
M. A. Auslander
D. C. Larkin
A. L. Scherr

The Evolution of the MVS Operating System

The mechanization of computer operations and the extension of hardware functions are seen as the basic purposes of an
operating system. An operating system must fu@U those purposes while providing stability and continuity to its users.
Starting with the data processing environment of twenty-$ve years ago, this paper describes the forces that led to the
development of the OS/360 system design and then traces the evolution which led to today's MVS system.

Introduction
Computer operating systems first began to appear twen-
ty-five years ago. Since then, an operating system disci-
pline, complete with new terminology, new employment
categories, large expenditures for research and develop-
ment, and formal academic training, has evolved.

In this paper we review the evolution of operating
systems in IBM, drawing primarily on our experience
with the Multiple Virtual Storage (MVS) operating sys-
tem [l] and its progenitors OS/360 and OS/370 [2]. [An-
other paper in this issue reviews the development of the
Virtual Machine Facility/370 (VM/370 operating system)
[3].] In the next section of this paper we recall the
environment that prevailed throughout the past quarter
century, showing some of the major changes in technolo-
gy and applications. Then the major areas of operating
system function are discussed in terms of the significant
technological advances made in them. Finally, we consid-
er current trends and likely future directions.

The fundamental purpose of operating systems is to
facilitate the use of computer systems. Functions provid-
ed can be grouped into two categories: (1) automation of
computer operations; and (2) extensions of hardware
function.

The earliest systems automated operations by mecha-
nizing inter-job transitions [4]. Jobs were executed se-
quentially, one at a time. In contemporary systems,
separate jobs often exist simultaneously as interactive

applications, with the attendant complexity of allocating
resources. Modern systems provide automatic resource
allocation and tuning to aid computer administrators in
the scheduling of work and the balancing of resources for
multiple applications.

The extension of hardware functions probably started
with the symbolic assembler [5]. Other examples include
higher level languages, such as FORTRAN, COBOL, BA-
SIC, etc., and assembler macros to perform higher level
arithmetic functions and input/output operations. Over
the years, significant amounts of software have been
produced to raise the level of the interface to hardware so
that application programmers would not have to deal with
such details as timing, hardware geometry, and error
recovery, and could deal instead with macro- rather than
micro-level operations. One aspect of this trend has been
to mask the application programmer from the details of
I/O devices and other hardware elements, so that hard-
ware conversion could be done without requiring changes
in application programs.

Another major source of function has been the move-
ment of facilities common to many applications into the
operating system. The earliest examples of this were the
large card tubs of subroutines (e . g . , square root) that
appeared in many machine rooms in the 1950s. These
functions are first seen in new applications. Later, as they
become more generalized and more popular, they find
their way into the operating system. For instance, the

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. 47

IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 5 0 SEPTEMBER 1981 M. A. AUSLANDER ET AL.

Features

1964

/
/ \

/ \ 1965
/

Batchi
single task 1966

Spooling
Multiprogramming

Multitasking E
1967

I I 1968

Teleprocessing -
Timesharing

Data bases

Virtual storage

Virtual machines

MP(
1969

1970 -i
MFT-11 DOS

1

4
1971

1972

yi 1973 I 1974

1 1975

Figure 1 The evolution of OS/360, where PCP = primary
control program, MFT = multiprogramming with a fixed number
of tasks, MVT = multiprogramming with a variable number of
tasks, TSO = time sharing option, SVS = single virtual storage,
MVS = multiple virtual storage, DOS = disk operating system,
and VM = virtual machine facility.

hierarchical data organization supported by IBM’s IMS-
DLlI program product was invented initially to support
bill-of-materials processing in a manufacturing applica-
tion of the late 1960s. As this support was generalized, it
became clear that its usefulness ranged far beyond the
manufacturing industry, and today DL/I is one of the
most widely used methods for organizing data bases.

The environment: 1956-1 981
To convey the environment in which designers of operat-
ing systems function, we first look at computing as it was
done twenty-five years ago, contrasting it to that of
today. In 1957 the total computer processing power
installed in the U.S. was about ten million instructions
per second. Today’s installed capacity in the U.S. is three
to four orders of magnitude greater. This tremendous
growth of computing power led directly to the need for
and definition of operating systems.

Another way to view the progress made since 1956 is to
look at the size of a software system and how it has
changed over the period. For instance, the FORTRAN

~ 472

M. A. AUSLANDER ET AL.

Monitor System (FMS) and its programming libraries,
widely used on the IBM 704/7090, fit on as little as one
reel of tape. During application program execution, FMS
required only the low 100 memory locations to contain
the programming for job-to-job transition. The size of
FMS itself was about 10 OOO binary cards of program-
ming, approximately one million bytes. This contrasts
with today’s MVS system, which arrives stored on 17
tapes that are the equivalent of 13 million cards, approxi-
mately 520 million bytes.

Over the last twenty-five years, IBM designers and
programmers have created over twenty major, separate
families of general purpose operating systems. The sys-
tems culminating in MVS are shown in Fig. 1 and their
capabilities in Table 1. Generally these have been moti-
vated by unique hardware, but in recent times IBM has
developed different operating systems for the same hard-
ware systems. For instance, on the latest IBM System/
370 computers, there are eight IBM operating systems in
use. These are: Disk Operating System/Virtual Storage
Extended (DOSNSE), Operating SystedVirtual Storage 1
(OS/VSl), OS/VS2 (now called Multiple Virtual Storage
or MVS), VM/370, Airlines Control Program (ACP), and
Time Sharing System/370 (TSS/370), with continued sub-
stantial use of the System/360 Operating Systems, OS/360
and DOS [61.

Even within an operating system, diversity pervades.
At least six different telecommunication access packages
have been offered for OS/360: BTAM, QTAM, TCAM,
RTAM, XTAM, VTAM [7]. In addition, several users
have developed their own.

While we have created a large number of programming
products over the last twenty-five years, only a relatively
small number have faded from existence. An extreme
example of the longevity of these products is that pro-
gramming and hardware shipped as recently as 1980 still
provides the capability to execute programs originally
written to run on the IBM 650 and 1401 computers, first
shipped in 1954 and 1960, respectively. A more meaning-
ful example is that today’s MVS systems must be capable
of executing many of the programs that were written to
run on the 1966 OS/360, Release 1. One of the most
challenging aspects of providing software for IBM users
is the huge investment in application programs for IBM
computers, and one of the primary requirements placed
on any operating system is to continue to provide the
capability to successfully use these programs. Thus,
designers of IBM operating systems have been faced with
the need to provide for extensions of function while at the
same time preserving the ability of existing interfaces to
operate the same way they had in the past.

IBM J. RES. DEVELOP. 0 VOL. 25 NO. 5 0 SEPTEMBER 1981

Table 1 Capabilities of MVS and its predecessors.

Generation Operations

Pre-operating system (early
1950s) with, e.g. , the 701

First generation (late 1950s
and early 1960s) with, e . g . ,
FMS, IBSYS on the IBM 704,
709, and 7094

Second generation (late 1960s)
with, e.g. , OS/360 on System/
360

Manual (e .g . , each job step
required manual intervention)

No multiple-application
environment support

Automatic job batching

Manual device allocation,
setup, work load scheduling

No multiple-application
environment support

Off-line peripheral operations

Multiprogramming

Primitive work load
management

Primitive tuning (device, core
allocation)

Spooling, remote job entry

Operator begins to be driven
by the system

Primitive application
protection

Initial multiprocessing (loosely
and tightly coupled)

Third generation with, e.g. , Integrated multiprocessing
MVS OS/VS on System/370 (loosely and tightly coupled)

Work load management
extensions

More self-tuning, integrated
measurement facilities

Less operator decision
making, fewer manual
operations

Full interapplication
protection, data and program
authorization

Primitive storage hierarchies
for data

Hardware functions

Symbolic assembler

Linking loader

Extensions of function
-

-

-

Higher level languages-
FORTRAN, COBOL

Primitive data access services
with error recovery

More higher level languages-
PLII, ALGOL, APL, BASIC

Device independence in data
access

First random access data
organizations

Primitive software error
recovery, full hardware ERP's

Array of hardware function
extensions

Supervisor call routines

Virtual storage

Device independence
extended

Hardware error recovery
extended to CPU, channels

Operating system functions
begin to migrate to hardware

Application functions
-~ ___-
Subroutine libraries in card
tubs, manual retrieval

"" __.-___

Subroutine libraries on tape,
automatic retrieval

Primitive program overlay
support

_.___-_____-

DASD subroutine libraries

Full facilities for programmed
overlays

Interactive program
development support

Primitive automatic debugging
aids

First application subsystems

Checkpoint/restart

Growing libraries

Overlay techniques obsoleted
by virtual storage

Symbolic debugging aids

Primitive data independence

Integration of application
subsystems

Software error recovery for
system and applications

However, there are exceptions. For instance, in DPPX
[8], one of the operating systems for the IBM 8100
Distributed Processing System, compatibility require-
ments could be relaxed because DPPX was aimed at new
application environments. In spite of this, DPPX pays
homage to the past in that it has COBOL and FORTRAN
and must be able to interchange programs and data with
other systems.

In addition to the need to provide continuity with the
past, the other major constraints dictating design trade-
offs in operating systems are the capacities and speeds of
the hardware for which the software is being designed.
These two factors, compatibility with the past and hard-
ware parameters, constitute the major reasons for main-
taining separate operating system designs in contempo-
rary systems. The occasional unique function in a particu-

I

473

IBM J . RES. DEVELOP. VOL. 25 0 NO. 5 SEITEMBER 1981 M. A. AUSLANDER ET AL

Table 2 Numbers and varieties of devices that can be included
in an MVS system.

Disk magnetic storage units 10 types
Drum magnetic storage units 1 ”

Mass storage system 1 ”

Diskette 1 ”

Magnetic tape 8 ”

Card readerdpunches 5 ”

Paper tape reader punch 1 ”

Printers 10 ”

Optical character recognition unit 5 ”

Magnetic ink character recognition unit 1 ”

Operator’s console 7 ”

Telecommunications control units 6 ”

Display terminals 7 ”

Keyboardprinter terminals 4 ”

Remote high-speed terminals 6 ”

Other terminals 30 ”

(including other processors)

This table does not depict a l l actual different model numbers; rather, it gives the
number of different devices of each type.

~~~~ 

lar  system (e .g . ,  the virtual  machine facility in VM/370) 
generally exists  because of the relative  cost of providing it 
in other  systems  compared  to its  benefits, rather than 
technical feasibility. 

Generally,  software has  adapted  to  the rapidly  chang- 
ing circumstances of the  data processing industry. This 
includes new application types, new hardware  variations, 
and new styles of usage. On  the  other  hand,  change  has 
been heavily dependent  on  the  past  because of the large 
investment all of us  have in maintaining the ability to run 
existing programs. Over  the  years what has happened can 
be viewed as a process of natural selection, similar to 
other evolutionary processes. 

Another  dimension of the problem of designing operat- 
ing systems is the diversity of hardware configurations 
that  must  be supported by a single operating  system. 
MVS, for  example,  runs  on  eleven different processing 
units, some of which allow symmetric  and some  asym- 
metric two-way multiprocessing. The performance  range 
supported is well over  an  order of magnitude. The mini- 
mum MVS production system  has  two megabytes of main 
storage and as few as  four disk drives.  Conversely,  one 
large MVS configuration in the United States  has  seven 
interconnected  processing  units  in a single room.  This 
configuration has more than 450 direct  access  devices  and 
services  approximately 15 000 terminals  in more  than 50 
locations. The  total  instruction  execution  capacity is over 
40 million instructions  per  second. 

The largest processor  currently  supported by MVS has 
a real main storage capacity of 32 megabytes and a 
maximum of 1023 devices connected  to  its I/O channels. 

474 Anywhere  from two  to 16 I/O channels  are  supported. 

Table 2 shows the  numbers of devices of various types 
that can be selected  for inclusion  in an MVS system. 
Providing for  this  large  number of combinations influ- 
ences  the way operating systems  are designed. The 110 
configuration can  change dramatically  from  installation to 
installation and, in fact, from  month to month. Of course, 
it would be impractical to include all of the programming 
necessary to run all of these  devices in every  system. 
Moreover, as desirable as  device interchangeability 
would seem to be, it ought to be  possible to exploit new 
technology and new hardware capabilities. For  these 
reasons, operating systems like MVS are designed to be 
modular, with support  for particular  device types select- 
able for a particular  installation. 

A final problem for IBM operating systems designers is 
the number of installations using each  system. Changes 
and  extensions made  to  our  systems  are,  soon  after 
release,  experiencing extremes in  work loads  and vari- 
eties of applications. A change  that is incorrect in the 
most obscure special case will soon  generate a problem 
report or “APAR.” A modification to an  undocumented 
and unguaranteed  internal characteristic of an interface is 
often exposed by applications  which  work  only because 
of that characteristic. This necessarily contributes  to a 
design approach  that  is  conservative  and evolutionary 
and that groups modifications so that  extensive  tests  can 
be  performed on modified systems before their  shipment. 
Yet greater stability is  one of the most asked  for  features 
by customers of our  products. 

In summary,  our  experience of developing  operating 
systems is that of responding to requirements in the  basic 
functional areas  under  the  constraints of a wide  range of 
hardware  configurations,  large numbers of installations, 
and compatibility. The following sections  explore  the 
approaches we have taken in response  to  these motivat- 
ing requirements. 

Operations 
The  earliest  use of computers  was  characterized by 
totally manual operations;  that  is,  the  sequence of pro- 
grams to  be run was controlled  manually,  media  contain- 
ing needed data  were mounted and dismounted by  the 
operator, usually following written instructions. A typical 
compile-load-go sequence in the 1950s was accomplished 
by the  operator placing the binary card deck for  the 
compiler in a card  reader, with a program to be  compiled 
behind it,  and pressing the  Load  Cards  button  on  the 
console. The compiler  assumed that  certain  “scratch” 
tapes  were  available and  used  these during the compila- 
tion. At  the end of the compilation, output  was  printed, 
and cards representing the  object program were  punched. 
This 110 activity was  not overlapped with any  other 

M. A. AUSLANDER ET AL. IBM J. RES. DEVELOP. VOL. 25 0 NO. 5 SEPTEMBER 1981 



activity. The  operator would then pull the  object  deck  out 
of the  card  punch, walk over  to  the  card  tub,  and  select 
the required subroutines  and  an eight-card linking loader 
that was placed at  the  front of the resulting deck.  These 
cards were  then  placed in the  system  card  reader,  and  the 
operator  once again pressed the  Load  Cards  button. If 
any data were  required  by the program, the  appropriate 
media would be prepared by the  operator. 

Generally, if operations  were  any more  complex than 
described,  written instructions  were provided for  the 
operator,  or more likely the programmer would be per- 
sonally present.  “Programmer present”  runs  were so 
common that a space  on  the  job  card  was provided to 
indicate that  type of run.  In  these  cases,  the  operator 
would telephone the programmer  when his run  was about 
to be made. 

Accounting was  done  on a total  system  basis, often 
using a  time  clock to log a user  on  and off of the  system. 
Users and  operators took great  pride in the  speed with 
which they could mount tapes  and  operate  the  hardware 
to minimize the idle time between  jobs. 

By the  late 1950s, this  type of operation had  been semi- 
automated, with the  card  tub of library subroutines 
placed on tape and  the linking loader having the capability 
of searching  this  library tape  for unresolved external 
references. Moreover,  the ability to change  from  the 
compilation to the execution phase of the  job without 
manual intervention had been  provided.  Still,  communi- 
cation with the  operator  was  done  for  each program in 
pretty much an ad  hoc way. The 704 had a series of lights 
on the console called Sense  Lights,  and often instructions 
to the  operator had statements like “if Sense Light  4 
lights, turn on Sense Switch 3.” 

Through the  early 1960s, systems  were  characterized 
by manual device  allocation, setup,  and work  load  sched- 
uling. Multiprogramming was not provided, and only  a 
single applicatian would run at a time. It  had been 
recognized very early  that  the printing of output  and  the 
reading and punching of cards were operations  that could 
not be performed efficiently on a high-speed central 
system. Thus,  tape input and  output  operations were 
substituted, and  the  card-to-tape,  tape-to-printer,  and 
tape-to-card operations were done off line. At first this 
was  accomplished  with  special purpose  equipment de- 
signed specifically for  these functions. Then  these off-line 
operations  were done with  small computers,  such  as  the 
IBM 1401. Later  the IBM 7040 was linked  via a high 
speed  connection to  the larger IBM 7094 to  do  these 
operations and related job scheduling  functions. This 
“Direct  Coupled System”  is  one of the earliest  examples 

of automated job scheduling and  setup.  It significantly 
improved the utilization of the controlled systems by 
overlapping setup  and peripheral  input and  output with 
system operations.  This  approach survived into  the  Sys- 
tend360 era  as  the  Attached  Support  Processor (ASP) 
package and  is now embodied in the JES3 subsystem of 
MVS . 

It was  not until the multiprogramming support provided 
in the mid-1960s that  job scheduling and peripheral opera- 
tions  were done simultaneously with other work on  the 
same  processor [9]. It  was at this time that  the  operator, 
rather than having control of the  system, began to  be 
provided with instructions by the  system. Comprehensive 
job control  languages  were  introduced to allow the appli- 
cation  programmer to completely  specify sequences of 
job  steps,  as well as device and  data  requirements  for 
each, so that  the  system could  allocate and  sequence  the 
appropriate  programs and  resources.  The OS/360 Job 
Control  Language (JCL) was widely regarded as complex 
and difficult to use. Yet  its contribution was  to  separate 
application  programs from  such  operational consider- 
ations as device types,  addresses,  sequences, conditions, 
and timing of execution. Thus, it was possible to  create 
new applications  by writing JCL programs to apply  exist- 
ing processing and utility programs in new ways. 

Today,  the  most significant operational challenges re- 
maining are  the mechanization of the remaining manual 
functions  and the  improvement of existing  algorithms for 
work load management so as  to  react effectively to 
changing work loads  and  to  the  lack of availability of 
particular  pieces of hardware  or  other  resources  due to 
errors, failures, or  contention. In the  future  these deci- 
sions will be  increasingly  pre-programmed into  the  sys- 
tem, and more of the manual  media operations will be 
eliminated through the  use of storage hierarchies and 
automated media handling  techniques. 

Muintenance and  service 
Large  numbers  and sizes of programs are typically  in- 
volved in the modern data processing  installation.  More- 
over,  the problems of fixing errors, installing  new  ver- 
sions of software packages, updating  critical data,  etc., 
must all be done in the  face of the need to operate more 
continuously. In  the  early 1960s, it  became  apparent  that 
ad hoc techniques would no longer suffice. By the 1970s 
several data  base  oriented  systems had  been created in 
IBM to  keep  track of modifications, error fixes, and 
versions of programs. Because  code modifications made 
to fix errors sometimes themselves contain errors,  such a 
system  must allow swift recovery if such  errors  occur. 
Thus, if a modification contains  an  error, it must be 
possible to restore  the  system to its original state very 475 

M. A. AUSLANDER ET AL. IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 5 0 SEPTEMBER 1981 



rapidly. With the large  installations of today,  and  espe- 
cially with the distributed systems  that  are beginning to 
appear, it is essential to provide  the ability to manage the 
servicing of large numbers of systems with a single 
centralized  package. Thus,  record keeping and distribu- 
tion facilities must  be expanded  to allow for tracking up  to 
hundreds of systems. 

Since the time to diagnose problems is important,  and 
since often  problems encountered in  a system  at  one 
installation have  been  found  and fixed earlier at others,  it 
is useful for an installation to  have  access  to a central  data 
base of problem symptoms and fixes. During the 1960s 
this was accomplished by distributing  this  information on 
listings. Recently,  remote  interactive  access  has been 
provided to this data,  and, in the  future, symptom de- 
scriptions to be  used to  search  these  data  bases will be 
generated  automatically. 

Resource  allocation 
OS1360 was the first general purpose IBM  operating 
system to  provide for complete sharing of hardware 
resources. The major resources considered for  shared 
usage in the original design were  the  processor, its 
memory, direct-access  storage devices  (disks,  drums), 
I/O devices (tapes,  card  equipment,  printers,  etc.),  and 
the space on individual  disks  and drums. 

OS/360 provided for  processor sharing by introducing 
the notion of a “task” [9].  An OS1360 task is an imple- 
mentation of what computer  scientists eventually came  to 
call a process. An additional characteristic of a task in 
OS/360 is that  resources, including other  tasks,  are allo- 
cated to a task.  Further,  tasks  are designed to allow full 
multiprogramming of their  execution.  The OS/360 design- 
ers recognized that operating system  functions should 
usually contend  for  resources by  being themselves  treat- 
ed  as  tasks. 

The task structure  was originally intended to  support 
not only long running batch  jobs but also  the  short 
running, response-oriented  processing associated with 
transaction and telecommunications environments [9]. 
Unfortunately, the generality of the task concept was too 
great to allow for efficiency. The  fact  that  the  task is 
interruptable by other higher  priority tasks  and  is  the 
anchor for resource accounting,  allocation, and  recovery 
required significant processing just  to  create a task.  Thus, 
the  overhead was impractical for very  short-lived  pieces 
of work.  A widely used technique  to  overcome this 
problem was  to  have a task waiting for a signal to  restart, 
rather  than  creating a new one  each time. This technique 
created long queues of mostly dormant  tasks  that had to 

476 be searched,  and it added overhead in other  areas.  Also, 

M. A. AUSLANDER  ET  AL. 

because the task did not fully support all of its  character- 
istics in its first implementations, early application  sub- 
systems like QTAM, CICS, and IMS [lo] provided their 
own substitutes  for  the  task.  In MVS, a new construct 
called the  System  Request Block (SRB) was  created  to  be 
purely a  unit of work for  the  processor.  Interruption 
ability was not provided, and no  other  resources were 
anchored to  the SRB. Thus,  an  SRB in MVS can be 
created  and given control of the  processor using a  trivial 
number of instructions,  compared  to the thousands re- 
quired to  create a task. 

The original intent  in the OS/360 design was  to allocate 
memory to each  task on demand [9, 1 1 1 .  Memory would 
then be held by the task until it was  either explicitly 
released by the  task or the task terminated.  The  existence 
of this  interface, and  the crucial and new  requirement that 
programs  ask the operating system  for memory space  and 
accept that  space  at  whatever location it was provided, 
made for some early difficulties. However, this interface 
once  and for all solved the problem of how  the  operating 
system  and the application  program  can share  the  proces- 
sor memory,  even  though they  are independently  de- 
signed. For this reason  alone, similar  storage  allocation 
mechanisms persist in all operating systems  today. 

From  the beginning, the  designers of  OS1360 were 
concerned with the possibility of a resource allocation 
deadlock [12]. They  chose  the philosophy of complete 
deadlock  prevention  by  predetermining the  order of allo- 
cation: I10 devices,  data  sets,  memory, then the proces- 
sor. It was  not recognized until late in the design that  the 
earlier  assumption of complete  dynamic allocation of 
main memory from a common  space would lead to 
deadlocks. To  overcome this problem,  the application 
programmer  had to specify the aggregate  storage  require- 
ment of his job in advance. This  “region”  could  then be 
allocated,  and the possibility of a deadlock  during execu- 
tion was avoided. 

By the late 1960s, OS1360 was being severely strained 
by two emerging requirements. The under-utilization of 
memory caused by region allocation  was becoming ever 
more troublesome. At the  same time, it was recognized 
that application development could be  eased if programs 
did not have  to be fitted into  the smallest  possible address 
space.  Dynamic address translation hardware and de- 
mand paging techniques were  applied to  these  problems 
throughout the 1960s in such  IBM  systems  as  the 7044 
and System/360 models 40 and 67 [3, 111.  In 1970, de- 
mand paging was added  to OS1360. In MVS,  a  large 
number of regions  can  be created, with the size of each 
region the same and usually not a factor  to be considered 
by the programmer. The  technique of demand paging is 

ISM I. RES. DEVELOP. 0 VOL. 25 0 NO. 5 SEPTEMBER 1981 



I 

I 
used to  share real memory  among the existing  regions. 
Because  demand paging allows dynamic reallocation of 
memory,  deadlocks cannot  arise. 

The second emerging requirement was  for time  sharing 
[13]. This  technique can improve the capabilities of 
program developers  and  problem  solvers by allowing 
continuous  communication  with the  computer. Time 
sharing was first provided  by a number of special purpose 
systems in the early 1960s. By 1967 there  were  over 30 
different special purpose time  sharing  packages  running 

Option (TSO) was intended to integrate  time  sharing 
functions into  the OS/360 base.  However,  the  batch 
allocation of devices and  data  space  present in the  base 
were inappropriate. In  practice, time  sharing is workable 
when the storage  devices in use are permanently  mounted 
and when space on them is dynamically  allocated. To 
accomplish time  sharing  in OS/370, dynamic disk space 
management interfaces  were added to the existing  batch 
mechanisms. It  is noteworthy that  TSO  uses essentially 
the  same interfaces and mechanisms of  OW360 for pur- 
poses for which they were not initially intended. 

i 
l or planned for System/360 hardware.  The Time  Sharing 
I 

I 

i 

Time sharing was implemented  in TSO without address 
translation hardware. Instead it used a memory  swapping 
technique pioneered at  MIT  on  the  IBM 7094  [14] in the 
early 1960s. The fundamental resource management 
problems of time  sharing, for which these special systems 
had previously been developed,  can be  dealt with by the 
multiprogramming and paging mechanisms of MVS. In 
creating MVS from the OS/360 and  TSO  componentry, 
many of MVS’s major structures  came  out of generaliza- 
tions of techniques  introduced in TSO. 

Today,  three  resource allocation issues  concern  operat- 
ing system developers.  The first is the impact of multiple 
processors.  It might seem  that a multiprogramming oper- 
ating system could be converted  to multiprocessing with 
minimum difficulty. In  practice,  however,  an operating 
system  contains many internal  information resources 
which are frequently  locked and unlocked. As the number 
of processors  increases, so does  the contention for  these 
internal resources with the  attendant loss of performance 
when conflicts arise.  To control such conflicts, MVS uses 
carefully designed lock structures  to minimize the  cost of 
locking an available resource  and  the probability of 
needing an unavailable resource.  The MVS approach is 
based  upon the  experience gained during the 1960s with 
the OS/360 and TSS  support  for multiprocessing. The OS/ 
360 structure had  a single lock  and  produced serious 
degradation in many important  environments.  The  TSS 
approach  used myriad locks  but in an uncontrolled  se- 
quence  that created deadlock and recovery difficulties. 

The  other  two  resource allocation  problems  deal  with 
resources that were  not shared when OW360 was first 
designed: communication  facilities and  data  stored  at  the 
logical record  level [15]. The  former is the subject of the 
Systems  Network  Architecture (SNA) [16] and  has  re- 
quired substantial  innovation. The second is primarily a 
problem of data  base  subsystems [17]. 

e Security and integrity 
Over  the years, operating systems  have played an in- 
creasingly important role in providing tools  to allow an 
installation to  protect itself against  unauthorized access 
to  data or other  computer facilities [18]. In the earliest 
systems, little or  no provision  was  made to  protect 
against such  use.  In  the early 1950s, before the  advent of 
multiprogramming, such protection was generally  not 
needed,  since a job’s  data were  loaded onto  the  system 
with the job  and  taken  down  at  its completion.  When jobs 
were first batched on an  input  tape,  there was the  ever- 
present danger of one  job  forward or back  spacing the 
input tape, causing other  jobs  to be skipped or repeated. 
At some  universities,  this was  an  annual  occurrence  as 
new programming students  “tested  the  system.” It was 
not until late in the 1950s that IBM computers began to 
provide protection.  There  was a multiprogramming spe- 
cial feature  for  the 7090 that provided for privileged 
instructions-only programs  in certain  states could exe- 
cute  instructions that performed I/O operations and other 
management tasks. 

In the System/360, the separation of privileged instruc- 
tions from those intended for  use by application  programs 
was made quite clear;  it  was theoretically  possible for 
software io prevent unauthorized use of any  function. 
The original direction taken in OS/360, however,  was  that 
deliberate  penetration attempts would not be  prevented; 
that is,  the  system was  designed  only to  prevent casual or 
accidental  penetration or unauthorized  use. It was not 
until the late 1960s that it became apparent  that this 
philosophy was  inadequate. Operating systems had to 
prevent a program from gaining access  to  data,  services, 
or  other facilities that  it was not  authorized  to  use. MVS 
was the first IBM system  for which  a systematic  attempt 
had been made to eliminate all exposures  to unauthorized 
use  and for which  a  commitment  had  been  made to 
correct any  such  exposures  found. MVS  had  a  number of 
authorization schemes by  which  particular users  or pro- 
grams could be allowed or denied the  use of certain data 
and functions. 

Since the introduction of MVS in 1974, additional 
loopholes  have  been identified and  closed. Also, more 
elaborate  authorization  capabilities  have  been  provided, 
as well as detection  capabilities, to facilitate  the identifi- 

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



cation of a perpetrator,  and  hardware  assistance,  such  as 
encryption  devices [ 191. 

Extensions  of  hardware function 
The following subsections  deal with extensions to hard- 
ware  function to enable  application programmers  to more 
easily exploit computer  systems.  The first subsection 
deals with extensions  that  raise  the level of function of the 
processor’s  instruction set. The  second  deals with similar 
extensions in the I10 subsystem  area.  The final two 
subsections deal with error  recovery, which  could be 
viewed as  the  creation of ideal computer  elements  that 
apparently never fail. 

High  level  languages 
Early  operating systems,  such as the FORTRAN Monitor 
System,  were based  on  an intimate connection  between 
their language processors  and  the  system which  managed 
compilation,  loading, and  execution of programs written 
in those  languages. An important  advance of OS1360 was 
to  separate  the compiler from  the  operating  system. A 
compiler is, from the operating system  view,  just  another 
user program which takes  input  and  produces  output. 
Whether or not the  user  then  decides  to  have  the program 
loader load and execute  that  output is unimportant. The 
only tie  between the compiler and  the  system  is  the 
conventions for  representing machine  language  programs 
as operating  system files. 

This  separation has a  number of advantages. Compilers 
can be offered and  maintained  independently of the 
operating  system. New languages or new compilers can 
be  developed  easily.  Various  organizations  inside and 
outside IBM can offer languages and compilers  which do 
not depend,  for  their  success,  on  operating  system modi- 
fications. This has led to a  healthy  growth in both 
languages and  compilers.  Finally,  this  decoupling encour- 
ages general purpose operating system  interfaces. How- 
ever,  the danger is that significant functions may not  be 
available to higher level  language programmers. 

Another aspect of the interaction between high level 
languages and  operating systems is the implementation 
language of the  system. Until the  late 1960s, IBM soft- 
ware  was  written in macro  assembly language. It  was 
believed that compilers  could  not produce  code efficient 
enough for operating systems. While this assertion  was 
true in 1970, the reduction in programming errors and the 
increase in program  extensibility  resulting from  the  use of 
high level languages offset the  space  and  execution time 
penalties. By 1980, most  programmers  could  not  have 
consistently exceeded  the efficiency of compiler  opti- 
mized code. Now  essentially all new  operating system 

470 code is written in a high level language. 

M. A. AUSLANDEK ET AL. 

Access  methods 
As operating systems evolved in IBM,  they  were driven 
by a  number of forces  towards  the development of 
generalizations of their  hardware inputloutput  devices. 
The primary forces operating were: 

Ease of programming Programs  must  often deal with 
the mechanical complexities of the  device, variations in 
the  storage  medium,  complicated procedures,  and  error 
detection  and recovery strategies. These often change 
with each new hardware innovation. 

Device  independence For  purposes of data  storage,  the 
important  distinctions  from the point of view of the 
application programmer are  record size,  retrieval order, 
selection techniques,  etc.,  rather than  media dependence. 
A  program  written to  process a  sequential stream of 80- 
character  records should  be the  same  no  matter  where the 
data  are  stored. 

Data  integrity The  shared use of direct  access storage 
device (DASD) space and the  shared (often  read-only) 
use of data require  some trusted program between  the 
application and actual manipulation of the media. 

Concurrent operation The involvement of the operating 
system in every  input/output  operation makes  possible 
the incorporation in its implementation of strategies for 
overlapping computation  and  inputloutput  activity with- 
out requiring that individual  programs  include  complex 
code (such as double buffering) to  produce local concur- 
rency. The  concurrency  arises  rather  because  one  job is 
computing while another is doing  inputloutput opera- 
tions. 

Early  operating systems often  dealt with the simpler 
aspects of some of these needs. Beyond  that,  the libraries 
for some high level  languages  contained  inputloutput 
routines which eased  the programming burden  for  users 
of that language. With the introduction of OS1360, the 
notions of an  access method and of a data  set organization 
were  introduced  in a uniform way [7]. 

Data set organizations are  abstractions  that  expose  to 
the application  program those distinctions which it must 
deal  with  and shield it from  other device  distinctions. The 
original data  set organizations of OS1360 were  sequential, 
partitioned,  indexed sequential,  and  direct  access. 

Access methods  are collections of operations  that can 
be applied to read  and  write  data in these organizations. 
The original access methods  were Basic  Sequential 
(BSAM), Queued  Sequential  (QSAM),  Basic  Partitioned 
(BPAM), Indexed  Sequential  (ISAM), and Basic  Direct 
(BDAM). The distinction between  basic  and  queued had 
to  do with whether  or  not  the  access method supported 

1BM J .  RES. DEVELOP. 8 VOL. 25 8 NO. 5 8 SEPTEMBER 1981 



implicit blocking and  deblocking  internally, as well as 
whether or not the  access method was  capable of a read- 
ahead  inputloutput strategy. In hindsight, one could  argue 
that this distinction was  short sighted. However, in 1963, 
it was difficult to decide to isolate the programmer from 
the  device at all, let alone  to impose  a  blocked, buffered 
interface as  the only one available.  Real concerns with 
performance  and  a  confusion of the technique of buffering 
with the  function of sequential access  both  contributed  to 
this viewpoint. 

i 

These small sets of organizations and  access  methods 
served for  access  to all devices  and data during the early 
history of OS/360 and OS/370. Changes in this area  have 
been  remarkably rare, considering that  these interfaces 
were simply invented and implemented all at  once by the 
system  architects. The major changes  to  occur in the 
intervening years reflect a new requirement  and the 
recognition of a new technology. 

The new requirement is the  desire  to  attain uniformity 
and device independence  for terminals.  BTAM, TCAM, 
and VTAM represent  three  attempts  at communications 
access  methods.  A  number of reasons exist for this 
relative lack of success in standardizing  communications 
access  methods. 

First,  the communication  devices did not become im- 
portant until after  the introduction of OS/360. Without  a 
body of experience,  and with dramatic and  fundamental 
changes in hardware capability (from teletypewriters to 
CRT display terminals and beyond), it was difficult to 
foresee all future  needs in designing an interface.  Beyond 
that, more  than in any  other  input/output  area,  the 
application program  must  deal  with the details of the 
display device. Adding more bytes  to a  disk track  can 
easily be hidden from  the application  program using that 
disk to  store information, but adding  more rows  or 
columns to a  display  necessarily  affects the application 
design decisions  relating to  the human  interface that  the 
display represents. Providing for terminal device inde- 
pendence in applications is one of the remaining chal- 
lenges that will get much future  attention. 

The  other important  change  was a response  to a new 
technology. The indexed  sequential access method was 
designed to support data organizations in which contents 
retrieval (keyed records) was  used to maintain the  ap- 
pearance of a  sorted file while allowing efficient random 
update  and  retrieval.  When it was  designed, it was 
commonly believed that  the best way to  do  such retrieval 
was to exploit the key search capability of the DASD 
hardware.  After the introduction of OS/360, the use of 
tree structured, balanced indexes (B-trees) as a  technique 

IBM J .  RES.  DEVELOP. 0 VOL. 25 0 NO. 5 0 SEPTEMBER 1981 

for managing content’addressing was developed, and it 
became  clear that this  organization  was superior  to  the 
ISAM approach. To offer this new technology,  IBM 
introduced  VSAM, an  access method  which in some 
sense  provides all the organization  and  retrieval  functions 
of the  other  access  methods. Again,  history and  the need 
for continuity  tie us to using and  supporting the new and 
the  old. While the  use of ISAM is waning, the use of the 
sequential,  partitioned,  and direct  access  methods contin- 
ues and will continue  for  the  forseeable  future. 

The OS/360 access  methods went a long way towards 
achieving ease of programming,  device independence, 
data integrity, and  concurrent  operation. As much as any 
other  feature of OS/360, they  have made it possible for 
programs written fifteen years ago to  continue  to  operate 
on  today’s totally new and often quite different hardware 
and operating systems. 

In OS/360, and  subsequently in MVS,  the  format of 
recorded data  and  the available operations differ by 
access method and organization. Thus, device  depen- 
dence was,  to  some  extent, replaced by data  set organiza- 
tion dependence. For  example, sequentially  organized 
data cannot be accessed by record  number without a 
format conversion. It is possible,  as is demonstrated by 
the DPPX operating system  and by CMS,  to achieve 
uniformity and provide  better usability as a  result. 

Hardware error recovery 
IBM’s first computers  were shipped  with little more 
programming than that used for  hardware  error diagnosis. 
Typically,  engineers develop  such programs for the  early 
models of a system. As computer programs  became  more 
sophisticated, these diagnostics  became less effective. By 
the  end of the 1950s, it was commonplace for a  nontran- 
sient error  to be undetected by the manufacturer-supplied 
diagnostics but to  show  up readily  when  trying to  execute 
application software. It  was during  this  period that  the 
gathering of hardware  error  status and statistics was first 
introduced  into  IBM  software. During the  early 1960s, the 
software  was  designed to stop upon the  detection of any 
hardware error,  under  the assumption that  to  continue 
would produce  unpredictable results.  This philosophy 
was reinforced by the  fact  that  the  hardware often sig- 
naled a status  that  was undefined. Nevertheless, elabo- 
rate algorithms were created  to  re-try  operations if errors 
might be transient or, in the  case of input/output  func- 
tions, to  attempt  alternate  paths  to devices. For  instance, 
if a  control unit for disks had paths  to  two I/O channels, 
one of the  strategies to  recover  from a  channel  failure 
would be to  attempt  access through the  second  channel. 

It  was not until the early  multiprocessing systems  that 
serious attempts  to  recover from central  processor  errors 479 

M. A. AUSLANDER ET AL. 



were  made. The IBM 9020 System [20], created  to  assist 
in air traffic control,  was a fully redundant multiprocess- 
ing system that could continue  despite  the failure of any 
single element.  Much of the effectiveness of the software 
in accomplishing this goal was  due  to  the  nature of the 
application. Since the major  function of the  system  was  to 
process incoming radar  data, little stored  data had  a 
useful life of more than a  few seconds.  Thus,  it  was 
possible to  reconstruct  the  state of the application a 
relatively short time after a failure. 

was deemed  acceptable to lose resources for the duration 
of the program or job  that  was running or until the next 
time the system was initialized. For instance, if an  error 
destroyed the  records of free storage and if those  records 
had to be reconstructed  but  some  were  lost, then perhaps 
several thousand  bytes of storage might be  unavailable 
for a period as a consequence of the  recovery  action. This 
is preferable to losing the  entire  system  and having to 
reinitialize it. 

The general purpose  systems did not fare  quite  as well. 
It  was  not  uncommon  when a single element  failed, even 
though spare  hardware  was available, for  the software to 
be unable to untangle itself well enough to  continue. By 
the  late 1960s it was  apparent  that a  major  undertaking 
was required to  address  the effectiveness of software in 
recovering from  hardware  errors  and,  indeed,  hardware 
failures. If this  were successful, a two-processor  system 
could reliably continue with one  processor remaining. 
One aspect of this  work  involved  a joint effort by hard- 
ware architects  and  software designers to  ensure  that 
adequate status information  was presented so the soft- 
ware could continue from  a  known state.  In  MVS, this 
type of recovery  was  implemented on a  large  scale within 
the operating system.  Thus, in the  event of failure of a 
single processor in a two-processor  system,  the software 
can move the  work being done  on  the failed processor 
over  to  the remaining one  and simulate two  processors 
until a pre-defined state  has been reached.  Subsequently, 
the system  can operate  as if it were  a  normal single- 
processor system. 

Software error recovery 
One of the lessons learned  during the original implemen- 
tation of MVS was  that  software  errors manifested them- 
selves in more  complex and unpredictable  ways than 
hardware errors.  Because  the relative frequencies of 
hardware  and  software errors  were  comparable, it was 
decided to  attempt  to handle them both with a single set 
of facilities that would signal the program  in control at the 
time of the  error.  The signal took the  form of an  interrupt 
to a pre-specified exit program. If no  such exit  program 
had been specified, then  control would be  given to  an  exit 
specified by the next  higher level program (i .e. ,  the 
program that called the program in control).  Since  the 
operating system itself is the ultimate  caller of every 
program,  ultimately a recovery exit would be  reached. 

The general  ground  rule in the design of MVS was  that 
every  part of the  operating  system should  be  designed to 
include such  recovery  facilities. The  job of each  recovery 
exit was to  assess  any damage and  either repair it or 

480 remove ongoing work  from the  system.  In some cases it 

The MVS programs associated with error  exits  are 
called functional recovery  routines (FRRs). As would be 
expected,  these  were more  effective in dealing with 
hardware errors  than software errors.  Because they  were 
executed only when an  error  was  detected,  their effec- 
tiveness could really be  assessed only over time  and 
usage in real  situations. Over  the  years this experience 
has  led to increasing the effectiveness of these  routines, 
and MVS is a  more robust  system  as a consequence of 
having them. A remaining  challenge is to substantially 
improve the effectiveness of detecting software errors. 

The difficulties in creating an effective recovery pro- 
gram increase  with the generality of the program for 
which recovery is being attempted. For example, if a 
failure occurs during  a  basic supervisor  service,  such  as 
establishing a connection  to a file (e .g . ,  OPEN), and if in 
fact  that  data  set  cannot be  made  available to  the applica- 
tion program, the specific actions  to be  then taken  are 
really best left to  the discretion of the application  pro- 
gram. Depending on which file cannot  be  accessed  and  its 
importance to  the application, the program may or may 
not be  able to  continue.  Thus,  the burden could be shifted 
entirely to  the application  programmer. 

In  the  interests of application  programmer  productivi- 
ty, a  great  deal of effort has gone into  the  error  recovery 
facilities of the  data  base and data communications  sub- 
systems of operating  systems. For instance,  the designers 
of the IMS  system [lo, 151 have gone to  extraordinary 
lengths to  protect  the integrity of data  under  its  control 
from errors introduced  by both  hardware and  software 
failures. The  concept of a transaction  has been  incorpo- 
rated  into IMS, and  the  system is designed so that  the 
data base reflects changes  made only  by  successfully 
completed transactions.  Thus, if a  program  performing 
the work of a transaction fails, no  updates  to  the  data  base 
are  ever actually  reflected. To implement  this concept, 
IMS maintains journals of changes and undoes any 
changes made by a failing transaction program. In addi- 
tion, IMS can maintain journals of data  base  changes so 
that if a  disk file is lost  due  to  an  error, recovery  can be 
accomplished by  loading a check-pointed  version of the 
data onto  the disk and by processing the  journal of 

M. A. AUSLANDER ET AL. IBM I. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



changes against it, bringing it up  to  date.  Transaction- 
oriented  recovery has been  implemented on a  variety of 
systems to some degree, including CICS and DPPX/ 
DTMS. Over the  past  ten  years,  the  concept of transac- 
tion-oriented data  base  recovery  has been  generalized 
and extended.  It  is now accepted  as a standard way to 
deal with this type of data processing and  error  recovery. 

A future trend in this area will certainly  be the combin- 
ing of all the techniques so as  to  provide more effective 
and rapid recovery in the  event of a hardware  or software 
failure. As systems  get larger, restart times are  increased, 
making faster  recovery more  critical. Also, the signifi- 
cance of failures is aggravated because  systems  are being 
directly used  more by human  beings. Thus,  the effective 
use of standby  equipment, allowing switch-over in sec- 
onds, will become  more important. 

Application  subsystems 
The earliest  application subsystems were  implemented to 
provide batch remote  job  entry (RJE), improve batch  job 
scheduling, and provide  interactive facilities for time 
sharing and other problem  solving  applications. These 
were implemented on  the earliest  versions of OS/360 in 
the middle 1960s. HASP and ASP are  two  examples of the 
RJE and  batch job scheduling subsystems. APL [21] on 
OS/360 is an example of the  latter  type. As the techniques 
pioneered in these application subsystems became better 
understood, they were integrated into  the operating sys- 
tems,  and use of the  separate  subsystems gradually faded. 

The  early 1970s also saw the popularity of the  data 
base/data  communications (DB/DC) systems.  These sys- 
tems  used different forms of resource allocation to 
achieve goals similar to  those of the time  sharing systems. 
The chief difference between  the DB/DC systems and the 
time sharing systems  was  that  the  former generally did 
not need to maintain program context between  input 
messages. That is, an incoming message  could  be  pro- 
cessed and  the  data  bases  updated without the need to 
maintain program  variables until the arrival of the next 
input. On the  other  hand,  interactions with users in a  time 
sharing environment were more conversational, and sys- 
tems generally had to provide the ability to  relate succes- 
sive inputs  and  programs  needed to maintain continuity 
from one input to  the  next.  This difference led to a 
number of DB/DC resource allocation  strategies which 
provided for higher efficiency than was available in time 
sharing systems. This  improved efficiency was significant 
enough to warrant  special purpose implementations. 
Here again, usage during the 1970s gravitated toward  two 
or three  packages for  the System/360,  and in the late 
1970s the movement of functions  from  the  subsystems 
into the operating system  base had begun to  occur. 

The overall trend in this area is that, when  operating 
systems do not schedule  resources or provide similar 
functions in a  way  which is  adequate  for new functions, 
these new functions are provided in application  subsys- 
tems. As these functions are identified it is  expected  that 
they will be  integrated into  subsystems  and  then  the 
subsystems themselves  into operating systems.  Thus, a 
natural  selection process identifies the  soundest  tech- 
niques and the most  generally acceptable solutions. 

Conclusions 
The most  unusual aspect of the IBM programming envi- 
ronment is undoubtedly the combination of forces 
brought to  bear by the large  number of installations  and 
their  diversity of applications. This, coupled  with the  on- 
going stream of new hardware  devices,  has  created a 
situation in which small changes  are amplified substan- 
tially. In other  words,  the law of large numbers is 
operative,  and it is easy  to  see  the  results of any change, 
both positive and negative. The  rate of change has been 
immense and progress has been  made in virtually every 
dimension of the  computer programming craft. 

Over  the years,  there  has been  substantial  movement of 
function out of the manual realm,  as well as  the realm of 
the  applications programmer,  into  the operating system 
itself. The operating system  has  taken  over  functions 
relating to increasing the usability of the  hardware,  to 
protecting  application  programs  from changes in hard- 
ware, and to saving  them  from the need for  conversion in 
the event of such shifts.  Operational considerations  have 
changed from the  stand-alone single batch  systems of the 
1950s and early 1960s to  the multi-system, geographically 
dispersed, but centrally managed, complexes of today, 
with the  attendant  operational and control  requirements 
of such systems being placed in the  various  operating 
systems. The evolution of increasingly  complex  and 
capable data organizations, including the relational facili- 
ties that  are now being used,  represents  another  thrust of 
increasing  function. Other  trends include  more  facilities 
to ensure automatic  error  recovery  and  data integrity in 
the  event of failures. 

In all cases  the effect has been to  reduce  the need for 
application programs to provide  various functions.  The 
net effect is that,  compared  to twenty-five years  ago,  the 
average  application  program as written by the program- 
mer represents a much smaller  fraction of the cycles 
executed  by the  hardware itself. In 1956, it was indeed 
rare that IBM  written software  took more than a  few 
cycles of the  system.  Today it is not at all uncommon for 
IBM provided software to  use 90 percent  or more of the 
capacity of the  system, with the  user written  application 
programs using the remainder. 48 1 

M. A. AUSLANDER ET AL. 1BM J .  RES. DEVELOP. 0 VOL. 25 0 NO. 5 0 SEkTEMBER 1981 



Other strides during the  period include  decreasing 
dramatically the  rate  at which errors  are introduced into 
programming. In  the  last  ten  years  there  is evidence to 
suggest an order of magnitude improvement in the num- 
ber of errors  per line of code  introduced  in  IBM operating 
systems. Moreover, major  efforts have been made  to 
reduce the impact of errors by  providing various  recovery 
strategies in the  software itself. Also, provisions are being 
made to allow for  continuous  operation,  whereby  changes 
and  updates can be made  to a system without  stopping  it. 
Finally, ease of use  from  the installation of the  system to 
its  actual use  has lately  received significant attention. 

The overall increases in the capability of the operating 
system are really the  result of what  is  perhaps  the major 
economic trend of the  last twenty-five years in the  data 
processing industry-the steady  decrease in the cost of 
data processing hardware in the  face of steady  increases 
in the  cost of human labor.  Thus,  every  year it becomes 
easier to justify  automating  manual functions through the 
use of computers  and of augmenting those  functions 
already  automated to make them  more efficient in their 
use of human time. We  have lately seen  the  second  and 
third implementations of applications that  were originally 
created  in the 1950s as batch programs. For  instance, in 
1956 many computer  users  were beginning to  automate 
inventory control  through  the  use of transactions  written 
on sheets of paper,  transcribed  to  punch  cards,  sorted, 
and  processed in a batch mode  against a master inventory 
file. Today such applications are implemented as interac- 
tive DB/DC programs that  update  inventory  records  on a 
real-time basis.  Obviously, there  is  an incremental  value 
to this type of operation,  since  inventories are maintained 
on an up-to-the-minute basis,  and  other  aspects of opera- 
tions can also  be automated. 

At the moment there  seems to be no end in  sight for  this 
trend. It is anticipated that more and  more  emphasis will 
be placed on  the traditional operating  system  areas of 
further expediting operations, extending hardware  func- 
tions,  and  providing common application functions as 
part of operating systems. As was  the  case twenty-five 

References 
1. A. L. Scherr, “Functional Structure of  IBM Virtual Storage 

Operating Systems, Part 111: OS/VS2-2 Concepts and Philos- 
ophies,” IBM Syst. J .  12, 382-400 (1973). 

2. G. H. Mealy, “The Functional Structure of OS/360, Part I: 
Introductory Survey,” IBM Syst. J .  5,  3-11 (1966). 

3. R. J. Creasy, “The Origin of the VM/370 Time-sharing 
System,” IBM J .  Res.  Develop. 25, 483-490 (1981, this 
issue). 

4. A. S. Noble, Jr., “Design of an Integrated Programming and 
Operating System, Part I: System Considerations and the 
Monitor,” IBM Sysr. J .  2, 153-161 (1963). 

5. Nathaniel Rochester, “Symbolic Programming,” IRE 
Trans.  Electron.  Computers EC-2, 10-15 (1953). 

6. G. Bender, D. N. Freeman, and J. D. Smith, “Function and 
Design of DOS/360 and TOS/360,” IBM Syst. J .  6, 2-21 
(1967). 

7. W. A. Clark, “The Functional Structure of OS/360, Part 111: 
Data Management,” IBM Sysr. J .  5, 30-51 (1966). 

8. S. C. Kiely, “An Operating System for Distributed Process- 
ing-DPPX,” IBM Sysr. J .  18, 507-525 (1979). 

9. B. I. Witt, “The Functional Structure of OS/360, Part 11: Job 
and Task Management,” IBM Sysr. J .  5, 12-29 (1966). 

10. W. C. McGee, “The Information Management System lMS/ 
VS-Part 1: General Structure and Operation,” ZBM Sysr. J .  

11. L. A. Belady, R. P. Parmelee, and C. A. Scalzi, “The IBM 
History of Memory Management Technology,” ZBM J .  Res. 
Develop. 25, 491-503 (1981, this issue). 

12. J. W. Havender, “Avoiding Deadlock in Multitasking Sys- 
tems,’’ IBM Syst. J .  7, 74-84 (1968). 

13. Allan Scherr, “An Analysis of Time-shared Computer Sys- 
tems,” Ph.D. Thesis, MIT Press, Massachusetts Institute of 
Technology, Cambridge, MA, 1967. 

14. F. J. Corbat6 et  al., The Compatible  Time-sharing  System, 
A Programmer’s  Guide, MIT Press, Cambridge, MA, 1963. 

15. W.  C. McGee, “Data Base Technology,” IBM J .  Res. 
Develop. 25, 505-519 (1981, this issue). 

16. J.  H. McFadyen, “Systems Network Architecture: An 
Overview,” IBM Syst. J .  15, 4-23 (1976). 

17. M. W.  Blasgen el a / . ,  “System R: An Architectural Over- 
view,” IBM Sysr. J .  20, 41-62 (1981). 

18. C.  R. Attanasio, P. W. Markstein, and R. J. Phillips, 
“Penetrating an Operating System: A Study of VM/370 
Integrity,” IBM Sysr. J .  15, 102-116 (1976). 

19. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. 
Tuchman, “A Cryptographic Key Management Scheme for 
Implementing the Data Encryption Standard,” IBM Syst. J .  

20. G. R. Blakeney, L. F. Cudney, and C. R. Eickhorn, “An 
Application-Oriented Multiprocessing System: 11-Design 
Characteristics of the 9020 System,” IBM Syst. J .  6, 80-94 
(1967). 

21. K. E. Iverson, A Programming  Language, John Wiley & 
Sons, Inc., New York, 1962. 

16, 84-95 (1977). 

17, 106-125 (1978). 

years  ago, it is apparent  that  the  requirements of the  next 
twenty-five years  are not all known today,  and  the ability 
of our programs to be adaptable  to  unforeseen require- 
ments will remain a very  important  characteristic. Imple- Received 6~ 1981; revised 277 1981 
menting functions in a generalized  way is  the  best  prepa- 
ration for unforeseen requirements. 

Acknowledgment M. A .  Auslander is located  at IBM Corporate  Headquar- 
The  authors would like to acknowledge Mr. Bob 0. ters, Old Orchard Road,  Armonk,  New York 10504; D .  C. 
Evans, IBM Vice President-Engineering, Programming Larkin and A .  L. Scherr are located  at the IBM System 
and  Technology, for stimulating the  creation of this Communications  Division laboratory,  Neighborhood 

482 paper. Road,  Kingston,  New York 12401. 

M.  A. AUSLANDER ET AL. IBM J .  RES. DEVELOP. 0 VOL. 25 0 NO. 5 0 SEPTEMBER 1981 


