. Were « =0, the left-hand side of this equation
would have 0 as an ordinary point; however, the right-hand side has a pole at 0. We
conclude that & = 1 and the component of the partial fraction expansion of 8 at 0 is (in the
notation of the algorithm)
+
——, where a* =1.
(c2) Suppose that r has a pole at 0 of order 2, say
b *

Fr=—4+—-1 ",
x* x

As in (c,), [0]1 =0 and —a+a?=b. Thus the component of the partial fraction expansion
of fatQis

+
%—, where a* = $+1./1+4b.

(c3) Suppose that r has a pole at 0 of order 2> 4. In section 2.3, we showed that
v==u. Recall from section 3.1 that

a *
[\/;'-]=;-v'+'.'+;cis

where we have dropped the subscript “0”.

Let ?=\/;—[\/;]. Then r= [\/;]2+2F[\/;]+72. From the Riccatti Equation we
obtain the following formula

CO1-1/rD - CO1+ /7D

’ o n_gﬁ'f Yo

(&) =—[0]+ 2 ~0 % [6]—20[0]
2

-;5c-2~—g§0‘—672+27[\/?]+72.

An examination of the right-hand side of this equation determines that it is free of terms
involving 1/x' for i=v+2,...,2 (since v 1). This implies that the left-hand side is 0.
Indeed, since

([01—L /™D +([61+ /7D = 2[6],

at least one of the factors involves 1/x*. Were the other factor non-zero, it would involve
1/x* for some i>2. The product would then involve 1/x*** for some i3> 2, which is
absurd. Hence [0] = + [\/;]_

The coeflicient of 1/x"** in the right-hand side of (&) is +vaF 2xa+ b, where b is the
coefficient of 1/x*** in 2F[ﬁ]+f2=r-——[\/7]2. Therefore «* = {(+b/a+v). We have
shown that if 0 is a pole of r of order 2v > 4, then the component of the partial fraction
expansion of @ at 0 is

-i—[\/;:H-E‘-C-i where oci-—-l— +é+v
— xa "'2 __a .

(cs) Finally, we must consider what happens when O is an ordinary point of r. As in
(c), [@1=0 and —o+4a? =0, Contrary to the situation in (c,), however, we cannot
conclude that o s£ 0. Hence the component of the partial fraction expansion of r at 0 is
either 0 or 1/x.
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We collect together what we have proven so far, Let I be the set of poles of r. Then

s(e) d 1
0 =c; (S(C)[\/;]c'i- ;‘x‘i—_;) +{;1 +R,

X —d;

where ReC[x], s(c) = + or —, and [\/;]C, @@ are as in the statement of the algorithm,
Next we consider the Laurent series about co. Suppose that

o
f=R+-2=+---
X

(coy) If r has order v> 2 at oo, then

* *
r=x—v+;;—1+

The Riccatti Equation implies that R=0 and —a,+a2 =0, s0 ¢, =0 or L.
(004) If r has order 2 at oo, then

b *
r=gtot
The Riccatti Equation implies that R =0 and —a,+a2 = b, hence
tp = 344 /T+4b.

(c03) In the other cases, the order of r at oo must be even, by the necessary conditions
of section 2. Following an argument similar to that used in (c3) we find that

R=i[\/;]oov aoo=%<i'[b—i_v>,

where —2v is the order of r at o0, a is the leading coefficient of [\/y—ﬂ]m and b is the
coefficient of 1/x*~* in r—[\/ﬁﬁo.
We now know that the partial fraction expansion of § has the form

d
0=, (s(c)[ﬁm )+s(oo)[\ﬁ1w+,;1 .

cel
Moreover, the coefficient of 1/x in the Laurent series expansion of 8 at co is (™). Thus

d=ol-Y e,

0(s(c)

X—C

cel
Let
$(c)
=3 <s(c)[ﬁ1,+ ;{—C) +5(00)[/1ls
and J
P= H (x—d,).
i=1

Then 0 = w+ P'/P. Again, using the Riccatti Equation, we obtain
P+ 2P + (o' +w?—r)P = 0.

The converse, namely that if P is a solution of this equation, then 8 satisfies the Riccatti
Equation, is a simple verification. It follows that if P is a solution of this equation, then
n = Pel® is a solution of the DE y" =ry.

This proves that the algorithm for case 1 is correct.
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4, The Algorithm for Case 2

Following the pattern of section 3, we shall describe the algorithm in section 4.1, give
examples in section 4.2 and the proof in section 4.3. The algorithm and its proof assume
that case 1 is known to fail.

4.1. DESCRIPTION OF THE ALGORITHM

Just as for case 1, we first collect data for each pole ¢ of r and also for «o. The form of
the data is a set E, (or E_) consisting of from one to three integers. Next we consider
families of elements of these sets, perhaps discarding some and retaining others. If no
families are retained, case 2 cannot hold. For each family retained we search for a monic
polynomial that satisfies a certain linear differential equation. If no such polynomial exists
for any family, then case 2 cannot hold. If such a polynomial does exist, then a solution to
the DE has been found.

Let I' be the set of poles of r,

Step 1. For each ceT” we define E, as follows.

(c;) Ifcisa pole of r of order 1, then E, = {4},
(¢3) If ¢ is a pole of r of order 2 and if b is the coefficient of 1/(x—¢)? in the partial
fraction expansion of r, then

E,={2+k/1+4blk =0, +2} nZ.

(¢3) If ¢ is a pole of r of order v> 2, then E, = {v}.
(coy) If r has order >2 at o, then E, = {0, 2, 4}.

(o0,) If r has order 2 at oo and b is the coefficient of x~2 in the Laurent series
expansion of r at co, then

E, = {2+k/1+4blk =0, +2} " Z.

(003) If the order of r at vo is v < 2, then E, = {v}.

Step 2. We consider all families (e.)cero(w) With e.€ E,. Those families all of whose
coordinates are even may be discarded. Let

d=4%(e,— 3 e)
cel’

If d is a non-negative integer, the family should be retained, otherwise the family is
discarded. If no families remain under consideration, case 2 cannot hold.

Step 3. For each family retained from Step 2, we form the rational function

Next we search for a monic polynomial P of degree d (as defined in Step 2) such that
P" +36P" + (302 +36' —4r)P’' + (0" + 366’ +6° —4rf — 2P = 0.

If no such polynomial is found for any family retained from Step 2, then case 2 cannot
hold.

Suppose that such a polynomial is found. Let ¢ =8+ P'/P and let w be a solution of
the equation

0+ ¢+ (3¢’ +1¢>~r) =0.
Then y = el® is a solution of the DE y" =ry.
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4.2. EXAMPLES

Example 1. Consider the DE y” =ry where
1.3
x  16x%

The necessary conditions of section 2 show that cases 1 and 3 cannot hold. (The order of r
at oo is 1.) The only pole of r is at 0 and the order there is 2. The coefficient of 1/x? in the

partial fraction expansion of r is b=-3/16. Since 2,/1+4b=1 is an integer,
E,={1,2,3}. The order of r at o is 1 and E,, = {1}.
We have three families to consider.
=2, e=l, d=—-1/2
ee=3, e=l, d=-1

eg =1, e=1, d=0,

Only the third family need remain in consideration. For this family, 6 = 1/2x and we need
to find a monic polynomial P, of degree 0, such that

P +36P" +(36% + 30’ —4r)P' +(0" + 360 +0* —4r0—2r')P = 0.

Evidently P must be 1, so the existence of P is a question of whether or not
§"4-300'+0° —4r0—2r' is zero. That expression does happen to be 0, so P=1 is the
desired polynomial.

Next we form

o
¢ =0+PIP =5

The equation for w is

0=w’—gpw+ (%(/)’+%¢—r> =w- 0t o=~

The roots are |

NG

n= el = e[(l/(4x)+1/\/§) - x”“ez\/;

Q) =

H

1
4x
It follows that

is a solution of the DE. (And x'/# e~ V% is also a solution.)

Example 2. In this example we finish consideration of Bessel’s Equation

. [4nr—1
y = (“ZXT‘~1>_V, neC,

that was started in section 3.2. In that section we observed that case 3 cannot hold and
that case 1 holds if and only if n is half an odd integer. Here we treat case 2 and make the
assumption that » is not half an odd integer.

The only pole of r is at 0 and the order there is 2. Since

2/1+4b =2./T+4(dn2 —1)/4 = 4n,

either Eq = {2} or Ey = {2, 2+4n, 2—4n}, depending on whether 4n is an integer or not. If
4n is not an integer, then there is only one case to consider.
e =2, e,=0, d=-—1,
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Thus if 4n is not an integer, case 2 cannot hold. If 4n is an integer, there are three cases to
consider.

e, =2, en,=0, d=-1
eo=2+4n, e, =0, =—1—2n
eg=2—4n, e,=0, d=-1+42n

In order that d be a non-negative integer, it is necessary that » be half an integer. Since
n is not half an odd integer, n must be half an even integer, that is » is an integer. But, for
such n, both ¢4 and e, are even. Hence all families are discarded and case 2 cannot hold.

In this example, and in Example 2 of section 3.2, we have shown that Bessel’s Equation
has a Liouvillian solution if and only if n is half an odd integer.

4.3, PROOF

For the proof of the algorithm for case 2 we shall rely heavily on the differential Galois
group of the DE. In case 2, this group is (conjugate to) a subgroup of

o~ {s e 2.3

Moreover, we may assume that case 1 does not hold, so the differential Galois group is
not triangulisable. Let 7, { be a fundamental system of solutions of the DE corresponding
to the subgroup of D', For any differential automorphism o of C(x){n, (> over C(x),
either an=cy, ol =c ' or on=—c" ', ol =cn, for some ceC, ¢#0. Evidently
o(n*¢?) = %2, therefore #2¢% e C(x). Moreover, 5l ¢ C(x) since case 1 does not hold.

We write

ceC, caéo}.

7 =g [ =0 [T x=dp

where T is the set of poles of r and the exponents e, f; are integers. Our goal is to
determine these exponents.
Let £
1 ec - i
¢ = M0 /8) = Y [y = 3 ——+3 Y :
cel’ X— =1 x—d;

4 i

Because ¢ =#'/n+ /L, it follows that
*) ¢"+3dd'+¢> =4drp+2r.

We first determine e, for ce . In order to simplify the notation, we assume that ¢ = 0.
(¢,) Suppose that 0 is a pole of r of order 1. The Laurent series expansions of r and ¢
at 0 are of the form

r=ox"t4+- - (a#0)
¢ =1tex"'+f+--- (eeZ, feC).
Substituting these series into the equation (*) and retaining all those terms that involve
x~% and x~2, we obtain the following.
ex 34 - —3ePx T3 3efx T 4 - +4e3x T34 32 x T2

=20ex 24 —axTI4
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Therefore e—3e?+4e*=0, s0 e=0,2,4. Also —3ef+32e*f=20e—a. Because o#0,
e #0, 2. Hence, e must be 4.

(c,) Suppose that 0 is a pole of r of order 2 and that b is the coefficient of 1/x? in the
Laurent series for r. That is

F=bx"2+-,  b=4lex"14 .-,
Equating the coefficients of x ™2 on the two sides of equation (*), we obtain
e—3e*+4e® = 2eb—4b.

The roots of this equation are e =2, e =2+2.,/1+4b. Of course, the latter two roots may
be discarded in the case that they are non-integral.

(c;) Finally we consider the possibility that O is a pole of r of order v>2. Then
r=x""+---and ¢ =lex '+ - . Equating the coefficients of x™*~! in (*) we obtain
0 =2a0e~2av, hence e =v.

In determining the exponents f; we may use the calculation of (c,) above if we replace o
by 0 (since d; must be an ordinary point of r). We find that f;=0, 2, or 4. We cannot
exclude the possibility that f; = 2, but we can, of course, exclude the possibility f; = 0.

We have shown so far that

=] (x—c)P?,

cel

where e, E, (as defined in section 4.1) and PeC[x].

Set 0=4Y —,  so ¢=0+P/P.

cel’ X—C

The next step in our proof is to determine the degree d of P, which we do by examining

the Laurent series expansion of ¢ at co and using equation (*).
d=te x4, =) e+2d
cel’

(c0y) Suppose that the order. of ¥ at oo is 2. As in (c,) we find that e, =0, 2 or 4.

(c0;) Suppose that the order of r at oo is 2 and that b is the coefficient of x~2 in the
Laurent series expansion of r at co. Then, as in (¢;), €, =2, 2+2./1+4b and e, is
integral.

(c03) Suppose that the order of r at o0 is v <2. As in (c3), it follows that e, = v.

Note that at least one of the e, (ceT) is odd, since n{ ¢ C(x).

Using equation (*) and the equation ¢ = 8+ P'/P, we obtain

P"+30P" +(30° +30' — 4r)P' + (8" + 300 +6° — 4rf—2)P = 0.

This is a linear homogeneous differential equation for P, so there is a polynomial solution
if and only if there is a monic polynomial which is a solution.
Now let @ be a solution of the equation

(*%) @ —pw+id +3¢>—r=0.

To complete the proof we need to show that n=e/® is a solution of the DE y*=ry.
From (**) we obtain (by differentiation)

Qu—d)o’ = dw—1¢"—¢¢' +r.
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The factor (2w — ¢) cannot be zero. Indeed, if ¢ = 2w, then ' +w?—r1r =0 (from (**)) so
n = el® is a solution of the DE. But w = 4¢ e C(x). This is case 1, which was assumed to
fail. Using (**) and (*) we have

220~ )W +w—r) =~ " —3¢¢' — §* +dr+2r =0.

Thus @' +w? = r so 7 =e/? is a solution of the DE.
This completes the proof that the algorithm for case 2 is correct.

5. The Algorithm for Case 3

Following the pattern established in the previous two sections, we describe the
algorithm in section 5.1 and give examples in section 5.2. The proof of the algorithm
requires a knowledge of the finite subgroups of SL(2) and their invariants, which is
provided in section 5.3. The proof of the algorithm is presented in section 5.4.

In case 3, the DE has only algebraic solutions and we assume that cases 1 and 2 are
known to fail. (It is possible for the DE to have only algebraic solutions and for cases 1 or
2 to apply. For example, case 1 gives the solution = x4 to the DE y" = —(3/16x%)y,
then reduction of order gives { = x¥* as a second solution.)

5.1. DESCRIPTION OF THE ALGORITHM

Let  be a solution of the DE y” = ry and set & = #'/n. Then, as we shall show in section
5.4, w is algebraic over C(x) of degree 4, 6 or 12. It is the minimal polynomial for w that
we shall determine. We are unable to determine the minimal equation for # (which would
be of degree 24, 48 or 120).

There are two possible methods for finding the minimal equation for . We could find
a polynomial of degree 12 and then factor it. We shall prove that if w is any solution of
the 12th degree polynomial found by our method, then # = e/® is a solution of the DE,
hence any one of the irreducible factors may be used. This is the most direct method;
however, the factorisation can be a formidable problem, even with the assistance of a
computer. We illustrate this by example, in section 5.2. The alternative is to first attempt
to find a 4th degree equation for w, then a 6th degree equation and finally a 12th degree
equation. The advantage is that if an equation is found, then it is guaranteed to be
irreducible.

In our description of the algorithm, we shall combine the various possibilities, denoting
by n the degree of the equation being sought. As before, we denote by I the set of poles of
r. Recall that, by the necessary conditions of section 2, r cannot have a pole of order > 2.

Step 1. For each ceI'u {0} we define a set E, of integers as follows.

(cy) If cis a pole of r of order 1, then E, = {12}.

(c,) If ¢ is a pole of r of order 2 and if o is the coefficient of 1/(x—c)? in the partial
fraction expansion of r, then

12k n
Ec={6+7—~/1+4a|k—0,il,—__l—2,..., ii}mz.

(o0) If the Laurent series for r at oo is

r=yx"*4+ .- (yeC, possibly 0),
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then
{6+—2£‘—«/1+4ylk=0 +1,+2,. 2}nZ

Step 2. We consider all families (€,).ar () SUch that e, E,. For each such family, define

n
d=—(e,— Y &)
36« % %)
If d is a non-negative integer, the family is retained, otherwise the family is discarded. If
no families are retained, then w cannot satisfy a polynomial equation of degree n with
coefficients in C(x).
Step 3. For each family retained from step 2, form the rational function

n e
6= 12 cell X— C
Also define
S =] (x—o¢.

cel

Next search for a monic polynomial P e C[x] of degree d (as defined in step 2) such that
when we define polynomials P,, P,_,, ..., P_, recursively by the formulas below, then
P_, =0 (identically).
Pn =—P
P;_ i =—SPi4+((n—0)S —SOP,—(n~i)(i+ 1)S%rP;,,
i=nn—1,...,0).

This may be conveniently done by using undetermined coefficients for P. If no such
polynomial P is found for any family retained from step 2, then » cannot satisfy a
polynomial equation of degree n with coefficients in C(x).

Assume that a family and its associated polynomial P has been found. Let @ be a
solution of the equation

i

Z"‘ —l)' =0.

Then = e!® is a solution of the DE.

5.2. EXAMPLES

Example 1. Our first example illustrates the alternative technique mentioned at the
beginning of the last section, namely to bypass the search for equations of degrees 4 and 6
for w and proceed directly to the search for an equation of degree 12.

We consider the hypergeometric equation y” = ry where

3 2 4 3
16x2  9x—1D?* " 16x(x—1)
The necessary conditions of section 2 show that all four cases are possible.
Applying the algorithm for case 1, we find that
ag = 3/4, oy = 1/4
af =2/3, o7 =1/3
ar =2/3, ap=1/3,

and d=oaX —af —af can never be a non-negative integer. Case 1 fails,
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Applying the algorithm for case 2, we find that

Ey=1{2,3,1}
E = {2}
Eno= {2}a

and d = e, —e,—e, can never be a non-negative integer. Case 2 fails.

We apply the algorithm for case 3, searching for an equation of degree 12 for w, thus

=12 in the algorithm.

At ¢ =0, a = —3/16 and \/1+4a=1/2 (or —1/2). Hence E,={3, 4, 5, 6, 7, 8, 9}. At
c=1,a=-2/9 and \/1+4a=1/3. So E;={4,5,6, 7,8}, At 0, y=-2/9 and E_, = {4,
5, 6,7, 8}

Following the instructions of step 2, we now form the expression d =e¢, —e,—e, for
every choice of e e E, e,€ Ey, ¢, € E;. We discard those families for which d is a negative
integer. Only four possibilities remain.

=71 e=3, e =4 d=0
e,=8, ¢=3 e=4 d=

e.=8 e=3 e=5 d=0
=198, e;=4, e =4 d=0

We now consider the first possibility, following step 3. We set 0 =3/x+4/(x—1),
S = x? —x, and search for a monic polynomial P of degree 1 that satisfies the conditions
given in step 3. Of course, P=1.

The computations are far too complicated to be accurately done by hand; however,
they are easily programmed into a computer. Since P; is always a polynomial
(i=12, ..., —1) whose degree is easily predicted (in this example deg P; = 12—1i) arrays of
coefficients may be manipulated to carry through the computations. In order to avoid
roundoff error, we computed 12'27'P, using 33 digit integer arithmetic. The results

follow.
P,=-1
Py =7x-3
P, = (1/12)(—536x2 +459x—99)
P = (31/(3-12%))(18544x> —23799x2 + 10260x — 1485)
Pg = (41/(16:12%))(— 127488x* +217972x> — 140879x2 4- 40770x — 4455)
P, = (5)/(2:12%))(174080x° — 371748x* +320305x> — 138975x2 + 30375x — 2673)

P = (61/12%)(—8257536x5 + 21145136x° —22757500x* + 13168377x°
— 43180832 + 760347 x — 56133)

Ps = (71/(2:129))(7929856x7 — 23673984x6 + 30564708x° — 22107287x*

y +9668646x3 — 2555280x% + 377622x — 24057)

P, = (8!/(16:12))(—26421152x5 +900984832x" — 1356734768x + 1177673400x°
— 644082327x* + 227124972x> — 50398362x% + 6429780x — 360855)

P, = (91/(3-12%))(174483046x° ~ 6688997376x% + 11509039440x” — 11656902184x°
+ 7654170465x5 — 3376695033x* + 1000183626 — 191681802x>
+21552885x — 1082565)
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P, = (101/(2:12°))(— 2281701376x1° +9713634848x° — 18799438080x°
+21766009616x7 — 16683774768x5 + 8840413683
— 3277319535x* + 8387801 10x3 — 141739470x2 + 14270175
— 649539)

P, = (111/12'%)(1342177280x* ! —6282018816x'° +13507531776x° — 17598922384x®
+ 15426848952x7 —9546427017x5 +4252638672x° — 1362816657x*
+307684656x> —46576539x> + 4251528x — 177147)

Py = (121/12%)(—8589934592x 2 +- 43838865408x ' ! — 103681720320x°
+ 150145637824x° — 148170380976x8 + 104901110964x7
~ 54596424249x5 — 21032969490x° — 59485634 55x*
+ 1203654816x> — 165278151x% + 13817466x — 531441)

P, =0
Therefore # = eI® is a solution of the DE, where  is a solution of the equation
L
=0 (12-0)!

Professors Caviness and Saunders of Rensselaer Polytechnic Institute kindly offered to
attempt a factorisation of this polynomial for w. They used the exceedingly powerful
system for algebraic manipulation called Macsyma at MIT. The program took less than 5
minutes to write but took 3 minutes of CPU time to execute. The result is that the
polynomial above is the cube of the following polynomial.

(2 = x)*w* — (1/3)(x® — x)3(7Tx — w3 + (1/24)(x* — x)*(48x2 — 41 x + 9)w?
—(1/432)(x® — x)(320x° — 409x2 + 180x — 27)w
+(1/20736)(2048x* —3484x3 +2313x? - 702x + 81)

Example 2, In this example we consider the DE y” =ry, where
o x+27
S 36(x—1)%"

The necessary conditions of section 2 show that all four cases are possible.
Note that the partial fraction expansion of r has the form

2
T 9(x+1)? 9(x—1)?

and the Laurant series for r about oo is

r=—§gx—2+“'.

Applying the algorithm for case 1 we find that
ol =2/3, e, =1/3
af =2/3, ] =1/3
ak = 5/6, ag = 1/6.

For no choice of signs is d = aZ —a®, —af a non-negative integer, thus case 1 cannot
hold.
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Applying the algorithm for case 2 we find that E_, = E, = E_ = {2}, and case 2 does
not hold.

We now apply the algorithm for case 3, attempting to find an equation of degree 4 over
C(x) that is satisfied by w.

From step 1 we have that

E.,={4,4,6,7,8), E, ={4,56,7,8 and E,={24,6,8,10}.

There are four families with the property that d =%(e,,—e-;—e;) is a non-negative
integer, namely

il
oo oo

-

e, =38, e, =4, e =4,

e =10, e_; =5 e =5,

d
e, =10, e_;=4, e =6, d
d
d

ew=10, e_1=6, 21=45

The first possibility gives
0 1/ 4 N 4 \ 8
T3 \x+1 T x—1) 3 =1

Setting S = x2—1, we have S8 = §x, S%r = —+=(5x2 +27). We then have

P, =—(1/3)(15x*+1)
P, = (1/9)(50x3 + 14x)
P, = —(1/54)(125x* 4+ 134x% —3)
P_,=0.
Let w be a solution of the equation
Sw* = $xSw3 —3(15x% + D)Sw? +45(25x3 + 7x)Sw — 1755(125x* + 134x% - 3).
If we make the substitution 6Sw =z +4x, the equation simplifies to

2% = 6(x% — 1)z2 —8x(x?— 1)z +3(x2—1)%
Then
n=el®=(x>—1)"3exp ([ (z/(x*—1)) dx)

is a solution of the DE.

5.3. FINITE SUBGROUPS OF SL.(2)

In this section we determine the finite subgroups of SL(2), up to conjugation, and their
invariants. This work is classical, being found in the work of Klein, Jordan and others.
For the sake of completeness we sketch the results here in the form needed in the
subsequent section.
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THEOREM 1. Let G be a finite subgroup of SL(2). Then either

(i) G is conjugate to a subgroup of the group
01
= -D
Di=Duvu < _q 0) s
where D is the diagonal group, or
(i) the order of G is 24 (the “‘tetrahedral” case), or
(iii) the order of G is 48 (the “octahedral” case), or
(iv) the order of G is 120 (the “icosahedral™ case).
In the last three cases G contains the scalar matrix —1.
The geometric names were used by Klein; however, our proof will be entirely algebraic.
Proof. We assume that G is not conjugate to a subgroup of D'. Let H be the set of
scalar matrices in G, thus H = {1} or {1, —1}, so the order of H is 1 or 2. For any
xeG—H (ie. xe G and x ¢ H) we denote by Z(x) the centraliser of x in G and by N(x) the

normaliser of Z(x) in G.
Let xe G— H. Since x is of finite order, x is diagonalisable. (The Jordan form of a non-

1
—\0 1
diagonal non-scalar matrix is D (by direct computation) Z(x) must be the intersection of
G and a conjugate of D. Hence Z(x) = Z(y) if and only if ye Z(x). Using this fact and the
fact that Z(gxg ') = gZ(x)g~* we may conclude that (for arbitrary x, y, ¢, g’ € G) either

9Z(x)g~ ' ngZ(y)g' "t =H or gZ(x)g '=gZ(y)g "’

and in the latter case ye g’ ~'gZ(x)g g’ In addition gZ(x)g~ ! = g'Z(x)g’~* if and only if
g’ ~'ge N(x). Therefore we may write G as a disjoint union

diagonalisable matrix in SL(2) must be + .} Since the centraliser in SL(2) of a

U @Z(x)g ' —H)UH (disjoint),

Ch

G=

i=1

i

where the inner union is taken over all cosets gN(x,) in G/N(x;), s is some natural number
and x,,...,x,eG—H.

The group N(x,) is easy to describe since x, is diagonalisable. First note that the only
matrices in SL(2) that conjugate a diagonal non-scalar matrix into a diagonal matrix are
the matrices in D' (by direct computation). It follows that N(x;) is the intersection of G
and a conjugate of D', in particular the index of Z(x)) in N(x;), [N(x)): Z(x))], is either 1
or 2.

Let M = ord (G/H) and e; = ord (Z(x,)/H). The representation of G as a disjoint union
gives the following formulas.

M-ord H=Y [G:N(x)](e;- ord H—ord H)+ord H,
i=1
or

N M
M =i;1 m(ez“l)+1,
or

1 s 1 1
(#) Mo NG Z(x)] <e7 B ]> +h
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Certainly s #0 since G # H. If s=1, then
1I/M 2 1){([N(x,): Z(x,)]e;,) = 1/ord (N(x,)/H), so G = N(x,).

This contradicts the fact that G is not conjugate to a subgroup of D*.
Sincee; =2 (i=1,...,5) we have

1 8 1
0<3 <17 & Wy 20
80 . |
2 INGy Zog] <%
Because

[N(x):Z(x)]=1or2,
there are only three solutions of this inequality.

s=2, [N(x):Z(x)l=1, [N(x):Z(x)]=2 ,
s=2, [N(xp):Z(x)]=[N(xy): Z(x;)] =2,
s=3, [N(x1):Z(x)]=[N(x3): Z(x2)] = [N(x3): Z(x3)] = 2.
For all solutions [N(x;):Z(x;)] =2. Thus G contains a conjugate of a matrix in

c

- . The square of such a matrix
—¢* 0

D'—D, ie. the conjugate of a matrix of the form (

is —1. Hence ord H = 2.
The first solution gives I/M =1/e,+1/(2e;,)—1/2, so e, =3, ¢; =2 and M =12, so
ord G =24. (The point being that M > 2e,, since G is not conjugate to a subgroup of D,

and therefore e, = 3.)
The second solution gives 1/M = 1/(2e,)+ 1/(2¢,), which is impossible since M > 2e,,.
The third solution gives

M e + ey 2
Also e, =3 since M > 2e,. The solutions are
e, =2, e,=3, e;=3, M=12, ord G=24,
e;=4, M=24, ordG=48,
e;=5, M=60, ordG=120.

This proves the theorem.
In the following sequence of theorems we shall explicitly determine the three
“geometric” groups. To that end we need the following lemma.

LEMMA. Let G be a finite subgroup of SL(2, C) that is not conjugate to a subgroup of D'. Let
H={1,—1}. Then G/H has no normal cyclic subgroup.

Proor. If xH is a generator of a normal cyclic subgroup of G/H then the group generated
by x and —x is diagonalisable. Since this group would be normal in G, G would be
conjugate to a subgroup of D', ‘
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THEOREM 2. Let G be a subgroup of SL(2, C) of order 24 that is not conjugate to a subgroup
of D'. Let H= {1, —1}. Then G/H is isomorphic to A,, the alternating group on 4 letters.
Moreover, G is conjugate to the group generated by the matrices

¢ 0 1 1
G o)
where & is a primitive 6th root of 1 and 3¢ =2£—1.

Proor. Since ord G/H is 12, and because of the previous lemma, G/H has 4 Sylow
3-groups, and G/H acts by conjugation on the set of these Sylow 3-groups. This action
induces a homomorphism G/H — 8, (the symmetric group on 4 letters). The subgroup of
the image consisting of those permutations that leave a particular Sylow 3-group fixed
must have index 4 since G/H acts transitively. Therefore the order of the image is divisible
by 4. It follows that the order of the kernel is 1, 2 or 3. By the previous lemma, the order
-of the kernel must be 1, so G/H is isomorphic to a subgroup of S,. Now consider the
composite homomorphism G/H -8, {1, —1}, with the last arrow being given by
o —signum (o). By the previous lemma, G/H cannot have a normal subgroup of order 6
.(since a subgroup of order 6 contains a unique subgroup of order 3 which would be
normal in G/H). Therefore the composite homomorphism has trivial image and G/H is
isomorphic to A,.

Let 7:G— A, be a homomorphism with kernel H. Let Aet~!(123). We may conjugate
G so that A is a diagonal matrix. Thus

& 0
(30

Since 1A3=(1), A*cH. However, 14 # (1) and 142 #(1), thus A¢H and A?¢H.
Replacing A by — A, if necessary, we may assume that & is a primitive 6th root of 1.

Let Bet~(12)(34). Since t(AB) # 1(BA), B cannot be a diagonal matrix, i.e. not both
B,, and B,, are zero. In fact neither is zero because if one were zero and the other non-
zero, then B would have infinite order.

c 0

0 d> without affecting A. If we choose ¢ = B,, and d = 2B, ,,

o ¥ )
B= .
(2!// —-X
Now tB? = (1) so B*e H. A direct computation shows that y = ¢.
Next we observe that t(BA%) = 1(4AB)* so BA? = +(4B)*. We perform the computation
and discover that ¢(¢%—1) = +¢* (using the fact that ¥ # 0). Replacing B by —B, if
necessary, we may assume that ¢(¢2—1)=¢4 hence 3¢ =26—1 (using the relation

E=¢-1).
Next we use the fact that det B=1 to obtain the formula ¢2+2y2=—1, or

0
3 = 4+ (2E—1). If necessary, we conjugate G by (é B 1) so that 3 =2&—1 = 3¢. This

We may conjugate G by (
then B has the form

proves the theorem.
The group of this theorem is called the tetrahedral group.
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THEOREM 3. Let G be a subgroup of SL(2) of order 48 that is not conjugate to a subgroup of
D'. Let H= {1, —1}. Then G/H is isomorphic to S,, the symmetric group on 4 letters.
Moreover, G is conjugate to the group generated by the matrices

& 0 1 1
£ o)
where ¢ is a primitive 8th root of 1 and 2¢p = E(E2+1).

Proor. Since ord G/H =24, and because of the previous lemma, G/H has 4 Sylow
3-groups. The action of G/H on the set of Sylow 3-groups (via conjugation) induces a
homomorphism G/H —S,. The image contains a subgroup of index 4, namely the
subgroup of permutations leaving a particular Sylow 3-group fixed, since G/H acts
transitively on the set of Sylow 3-groups. Hence the order of the image is divisible by 4, so
the order of the kernel is 1, 2, 3 or 6. Were the order of the kernel 6, then the kernel
would contain a unique subgroup of order 3 which would be normal in G. This
contradicts the lemma. Indeed, the lemma implies that ord ker = 1, so G/H is isomorphic
to S,.

Let 7:G—>8, be a homomorph1sm with kernel H and let Aet™!(1234). We may
conjugate G so that A is a diagonal matrix

(¢ O
(5 )

Since t4* = (1), &* = + 1. However, were 4 = 1, then ¢2 = +1 and A2 H. But t42 # (1).
Hence ¢ is a primitive 8th root of 1.

Let Bet~1(12). Since t(AB) # t(BA), B cannot be a diagonal matrix, thus not both B,
and B,, are zero. In fact, neither is zero since B has finite order. We may conjugate G,

without disturbing A4, by (0 d) where ¢ = B,, and d? = B,,. Then B has the form

<¢) ' )
¥o—x
Using the fact tB% = (1), i.e. B%e H, we obtain easily that y.= ¢.
Because t1(BA®) = 1(4B)?, BA® = +(AB)2. Making this computation, and using the fact

that ¥ #0, we find that ¢(&*—1)==+&, or 2¢ = £¢(¢*+1). Replacing B by —B, if
necessary, we may assume that 2¢ = (2 +1). Then 2¢2 = —1. Now we use the fact that

. 1
1 =det B = —¢*—y? to conclude that 2y = —1. Conjugate G, if necessary, by ( 0)

0 -1
so that ¢ = ¢.
Because 74, tB generate S, and the group generated by 4, B contains H, we can
conclude that A4, B generate G. This proves the theorem.
The group of this theorem is called the octahedral group.

THEOREM 4., Let G be a subgroup of SL(2) of order 120 that is not conjugate to a subgroup
of D. Let H={1, —1}. Then G/H is isomorphic to As, the alternating group on 5 letters.
Moreover, G is conjugate to the group generated by the matrices

6 ). (-3)

where ¢ is a primitive 10th root of 1, 5¢ =383 —E2+48—2, and Sy = E3+ 36228 +1.
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Proor. The proof that G/H is isomorphic to A5 may be found in Burnside (1955, 127,
p. 161-2).

Let 7:G— A be a homomorphism with kernel H and let Aet™!(12345). We may
conjugate G so that A is a diagonal matrix

0
A= (g f‘l) Since 14°% = (1), &3 = +1. Replacing 4 with — A, if necessary, we may
assume that &° = — 1. Evidently £ is a primitive 10th root of 1.

Let Bet~1(12)(34). As in the proof of Theorem 3, we may assume that B has the form

(3 2)

Because t(A*B) =1(BA)?, A*B= +(BA)*>. Making this computation we find that
(1 +E¥) = +E&* or 5¢p = +(3E3—E2 +4E—2). Replacing B by — B, if necessary, we may
assume that the plus sign obtains. Now we use the fact that 1 =det B to conclude that

0
5¢ = 4 (&£ +3E2—~2£+1). Conjugate G by (é _1>, if necessary, so that the plus sign

obtains.

Note that tA, tB generate A, (This group generated by 74 and 7B contains an
element of order 3, an element of order 2 and an element of order 3. Thus the order of this
group is divisible by 30. Since A, is simple, this group must be As.) Also the group
generated by A4, B contains H. Therefore A, B generate G. This proves the theorem.

The group described in this theorem is called the icosahedral group.

For use in the next section, we also need to know the invariants of the three
“geometric” groups.

THEOREM 5. Let G be the Galois group of the DE y" =ry and let 4, { be a fundamental
system of solutions relative to the group G.
() If G is the tetrahedral group, then (n* +8n(3)% e C(x).
(i1) If G is the octahedral group, then (n°{ —n{5)? e C(x).
(iii) If G is the icosahedral group, then n*'{ —11#5¢%—y{'' e C(x).

Proor. (i) Consider the tetrahedral group, using the notation of Theorem 2. Recall that
B=—1,8=¢—1and 3¢p=2¢—1.

. 1 1
n*+8n(3 is carried into £4(n*+8n¢>) by the matrix (g ‘5(_)1)' The matrix ¢ ( 5 1)

carries

n*+ 803 =n-(n+20) - (1 +2E%) - (n—2£0)

d(n+28) - 3y - pRE—1)(n—280) - (1 —~28)(n +2E2()
=—3¢* 1) (n4+8n(>)
=—3- (=132 (=3) - (1*+ 8% = n* + 8>,
Thus (#*+8n¢%)? is an invariant of G and therefore is in C(x).

into

(i) Consider the octahedral group, using the notation of Theorem 3. Recall that
¢*=—1and 29 =¢(*+1).
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0
n(—nl* is carried into &4(n{—n(%) by the matrix (g ¢> The matrix ¢(i i)

carries
N3~ =n-- (40 - =0 g+ E20)- (-

d+Y-(—0) 29m 200 - $(1+ ) — &) p(1 = E+ E20)
=4-¢%-(1-&%-*C—nl%)
=8 (—1/2* @ —nl®) = —m>C—nl?).
Thus (1°¢ —#%{*)? is an invariant of G and therefore is in C(x).

(iti) Consider the icosahedral group and use the notation of Theorem 4. First we collect
some easily derivable formulas.

B=—1, ¢=0-0+-1
5¢2=§3_£2_3, 5!,[/2='~53+£2—2,
Spyp = 283 ~28%~1 = 5(¢* — ).

. 0
The matrix <g ¢ 1) carries g1 —11#5¢{® —n¢*! into itself. The matrix (d) l/’) carries

into

v —¢
1188 — it =l (PP =l =) - (> + Enl + ) -
(P =EL—E%3) (PP +Enl = E22) (P = E L + E30%)

dY(n* —nl =2 Sl - (— & — Enl = E4) - (ENMP + EnL + &%) -
(=D + &l = &3 - (=D = &L+ E30%)
=5-(¢¥)* (" = 11y8LS —nl'Y) = ™ L= 11800 —pltt.
Thus n''{—117%¢® —y{*! is an invariant of G and therefore is in C(x).
This proves the theorem.

into

5.4. PROOF OF THE ALGORITHM

We must prove the validity of four separate algorithms. We must show that the
algorithms for finding a 4th, 6th and 12th degree equation for w are correct for the
tetrahedral, octahedral and icosahedral groups and that the equation obtained is
irreducible, and finally that the algorithm for finding a 12th degree equation is all-
inclusive (although the equation obtained need not be irreducible). In so far as is possible,
we carry out the proofs simultaneously.

We begin by showing that the equations obtained for w in the tetrahedral, octahedral
and icosahedral cases are minimal, Throughout we assume that the Galois group G of the
DE y” =ry is the tetrahedral, octahedral or icosahedral group. We also fix a fundamental
system of solutions #, { of the DE relative to the group G and set w =n'/n.

THEOREM 1. Let 1, be any solution of the DE and let w, =1/n,.
(i) If G is the tetrahedral group, then

degewy 24 and degew = 4.
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(it) If G is the octahedral group, then
degemwy =6 and degeyw = 6.
(ii)) If G is the icosahedral group, then
degew, > 12 and degeyo = 12.

g 59 1), where £ is a primitive
6th, 8th or 10th root of 1 in the tetrahedral, octahedral or icosahedral cases, the degree of
w over C(x) is £[G:G,] =4, 6 or 12. The reverse inequality is proven more generally, as
indicated in the statement of the theorem.

Let G, be the subgroup of G that fixes n,. Complete #, to a fundamental system of
solutions #,, £, of the DE and conjugate G to XGX~! so that XGX ! is the Galois
group of the DE relative to #,{;. Then XG,X ™' consists of matrices of the form

PRrOOF. Since o is left fixed by the group G, generated by (

d . s . .
<C _1>. Since XG, X! is finite, d =0 and ¢™ =1, where m is the order of G,. Evidently

0c
XG,X"!is a subgroup of the cyclic group
¢ 0
{6
and therefore is cyclic. Hence G,/H (where H is the centre of G) is isomorphic to a cyclic
subgroup of A, in the tetrahedral case, of 8, in the octahedral case, and of A; in the
icosahedral case. So ord G,/H < 3,4, S or ord G, €6, 8, 10. Thus

degeyw, =[G:G,] =4,6,12.

This proves the theorem.
Throughout the remainder of this section we shall be considering a certain differential
equation written recursively, namely

ay = — 1
(#)n ai-y = —~@G—zq;—m-)i+rage (=n,...,0)
By a solution of (#), is meant a function z such that when a,, ..., a_, are defined as

above, then g_ is (identically) zero.

THEOREM 2. Let z be a solution of (#),, and let w be any solution of

" nil ai
W = ~—
=6 (n—i)!

Then n = e!® is a solution of the DE y" =1y.

Proof. Let

n ai ;
A= G - L @@=

where w is an indeterminate, We claim that

A **t1A4 oA & A
(’)—W(w )=6 +[(n 2k)w+z] +k(n k-\-l)a T

k=0,1,...).
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For k=0, we have

%g(wz——r) (n (nza) w"“")(wz—-r)
e (e W

= na wn+1+z t+1__Z

(n—t)' i=o (n—1-0)!
—— "f ((ﬂnj%",— w"“—:; (”“'szjil))!”‘”l
= nwA+a,  A- zl(‘j;_ll)“, ; L
= (m+2)4 Z( o =0+ Dr D

n l

=y} —1)'

= (nw+z)A+ éﬁ
Ox

Qur claim now follows by induction.

To show that # = &/ is a solution of the DE is equivalent to showing that @’ +w? =7,
We assume that o’ +w?~r # 0 and force a contradiction.

Since A(w) =0, we have

A 0A
7 ()’ +——(C0)
Therefore
94 . ) _ 04 04 -
7 (ON@ + 0 —1) = = —— () + (n0+2) A(0) + = (@ =0
Hence
Assuming that
ak 1A a
k 1 (0)) a Ak (CU)
we have d 5kA ak+1 ak+1
0= d(a u()) ak+1(w) + (cu)
Thus
ak+1
ST (@) +w?—7)
ak+ 14 ak+1A o 14
s @+ 5o (@) +[(— 2k)cu+Z]a 7 (@) +k(n— k"‘l)a = (@)

=0,
50 ak+1A
gt @ =0
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The desired contradiction follows from the fact that

"A
2 (@) = —n!s£0.
e (w) nt#0

This proves the theorem,

THEOREM 3.
(i) Suppose that (#)4 has a solution ze C(x). Then the polynomial

aq;

o (4—0)!

w“—

"MU

wie C(x)[w]
is irreducible over C(x).

(ii) Suppose that (#)s has a solution ze C(x). Then the polynomial

a;

0 (6—1)!

w6—

"MU‘

wie C(x)[w]

is irreducible over C(x).

(iif) Suppose that (#)1, has a solution zeC(x) and that (#)4 and (#)¢ do not have
solutions in C(x). Then the polynomzal

w € C(x)[w]

is irreducible over C(x).

Proor. By Theorems 1 and 2, any root of the polynomial

n=1
w2 i w’ a;e C(x
must have degree 4, 6 or 12 over C(x). Statement (i) of the present theorem is clear.
Statement (ii) follows from the fact that if a sextic is reducible, then one of the factors has
degree <3. To prove (iii) it suffices to show that if deg¢wyw = 1, then (#), has a solution
ze C(x).
Let AeC(x)[w] be the minimal polynomial for w over C(x). Let deg, A =n and write

H

n — 4
W Z (n—o' =L G

W (an = 1)

Consider the polynomial
04, 5 04
B = pw (r—ws+ ™ +(nw+2)4,

where
z = qa,-, €C(x).
The coefficient of w**! in B is
—na,+na, = 0,
and the coefficient of w" in B is

—(n—=Da,-1+a,+na,_+za, = dy~ —z =0,
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since 4, = —1 and q,_, =z. Therefore deg,, B < n. But

B@) = 95 @)=Y+ 2 (©)+ (04 A@)

= Ed)—c— (A(w)+ (nw+2)A(w)

=0,

Therefore B = 0. The coefficient of w' in B is

7

a1 a; a4 a;

0=(i+1) T P Y, Y g R

(n~ail+ii)! r=(=1)

!
1
= (n—1)! [(n—iG+Vrag., +a;-, +a;+za],

where a_; =0. These are precisely the equations of (#),. This proves the theorem.
For any function b we denote by 16b = b'/b the “logarithmic derivative” of b.

THEOREM 4. Let F be any form (homogeneous polynomial) of degree n in solutions of the DE.
Then z = I3F is a solution of (#),.

Proor, First we prove that if Fy and F, are functions such that I0F; and I§F, are solutions
of (#),, then 15(c, F, +c,F,) is a solution of (#), for any ¢, c,€C. Let af, a?, a? denote
the sequences determined by (#), for z=10F,, I6F,, 16(c, F, + ¢, F,) respectively,
We claim that
(C]_Fl +C2F2)ﬂi3 - ClFlai1+Czea,;2.
This is clear for i =n. Also
(e1Fi+eyF)a}y = (¢ Fi+e, F)[—ai —18(c, Fy + ¢, Fy)ai —(n—i)(i+ Dra}, ]
=—[(c, Fy+ ¢, Fy)all —(n—i)(i+ (e, Fi+ ¢, Fy)ady
=—[c;Fiaf +c;FaiY —(n—i)(i+ D[c, Fialy +c, Fyat, ]
=ClF1ai1_1+czF2a,2_1 (i=n,...,0).
Therefore
(ClFl +CzF2)a3_1 = C1F1a1_1+CZF2a?_1 = 0,
which verifies our assertion.
To prove the theorem, we may assume that

n
F= I:Il Hi»
where 5, . . ., 5, are solutions of the DE.
Let w; = ni/n; and denote by o,, the kth symmetric function of w,,..., w,. Thus
Oume=0for k<Oork>m, 6,,=1and

Tk = Z @yt

k
1€ii< v <ik€m

for 1 <k < m. First we claim that

U;nk = (m+1—k)rann,k—1 _arnlamk+(k+ 1)C’-m,k+1'
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This formula is easily checked for m =1 and, for m> 1,
O-;nk = (Urn—l,k+onx—1,k-lwm)l

=(M—Kopm-1 k-1~ Om-1,10m-1,kt k+1)00_1 141
+[4+1 =Ky g2 Ome1,10m-1,k~1 KO- 1,110y
+0m—1,k—1(r“‘w,zn)

=(M+1—kr(Om— 151+ Om-1,k-20m = (Om—1,1+ Q) (Om—1,+ T 1,k 1 Prm)
+k+ 1D)(0m-1,k41F Tm-1.2Dn)

= (m+1_k)ram.k~1—amlamk+(k+l)anx,k+13

which completes the induction.
Next we use induction on i to prove that

a; = (-1)"_”1(11——1')! Gyoy—i-

Evidently .
Uy =2z=10F =Y w,=0,.

=1

Using (#),, we have
a;-y = —a;—za;—(n—0({+ Dra; .,

= (— 1)"—i(n—i)! a;l,ll"i+0rll(_ 1)"~t(’1_i)! Oyn—1i
""(n_i)(l'*' 1)1‘(-* l)n—t(n__ t —i) ! Ouon—1-1

= ("’ 1)'l_i(n_'i)! [a;l.n—i+0'nlarx,tl—i—(i+ 1)rarl,rx—1—i]
= (=) =) =i+ 1)0, 141

= (_1)"-—l(n—l+1)’ Opop~i+1e
Hence
a-=(—1n+Dlo,,. =0

This completes the proof of the theorem.

THEOREM 3.

() If G is the tetrahedral group, then (#), has a solution z = [6u, where u® ¢ C(x).
(i) If G is the octahedral group, then (#)g has a solution z = lou, where u* € C(x).
(#ii) If G is either the tetrahedral group, the octahedral group or the icosahedral group,
then (#)., has a solution z = l6u, where ue C(x).

Proor. This theorem is a corollary of Theorem 3 of the present section and Theorem 3 of
the previous section. For part (i) we may take u=n*+84(>, for part (i) we may take
u=n%-n{®> and for part (ili) we may take u=@n*+8(»3, ®(—nl%? or
7t —11n°0° -l
We shall write
ut? =T (x—c)*e C(x),
ceC

where n=4, 6 or 12 and ¢, Z. Our next step in the proof is to determine the various

possibilities for e,, as stated in step 1 of the algorithm. For ease of notation, we shall
assume that ¢ = 0. To this end we shall use the Laurent series for

— 15y = s t20m
z = ldu 1215(u )
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namely

2 =1—niex“1+ <+ (e =ey€Z, possibly 0)

and for r, namely
r=ax"2+px '+ -+ (e BeC, possibly 0).

(Note that, by the necessary conditions of section 2, r can have no pole of order

exceeding 2.)
First we consider the possibility that « =0 and 8 # 0, corresponding to (¢,) of Step 1 of

the algorithm.
THEOREM 6. I[f 0 =0 and f#0, then e=12.

Proor. We write

n
z-—1~2-ex Lyft ,

and treat e and f as indeterminates. Then
a; = A;x'" " BxIT L C X
where A;, B;, C,; are polynomials in e with coeflicients in C. Using (), we find that
A, =-—1, B,=C,=0,

n
&ﬂ—Oﬂ—E%A

B, = (”“‘l"l"‘l%e> Bi—(n—i)(i+1)BA4; 4,

. n
Cioy = (n*z——l—'ﬁ e> C,—A4,;,
fori=mn,...,0.

We leave to the reader the verification that the solution to these equations is given by

fl (-2

- Il
8% 0o "1 (k- e
j=0 k;;)

n—

Il

= (n—i) ]j (]————3) i=mn..,0

because
=g =A_(x""" V4B x"+C_ fx"+ -,

n n
O=d_,=—]][j—=e
: E@ u)
0=B._1+C..1f

n—1 n—1 n—1
= ﬁj;o G+ D(n—j kDO (k——%e) —i—f(n+1)k];[0 (kv%e)

k=]

and
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The first equation implies that
12
e=—1
n

for some [ =0, ..., n. Suppose that [ # n. Then the second equation gives

¢ = pt+ 1= TT G,
k=

k#l

which implies that §=0. This contradiction shows that /=n and therefore e = 12, This

proves the theorem.

Next we consider the possibility that « s 0. This corresponds to (c,) of Step 1 of the

algorithm. As above we write a; = A, x' ™"+ - - -,

LEMMA. A; is a polynomial in e with coefficients in Q[a] whose degree is n—i and whose

leading coefficient is —(—(n/12))* "%
Proor. Using (#), we have
An = 17

n

Ao, = (n—i— -ﬁe> Ai— (=)0 + oA .

The lemma is immediate from these formulas.

The author did not succeed in finding a closed-form solution of these equations, thus

we shall use an indirect argument.

Assume that a # — 1/4. Then the DE y" =ry has Puisseaux series solutions of the form

mp=xtbee, up=d b /144,
Hy=xFrep oo, Mo =%~%/1+4a

By Theorem 4, 16(n} 74" is a solution of (#), for every i=0, . . ., n. Since

18 ms™0) = (ipey +(n—Dhpg)x "1+ -
= (g—(g—i>./1+4oc>x’1+---,

the polynomial A_, must vanish for

THEOREM 7.

(i) Assume that G is the tetrahedral group. Then e is an integer chosen from among

6+k/1+4a, k=0, +3, +6.

(i) Assume that G is the octahedral group. Then e is an integer chosen from among

6+k/1+4a, k=0, 2, £4, +6.

(iti) Assume thar G is either the tetrahedral group, the octahedral group or the
icosahedral group. Then e is an integer chosen from among 6+k./1+4a,

k=0, +1,..., £6.
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ProoF. (i) In this case n=4. If « % 1/4, then we may use the Lemma and the remarks
following it to obtain

0=4d_, =Jj) <§—2+(2—z'). /1 +4a).

Thus
e=6+k,/1+40, k=0, £3, £6.
If « = —1/4, we compute directly, using the recurrence relations given above.
A, =~—1
Ay =1e

N
b

| = (e’ —9e* +8le—54)
Ag = —gr(e* — 183 + 135¢ — 459¢ 4-1215)
Ay = 5i3(e® —~ 30e* + 360e3 — 2160e? -+ 6480e — 7776)

(i) In this case n=6. If o —1/4, then we may use the Lemma and the remarks
following it to obtain

0=d_ =[] (§—3+(3—i)«/1+4a).

Thus e
e=06+k/1+4a, k=0, +2, +4, 6.
If « = —1/4, we compute directly.

Ag=—1
As =1te
Ay =—%(e*—2e+6)
Az =(e* —6e* +24e—24)
A, = —1(e*—12¢3 +72¢*— 192e + 216)
A, = 35(e5 —20e* + 180¢® — 840¢? + 2040e — 2016)
Ap = —g4(ef —30e° +390e* — 2760e + 11160e? — 24336e + 22320)
A_ | = 1hg(e” —42¢5 + 756¢% — 7560e* + 45360e> — 1632962% + 326592 — 279936)
=1ig(e~6)".

(iii) In this case n=12. If « # —1/4, then we may use the Lemma and the remarks
following it to obtain

i

0=A_,=]] (e=6+(6—i)/TH4a).
i=0

e=6+k/14+4a, k=0, +1,..., £6.

Thus
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If & = —1/4, we compute directly. Using a programmable calculator we obtained the
following.
Ay =—1
Ay =e

Ajp=—e*+e—13
Ay =e>—3e*+4e—6
Ag = —e*+6e3 27> +45¢ -8
A; = e3> —10e* +60e® — 180e” +315¢ —216
Ag = — 8+ 155 —120e* + 540> — 1485¢? + 224 1e — 1485
As =7 —21e8 4415 _1365¢* + 5355e> — 130412 +38477¢ — 11178

Ay = —e®+28e7 —378¢5 +3066¢5 — 16170¢* + 56196¢° — 125118¢?
+162378¢ — 182671

Ay = e°—36e%+612¢7 — 6300e® +42903e° — 199206e* + 628236¢°
~1293732¢% 43139493, 862488

Ay = —¢'0 4+ 45¢° —945¢8 +12060e — 103005¢° +612927¢° — 2566620¢*
~ 74536203 __2,86_E¥29l2é32+ 3300222352_ 17 S 877

Ay = e't —55¢104.2805,9 _21780¢® 4 228195¢” — 1690227¢°
+18035325,5 _ 34613865¢* 4. 1871857353 _ 3393061632

141729879, _ 92538045

Ag = —e'? +66e'! —2013e0 + 37455¢% 243943 58
—28176687e8+ 137179251 — 2169235854 1 124016953 5¢°
__i261022662 ZeZ +444§12Q2717e__4261042@627

A_; =e'®—78e'242808e ! —61776e'° +926640¢° —10007712¢®
+80061696¢7 — 480370176+ 2161665792¢° — 7205552640e*
+17293326336e —28298170368¢> + 28298170368 ~ 13060694016

= (e—6)'.

This proves the theorem.

Finally we consider what happens if « = § =0, i.e. at an ordinary point of r. Using the
previous theorem, we have that (n/12)e is an integer.

Let I" denote the set of poles of ». We have proven the following.

(i) In the tetrahedral case, (#)4 has a solution z = I6u, where

ud = P3| (x—0)%,
cel’

PeC[x] and e, is an integer chosen from among 6+k./1+4a, k=0, +3, +6.
(ii) In the octahedral case, (#)¢ has a solution z = [§u, where

uZ = PZ 1_[ (X—C)ee,

cel
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PeCfx] and ¢, in an integer chosen from among 6 +k./1+4a, k=0, +£2, +4, +6.
(iii) In either the tetrahedral case, the octahedral case or the icosahedral case, (#),,
has a solution z = 1du, where

u=PJ] (x—0),

cel’

PeC[x] and e, is an integer chosen from among 6 +k./1+4e, k=0, £1,..., 6.
Let d =dep P. Then the Laurent series for z at co has the form

( d+C; )

and the Laurent series for r at co has the form
r= ,yx—Z_'_ PR

(By the necessary”conditions of section 2, the order of r at oo is at least 2.)
If we let

=_d+z €

cel

then, by a theorem analogous to Theorem 7, e, satisfies the same conditions as does each

e.. Also
n
d= ﬁ (em—c; e,:)

must be a non-negative integer. This is a restatement of step 2 of the algorithm.
We shall complete the proof of the algorithm by showing that the recursive relations of

step 3 are identical with (#),.

Let
n
2 cel —C cel
Then z =ldu=P'/P+8. Also set P;= S"“Pa,. Using (#),, we have

P,=-P
Pi—l - S"_i+1P611_1
= §" it p(—al—za,~(n—)(i+ Drag )

= —8(S""'Pa)) +(n—i)§""'S'Pa; + 5" “i*ipPg,
—S(P'+ PO)(S" la) —(n—i)(i+1)S*r(S" " Pa;, )

= —SP +((n—1)—SOP,— (n—i)(i+ 1)S*P,,,.

This is precisely the equation of step 2 of the algorithm.
Finally, the equation

n—1 a; ;
= Z ——‘.—‘U)
iSo (n—1)!

may be rewritten as

SPa, . " SiP-
0—-—S"P " - i i
Wt Zo (n—i)! =5 (n—i)! @

This completes the proof of the algorithm.
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