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TABLE VI 
COMPUTER RESULTS 

Number of Number of 
Inequivalent Extrema1 

n r Codes Codes 

28 
28 
32 
32 
36 
36 
40 
40 

7 
13 
5 
7 

11 
17 
13 
19 

31 
5 

310 
18 
6 
13 
165 
31 

14 
5 

239 
16 
0 
1 
4 
11 

p’3 = - P O ,  yo = 0212011222020, yl = 0012102211101, y2 

= 2002120112220, y 4  = 2020021201122, y5 = 
1101001210221 ,  y Z 2  = 0 1 1 2 2 2 0 2 0 0 2 1 2 ,  6 0  = 
0020222110212 ,  8 1 1  = 2100101112201 ,  61Z = 
2002022211021, 613 = -60 ,  616 = 0222110212002, 6 l7  = 
1112201210010, and 6’’ = 0212002022211. 
r = j 9 ,  c = f = 2; F= C(u)  @ E,(u)  where gen C ( u )  

= 1; :I and gen El(a)* ~ = [ a O p i ]  with a’ = 

0222222222222222222 and u9841. There are 1 1 ineauivalent 
codes for the values i = 1, 5; 19, 29, 49, 59, 65, 83, $7, 173, 
and 259. Here pLI = 0201020101101001020, p5 = 
0012112110101100120, PI9 = 0210211010122020210, J’ = 
2021201211222012021, up’ = 2120021222101100010, p” = 
2212100022021121212, yp’ = 1211001220010221002, p*’ = 
0001202120121201102, p’’ = 1210221102001112112, $73 

= 2 1 1 2 1 2 0 2 2 2 2 1 1 0 0 2 0 2 1 ,  a n d  p 2 5 9  = 
0220020022220202000. 

IV. CONCLUSION 

We conclude with a few remarks. First, the case r = 5 when 
n = 40 (case g) of Theorem 3) was not done. In that case, C(o)@ is 
E4 @ E4 where E4 is the [4,2,3]  tetracode (see [12]); but the 
number of possible codes for El(a)* is extremely large. However, 
5 ! 1 G*(C(a)@) n Y8,0 I in that case as well, and hence, the 
techniques of Section I1 on equivalence can be applied. Second, the 
equivalence or inequivalence of two extremal codes of length n 
constructed from two different values of r is still an open problem. 
Because the general question of when two codes are equivalent is so 
difficult, the power of results such as Theorem 2 becomes clear 
when by computer, it was relatively easy and quick to decide that 
the 239 [32, 16,9] codes with r = 5 are inequivalent. Third, the 
author was very surprised that the number of extremal codes found 
was so large. Also the high percentage of codes examined that 
turned out to be extremal was a surprise. This is illustrated by Table 
VI. In this table, “Number of inequivalent codes” refers to the 
number of equivalence classes of codes that were examined by 
computer; here the equivalence classes were those determined as if 
Theorem 2 held. We checked the general forms that were given in 
Theorems 4-7. A similar table appears in [5] for quaternary codes, 
and we see by comparing these two tables that the percentage of 
extremal codes in the ternary case is much higher. Codes of length 
40, with r = 5, and 44, with r >- 5, might be interesting to examine 
if it becomes computationally feasible. Fourth, one might ask if the 
Pless symmetry code of length 36 is the unique extremal code of 
that length. Finally, the programming required for this paper was 
done on an AT & T 6300 in Pascal. 
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A Fast On-Line Adaptive Code 

Boris Ya. Ryabko 

Abstract-There are two classes of data compression algorithms. One 
class has redundancy log log n + 0(1), where n is the alphabet size, and 
an encoding time O(log2n), n + 00. The other has redundancy O(1) and 
an encoding time O(n).  A code is presented combining advantages of 
both classes of compression methods: its redundancy is O(1) and the 
encoding and decoding time is O(log2 n )  per letter, which is close to the 
lower bound O(1og n). 

Index Terms-On-line adaptive coding, Huffman code, encoding, 
book-stack method. 

INTRODUCTION 

The first adaptive on-line code was apparently proposed in 1980 
[14], and then rediscovered in the papers of Bentley, Sleater, Tarjan 
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and Wei [2] in 1986, and Elias [3] in 1987; see also [15]. (In all 
these papers, this code [3] is named differently: e.g. “book stack” 
in [14], “move-to-front scheme” in [ 2 ] ,  and “recency rank coding” 
in [3]). In [4], Gallager proposed an efficient adaptive on-line 
scheme of Huffman coding, which was later modified by Knuth [7]. 
On-line coding methods deal with the problem of encoding arbitrary 
words x1 x2 * . . x N  2 1 ,  in a finite alphabet A = {a , ,  . * . , a,), 
n 2 2.  The code of a symbol x i ,  1 I i I N ,  in on-line coding may 
depend on x, . . * x i -  I but should be independent of xi+  I . . . x N .  
The code efficiency is estimated, first by the degree of compression, 
second by the encoding and decoding time per letter, and third by 
the storage capacity of the encoder and decoder (when they are 
implemented by a computer). We will estimate the degree of 
compression of a code by the redundancy, defined as the difference 
between the mean codewords length in given code and the mean 
codeword length in a Huffman code based on the presented frequen- 
cies of letters. The storage capacity of the encoder and decoder will 
be evaluated in bits. The encoding time will be evaluated by the 
maximum number of operations with one bit words used for encod- 
ing and decoding of a symbol, the maximum being taken over all 
symbols in all possible words of the alphabet A. Formally, the 
encoder and decoder could be considered as implemented on a RAM 
computer [ l ]  that is the model of a “conventional” computer. The 
main objective will be to determine efficiency estimates asymptotic 
in n, the number of symbols in the alphabet. Since n is quite large 
(2’ - 232)  for the file compression on computers. 

There are several characteristics of known on-line codes. Gal- 
lager’s [4] and Knuth’s [7] adaptive Huffman code has been im- 
proved by a number of authors. Vitter [20] found the optimal 
adaptive Huffman code, and Jones [ l  11 proposed a data structure to 
reduce the encoding and decoding time. The redundancy of an 
adaptive Huffman code does not exceed a constant, independent of 
the alphabet size, n and the maximum encoding and decoding time 
is O(n). Therefore, for P(a)  = 2 - ” ,  the codeword length for the 
symbol a will be equal to n bits, and the encoding and decoding 
time, thus equal to O( n) (because it is necessary to scan a codeword 
both while encoding and decoding). Looking ahead, we note that 
reduction of the maximum encoding and decoding time is only 
possible when using a code having a maximum codeword length that 
does not much exceed log n. 

For the “book stack” method, the redundancy, when the number 
of symbols, n, in the alphabet is large, equals log log n + O(1). In 
[2], a simple implementation of “book stack” is proposed when the 
maximum time of encoding and decoding is O(log n). Note that this 
value is fairly close to the obvious lower bound, O(log n). Elias [3] 
also proposed interval encoding. It has the same asymptotic charac- 
teristics as “book stack” encoding (see Table I). 

For file compression, an arithmetic code proposed and studied in 
[12], [13], [22] is very popular. However, in both arithmetic and 
adaptive Huffman codes, the codeword length of rarely occurring 
symbols can achieve n + 0(1) bits. Hence, the maximum time for 
encoding a symbol is proportional to n. Starkov [18] offered ‘a 
generalized code’ having the characteristics listed in Table I. 

The storage capacity of the encoder and decoder for all the codes 
mentioned is asymptotically equal to O(n log n) bits (for n + w). 

Some have relatively large redundancy, log log n + 0(1), and 
asymptotically small time required for encoding and decoding, 
O(Iog2 n), 

Others, alternatively, have a redundancy that is asymptotically 
minimal, O( l ) ,  but longer encoding/decoding time, O( n). 

The code presented in this correspondence is called a frequency 
code in which both the redundancy and time of encoding and 
decoding a symbol are small. Its characteristics are listed in the last 

line of Table I. The memory storage requirement of this code is 
asymptotically the same as for the other codes discussed above. The 
construction of the frequency-code is based on alphabetic Gilbert- 
Moore code [6] and on the results of Krichevsky [8], [9]. 

Besides the forementioned codes for file compression, there are 
other methods that are not symbol-to-word. First, there are methods 
based on the Ziv-Lempel scheme [23] that are considered in detail 
in [19]. Second, there are the universal coding methods reviewed in 
[ lo] ,  as well as observation-based coding methods [5], [8], [9] that 
are conceptually similar to Willems code [21] combining both 
observation-based coding concepts and interval encoding. These 
methods are not considered in the present correspondence, since 
they are applied to the coding of blocks and require the storage 
capacity of the encoder and decoder to be significantly greater than 
for symbol-to-word coding. 

The main results of the correspondence have been announced in 
[161. 

11. FREQUENCY CODE 

First, we present a brief informal definition. A frequency code, 
sometimes denoted as U ,  is designed for coding words x1 x2 . . xN 
of alphabet A = {a , ,  . . . , a,}. Prior to coding a symbol x i ,  1 5 i 
I N ,  the occurrence rate of all symbols of the alphabet A is 
counted in the “window” of length w, i.e., in the word 

frequencies found, the code is then constructed as an approximation 
to the alphabetic Gilbert-Moore code [6], and x i  is encoded by this 
code. When decoding, the same operations are repeated. The main 
problem is associated with performing the encoding and decoding 
operations in the time O(log2 n). 

x,- ,x,- ,,,+ I . . .  x,-  , , where w is a parameter. According to the 

Let 

( 1 )  

During the coding according to method w, we will consider only the 
window of length w for 

w = (2‘ - 1 ) L ,  ( 2 )  

where r is an integer. For a description of U ,  it is convenient to 
extend a word xlxz  . . .  xN by w symbols to the left as . . .  
a,a,a, . . .  a,a2alanan- ,  . . .  u 2 a l x , x 2  . . +  xN. The word ob- 
tained will be expressed as x-,+,x~,+~ . . .  x - ~ x - , x ~ x , x ~  
. . .  x N .  (This allows introduction of the window for encoding the 
first symbols xI x,,. . . , thus, simplifying our description.) For 
each symbol a E A  and 1 5 i 5 N, let P(a ,  i )  be the number of 
occurrences of a in the word x,_ ,x,_ ,+ I . . x,_ I .  Define P ,  as 

f o r j  = n + l ; . . ,  L 

(3) 

1 is given in ( l ) ,  r is a parameter related to the window length, see 
(2). Symbol x, encoded by a binary word that consists of the first 
m ( x j ,  i )  symbols from the binary expansion of Q ( x i ,  i). Thus, the 
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TABLE I 
CHARACTERISTICS OF KNOWN ADAPTIVE ON-LINE CODES* 

Time of Encoding 
and Decoding 

N Code Redundancy a Symbol 

1 Book Stack [2], [3], [14] log log n + O(1) O(logz n) 
2 Adaptive Huffman Code O(1) O(n)  

VI, [71,[201, [ I  11 
3 Interval Code [3] log log n + O(1) O(log* n) 
4 Arithmetic Code O(1) O(n)  

5 Generalized Shannon Code O(1) O( n log n) 

6 Frequency Code O(1) O(log2 n) 

* n is the number of symbols in the alphabet, n --t 03. 

1121, [W, t221 

1181 

length of a frequency code codeword satisfies the equality 

1 o ( x i / x I  . - .  x i - ] )  1 = m ( x , ,  i ) .  

Note, that this code is the same as the alphabetic Gilbert-Moore 
code [6] made for the alphabet A = {a , ; .  ., a,} with the set of 
probabilities ( P ( a j ,  i )  + 1)/(2'L), j = l ; . . ,  n. (From the defi- 
nition of P ( a j ,  i) and (2 ) ,  it follows that the sum of these 
probabilities is equal to 1 .) The alphabetic code is decipherable. The 
main objective is to achieve the fast execution of encoding and 
decoding. 

To begin with, we will describe the encoding. When encoding a 
symbol x i  from a word x l x z  e . .  x ~ E A * ,  it is necessary 1) to 
calculate the Q ( x ,  i ) ' s  that are given in (4) in order to form the 
codeword based on them, and 2) alter the frequencies P(a ,  i + l),  
a E A ,  because of the window shift, according to the formulae: 

F ( x i ,  i + 1) = F ( x i ,  i) + I ,  

i + 1) = F ( x ~ - ~ ,  i )  - 1 ,  

F ( u ,  i + 1 )  = @ ( U ,  i), for a # X i ,  U # x i & L .  

( 5 )  
1 
To perform these operations quickly, a computer memory has to 
store ( 2 L  - 1) numbers defined by the equalities: 

~ ! ( j )  = F ( a , ,  i ) ;  j = I ; . . ,  L ;  i = I , . . .  " (6) 

(for j = n + l ; . . ,  L,  defined @(a,, i> = l), and 

D T + ' ( j )  = ~ l ( 2 j  - 1) + ~ y ( 2 j ) ;  j = 1 ; . . , 2 ' - ~ + '  

m = l ; . . ,  I -  1 .  

(7) 

We now show how to compute C L = ,  P(u,, i ) ,  for any k = 

i = 1,. * . , N ,  in O(log2 n) operations with bits. Let the binary 
expansion of k be 

l ; . . ,  n, using a set D y ( j ) ;  m = I; . . ,  1; j = l ; . . ,  2 / - m + l .  

k = ~ , 2 ' - '  + r l - 1 2 / - 2  + . . .  +7,2 ' ,  (8) 

w h e r e ~ , = O o r l f o r s =  1,2; . . ,1 .Define 

I -m 

> 1. (9) t ,  = c 7 , - , 2 / - m - s ,  m = 1 , .  . . 
s=n 

Then, the following equality follows from (6)-(9), 

k 1 c +,, i )  = c T,Di"(t,) 1 (10) 
m= 1 s= 1 

The right sum in (IO) consists of no more than 1 components, for 
any 1 5 k 5 n - 1. That allows us to simplify essentially the 
computation of the sum in (4). Thus, using the set { D, ( j ) } ,  we are 
able to form a codeword, according to (4), with no more than one 
summation of numbers that do not exceed w + L each. (This 
follows from the fact that C:= P(a,, i )  = w.) From (3), it follows 
that P(a,, i) = w + L.  Since w + L = 2'L (see (2 ) ) ,  then to 
form a codeword according to (4), it is necessary to sum no more 
than one number that does not exceed 2'1. Hence, no more than 
/ ( r  + I) operations with one-bit words are required. To form t ,  
according to (9), we need I operations for i = 1, 2; .., I, i.e., no 
more than /* operations with one-bit words. In addition to forming 
a codeword by (4), it is necessary to alter the frequencies P ( a ,  i) 
according to (5)  and, respectively, alter the sets { D y ( j ) ) ,  in (6) ,  
(7). So, we need to alter two numbers from the set D ] ( j ) ;  j = 
1, .  . . , L (add 1 to one number and subtract 1 from other), then two 
numbers from D:(j);  j = 1;. ., L / 2 ,  up to D ; - ' ( j ) ;  j = 1, 
2 ,  . . . . So 2 ( /  - 2 )  summation operations and, hence no more than 
2 / ( /  + r )  operations with one-bit words are required. Thus, the 
total number of operations for the encoding of a single symbol is 
proportional to /(/ + r ) .  

Before the description of the decoding, consider an example. 
Assuming A = { a l ,  a 2 ; .  ., a s } ,  we want to encode the word 
x I x 2  x I o  = a6a6a6a7a6a6a6a6a6a6. Here, L = 8,  / = 3. As- 
sume the window length w = 8, i.e., w = L ,  r = 1, see (2 ) .  
Consider the coding of symbol x,,,. There are one U,  and seven a6 
inthewindow, so P(a , ,  10) = P ( a 2 ,  IO) = = P(a,, 10) = 0, 
P(a7 ,  IO) = I ,  P(a6,  IO) = 7 ,  P(a,, 10) = 0. According tp (3) 
and (6)? (7) ,  we have_P(a , ,  10) = P i u 2 ,  10) = . . .  = P(a,, 
IO) = P(a,,  10) = 1 ;  P(a,, 10) = 8, P(a,, 10) = 2 ;  Di,,(l) = 

D:,,(I) 0:,(2) = 2; ~ : 0 ( 3 )  = 9; 0:,(4) = 3; D;,,(I) = 4; 
Din(2) = . . . = D1,,(5) = Dt,(8) = 1, Di0(6) = 8,  Di,,(7) = 2; 

D:,(2) = 12. To form the codeword of symbol x I o .  we need to find 
Q(a6,  lo), see (4), which, in turn, requires computing 

I P(a,, 10). From (lo), 

5 3 

C P ( a m ,  10) = tsD:n(t,).  (11) 
m =  1 s= 1 

For k = 5, (8) and (9) yield r 3  = 1, r2 = 0, T ,  = 1, 

t ,  = r,22 + T 2 2 1  + T 1 2 0  = 5 ,  t ,  = T 3 2 1  + r220 = 2 ,  

t ,  = T 3 2 0  = 1 .  

From this and (1 I) ,  we obtain 

5 

1 F ( a m ,  10) = 1 . D&(5)  + 0 . Df,,(2) 
m =  1 

+ l ' D : o ( 1 ) = 1 . 1 + 1 . 4 = 5 .  

Then, using one multiplication by 2 and one addition operation, we 
have 

~ ( a ~ ,  io) = 2 5  + 8 = 1 8  = 1 . 2 4  

+ 0 . 2 3  + 0 . 2 2  + 1 . 2 1  + 0 . 2 0  

m(a , ,  10) = 1 + 1 + 3 - [log F ( U 6 ,  1o)l = 2 .  

Consequently, w ( a , / x ,  . * .  x,) = 10. (Here, IO  is binary num- 
ber.) 

Now we shall describe the decoding procedure. Assume that 
x l x 2  x N  was encoded using the frequency code as 
w ( x , ) w ( x , / x , )  . . .  o ( x N / x I  . . .  x N - , ) ,  the symbols 
x I ; .  ., xt.' being already decoded based on the prefix w ( x , )  . .. 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992 1403 

o ( x i - l  / x l  x i - 2 ) ,  and it is necessary to decode x i ,  i = 1, 
2,. * a ,  N .  Both in encoding and decoding, the values of { Dm( j ) ;  

= 1 ;.. 1; j = 1 )..., 2/-,+l } are formed. In order to find xi, 
the decoder reads out / + r + 1 symbols of the word w( x i  /XI . . . 
x i - l )  w ( x , / x ,  x,-~). These binary characters can be 
denoted as ulu2 . . . u , + , + ~ .  Using them, the following number is 
formed 

U = 2(+’Ul + 2/+‘-’u, + . . *  +20u/+,+,. 

2 c q a , ,  ‘) 5 U < 2 c q a ; .  i). 

(12) 

(13) 

After that, a number m is found, such that 
m- 1 m 

j =  I ;= 1 

Then the ith symbol in the encoded word x1 . . . x, has to be a,, 
i.e., x, = a,. (This follows^from (4): the difference between U and 
Q(a,, i) is not more than P(a,,  i)). 

It remains to show how to “quickly” find m that satisfies (12) 
using the set of { D y (  j ) }  values. First, the inequality U _i 2 Df(1) 
is verified. If this inequality holds, then m 5 L / 2 .  Otherwise, 
m 5 L / 2 .  Then, for m 5 L / 2 ,  the inequality U < 2(Df(l)  + 
Df-’(3) is verified, and, for m > L / 2 ,  the sum D,!(l) + D;-l(3) 
is calculated and the inequality U < 2(D!(1) + Df-’(3)) is verified. 
This verification makes clear which of the four intervals -(O, 
L / 4 ] ,  ( L / 4 ,  L / 2 ] ,  ( L / 2 ,  3 / 4 L ] ,  (3 /4L ,  L ]  - U belongs to. 

Proceeding similarly, we can see that in one steps a number, m 
will be found that satisfies (13). During each step, one comparison 
is performed and maybe one or two summations of numbers. Each 
of these numbers does not exceed 2‘+,+’ and so the total number of 
operations with one-bit words is proportional to /(/ + r ) .  After that, 
the decoder defines the codeword w(x,/xl . . *  x , - , ) ,  the same 
way as in encoding. Then, it becomes clear which characters in 
ulu2 . . U/+,+ constitute w( xi / X I  . . . x i -  and which belong 
to ~ ( X ~ + ~ / X ~  . . .  x,) . . .  w ( x , / x ,  . . .  x , - ~ ) .  The procedure 
for computing U according to (12) requires ( I  + r + 1) one-bit 
operations. Thus, the total decoding time is proportional to / ( I  + r ) .  

For illustration, return to the previous example and consider the 
decoding of symbol xIo in the word a6 a6 a6 a, a6 a6 a6 a6 a6 a6 . . . . 
The decoder reads out / + r + 1 = 5 bits of the word w(x , , / x ,  
. .. x , ) w ( x , ,  / X I  . .. xIo) . in order to decode xIo. It was 
shown previously, that w ( x l 0 / x I  . . * x,) = 10, therefore, those 
bits that are read out we denote as 10 VI V2 V, where VI V, V3 are 
arbitrary binary characters. Then, U is computed (see (12)) as 

U = 23+1 . 1 + 2 3 .  o + 2 2 .  v, + 21 . v2 + 2 0 .  v,. 
Obviously, for any V,V2V3, 16 I U I 23. Further, U and 2D:,(1) 
= 2 . 4 = 8 are compared. Since U > 8 ,  then rn satisfies 4 < m I 
8. Further, 2(D;0(1) + 0:,(3)) = 2(4 + 9) = 26 is computed. 
Since U < 26, then 4 < m 5 6. After that, 2(D;0(1) + Dfo(5)) = 

2(4 + 1) = 10 is computed. Since U > 10, then 5 < m I 6 ,  i.e., 
m = 6, and, consequently, xIo = a6. 

An estimate of the storage capacity required for computer imple- 
mentation of the encoder and decoder is now provided. In both 
cases, when handling a symbol x , ,  we need to store w symbols 

necessary to store numbers { D y ( j ) ;  m = 1; * ., I ;  j = 
1, . . . ,21- , + I  } ( 2 L  - 2 numbers in total), each being stated as a 
word of (1 + r + 1) bits. Thus, w . I + 2L(I  + r )  bits are needed 
for the storage of these numbers. From this and (2) ,  it follows that 
total storage capacity is proportional to 2‘L * / bits. So the follow- 
ing statement can be formulated concerning the complexity of a 
frequency code. 

Statement: Let A = { a l ; .  ., a,,], n r 2,  be an alphabet, 
xIx2 . . .  x , e A N ,  N r  1, and suppose that the word x ,  . . .  xN 

X ~ - ~ X , - , , , + ~  . . .  x i - l ,  each requiring 1 bits for recording. It is 

is encoded by the frequency code having the window of length 
w = (2‘ - 1)21‘08 ’1 where r is an integer. Then, the maximum 
encoding and decoding time of a symbol does not exceed c . log n 
(log n + r ) ,  where c is a constant. The storage capacity require- 
ment of the encoder and decoder does not exceed 2‘n . log n. 

111. THE REDUNDANCY OF THE FREQUENCY CODE 
Let x = x I x z  . * . x,  be a word in the alphabet A and let ‘p be 

an on-line code. Let 
N 

C ( P ,  x) = N-’ c I P(x;/xIx* . . .  x i - ! )  I 
i =  I 

be the cost of using code ‘p to encode the word x. (Here, 1 y 1 
represents the length of a word U). Let p be a probability measure 
on the alphabet A .  The average cost of cp with respect to p ,  is 
defined by the equality 

C(P,P) = lim N-‘ c P(U)C(P,U), 
N-rm U E A ~  

were A N  is the set of words of length N in the alphabet A ,  and 
p( x, x2 . . ’ x,) = p( xl)p( x2) . . p( xN). Denote as C( p )  the cost 
(average codeword length) of Huffman code constructed for the 
alphabet A with probability distribution p. Define 

7 ( ‘ p , P )  = ?(P,P) - q p ) ,  q ‘ p )  = SUPT.(P,P), 

where the supremum is taken over all Bernoulli sources. 
The next theorem characterizes the properties of the code w.  

Theorem: Let A = { a , ; .  * ,  a,) be an alphabet and w the 
frequency code having the window (2‘ - 1)2[lognJ. For any 
Bernoulli source generating symbols from A ,  the redundancy does 
not exceed 2 + log e/(2‘ - 1): 

Z(w) < 2 + log e/(2‘ - I ) .  

The proof is provided in [17]. The analogous result is also correct 
for redundancy defined for individual sequences ([ 171). 
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The T4 and G4 Constructions for Costas Arrays 

Solomon W. Golomb 

Abstract-Two of the algebraic constructions for Costas arrays, des- 
ignated as T4 and C,, are described in detail, and necessary and 
sufficient conditions are given for the sizes of Costas arrays for which 
these constructions occur. These constructions depend on the existence 
of primitive roots satisfying certain equations in finite fields. 

Index Terms-Costas arrays, primitive roots, Lempel’s construction. 

In [l], a number of systematic algebraic constructions for Costas 
Arrays are described. The validity of several of these constructions 
is proved in [2]. However, two of the algebraic constructions, 
designated T, and G4 in [l], are not discussed in [2]. The present 
note proves the assertions made in [ I ]  concerning these two con- 
structions, and furnishes some additional algebraic information. 

We briefly review a few of the definitions from 111 and 121. 
Definition I :  A Costas array of order n is an n x n permuta- 

tion matrix with the property that the vectors connecting two 
1’s of the matrix are all distinct as vectors. (That is, no two vectors 
are equal in both magnitude and slope). 

Specifically, if we have four distinct entries a,lJl  = a,,,* = a,,,3 

( i ,  - i 3 ,  j 4  - j 3 ) ,  nor may we have ( i ,  - i , ,  j ,  - j , )  = ( i3  - 

Definition 2: If n = q - 2, where q = pk is the size of a finite 
field, then the Lempel construction L, for a Costas array of order 
n sets a,, = 1 iff a’ + aJ = 1, 1 i i ,  j 5 q - 2, where a is any 
fixed primitive root in GF(q). (Note that the Lempel construction 
gives a symmetric permutation matrix with the Costas property.) 

Definition 3: The T4 construction occurs for GF(q) iff there is a 
primitive element a in GF(q) with a + a2 = 1. 

(3 
- - a,4J4 = .1 in the matrix, we must not have ( i ,  - i , ,  j ,  - j , )  = 

i 2 ,  j 3  - j , ) .  
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H. Taylor’s T, construction leads to a Costas Array of order 
n = q - 4. Specifically, from the Lempel construction L, ,  using 
the primitive root a which satisfies a + a’ = 1 in GF(q), we have 
both a’ + a2 = 1 and a’ + a’ = 1. Thus both a,’ = 1 and a,, = 
1 in the L, construction of order q - 2. Removing the two topmost 
rows and the two leftmost columns from the L, array leaves a 
Costas array of order q - 4, which is the 

Theorem I :  A necessary condition for the T, construction is that 
q is 4, or 5, or 9, or a prime p with p = k 1 (mod 10). 

Proof: We are asking for a field GF(q) in which the equation 
x2 + x - 1 has roots, and in which at least one of these roots is 
primitive in GF(q). 

Over GF(2), x2 f x - 1 is irreducible, but generates GF(4). In 
no other field of characteristic 2 will a root of x2 + x - 1 be 
primitive, since these roots have only primitivity 3 .  

Over GF(3), x2 4 x - 1 is irreducible, but generates GF(9). In 
no other field of characteristic 3 will a root of x2 + x - 1 be 
primitive, since these roots have only primitivity 8. 

For p > 5, the roots of x2 + x - 1 = 0 are given by the 
quadratic formula as ( -  1 k 6 ) / 2  = (-  1 f 6 ) ( ( p  + 1)/2) 
(mod p ) ,  which lie in GF( p )  iff 5 is a quadratic residue modulo p ,  
and in GF(p2)  otherwise. Now, 5 is a quadratic residue modulo 
p > 5 iff p = f 1 (mod IO), from the law of quadratic reciprocity: 

array. 

iff a = f 1 (mod 5);  
and since p is odd, this becomes p = k 1 (mod IO). Thus, only 
primes with unit digit 1 or 9 are candidates for the T, construction, 
and the construction occurs iff at least one root of x2 + x - 1 is 
primitive in GF(p).  (It is possible for neither root, exactly one root, 
or both roots, to be primitive, depending on p.)  

If 5 is a quadratic nonresidue modulo p > 5, then the roots of 
x2 + x - 1 lie in GF(p2)  but not in GF(p).  However, they cannot 
be primitive in GF(p2) ,  because a necessary condition for x2 + x 
+ g to have primitive roots in GF( p 2 )  is that g be primitive in 
GF( p) ,  and the only prime fields in which g = - 1 is primitive are 
GF(2) and GF(3). 

Finally, for p = 5, a = 2 is a root of x2 + x - 1 (mod 5), and 
the T4 construction occurs in this case. (Here, in effect, 6 = 0, 

0 

The following generalization G, of Lempel’s construction is due to 
Golomb [2]. 

Definition 4: Let a and fi  be any two primitive roots in GF(q). 
Then G, is the Costas array of order n = q - 2 for which a,, = 1 
iff a ’ + P J =  1. 

Moreno et al. [3] have proved Golomb’s Conjecture A in [2], 
which asserts: Every finite field GF(q) with q > 2 contains two 
primitive roots a and fi  (not necessarily distinct) with a + fi  = 1. 
This leads to the following definition. 

Definition 5: For every q = pk > 3, the G, construction for a 
Costas array of order n = q - 3 is obtained from the G, construc- 
tion using a and f i  with a + fi  = 1 (which has a, ,  = 1, since 
a’ + 0’ = l), by removing the topmost row and the leftmost 
column. 

Definition 6: The G4 construction occurs for GF(q) iff there 
are two primitive elements, a and 0, in GF(q) with a + fi  = 1 and 

If both a + fi  = 1 and a’ + f i - ’  = 1, the G, construction for a 
Costas array of order n = q - 2 has a , ,  = 1 (from a’ + 0’ = 1) 

and x 2  + x - 1 = (x - 2)( x - 2) has a repeated root.) 

a2 + 0-1 = 1 .  
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