
1400 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

TABLE VI
COMPUTER RESULTS

Number of Number of
Inequivalent Extrema1

n r Codes Codes

28
28
32
32
36
36
40
40

7
13
5
7

11
17
13
19

31
5

310
18
6
13
165
31

14
5

239
16
0
1
4
11

p’3 = - P O , yo = 0212011222020, yl = 0012102211101, y2

= 2002120112220, y 4 = 2020021201122, y5 =
1101001210221 , y Z 2 = 0 1 1 2 2 2 0 2 0 0 2 1 2 , 6 0 =
0020222110212 , 8 1 1 = 2100101112201 , 61Z =
2002022211021, 613 = -60 , 616 = 0222110212002, 6 l7 =
1112201210010, and 6’’ = 0212002022211.
r = j 9 , c = f = 2; F= C(u) @ E,(u) where gen C (u)

= 1; :I and gen El(a)* ~ = [a O p i] with a’ =

0222222222222222222 and u9841. There are 1 1 ineauivalent
codes for the values i = 1, 5; 19, 29, 49, 59, 65, 83, $7, 173,
and 259. Here pLI = 0201020101101001020, p5 =
0012112110101100120, PI9 = 0210211010122020210, J’ =
2021201211222012021, up’ = 2120021222101100010, p” =
2212100022021121212, yp’ = 1211001220010221002, p*’ =
0001202120121201102, p’’ = 1210221102001112112, $73

= 2 1 1 2 1 2 0 2 2 2 2 1 1 0 0 2 0 2 1 , a n d p 2 5 9 =
0220020022220202000.

IV. CONCLUSION

We conclude with a few remarks. First, the case r = 5 when
n = 40 (case g) of Theorem 3) was not done. In that case, C(o)@ is
E4 @ E4 where E4 is the [4,2,3] tetracode (see [12]); but the
number of possible codes for El(a)* is extremely large. However,
5 ! 1 G*(C(a)@) n Y8,0 I in that case as well, and hence, the
techniques of Section I1 on equivalence can be applied. Second, the
equivalence or inequivalence of two extremal codes of length n
constructed from two different values of r is still an open problem.
Because the general question of when two codes are equivalent is so
difficult, the power of results such as Theorem 2 becomes clear
when by computer, it was relatively easy and quick to decide that
the 239 [32, 16,9] codes with r = 5 are inequivalent. Third, the
author was very surprised that the number of extremal codes found
was so large. Also the high percentage of codes examined that
turned out to be extremal was a surprise. This is illustrated by Table
VI. In this table, “Number of inequivalent codes” refers to the
number of equivalence classes of codes that were examined by
computer; here the equivalence classes were those determined as if
Theorem 2 held. We checked the general forms that were given in
Theorems 4-7. A similar table appears in [5] for quaternary codes,
and we see by comparing these two tables that the percentage of
extremal codes in the ternary case is much higher. Codes of length
40, with r = 5, and 44, with r >- 5, might be interesting to examine
if it becomes computationally feasible. Fourth, one might ask if the
Pless symmetry code of length 36 is the unique extremal code of
that length. Finally, the programming required for this paper was
done on an AT & T 6300 in Pascal.

REFERENCES
J. H. Conway, V. Pless, and N. J. A. Sloane, “Self-dual codes over
GF(3) and GF(4) of length not exceeding 16,” IEEE Trans. Inform.
Theory, vol. IT-25, pp. 312-322, 1979.
J. H. Conway and V. Pless, “On primes dividing the group order of a
doubly-even (72,36, 16) code and the group order of a quaternary
(24, 12, 10) code,” DiscreteMath., vol. 38, pp. 143-156, 1982.
- , “Monomials of orders 7 and 11 cannot be in the group of
a (24, 12, 10) self-dual quaternary code,” IEEE Trans. Inform.
Theory, vol. IT-29, pp. 137-140, Jan. 1983.
W . C. Huffman, “On the [24,12,10] quaternary code and binary
codes with an automorphism having two cycles,” IEEE Trans.
Inform. Theory, vol. 34, pp. 486-493, May 1988.
-, “On extremal self-dual quaternary codes of lengths 18 to 28,
I ,” IEEE Trans. Inform. Theory, vol. 36, pp. 651-660, May
1990.
- , “On extremal self-dual quaternary codes of lengths 18 to 28,
11,“ IEEE Trans. Inform. Theory, vol. 37, pp. 1206-1216, July
1991.
- , “On the equivalence of codes and codes with an automorphism
having two cycles,” Discrete Math., vol. 83, 265-283, 1990.
N. Ito, J. S. Leon, and J. Q. Longyear, “Classification of 3-(24,12,5)
designs and 24-dimensional Hadamard matrices, ” J . Combinat.
Theory A , vol. 31, pp. 66-93, 1981.
C. W. H. Lam and V. Pless, “There is no (24, 12, 10) self-dual
quaternary code,” IEEE Trans. Inform. Theory, vol. 36, pp.
1153- 1156, Sept. 1990.
J . S. Leon, V. Pless, and N. J. A. Sloane, “On ternary self-dual
codes of length 24,” IEEE Trans. Inform. Theory, vol. IT-27, pp.
176-180, 1981.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error
Correcting Codes. Amsterdam: North-Holland, 1977.
C. L. Mallows, V. Pless, and N. J. A. Sloane, “Self-dual codes over

V. Pless. “Symmetry codes over GF(3) and new five-designs,’’ J .
Combinat. Theory, vol. 12, pp. 119-142, 1972.
V . Pless, N. I. A. Sloane, and H. N. Ward, “Ternary codes of
minimum weight 6 and the classification of the self-dual codes of
length 20,” IEEE Trans. Inform. Theory, vol. IT-26, pp. 305-316,
1980.
V. Pless, Introduction to the Theory of Error-correcting Codes,
second ed.
V. Y. Yorgov, “A method for constructing inequivalent self-dual
codes with applications to length 56,” IEEE Trans. Inform. The-
ory, vol. IT-33, pp. 77-82, Jan. 1987.

GF(3),” SIAM J . Appl. Math., vol. 31, pp. 649-666, 1976.

New York: John Wiley, 1989.

A Fast On-Line Adaptive Code

Boris Ya. Ryabko

Abstract-There are two classes of data compression algorithms. One
class has redundancy log log n + 0(1), where n is the alphabet size, and
an encoding time O(log2n), n + 00. The other has redundancy O(1) and
an encoding time O(n). A code is presented combining advantages of
both classes of compression methods: its redundancy is O(1) and the
encoding and decoding time is O(log2 n) per letter, which is close to the
lower bound O(1og n).

Index Terms-On-line adaptive coding, Huffman code, encoding,
book-stack method.

INTRODUCTION

The first adaptive on-line code was apparently proposed in 1980
[14], and then rediscovered in the papers of Bentley, Sleater, Tarjan

Manuscript received January 17, 1990.
The author is with Applied Mathematics and Cybernetics, Novosibirsk

Institute of Communication, Kirov Street 86, Novosikizsk-125, Russian
Federation.

IEEE Log Number 9108027.

0018-9448/92$03.00 0 1992 IEEE

IEEE TRANSACTIONS ON lNFORMATION THEORY, VOL. 38, NO. 4, JULY 1992 1401

and Wei [2] in 1986, and Elias [3] in 1987; see also [15]. (In all
these papers, this code [3] is named differently: e.g. “book stack”
in [14], “move-to-front scheme” in [2] , and “recency rank coding”
in [3]). In [4], Gallager proposed an efficient adaptive on-line
scheme of Huffman coding, which was later modified by Knuth [7].
On-line coding methods deal with the problem of encoding arbitrary
words x1 x2 * . . x N 2 1 , in a finite alphabet A = {a , , . * . , a,),
n 2 2. The code of a symbol x i , 1 I i I N , in on-line coding may
depend on x, . . * x i - I but should be independent of xi+ I . . . x N .
The code efficiency is estimated, first by the degree of compression,
second by the encoding and decoding time per letter, and third by
the storage capacity of the encoder and decoder (when they are
implemented by a computer). We will estimate the degree of
compression of a code by the redundancy, defined as the difference
between the mean codewords length in given code and the mean
codeword length in a Huffman code based on the presented frequen-
cies of letters. The storage capacity of the encoder and decoder will
be evaluated in bits. The encoding time will be evaluated by the
maximum number of operations with one bit words used for encod-
ing and decoding of a symbol, the maximum being taken over all
symbols in all possible words of the alphabet A. Formally, the
encoder and decoder could be considered as implemented on a RAM
computer [l] that is the model of a “conventional” computer. The
main objective will be to determine efficiency estimates asymptotic
in n, the number of symbols in the alphabet. Since n is quite large
(2’ - 232) for the file compression on computers.

There are several characteristics of known on-line codes. Gal-
lager’s [4] and Knuth’s [7] adaptive Huffman code has been im-
proved by a number of authors. Vitter [20] found the optimal
adaptive Huffman code, and Jones [l 11 proposed a data structure to
reduce the encoding and decoding time. The redundancy of an
adaptive Huffman code does not exceed a constant, independent of
the alphabet size, n and the maximum encoding and decoding time
is O(n). Therefore, for P(a) = 2 - ” , the codeword length for the
symbol a will be equal to n bits, and the encoding and decoding
time, thus equal to O(n) (because it is necessary to scan a codeword
both while encoding and decoding). Looking ahead, we note that
reduction of the maximum encoding and decoding time is only
possible when using a code having a maximum codeword length that
does not much exceed log n.

For the “book stack” method, the redundancy, when the number
of symbols, n, in the alphabet is large, equals log log n + O(1). In
[2], a simple implementation of “book stack” is proposed when the
maximum time of encoding and decoding is O(log n). Note that this
value is fairly close to the obvious lower bound, O(log n). Elias [3]
also proposed interval encoding. It has the same asymptotic charac-
teristics as “book stack” encoding (see Table I).

For file compression, an arithmetic code proposed and studied in
[12], [13], [22] is very popular. However, in both arithmetic and
adaptive Huffman codes, the codeword length of rarely occurring
symbols can achieve n + 0(1) bits. Hence, the maximum time for
encoding a symbol is proportional to n. Starkov [18] offered ‘a
generalized code’ having the characteristics listed in Table I.

The storage capacity of the encoder and decoder for all the codes
mentioned is asymptotically equal to O(n log n) bits (for n + w).

Some have relatively large redundancy, log log n + 0(1), and
asymptotically small time required for encoding and decoding,
O(Iog2 n),

Others, alternatively, have a redundancy that is asymptotically
minimal, O(l) , but longer encoding/decoding time, O(n).

The code presented in this correspondence is called a frequency
code in which both the redundancy and time of encoding and
decoding a symbol are small. Its characteristics are listed in the last

line of Table I. The memory storage requirement of this code is
asymptotically the same as for the other codes discussed above. The
construction of the frequency-code is based on alphabetic Gilbert-
Moore code [6] and on the results of Krichevsky [8], [9].

Besides the forementioned codes for file compression, there are
other methods that are not symbol-to-word. First, there are methods
based on the Ziv-Lempel scheme [23] that are considered in detail
in [19]. Second, there are the universal coding methods reviewed in
[lo] , as well as observation-based coding methods [5], [8], [9] that
are conceptually similar to Willems code [21] combining both
observation-based coding concepts and interval encoding. These
methods are not considered in the present correspondence, since
they are applied to the coding of blocks and require the storage
capacity of the encoder and decoder to be significantly greater than
for symbol-to-word coding.

The main results of the correspondence have been announced in
[161.

11. FREQUENCY CODE

First, we present a brief informal definition. A frequency code,
sometimes denoted as U , is designed for coding words x1 x2 . . xN
of alphabet A = {a , , . . . , a,}. Prior to coding a symbol x i , 1 5 i
I N , the occurrence rate of all symbols of the alphabet A is
counted in the “window” of length w, i.e., in the word

frequencies found, the code is then constructed as an approximation
to the alphabetic Gilbert-Moore code [6], and x i is encoded by this
code. When decoding, the same operations are repeated. The main
problem is associated with performing the encoding and decoding
operations in the time O(log2 n).

x,- ,x,- ,,,+ I . . . x,- , , where w is a parameter. According to the

Let

(1)

During the coding according to method w, we will consider only the
window of length w for

w = (2‘ - 1) L , (2)

where r is an integer. For a description of U , it is convenient to
extend a word xlxz . . . xN by w symbols to the left as . . .
a,a,a, . . . a,a2alanan- , . . . u 2 a l x , x 2 . . + xN. The word ob-
tained will be expressed as x-,+,x~,+~ . . . x - ~ x - , x ~ x , x ~
. . . x N . (This allows introduction of the window for encoding the
first symbols xI x,,. . . , thus, simplifying our description.) For
each symbol a E A and 1 5 i 5 N, let P(a , i) be the number of
occurrences of a in the word x,_ ,x,_ ,+ I . . x,_ I . Define P , as

f o r j = n + l ; . . , L

(3)

1 is given in (l) , r is a parameter related to the window length, see
(2). Symbol x, encoded by a binary word that consists of the first
m (x j , i) symbols from the binary expansion of Q (x i , i). Thus, the

1402 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

TABLE I
CHARACTERISTICS OF KNOWN ADAPTIVE ON-LINE CODES*

Time of Encoding
and Decoding

N Code Redundancy a Symbol

1 Book Stack [2], [3], [14] log log n + O(1) O(logz n)
2 Adaptive Huffman Code O(1) O(n)

VI, [71,[201, [I 11
3 Interval Code [3] log log n + O(1) O(log* n)
4 Arithmetic Code O(1) O(n)

5 Generalized Shannon Code O(1) O(n log n)

6 Frequency Code O(1) O(log2 n)

* n is the number of symbols in the alphabet, n --t 03.

1121, [W, t221

1181

length of a frequency code codeword satisfies the equality

1 o (x i / x I . - . x i -]) 1 = m (x , , i) .

Note, that this code is the same as the alphabetic Gilbert-Moore
code [6] made for the alphabet A = {a , ; . ., a,} with the set of
probabilities (P (a j , i) + 1)/(2'L), j = l ; . . , n. (From the defi-
nition of P (a j , i) and (2) , it follows that the sum of these
probabilities is equal to 1 .) The alphabetic code is decipherable. The
main objective is to achieve the fast execution of encoding and
decoding.

To begin with, we will describe the encoding. When encoding a
symbol x i from a word x l x z e . . x ~ E A * , it is necessary 1) to
calculate the Q (x , i) ' s that are given in (4) in order to form the
codeword based on them, and 2) alter the frequencies P(a , i + l),
a E A , because of the window shift, according to the formulae:

F (x i , i + 1) = F (x i , i) + I ,

i + 1) = F (x ~ - ~ , i) - 1 ,

F (u , i + 1) = @ (U , i), for a # X i , U # x i & L .

(5)
1
To perform these operations quickly, a computer memory has to
store (2 L - 1) numbers defined by the equalities:

~ ! (j) = F (a , , i) ; j = I ; . . , L ; i = I , . . . " (6)

(for j = n + l ; . . , L, defined @(a,, i> = l), and

D T + ' (j) = ~ l (2 j - 1) + ~ y (2 j) ; j = 1 ; . . , 2 ' - ~ + '

m = l ; . . , I - 1 .

(7)

We now show how to compute C L = , P(u,, i) , for any k =

i = 1,. * . , N , in O(log2 n) operations with bits. Let the binary
expansion of k be

l ; . . , n, using a set D y (j) ; m = I; . . , 1; j = l ; . . , 2 / - m + l .

k = ~ , 2 ' - ' + r l - 1 2 / - 2 + . . . +7,2 ' , (8)

w h e r e ~ , = O o r l f o r s = 1,2; . . ,1 .Define

I -m

> 1. (9) t , = c 7 , - , 2 / - m - s , m = 1 , . . .
s=n

Then, the following equality follows from (6)-(9),

k 1 c +,, i) = c T,Di"(t,) 1 (10)
m= 1 s= 1

The right sum in (IO) consists of no more than 1 components, for
any 1 5 k 5 n - 1. That allows us to simplify essentially the
computation of the sum in (4). Thus, using the set { D, (j) } , we are
able to form a codeword, according to (4), with no more than one
summation of numbers that do not exceed w + L each. (This
follows from the fact that C:= P(a,, i) = w.) From (3), it follows
that P(a,, i) = w + L. Since w + L = 2'L (see (2)) , then to
form a codeword according to (4), it is necessary to sum no more
than one number that does not exceed 2'1. Hence, no more than
/ (r + I) operations with one-bit words are required. To form t ,
according to (9), we need I operations for i = 1, 2; .., I, i.e., no
more than /* operations with one-bit words. In addition to forming
a codeword by (4), it is necessary to alter the frequencies P (a , i)
according to (5) and, respectively, alter the sets { D y (j)) , in (6) ,
(7). So, we need to alter two numbers from the set D] (j) ; j =
1, . . . , L (add 1 to one number and subtract 1 from other), then two
numbers from D:(j); j = 1;. ., L / 2 , up to D ; - ' (j) ; j = 1,
2 , So 2 (/ - 2) summation operations and, hence no more than
2 / (/ + r) operations with one-bit words are required. Thus, the
total number of operations for the encoding of a single symbol is
proportional to /(/ + r) .

Before the description of the decoding, consider an example.
Assuming A = { a l , a 2 ; . ., a s } , we want to encode the word
x I x 2 x I o = a6a6a6a7a6a6a6a6a6a6. Here, L = 8, / = 3. As-
sume the window length w = 8, i.e., w = L , r = 1, see (2) .
Consider the coding of symbol x,,,. There are one U, and seven a6
inthewindow, so P(a , , 10) = P (a 2 , IO) = = P(a,, 10) = 0,
P(a7 , IO) = I , P(a6, IO) = 7 , P(a,, 10) = 0. According tp (3)
and (6)? (7) , we have_P(a , , 10) = P i u 2 , 10) = . . . = P(a,,
IO) = P(a,, 10) = 1 ; P(a,, 10) = 8, P(a,, 10) = 2 ; Di,,(l) =

D:,,(I) 0:,(2) = 2; ~ : 0 (3) = 9; 0:,(4) = 3; D;,,(I) = 4;
Din(2) = . . . = D1,,(5) = Dt,(8) = 1, Di0(6) = 8, Di,,(7) = 2;

D:,(2) = 12. To form the codeword of symbol x I o . we need to find
Q(a6, lo), see (4), which, in turn, requires computing

I P(a,, 10). From (lo),

5 3

C P (a m , 10) = tsD:n(t,). (11)
m = 1 s= 1

For k = 5, (8) and (9) yield r 3 = 1, r2 = 0, T , = 1,

t , = r,22 + T 2 2 1 + T 1 2 0 = 5 , t , = T 3 2 1 + r220 = 2 ,

t , = T 3 2 0 = 1 .

From this and (1 I) , we obtain

5

1 F (a m , 10) = 1 . D&(5) + 0 . Df,,(2)
m = 1

+ l ' D : o (1) = 1 . 1 + 1 . 4 = 5 .

Then, using one multiplication by 2 and one addition operation, we
have

~ (a ~ , io) = 2 5 + 8 = 1 8 = 1 . 2 4

+ 0 . 2 3 + 0 . 2 2 + 1 . 2 1 + 0 . 2 0

m(a , , 10) = 1 + 1 + 3 - [log F (U 6 , 1o)l = 2 .

Consequently, w (a , / x , . * . x,) = 10. (Here, IO is binary num-
ber.)

Now we shall describe the decoding procedure. Assume that
x l x 2 x N was encoded using the frequency code as
w (x ,) w (x , / x ,) . . . o (x N / x I . . . x N - ,) , the symbols
x I ; . ., xt.' being already decoded based on the prefix w (x ,) . ..

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992 1403

o (x i - l / x l x i - 2) , and it is necessary to decode x i , i = 1,
2,. * a , N . Both in encoding and decoding, the values of { Dm(j) ;

= 1 ;.. 1; j = 1)..., 2/-,+l } are formed. In order to find xi,
the decoder reads out / + r + 1 symbols of the word w(x i /XI . . .
x i - l) w (x , / x , x,-~). These binary characters can be
denoted as ulu2 . . . u , + , + ~ . Using them, the following number is
formed

U = 2(+’Ul + 2/+‘-’u, + . . * +20u/+,+,.

2 c q a , , ‘) 5 U < 2 c q a ; . i).

(12)

(13)

After that, a number m is found, such that
m- 1 m

j = I ;= 1

Then the ith symbol in the encoded word x1 . . . x, has to be a,,
i.e., x, = a,. (This follows^from (4): the difference between U and
Q(a,, i) is not more than P(a,, i)).

It remains to show how to “quickly” find m that satisfies (12)
using the set of { D y (j) } values. First, the inequality U _i 2 Df(1)
is verified. If this inequality holds, then m 5 L / 2 . Otherwise,
m 5 L / 2 . Then, for m 5 L / 2 , the inequality U < 2(Df(l) +
Df-’(3) is verified, and, for m > L / 2 , the sum D,!(l) + D;-l(3)
is calculated and the inequality U < 2(D!(1) + Df-’(3)) is verified.
This verification makes clear which of the four intervals -(O,
L / 4] , (L / 4 , L / 2] , (L / 2 , 3 / 4 L] , (3 /4L , L] - U belongs to.

Proceeding similarly, we can see that in one steps a number, m
will be found that satisfies (13). During each step, one comparison
is performed and maybe one or two summations of numbers. Each
of these numbers does not exceed 2‘+,+’ and so the total number of
operations with one-bit words is proportional to /(/ + r) . After that,
the decoder defines the codeword w(x,/xl . . * x , - ,) , the same
way as in encoding. Then, it becomes clear which characters in
ulu2 . . U/+,+ constitute w(xi / X I . . . x i - and which belong
to ~ (X ~ + ~ / X ~ . . . x,) . . . w (x , / x , . . . x , - ~) . The procedure
for computing U according to (12) requires (I + r + 1) one-bit
operations. Thus, the total decoding time is proportional to / (I + r) .

For illustration, return to the previous example and consider the
decoding of symbol xIo in the word a6 a6 a6 a, a6 a6 a6 a6 a6 a6
The decoder reads out / + r + 1 = 5 bits of the word w(x , , / x ,
. .. x ,) w (x , , / X I . .. xIo) . in order to decode xIo. It was
shown previously, that w (x l 0 / x I . . * x,) = 10, therefore, those
bits that are read out we denote as 10 VI V2 V, where VI V, V3 are
arbitrary binary characters. Then, U is computed (see (12)) as

U = 23+1 . 1 + 2 3 . o + 2 2 . v, + 21 . v2 + 2 0 . v,.
Obviously, for any V,V2V3, 16 I U I 23. Further, U and 2D:,(1)
= 2 . 4 = 8 are compared. Since U > 8 , then rn satisfies 4 < m I
8. Further, 2(D;0(1) + 0:,(3)) = 2(4 + 9) = 26 is computed.
Since U < 26, then 4 < m 5 6. After that, 2(D;0(1) + Dfo(5)) =

2(4 + 1) = 10 is computed. Since U > 10, then 5 < m I 6 , i.e.,
m = 6, and, consequently, xIo = a6.

An estimate of the storage capacity required for computer imple-
mentation of the encoder and decoder is now provided. In both
cases, when handling a symbol x , , we need to store w symbols

necessary to store numbers { D y (j) ; m = 1; * ., I ; j =
1, . . . ,21- , + I } (2 L - 2 numbers in total), each being stated as a
word of (1 + r + 1) bits. Thus, w . I + 2L(I + r) bits are needed
for the storage of these numbers. From this and (2) , it follows that
total storage capacity is proportional to 2‘L * / bits. So the follow-
ing statement can be formulated concerning the complexity of a
frequency code.

Statement: Let A = { a l ; . ., a,,], n r 2, be an alphabet,
xIx2 . . . x , e A N , N r 1, and suppose that the word x , . . . xN

X ~ - ~ X , - , , , + ~ . . . x i - l , each requiring 1 bits for recording. It is

is encoded by the frequency code having the window of length
w = (2‘ - 1)21‘08 ’1 where r is an integer. Then, the maximum
encoding and decoding time of a symbol does not exceed c . log n
(log n + r) , where c is a constant. The storage capacity require-
ment of the encoder and decoder does not exceed 2‘n . log n.

111. THE REDUNDANCY OF THE FREQUENCY CODE
Let x = x I x z . * . x, be a word in the alphabet A and let ‘p be

an on-line code. Let
N

C (P , x) = N-’ c I P(x;/xIx* . . . x i - !) I
i = I

be the cost of using code ‘p to encode the word x. (Here, 1 y 1
represents the length of a word U). Let p be a probability measure
on the alphabet A . The average cost of cp with respect to p , is
defined by the equality

C(P,P) = lim N-‘ c P(U)C(P,U),
N-rm U E A ~

were A N is the set of words of length N in the alphabet A , and
p(x, x2 . . ’ x,) = p(xl)p(x2) . . p(xN). Denote as C(p) the cost
(average codeword length) of Huffman code constructed for the
alphabet A with probability distribution p. Define

7 (‘ p , P) = ?(P,P) - q p) , q ‘ p) = SUPT.(P,P),

where the supremum is taken over all Bernoulli sources.
The next theorem characterizes the properties of the code w.

Theorem: Let A = { a , ; . * , a,) be an alphabet and w the
frequency code having the window (2‘ - 1)2[lognJ. For any
Bernoulli source generating symbols from A , the redundancy does
not exceed 2 + log e/(2‘ - 1):

Z(w) < 2 + log e/(2‘ - I) .

The proof is provided in [17]. The analogous result is also correct
for redundancy defined for individual sequences ([171).

REFERENCES
A. V. Aho, J . E. Hopkroft, and J . D. Ullman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-Wesley,
1976.
J . L. Bently, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “Locally
adaptive data compression scheme,” Comm. ACM, vol. 29, pp.
320-330, 1986.
Elias P., “Interval and recency rank source coding: Two on-line
adaptive variable-length schemes,” IEEE Trans. Znform. Theory,
vol. IT-33, pp. 3-10, Jan. 1987.
R. G. Gallager, “Variations on theme by Huffman,” IEEE Trans.
Inform. Theory, vol. IT-24, pp, 668-674, Sept. 1978.
E. N. Gilbert, “Coding based on inaccurate source probabilities,”
IEEE Trans. Inform. Theory, vol. IT-17, pp. 304-314, Sept. 1971.
E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,”
Bell Sysf. Tech. J . , vol. 38, pp. 933-967, 1959.
D. E. Knuth, “Dynamic Huffman coding,” J . Algorithms, vol. 6,

R. E. Krichevsky, “The connection between the redundancy and
reliability of information about the source,” Probl. Inform.
Transm., vol. 4, no. 3, pp. 48-57, 1968 (in Russian).
- , “Optimal source-coding based on observation,” Probl. Zn-
form. Transm., vol. 11, no. 1, pp. 37-42, 1975 (in Russian).
R. E. Krichevsky and V. K. Trofimov, “The performance of univer-
sal encoding,” IEEE Trans. Inform. Theory, vol. IT-27, pp.
199-207, Mar. 1981.
D. W. Jones, “Application of splay trees to data compression,”
Comm. ACM, vol. 31, no. 8, pp. 996-1007, 1989.
J . Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J . Res.
Develop., vol. 23, no. 2, pp. 149-162, 1979.
F. Rubin, “Arithmetic stream coding using fixed precision registers,”
IEEE Trans. Inform. Theory, vol. IT-26, pp. 672-675, Nov. 1979.

pp. 163-180, 1985.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

B.Ya. Ryabko, “Data compression by means of a book stack, Probl.
Inform. Transm., vol. 16, no. 4, pp. 16-21, 1980 (in Russian). (In
English: vol. 16, no. 4, pp. 265-269, 1981).
-, “Letter in Commun. ACM, vol. 30, no. 9, pp. 792, 1987.
- , “A fast sequenial code,” Soviet Math. Doklady, vol. 39, no.
3, pp. 533-537, 1989.
-, “The fast on-line adaptive code,” Probl. Inform. Transm. (to
be published, in Russian).
Yu.M. Starkov, “Shannon codes,” Probl. Inform. Transm., vol.
20, no. 9, pp. 3-16, 1984 (in Russian).
J . A. Storer, Data Compression. Method and Theory. New
York: Computer Science Press, 1988.
J. S. Vitter, “Two papers on dynamic Huffman codes,” Techn. Rep.
(395-13. Brown Univ., Dept. Comput. Sci., Providence, RI. Revised
Dec. 1986.
F. M. J. Willems, “Universal data compression and repetition times,”
IEEE Trans. Inform. Theory, vol. 35, pp. 54-58, Jan. 1989.
J. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for
data compression,” Commun. ACM, vol. 30, no. 6, pp. 520-540,
1987.
J . Ziv and A. Lempel, “Compression of individual sequences via
variable rate coding,” IEEE Trans. Inform. Theory, vol. IT-24,
pp. 530-536, Sept. 1978.

The T4 and G4 Constructions for Costas Arrays

Solomon W. Golomb

Abstract-Two of the algebraic constructions for Costas arrays, des-
ignated as T4 and C,, are described in detail, and necessary and
sufficient conditions are given for the sizes of Costas arrays for which
these constructions occur. These constructions depend on the existence
of primitive roots satisfying certain equations in finite fields.

Index Terms-Costas arrays, primitive roots, Lempel’s construction.

In [l], a number of systematic algebraic constructions for Costas
Arrays are described. The validity of several of these constructions
is proved in [2]. However, two of the algebraic constructions,
designated T, and G4 in [l], are not discussed in [2]. The present
note proves the assertions made in [I] concerning these two con-
structions, and furnishes some additional algebraic information.

We briefly review a few of the definitions from 111 and 121.
Definition I : A Costas array of order n is an n x n permuta-

tion matrix with the property that the vectors connecting two
1’s of the matrix are all distinct as vectors. (That is, no two vectors
are equal in both magnitude and slope).

Specifically, if we have four distinct entries a,lJl = a,,,* = a,,,3

(i , - i 3 , j 4 - j 3) , nor may we have (i , - i , , j , - j ,) = (i3 -

Definition 2: If n = q - 2, where q = pk is the size of a finite
field, then the Lempel construction L, for a Costas array of order
n sets a,, = 1 iff a’ + aJ = 1, 1 i i , j 5 q - 2, where a is any
fixed primitive root in GF(q). (Note that the Lempel construction
gives a symmetric permutation matrix with the Costas property.)

Definition 3: The T4 construction occurs for GF(q) iff there is a
primitive element a in GF(q) with a + a2 = 1.

(3
- - a,4J4 = .1 in the matrix, we must not have (i , - i , , j , - j ,) =

i 2 , j 3 - j ,) .

Manuscript received August 29, 1991. This work was supported in part by
the United States Office of Naval Research, under Grant No. N00014-90-J-
1341.

The author is with the Department of Electrical Engineering-Systems,
University of Southern California, University Park, EEB-504a, Los Ange-
les, CA 90089-2565.

IEEE Log Number 9107518.

H. Taylor’s T, construction leads to a Costas Array of order
n = q - 4. Specifically, from the Lempel construction L, , using
the primitive root a which satisfies a + a’ = 1 in GF(q), we have
both a’ + a2 = 1 and a’ + a’ = 1. Thus both a,’ = 1 and a,, =
1 in the L, construction of order q - 2. Removing the two topmost
rows and the two leftmost columns from the L, array leaves a
Costas array of order q - 4, which is the

Theorem I : A necessary condition for the T, construction is that
q is 4, or 5, or 9, or a prime p with p = k 1 (mod 10).

Proof: We are asking for a field GF(q) in which the equation
x2 + x - 1 has roots, and in which at least one of these roots is
primitive in GF(q).

Over GF(2), x2 f x - 1 is irreducible, but generates GF(4). In
no other field of characteristic 2 will a root of x2 + x - 1 be
primitive, since these roots have only primitivity 3 .

Over GF(3), x2 4 x - 1 is irreducible, but generates GF(9). In
no other field of characteristic 3 will a root of x2 + x - 1 be
primitive, since these roots have only primitivity 8.

For p > 5, the roots of x2 + x - 1 = 0 are given by the
quadratic formula as (- 1 k 6) / 2 = (- 1 f 6) ((p + 1)/2)
(mod p) , which lie in GF(p) iff 5 is a quadratic residue modulo p ,
and in GF(p2) otherwise. Now, 5 is a quadratic residue modulo
p > 5 iff p = f 1 (mod IO), from the law of quadratic reciprocity:

array.

iff a = f 1 (mod 5);
and since p is odd, this becomes p = k 1 (mod IO). Thus, only
primes with unit digit 1 or 9 are candidates for the T, construction,
and the construction occurs iff at least one root of x2 + x - 1 is
primitive in GF(p). (It is possible for neither root, exactly one root,
or both roots, to be primitive, depending on p.)

If 5 is a quadratic nonresidue modulo p > 5, then the roots of
x2 + x - 1 lie in GF(p2) but not in GF(p). However, they cannot
be primitive in GF(p2) , because a necessary condition for x2 + x
+ g to have primitive roots in GF(p 2) is that g be primitive in
GF(p) , and the only prime fields in which g = - 1 is primitive are
GF(2) and GF(3).

Finally, for p = 5, a = 2 is a root of x2 + x - 1 (mod 5), and
the T4 construction occurs in this case. (Here, in effect, 6 = 0,

0

The following generalization G, of Lempel’s construction is due to
Golomb [2].

Definition 4: Let a and fi be any two primitive roots in GF(q).
Then G, is the Costas array of order n = q - 2 for which a,, = 1
iff a ’ + P J = 1.

Moreno et al. [3] have proved Golomb’s Conjecture A in [2],
which asserts: Every finite field GF(q) with q > 2 contains two
primitive roots a and fi (not necessarily distinct) with a + fi = 1.
This leads to the following definition.

Definition 5: For every q = pk > 3, the G, construction for a
Costas array of order n = q - 3 is obtained from the G, construc-
tion using a and f i with a + fi = 1 (which has a, , = 1, since
a’ + 0’ = l), by removing the topmost row and the leftmost
column.

Definition 6: The G4 construction occurs for GF(q) iff there
are two primitive elements, a and 0, in GF(q) with a + fi = 1 and

If both a + fi = 1 and a’ + f i - ’ = 1, the G, construction for a
Costas array of order n = q - 2 has a , , = 1 (from a’ + 0’ = 1)

and x 2 + x - 1 = (x - 2)(x - 2) has a repeated root.)

a2 + 0-1 = 1 .

0018-9448/92$03.00 O 1992 IEEE

