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Chapter 1

Introduction

The Fibonacci numbers [1, A000045] fk = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
for k = 0, 1, 2, . . . obey by definition the recurrence rule

fk+1 = fk + fk−1. (1.1)

However this is not their only obvious pattern. For example, in the list above
we notice that the square of each fk differs by one from the product of its
neighbours1 — eg. 82 and 5 × 13. Indeed, induction as in Fig. 1.1 quickly
establishes the ‘Cassini formula’ [2] for k ≥ 1:

fk+1fk−1 − f 2
k = (−1)k. (1.2)

It turns out that this result is only one of a great profusion of Fibonacci

Figure 1.1: the induction step, using Fibonacci recurrence.

properties [3, 4, 5] most of which seem less immediate to discover. But in
fact many emerge elegantly and easily from a matrix formulation, as follows.

1Likewise the square of a natural number n is one more than the product of its neigh-
bours by virtue of the identity n2 − 1 = (n− 1)(n+ 1).
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Start by writing eq. (1.1) as(
fk+1

fk

)
= Q

(
fk
fk−1

)
where Q

def
=

(
1 1
1 0

)
.

So with fk = 0, 1, 1 for k = 0, 1, 2 we have(
fk+1

fk

)
= Qk−1

(
1
1

)
and

(
fk
fk−1

)
= Qk−1

(
1
0

)
,

and these together give [6](
fk+1 fk
fk fk−1

)
= Qk for k = 1, 2, 3, . . . (1.3)

Eq. (1.3) embodies the recurrence rule eq. (1.1) with the initial values (0, 1)
while making explicit the 2-dimensional linear context.

Then for example remembering that det(Qk) = (detQ)k, the observation
that detQ = −1 at once gives Cassini eq. (1.2) for k = 1, 2, 3, . . .

det(Qk) = (−1)k =

∣∣∣∣ fk+1 fk
fk fk−1

∣∣∣∣ = fk+1fk−1 − f 2
k . (1.4)

Ex: From Q2n = QnQn find a formula for the sum of squares of two consec-
utive Fibonacci numbers. (Ans: f 2

n + f 2
n+1 = f2n+1.)

It turns out that similar standard matrix properties lead to corresponding
Fibonacci results. Also, generalisations become natural.

Chap. 2 is about Fibonacci numbers and Chap. 3 deals with Lucas and
related numbers. Chap.4 extends to tribonacci and higher recurrences, where
a 3× 3 or larger matrix replaces Q.

Chap. 5 covers some aspects of Fibonacci, Lucas, etc modulo m.
Appendix A summarises results from the matrix formulation of a general

2-term recurrence, and AppendixB illustrates how some additional Fibonacci
and Lucas formulas emerge.
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Chapter 2

Fibonacci

2.1 Basic results

To extend the Fibonacci sequence to all k = 0,±1,±2, . . . use

Q−1 =

(
0 1
1 −1

)
and Q0 = I =

(
1 0
0 1

)
with the normal index rules. Then detQ = −1 plus eq. (1.3) give

Q−k = (Qk)−1 as

(
f−k+1 f−k
f−k f−k−1

)
=

1

(−1)k

(
fk−1 −fk
−fk fk+1

)
and so

f−k = (−1)k+1fk. (2.1)

Ex: check that therefore Cassini eq. (1.2) holds for negative k too.

Two basic addition formulas follow easily.
First, the 21 matrix entry1 of Qk+l = QkQl gives for all k, l

fk+l = fkfl+1 + fk−1fl, (2.2)

where eq. (1.1) is the case l = 1, since f2 = f1 = 1.
Then with help from eq. (1.1) the 21 entry of Qj+k+l = QjQkQl gives2

fj+k+l = fj+1fk+1fl+1 + fjfkfl − fj−1fk−1fl−1 for all j, k, l. (2.3)

1Other entries give the same information with indices re-labelled.
2Compare this direct construction with the lengthy inductive manouevres in ref. [7].
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2.2 Bilinear index-reduction formula

If a+ b = c+ d then QaQb = QcQd where the 22 matrix elements read

fafb + fa−1fb−1 = fcfd + fc−1fd−1.

This re-arranges to

fafb − fcfd = (−1)(fa−1fb−1 − fc−1fd−1),

when iteration gives3

fafb − fcfd = (−1)r(fa−rfb−r − fc−rfd−r), (2.4)

which holds for a, b, c, d, r = 0,±1,±2, . . . , given a+ b = c+ d.
This ‘index-reduction formula’ (IRF) [9] at once provides a framework for

standard bilinear Fibonacci identities. Each is a particular case of either this
formula or its generalisation eq. (3.23) below, given (f0, f1) = (0, 1) plus in
some cases the k → −k symmetry eq. (2.1).

For instance Cassini eq. (1.2) follows from choosing

a = k + 1, b = k − 1, c = d = r = k, given f1 = f−1 = 1, f0 = 0.

Likewise the addition result of eq. (2.2) is just the case where

(a, b, c, d, r)→ (k, −l − 1, k − 1, −l, −l) ,

and even the fundamental recurrence itself eq. (1.1) can be recovered with
eg.

(a, b, c, d, r)→ (k + 1, 1, k, 2, 2) .

Appendix B includes a few more examples of derived identities.

Ex: put (a, b, c, d, r) = (n+ k, n+ k, 2n, 2k, 2k) to get a difference-of-
squares formula [10]; replace (c, d, r) with (2n+ 1, 2k − 1, 2k − 1) to
get his similar sum-of-squares result. Establish the rest of the formulas
in ref. [10] from eq. (2.4) or eq. (3.10) below.

For others see ref. [4, Chap.3 and pps. 176–84] as well as ref. [5, pps. 87–93].

Ex: if a+ b+ c = d+ e+ f then what follows from QaQbQc = QdQeQf?

3A much longer inductive proof of essentially this result is in ref. [8].
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2.3 Eigenvalues and eigenvectors

Symmetric matrix Q has real eigenvalues λ± where

detQ = λ+λ− = −1 and trQ = λ+ + λ− = 1. (2.5)

So its characteristic equation λ2 − λ trQ+ detQ = 0 is

λ2 = λ+ 1 (2.6)

with roots λ± = (1±
√

5)/2 ≈ 1.618, −0.618.
The orthogonal eigenvectors (y, x)T of Q have y = λ±x and the rotation

that diagonalises Q:

Q =

(
c −s
s c

)(
λ+ 0
0 λ−

)(
c s
−s c

)
(2.7)

has s = {λ+(λ+ − λ−)}−1/2 and c = {λ−(λ− − λ+)}−1/2 = λ+s.
Rotation in the (x, y)-plane through angle4 γ = arctan(1/λ+) ≈ 31.72◦

brings the eigen-line y = λ+x to the y-axis, and y = λ−x to the x-axis.
From eq. (2.7) to the k-th power and eq. (1.3), read off

fk =
λk+ − λk−
λ+ − λ−

(2.8)

which is the ‘Binet formula’ [12] since λ+ − λ− =
√

5.
Eq. (2.8) provides one prescription [13] for fk → f(k) with non-integer k,

as well as the estimate fk ≈ (λ+)k/
√

5 for large positive k.
The power method [11] gives the leading eigenvalue of a matrix from the

limit of the ratio of corresponding elements of successive powers. Applied to
Q via eq. (1.3), we have

λ+ = (fk+1/fk)k→∞ , (2.9)

consistent with Binet eq. (2.8).
In addition, however, from Cassini eq. (1.2) we have for k ≥ 2:

fk+1/fk − fk/fk−1 = (−1)k/fkfk−1, (2.10)

so that with the limit in eq. (2.9) an infinite sum over k telescopes to give5

λ+ = 1 +
∞∑
2

(−1)k

fkfk−1
. (2.11)

4Note tan 2γ = 2, and 4γ is the external angle opposite the ‘4’ side of a 3–4–5 triangle.
5An alternative right-hand side is 1+

∑∞
1 (f2k+1f2k−1)−1, using eq.(2.4) with a = k+2,

b = k − 2, c = d = r = k plus f3 = 2 and λ2+ = λ+ + 1.
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This is formula 102 of ref. [4, p. 103]. Truncation error for such an alternating
sum is bounded by the magnitude of the first omitted term, and we note that
eg. (f10f9)

−1 ≈ 0.0005.
To see the similar approach to the limit in eq.(2.9), write the characteristic

equation eq. (2.6) as λ = 1 + 1/λ when λ > 0 gives successively

λ > 1, λ < 2, λ > 3
2
, λ < 5

3
, λ > 8

5
, . . . .

A simple induction then leads to:

fk+1

fk
> λ+ >

fk
fk−1

for k = 2, 4, 6, . . . , (2.12)

where from eq. (2.10), upper and lower bounds differ by (fkfk−1)
−1.

Evidently there is a rapidly-narrowing corridor in the positive quadrant
of the (x, y)-plane of integer-coordinate points (x, y) = (fk, fk+1) lying al-
ternately on opposite sides of the eigen-line y = λ+x of Q.

Ex: draw the corresponding diagram.

The sequence of rational estimates λ+ ≈ fk+1/fk is directly seen to be op-
timal: that is6, if m and n are positive integers with m ≤ fk and n ≤ fk+1

then the ratio n/m is closest to λ+ when m = fk and n = fk+1.

2.4 Golden ratio

The leading eigenvalue λ+ of Q has wider significance, as follows.
Ancient philosophers asserted [14, 15] that the most pleasing division of

a line is such that the ratio of its length a+ b to its larger part a is equal to
the ratio of the larger to the smaller part. That is, (a+ b)/a = a/b.

This aesthetic whimsy was called ‘division in divine proportion’ or in
‘mean and extreme ratio’. A more recent term is ‘golden section’, and the
number τ = a/b > 1 is called the ‘golden ratio’.

From its definition, the golden ratio obeys τ 2 = τ + 1, which coincides
with the characteristic equation of Q, eq. (2.6). So we conclude that τ ≡ λ+.

Then Binet eq. (2.8) relates Fibonacci numbers to the golden ratio:

fk = (τ k − (−τ)−k)/
√

5,

while the large-k limit in eq. (2.9), the sum rule in eq. (2.11) and the bounds
in eq. (2.12) are inverse relations.

6It’s manifest for k = 1, 2, 3 — then by contradiction using Cassini eq. (1.2).
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2.5 Generating functions

The matrix generating function is just the expansion

(I − ξQ)−1 =
∑
k

ξkQk, where det(I − ξQ) = 1− ξ − ξ2 (2.13)

(cf. the characteristic equation eq. (2.6)). The 21 and 12 entries give at once
the Fibonacci generating function

f0 + ξf1 + ξ2f2 + · · · = ξ

1− ξ − ξ2
for |ξ| < 1/λ+ ≈ 0.618. (2.14)

Equating coefficients of ξk gives for k ≥ 0 an explicit solution of eq. (1.1):

fk+1 =

[k/2]∑
r=0

(
k − r
r

)
, (2.15)

which sums along a shallow diagonal of Pascal’s triangle.
From (I − ξQk)−1 likewise we have

fk + ξf2k + ξ2f3k + · · · = fk
1− ξ`k + ξ2(−1)k

, (2.16)

using Cassini eq. (1.2) and where

`k
def
= tr(Qk) = fk+1 + fk−1. (2.17)

These turn out to be Lucas numbers — Sec. 3 below.
The series of eq. (2.16) converges for |ξ| < λ−k+ . For instance, with k = 2:

f2 + ξf4 + ξ2f6 + · · · = 1

1− 3ξ + ξ2
for |ξ| < 1/λ2+ ≈ 0.382.

Equating coefficients of ξn in eq. (2.16) gives the explicit factorisation

fnk = fk

[(n−1)/2]∑
r=0

(
n− r − 1

r

)
(`k)

n−2r−1(−1)(k+1)r. (2.18)

2.6 The GCD theorem

The Binet formula eq. (2.8) shows that if a|b then fa|fb, while eq. (2.18) gives
an expression for the quotient. So if m and n have a common factor k, then
fm and fn have the common factor fk.
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In fact we have that
(fm, fn) = f(m,n) (2.19)

where the parentheses denote greatest common divisor.
To prove this, suppose m > n ≥ 1. Then m = qn+ r where q ≥ 1

and n > r ≥ 0. Now the key to the familiar Euclid algorithm [16] is the

Figure 2.1: the essence of Euclid’s algorithm.

observation that
(m, n) = (n, r) (2.20)

as in Fig. 2.1 — and the proof of eq. (2.19) relies on the parallel result:

(fm, fn) = (fn, fr) . (2.21)

This follows because the addition formula eq. (2.2) gives

(fm, fn) = (fqn+1fr + fqnfr−1, fn)

and then besides fn|fqn we have also (fn, fqn+1) = 1 — which comes at
once from the basic recurrence eq. (1.1) for otherwise (absurdly) all Fibonacci
numbers have a common factor7.

Then as eq. (2.20) gives the descent to (m, n), eq. (2.21) leads to f(m,n).

Ex: what about Lucas numbers? (See Sec. 3.)

2.7 A surprising sum

From the standard matrix identity8 exp(trA) = det(expA) with

∞∑
r=1

1

r
Ar = − ln(I − A) if ||A|| < 1

7Indeed any three successive Fibonacci numbers are co-prime. What about Lucas, etc?
8Recall tr and det in terms of sum and product of eigenvalues.
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we have

exp

(
∞∑
1

1

r
tr(Ar)

)
=

1

det(I − A)
. (2.22)

Then putting A = ξQk for k 6= 0, and with the definition of `k eq. (2.17) plus
the generating function eq. (2.16), we find

exp

(
∞∑
1

ξr

r
`rk

)
=

1

1− ξ`k + ξ2(−1)k
=

1

fk
(fk + ξf2k + ξ2f3k + · · · )

for |ξ| < (λ+)−k. Notice that as fk | frk, the coefficients on the right-hand
side are integers!

This surprising formula comes naturally in this matrix context. And it
generalises the k = 1 case plucked from the air in eg. ref. [17, Chap. 8, Sec. 11].

2.8 Finite sums

The identity

I + A+ A2 + · · ·+ An = (I − An+1)(I − A)−1

with A = ξQk gives

fk + ξf2k + · · ·+ ξn−1fnk =
fk − ξnf(n+1)k + ξn+1(−1)kfnk

1− ξ`k + ξ2(−1)k
, (2.23)

where the IRF eq. (2.4) is used to simplify the coefficient of ξn+1.

Ex: check that n→∞ gives eq. (2.16) if |ξ| < λ−k−1+ .

2.9 Binomial sums

Cayley-Hamilton implies that matrix powers are not independent — ie, be-
cause Q2 = Q+ I we must have Qk = akQ+ bkI for some (ak, bk).

Indeed, replacing the 11 element of eq. (1.3) with the recurrence eq. (1.1)
gives by inspection

Qk = fkQ+ fk−1I (2.24)

for all k = 0,±1,±2, . . . . Therefore

Qkn = (fkQ+ fk−1I)n =
n∑
r=0

(
n

r

)
(fk)

r(fk−1)
n−rQr, (2.25)
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with 21 element

fkn =
n∑
r=0

(
n

r

)
(fk)

r(fk−1)
n−rfr. (2.26)

The cases k = 2 and k = 3 respectively of course give the standard results
[17, Chap. 8, Sec. 6]

f2n =
n∑
1

(
n

r

)
fr and f3n =

n∑
1

(
n

r

)
2rfr,

remembering that f0 = 0.

Ex: write out the cases k = 4 and k = 5.

Eq. (2.24) with the k → −k symmetry eq. (2.1) is

Q−k = (−1)k+1(fkQ− fk+1I),

and this leads likewise to

Q−kn = (−1)nk
n∑
r=0

(
n

r

)
(fk)

r(fk+1)
n−r(−1)rQr.

So (using eq. (2.1) again) we have in addition

fkn =
n∑
r=0

(
n

r

)
(fk)

r(fk+1)
n−r(−1)r+1fr. (2.27)

With k = 2 for instance this gives the superficially strange result:

f2n = −2n
n∑
1

(
n

r

)
(−1

2
)rfr.

Ex: write out the cases k = 3 and k = 4.

Contrast these simple and general matrix constructions with the contrivance
of just the k = 3 case of eq. (2.26) in ref. [17, Chap. 8, Sec. 6].

• The sums in eq. (2.26) and eq. (2.27) effectively start at r = 1 because
f0 = 0, and then the factor fk of fkn is explicit once more.

• A small generalisation — multiply eq. (2.25) by Qp to give in eq. (2.26)

(fkn, fr)→ (fkn+p, fr+p) .

With Q−p for eq. (2.27): (fkn, (−1)r+1fr) → (fkn+p, (−1)r+p+1fr−p).
The sums in Sec. 2.5 and Sec. 2.8 generalise likewise [5, pps. 85–7].
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Chapter 3

Lucas etc

By definition, the numbers `k = tr(Qk) of eq. (2.17) are related to Fibonacci
numbers by

`k = fk+1 + fk−1. (3.1)

They are ‘Lucas numbers ’ [1, A000032] `k = 2, 1, 3, 4, 7, 11, 18, 29 . . . .
Evidently Lucas numbers too obey `k+1 = `k + `k−1 and, with the

Fibonacci k → −k symmetry eq. (2.1), they are defined for k < 0 by

`−k = (−1)k`k. (3.2)

Since `0 = 2 and `1 = 1, the matrix relation corresponding to eq. (1.3) —
and likewise valid for all integers k — is(

`k+1 `k
`k `k−1

)
= Qk

(
1 2
2 −1

)
. (3.3)

Then for example multiplying matrices as for eq. (2.2):

`k+l = fk`l+1 + fk−1`l for all k and l, (3.4)

which for k = 2 recovers the basic recurrence, and for l = 0 gives eq. (3.1).
Inversion of eq. (3.3):

Qk =

(
fk+1 fk
fk fk−1

)
=

1

5

(
`k+1 `k
`k `k−1

)(
1 2
2 −1

)
, (3.5)

gives the inverse of eq. (3.1) as

5fk = `k+1 + `k−1. (3.6)
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3.1 Index-reduction formulas

An IRF parallel to eq. (2.4) is

fa`b − fc`d = (−1)r(fa−r`b−r − fc−r`d−r) (3.7)

for a + b = c + d. This comes either from QaQb = QcQd applied to (1, 2)T

or from eq. (2.4) itself by addition using the definition eq. (3.1).

Ex: choose values of (a, b, c, d, r) to get fn+1`n−1 − fn`n = (−1)n+1

— and what if you interchange f and `?

Likewise there is an IRF with f → ` by adding again. In fact these are just
f` and `` versions of the general IRF eq. (3.23) below.

Ex: from both the `` IRF and from eq. (3.3) prove that

`k+1`k−1 − `2k = 5(−1)k+1 (3.8)

— the Lucas version of Cassini.

For a different bilinear IRF, observe that the matrix of eq. (3.3)

X
def
=

(
1 2
2 −1

)
obeys:

X−1 = 1
5
X and QX = XQ. (3.9)

Then if a+ b = c+ d, we have not only QaQb = QcQd but also

5QaQb = QcXQdX,

which gives the mixed result [10, formula D] for r = 0,±1,±2, . . .

5fafb − `c`d = (−1)r(5fa−rfb−r − `c−r`d−r). (3.10)

Ex: put (a, b, c, d, r) = (n, n, n, n, n) to get `2n − 5f 2
n = 4(−1)n.

This identity is central to analysis of a variant Pell equation [18] as in
ref. [17, Chap. 8, Sec. 11]. See also Sec. A.2.1 in Appendix A.
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3.2 Sums

Operating on (1, 2)T with (I − ξQ)−1 gives the Lucas generating function

`0 + ξ`1 + ξ2`2 + · · · = 2− ξ
1− ξ − ξ2

, (3.11)

while the analogue of eq. (2.23) reads

`0 + ξ`k + · · ·+ ξn`nk =
2− ξ`k − ξn+1`(n+1)k + ξn+2(−1)k`nk

1− ξ`k + ξ2(−1)k
, (3.12)

where n→∞ for |ξ| < λ−k+ leaves numerator 2− ξ`k (compare eq. (2.16)).
The Fibonacci binomial sums of Sec. 2.9 have straightforward Lucas ana-

logues — eg. take the tr of eq. (2.25) and use eq. (2.17) to get a version
of eq. (2.26) with (fkn, fr) → (`kn, `r). Likewise for eq. (2.27), with also
(−1)r+1 → (−1)r.

3.3 Lucas and Binet

Read off from the trace definition of `k eq. (2.17) the Binet formula for Lucas
numbers:

`k = λk+ + λk−. (3.13)

Then as for Fibonacci eq. (2.9) we have

λ+ = (`k+1/`k)k→∞ . (3.14)

Such a limit clearly depends only on the Q-matrix — ie, the recurrence
formula — and not on the values of the first two sequence-members.

Ex: Divide Lucas-Cassini eq. (3.8) by `k`k−1, sum over k and use the limit
in eq. (3.14) to derive another sum rule for the golden ratio:

τ = 1
2

+ 5
∞∑
1

(−1)k+1

`k`k−1
.

Comparing Lucas-Binet eq. (3.13) with Binet for Fibonacci numbers eq. (2.8)
we have at once

`k = f2k/fk. (3.15)

15



This generalises —

fnk
fk

=
λnk+ − λnk−
λk+ − λk−

= λ
(n−1)k
+ + λ

(n−2)k
+ λk− + λ

(n−3)k
+ λ2k− + · · ·

· · ·+ λ2k+ λ
(n−3)k
− + λk+λ

(n−2)k
− + λ

(n−1)k
−

= `(n−1)k + (−1)k`(n−3)k + · · · ,

including only Lucas numbers of non-negative index in the last line.
The connection to the factorisation result eq. (2.18) coming from the

Fibonacci generating function in Sec. 2.5 is via (`k)
p = (λk+ + λk−)p.

3.4 General initial values

Consider [19] gk+1 = gk + gk−1 for general (g0, g1).
Then (

gk+1 gk
gk gk−1

)
= Qk

(
g1 g0
g0 g1 − g0

)
, (3.16)

which generalises Cassini as

gk+1gk−1 − g2k = (−1)k(g21 − g0g1 − g20). (3.17)

Ex: From eq. (3.17) prove that generally

τ =
g1
g0

+ (g21 − g0g1 − g20)
∞∑
1

(−1)k

gkgk−1
.

Deal separately with any case of a zero denominator.

The addition formulas eq. (2.2) and eq. (3.4) generalise to

gk+l = fkgl+1 + fk−1gl, (3.18)

while eq. (2.3) becomes

gj+k+l = fj+1fk+1gl+1 + fjfkgl − fj−1fk−1gl−1.

Operating on (g1, g0)
T with (I − ξQ)−1 gives the generating function

g0 + ξg1 + ξ2g2 + · · · = g0 + (g1 − g0)ξ
1− ξ − ξ2

. (3.19)
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Comparing with the Fibonacci generating function eq. (2.14):

gk = g0fk+1 + (g1 − g0)fk = g0fk−1 + g1fk, (3.20)

which is the 21 entry of the matrix expression eq. (3.16) and a special case
of the addition formula eq. (3.18).

From this, with eq. (2.8) and eq. (3.13), comes the Binet generalisation

gk =
(
g0(λ

k−1
+ − λk−1− ) + g1(λ

k
+ − λk−)

)
/(λ+ − λ−),

which of course leads to λ+ = (gk+1/gk)k→∞.

Operating with powers of Q on (g1, g0)
T easily gives generalisations of

eg. the finite sum eq. (2.23) and the binomial sum eq. (2.26), but eq. (2.27)
needs also symmetry under k → −k.

Changing k to −k in the matrix expression eq. (3.16) and proceeding as
in Sec. 2.1 gives

g−k = (−1)k(g0fk+1 − g1fk), (3.21)

consistent with eq. (3.20) plus the Fibonacci symmetry eq. (2.1). Lucas has
(g0, g1) = (2, 1), recovering its symmetry eq. (3.2).

Fibonacci and Lucas are the two choices of (g0, g1) (up to a factor) that
lead to simple k → −k symmetry as in eq. (2.1) and eq. (3.2). This singles
out the Fibonacci-Lucas basis:

gk = (g1 − 1
2
g0)fk + 1

2
g0`k. (3.22)

In this basis the generalisation of the IRFs eq. (2.4) and eq. (3.7) follows by
addition

gahb − gchd = (−1)r(ga−rhb−r − gc−rhd−r) (3.23)

where a, b, c, d, r = 0,±1,±2, . . . and a+ b = c+ d. This holds for se-
quences {gk} and {hk} that are different or the same, but obey the Fibonacci
recurrence rule embodied in the matrix expression eq. (3.16).

Eq. (3.23) is the case a1 = a2 = 1 of eq. (A.10) in Sec. A.2 below, where
it is established ab initio.

Compare the simple derivations of eq.(3.23) and its generalisation eq.(A.10)
with the painful manipulations in ref. [4, pps. 27–8] to obtain just the special
case listed as formula 18 [4, p. 177].

3.5 Other matrices

Besides Q, are there any other 2×2 matrices (say K) whose powers Kn have
entries involving Fibonacci numbers?

17



If there are, then (Binet) they must have eigenvalues λ± = (1 ±
√

5)/2
and so the characteristic equation λ2 = λ+ 1. Equivalently,

trK = λ+ + λ− = 1 and detK = λ+λ− = −1.

Therefore if

K =

(
a b
c d

)
then a+ d = 1 and ad− bc = −1 . . . and hence

K =

(
a b

(1 + a− a2)/b 1− a

)
in terms of two suitable numbers a, b.

To calculate Kn, use Cayley-Hamilton. That is, matrix K obeys its
characteristic equation K2 = K + I where I is the 2× 2 unit.

So by induction (exercise! — and compare eq. (2.24))

Kn = fnK + fn−1I

. . . leading to

Kn =

(
afn + fn−1 bfn

(1 + a− a2)fn/b (1− a)fn + fn−1

)
. (3.24)

The matrix Q has a = b = 1.
Choosing (a, b) =

(
1
2
, 5

2

)
gives the case mentioned by Demirtürk [20] —(

1
2

5
2

1
2

1
2

)n
=

(
1
2
`n

5
2
fn

1
2
fn

1
2
`n

)
, (3.25)

with Lucas numbers `n ≡ fn+1 + fn−1 = fn + 2fn−1.
Other examples include eg.(

−1
2

1
2

1
2

3
2

)n
=

(
1
2
fn−3

1
2
fn

1
2
fn

1
2
fn+3

)
(3.26)

and (
2 1
−1 −1

)n
=

(
fn+2 fn
−fn −fn−2

)
(3.27)

and so on.
Taking determinants in eq.(3.24) gives Cassini eq.(1.2) for all (a, b). Then

doing likewise in eqs. (3.25)–(3.27) gives variants. Note that eq. (3.25) leads
to the important identity in the example immediately following eq. (3.10).
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Chapter 4

Tribonacci etc

Here tk = 0, 0, 1, 1, 2, 4, 7, 13, 24, . . . obey [1, A000073]

tk+1 = tk + tk−1 + tk−2 where t0 = t1 = 0, t2 = 1.

Introducing

M =

 1 1 1
1 0 0
0 1 0

 and M−1 =

 0 1 0
0 0 1
1 −1 −1

 (4.1)

gives

Mk =

 tk+2 tk+1 + tk tk+1

tk+1 tk + tk−1 tk
tk tk−1 + tk−2 tk−1

 for k = 0,±1,±2, . . . . (4.2)

Using M−k = (Mk)−1 as for Q above:

t−k =

∣∣∣∣ tk+1 tk+2

tk tk+1

∣∣∣∣ (4.3)

— rather less simple than for Fibonacci eq. (2.1).
From detM = 1 read off∣∣∣∣∣∣

tk tk+1 tk+2

tk−1 tk tk+1

tk−2 tk−1 tk

∣∣∣∣∣∣ = 1, (4.4)

corresponding to Cassini eq. (1.2). Like eq. (2.2), from Mk+l = MkM l there
is the addition rule:

tk+l = tk+1tl+1 + tktl + tk−1tl + tktl−1,

and there are further multilinear relations as for Fibonacci.
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Ex: if a+ b = c+ d then what follows from MaM b = M cMd?

The matrix generating function (I − ξM)−1 gives

t0 + ξt1 + ξ2t2 + · · · = ξ2

1− ξ − ξ2 − ξ3
.

Equating coefficients of powers of ξ gives explicitly for k ≥ 0

tk+2 =

[k/2]∑
p=0

qmax∑
q=0

(
k − p− q

p

)(
p

q

)
where qmax = min(p, k − 2p). This is the analogue of the Fibonacci for-
mula eq. (2.15) but has no straightforward interpretation in terms of Pascal’s
triangle.

4.1 Trucas

Introduce uk
def
= tr(Mk) with M as in eq. (4.1), and so from eq. (4.2)

uk = tk+1 + 2tk + 3tk−1. (4.5)

From the trace definition:

uk = λk1 + λk2 + λk3, (4.6)

where λ1,2,3 are the eigenvalues of M .
Writing the characteristic equation λ3 = λ2 + λ+ 1 as

λ3 = (λ1 + λ2 + λ3)λ
2 − (λ1λ2 + λ2λ3 + λ3λ1)λ+ λ1λ2λ3

read off from eq. (4.6) with k = 0, 1, 2 that u0 = 3, u1 = 1 and

u2 = (λ1 + λ2 + λ3)
2 − 2(λ1λ2 + λ2λ3 + λ3λ1) = 1− 2(−1) = 3.

So the Trucas numbers are [1, A001644]

. . . 23, 3,−15, 11,−1,−5, 5,−1,−1,3,1,3, 7, 11, 21, 39, 71, 131, 241, . . .

where for k = 0,±1,±2, . . . uk+2 uk+1 + uk uk+1

uk+1 uk + uk−1 uk
uk uk−1 + uk−2 uk−1

 = Mk

 3 4 1
1 2 3
3 −2 −1

 .
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Taking determinants, the equivalent of ‘Cassini’ eq. (4.4) is∣∣∣∣∣∣
uk uk+1 uk+2

uk−1 uk uk+1

uk−2 uk−1 uk

∣∣∣∣∣∣ = 44.

The inverse is

22Mk =

 uk+2 uk+1 + uk uk+1

uk+1 uk + uk−1 uk
uk uk−1 + uk−2 uk−1

 2 1 5
5 −3 4
−4 9 1

 ,

whose 31 entry gives an inverse of eq. (4.5):

tk = 1
22

(2uk + uk−1 + 5uk−2). (4.7)

An alternative with successive u’s is tk = 1
22

(5uk+1−3uk−4uk−1) but eq. (4.7)
involves only positive coefficients.

With this equation and its inverse eq.(4.5), plus the result for t−k eq.(4.3),
a complicated expression for u−k in terms of uk etc is possible. But the sim-
plicity of Fibonacci’s eq. (2.1) and Lucas’ eq. (3.2) — and their 2-dimensional
generalisations eq. (A.3) and eq. (A.18) — is gone in higher dimensions. Any
naturalness of Trucas is eq. (4.6), from which

u−k = (λ1λ2)
k + (λ2λ3)

k + (λ3λ1)
k. (4.8)

The generating function

u0 + ξu1 + ξ2u2 + · · · = 3− 2ξ − ξ2

1− ξ − ξ2 − ξ3

is the 31 element of (I − ξM)−1 multiplied into (3, 1, 3)T .

4.2 General N-term recurrence

Consider {gk} from

g0 = g1 = · · · = gN−2 = 0 and gN−1 = 1 (4.9)

via the constant-coefficient recurrence relation

gk = a1gk−1 + a2gk−2 + · · ·+ aNgk−N with aN 6= 0. (4.10)
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Define gk for k = 0,±1,±2, . . . at the foot of the first column of an n-square
matrix:

gk
def
= (Mk)N1 where M =


a1 a2 a3 · · · aN
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 · · · 1 0

 . (4.11)

Here detM = (−1)N+1aN , M0 = I, and

M−1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1
1/aN −a1/aN · · · · · · −aN−1/aN

 .

Then for k = 0,±1,±2, . . . the whole first column of Mk is

(gk+N−1, . . . , gk+1, gk)
T ,

and following columns are linear combinations with successive aj coefficients
of respectively N − 1, N − 2, . . . , 2, 1 successive elements of the first.

For eg. N = 3:

Mk =

 gk+2 a2gk+1 + a3gk a3gk+1

gk+1 a2gk + a3gk−1 a3gk
gk a2gk−1 + a3gk−2 a3gk−1

 . (4.12)

Families of multilinear relations (including extension to k < 0) are read off
from matrix-multiplication and determinant identities. For eg. N = 3, from
det(Mk) = ak3: ∣∣∣∣∣∣

gk gk+1 gk+2

gk−1 gk gk+1

gk−2 gk−1 gk

∣∣∣∣∣∣ = ak−23 .

Now generally

Mk = a1M
k−1 + a2M

k−2 + · · ·+ aNM
k−N

corresponding to characteristic equation

λN = a1λ
N−1 + a2λ

N−2 · · ·+ aN−1λ+ aN . (4.13)

The matrix generating function (I − ξM)−1 gives

g0 + ξg1 + ξ2g2 + · · · = ξN−1

1− a1ξ − a2ξ2 − · · · − aNξN
.
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4.2.1 General initial values

For any values of h0 to hN−1, define hk for k = 0,±1,±2, . . . as the N1 entry
of the matrix product Mk (hN−1, . . . , h0)

T where M is as in eq. (4.11).
For eg. N = 3:

hk = h2gk + h1(a2gk−1 + a3gk−2) + h0a3gk−1.

Follow Sec. 3.4 to get for any N :

h0 + ξh1 + ξ2h2 + · · · = h0 +
∑N−1

1 drξ
r

1− a1ξ − a2ξ2 − · · · − aNξN

where

dr = hr −
r−1∑
0

hiar−i.

For eg. N = 4 the generating function has numerator

h0 + (h1 − h0a1)ξ + (h2 − h1a1 − h0a2)ξ2 + (h3 − h2a1 − h1a2 − h0a3)ξ3.

4.2.2 Lucas-aid

Let γk
def
= tr(Mk) with M as in eq. (4.10). Then

γk =
N∑
i=1

λki (4.14)

where {λi} are the eigenvalues of M .
As for Trucas in Sec. 4.1, read off from eq. (4.14) and eq. (4.13)

γ0 = N, γ1 = a1, γ2 = a21 + 2a2, . . .

and so on up to γN−1. Then the results of Sec.4.2.1 apply, including a formula
for γ−k in terms of λs similar to eq. (4.8) but with detM = (−1)N+1aN .

4.2.3 Complete set

If N > 2 then there are N − 2 other independent sequences. The Nth
elements of each of the N − 2 central columns of Mk will do.

For eg. N = 3, from eq. (4.12), we have hk = a2gk−1 + a3gk−2. Then for
instance to go with Tribonacci and Trucas there is vk = tk+1− tk, namely [1,
A001590]

. . . − 4, 5,−2,−1, , 2,−1,0,1,0, 1, 2, 3, 6, 11, 20, . . . .

23



4.3 Multinacci

Includes Fibo- (N = 2), Tribo- (N = 3), Tetra- (N = 4) [21] naccis [22] where
the N -step recurrence eq. (4.10) with coefficients a1 = a2 = · · · = aN = 1
applies to simple initial values eq. (4.9).

Here

λ =

(
gk+1

gk

)
k→∞

obeys

λ = 2− 1

λN
where λ > 1

(multiply the characteristic equation by λ − 1). Since | detM | = 1, matrix
M has at least one other eigenvalue λ with |λ| < 1.

In fact the graphs of the smooth functions λ and 2− 1/λN show that for
N = 1, 2, . . . there is exactly one real eigenvalue λ ∈ (1, 2) plus, for even N
only, exactly one real eigenvalue λ ∈ (−1, 0).

So for even N there are N − 2 complex eigenvalues and for odd N there
are N − 1 (when there is at least a pair inside the unit circle). Direct from
the characteristic equation, there is no eigenvalue λ = ±1 for any N > 1.

In fact Rouché’s Theorem shows [23] that all complex eigenvalues are
inside the unit circle, and numerical experiments show them approaching it
as N increases.

An eigenvector belonging to any eigenvalue λ of M is

(λN−1, λN−2, . . . , λ, 1)T .

This is significant in the context of the next section.

4.4 Chaotic maps

The Arnol’d cat map on T 2

x→ x′ = Kx (mod 1) (4.15)

involves [24, pps. 92–8]

K =

(
2 1
1 1

)
=

(
1 1
1 0

)2

.
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Generalise to N dimensions with N ×N matrix

K
def
= MN where M =


1 1 1 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 0 . . . 1 0


as for multinacci, Sec. 4.3. This map is volume- and orientation-preserving
since

detK = (detM)N = ((−1)N+1)N = +1,

and on TN is an example of an Anosov hyperbolic automorphism [25, pps. 190–201].
Examples — N = 3, 4:

K =

 4 3 2
2 2 1
1 1 1

 and K =


8 7 6 4
4 4 3 2
2 2 2 1
1 1 1 1

 .

Each K has at least one irrational eigenvalue µ > 1 (where µ = λN with λ
as in Sec. 4.3) plus at least one with |µ| < 1, from detK = 1 (and there is
none with µ = ±1). So every fixed point in phase space TN is unstable.

There are unstable periodic points of all periods. Every rational point is
periodic and a p-periodic point has rational coordinates with denominator
| det(Kp − I)|.

So the matrices K provide a family of linear congruential random-number
generators, via eq. (4.15) in TN .
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Chapter 5

Fibonacci modulo m

Simulations of the Arnol’d cat map (Sec. 4.4) necessarily discretise phase
space [0, 1)× [0, 1) (mod 1) and replace it with an m-square toroidal lat-
tice. Then the linear map as in Sec. 4.4 with matrix K = Q2 leads to
consideration of Fibonacci numbers modulo m.

Lattice-points (x, y) = (fr, fr+1) (mod m) are on the trajectory gen-
erated by (

y
x

)
→ Q

(
y
x

)
(mod m) (5.1)

and based at (x, y) = (0, 1). As in eq. (1.3) the coordinates are columns of

Qr (mod m) for r ≥ 1.

Because Q is invertible and there are only m2 − 1 distinct available lattice
points (excluding the fixed point (0, 0)) the trajectory closes to a cycle after
r = π(m) ≤ m2 − 1 steps. In other words, every integer m > 1 is a factor of
some fk with k < m2 − 1.

Thus for each m ≥ 2 there is a minimum positive integer π(m) such that

Qπ(m) ≡ I (mod m). (5.2)

Taking determinants: (−1)π(m) ≡ 1 and so π(m) is even for m ≥ 3. Note
that −1 ≡ 1 (mod 2), and indeed π(2) = 3.

The periods π(m) comprise the Pisano sequence [1, A001175] which starts

(m, π(m)) = (2, 3) , (3, 8) , (4, 6) , (5, 20) , (6, 24) , (7, 16) , (8, 12) , . . . .

See ref. [26] for more. It has no overall regularity, but Fig. 5.1 shows obvious
linear structure. Prominent lines include π ∼ 3m, ∼ 2m, ∼ m and it is
known that π(m)/m ≤ 6 with equality iff m = 2 × 5n for n = 1, 2, 3, . . . .
Values π(250) = 1500 and π(1250) = 7500 stand out in Fig. 5.1.
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Figure 5.1: Pisano period π(m) versus m for 2 ≤ m ≤ 3000.

Also we have (eg. ref. [27]) π(m) = 3m/2 for m = 2k, π(m) = 8m/3 for
m = 3k and π(m) = 4m for m = 5k, etc, but such cases contribute little to
Fig. 5.1.

Since Qπ(m) = I +mA where A is some 2 × 2 symmetric matrix, if
n | m then Qπ(m) ≡ I (mod n) too. Thus n | m implies π(n) | π(m).
However there is no implication that π(m)/π(n) = m/n.

5.1 Other orbits

Pairs (x, y) = (gr, gr+1) (mod m) are likewise lattice-points on the tra-
jectory based at (g0, g1), and they appear as columns of

QrG (mod m) for r ≥ 1. (5.3)

Here

G
def
=

(
g1 g0
g0 g1 − g0

)
as in eq. (3.16).
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Clearly from eq. (5.2) any such trajectory repeats after r = π(m). But
its cycle may have a shorter minimum period πjk(m) < π(m) depending on
(g0, g1) = (j, k) when

Qπjk(m)G ≡ G (mod m). (5.4)

That is, the cycle through (j, k) comprises πjk lattice points of which (j, k)
is a representative. With this notation the Pisano period itself is π01(m).

For consistency with eq. (5.2), πjk(m) | π01(m). And for given (j, k),
n | m implies πjk(n) | πjk(m) by the same logic as for π01.

Of course this periodicity is just Poincaré recurrence in the context of the
discrete cat map [28, p. 98]. Such shorter cycles in a pixel-array lead to eg.
the ghostly multiple images in diagram 48 of ref. [28, Fig. 6.107].

Because Q is invertible, each lattice-point belongs to one and only one
orbit and so there is the sum rule∑

jk

πjk(m) = m2 (5.5)

where the sum is over all distinct cycles including the fixed point (0, 0) of
period 1.

From eq. (5.5) a linear rise of the Pisano period π(m) implies a linear
increase in the number of distinct cycles N(m).

Indeed the bound π01(m)/m ≤ 6, plus πjk(m) ≤ π01, implies via eq. (5.5)
that N(m) ≥ 1

6
m. However this can be improved by counting zeroes, as

follows.

5.2 Zeroes

The Fibonacci trajectory (x, y) = (fr, fr+1) (mod m) closes on (0, 1) af-
ter π(m) terms but in general its orbit includes (0, a) after α(m) ≤ π(m).

Let r = α(m) be the smallest r > 0 such that [1, A001177]

fr ≡ 0 (mod m).

Then with fα(m)±1 ≡ a (mod m) we have

Qα(m) ≡ aI (mod m). (5.6)

Taking determinants
(−1)α(m) ≡ a2 (mod m) (5.7)

and so either a2 ≡ 1 or a2 ≡ m− 1 (mod m).
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Taking powers:

Q2α(m) ≡ bI, Q3α(m) ≡ cI, Q4α(m) ≡ dI, . . . (mod m)

so that
a2 ≡ b, a3 ≡ c, a4 ≡ d, . . . , (mod m). (5.8)

From eq. (5.2) some multiple of α equals π(m) and the corresponding coeffi-
cient in the set a, b, c, d, . . . is 1; then the sequence repeats.

Given eq. (5.7) and eq. (5.8) the possibilities are

• a = b = · · · = 1, when π(m) = α(m) and zero-number z(m) = 1;

• a 6= 1 and a2 ≡ 1, then b = 1 and so π(m) = 2α(m) and z(m) = 2;

• a 6= 1 and a2 ≡ m − 1, then b = m − 1, d ≡ 1 and so π(m) = 4α(m)
with z(m) = 4. Also c = m− a.

In the second two cases 4 | π(m) with an odd quotient if z = 4.
No other case arises — the Fibonacci cycle has z(m) = 1, 2 or 4 only.

Example m = fK (K > 2): here α = K, a = fK−1 and

a2 ≡ (−1)K (mod fK).

Therefore π(fK) = 2K and z(fK) = 2 if K is even

π(fK) = 4K and z(fK) = 4 if K is odd.

For odd K: b = fK − 1, c = fK−2.

Here π(m) rises very slowly (logarithmically) with m.

A distinct trajectory based at (g0, g1) = (j, k) 6= (0, 1) may or may not have
a zero. For instance the Lucas sequence modulo 5 has none: z21(5) = 0.
That is, no Lucas number is divisible by 5.

Consider however an orbit, distinct from the Fibonacci cycle, with at
least one zero. Such orbits exist, eg. m = 7 with (g0, g1) = (2, 4).

Then choose (g0, g1) = (0, g), that is, G = gI with g 6= 1.
If there is another zero then for some β(m) > 0

gQβ(m) ≡ aI (mod m) (5.9)

when taking determinants gives

g2(−1)β(m) ≡ a2 (mod m). (5.10)

Here there are 2 solutions with g = a, π = β and z = 1 — namely
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• β = even;

• β = 3, g = m/2 with m = even.

The second case includes m = 2, g = 1 as well as m = 4k, g2 ≡ 0 (mod m).
Otherwise if z > 1

gQ2β(m) ≡ bI, gQ3β(m) ≡ cI, gQ4β(m) ≡ dI, . . . (mod m)

when, multiplying by g, g2 and g3 respectively, and using eq. (5.9),

a2 ≡ gb, a3 ≡ g2c, a4 ≡ g3d, . . . , (mod m). (5.11)

Again from eq. (5.4), some multiple of β equals π0g(m) when the correspond-
ing coefficient a, b, c, d, . . . is g.

From eq. (5.10) and eq. (5.11) together, the possibilities are

• β = even, a2 ≡ g2, b = g and so z = 2, π = 2β,

• β = odd, a2 ≡ −g2, b = m− g, c = m− a and so z = 4, π = 4β.

Here g = 1 recovers the Fibonacci case.
In summary, non-Fibonacci cycles may have either 0, 1, 2 or 4 zeroes.
On the m-square lattice there are m points (0, g), including g = 0 and

g = 1. Each lies on exactly one orbit. Therefore if the cycle from (j, k) has
zjk(m) zeroes there is the sum rule∑

jk

zjk(m) = m (5.12)

where the sum is over N(m) distinct cycles as in eq. (5.5).
Since no cycle has more than 4 zeroes, N(m) ≥ 1

4
m. This is the improve-

ment advertised above. Or, given eq. (5.5), we have independently that π(m)
increases no more than linearly with m.

5.3 Aside — divisibility of sums

The sum of any 10 consecutive Fibonacci numbers is divisible by 11. This is
because π(11) = 10.

It is one of an infinite family of such results that follow from eq. (B.1)
taken mod m, whose right-hand side is then zero if q = p− 1 + πg0g1(m).

So for instance the sum of any 28 consecutive Lucas numbers is divisible
by 13 because π21(13) = 28, etc.

Ex: write down a factor of the sum of any 24 consecutive Lucas numbers.
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m j, k π C w z
2 (0, 1) 3 1 1 1
3 (0, 1) 8 1 3 2
4 (0, 1) 6 1 2 1

(0, 2) 3 0 1 1
(0, 3) 6 1 3 1

5 (0, 1) 20 1 8 4
(2, 1) 4 0 2 0

6 (0, 1) 24 1 11 2
(0, 2) 8 2 3 2
(0, 3) 3 3 1 1

7 (0, 1) 16 1 7 2
(0, 2) 16 3 7 2
(0, 3) 16 2 7 2

8 (0, 1) 12 1 4 2
(0, 2) 6 4 2 1
(0, 3) 12 1 6 2
(0, 4) 3 0 1 1
(0, 6) 6 4 3 1
(2, 1) 12 3 6 0
(3, 1) 12 3 6 0

9 (0, 1) 24 1 11 2
(0, 2) 24 4 11 2
(0, 3) 8 0 3 2
(0, 4) 24 2 11 2

10 (0, 1) 60 1 28 4
(0, 2) 20 4 8 4
(0, 5) 3 5 1 1
(2, 1) 12 5 6 0
(4, 2) 4 0 2 0

m j, k π C w z
11 (0, 1) 10 1 3 1

(0, 2) 10 4 4 1
(0, 3) 10 2 4 1
(0, 4) 10 5 5 1
(0, 5) 10 3 5 1
(0, 6) 10 3 4 1
(0, 7) 10 5 4 1
(0, 8) 10 2 5 1
(0, 9) 10 4 5 1
(0, 10) 10 1 6 1
(2, 5) 10 0 5 0
(2, 8) 5 0 3 0
(3, 1) 5 0 2 0

12 (0, 1) 24 1 9 2
(0, 2) 24 4 11 2
(0, 3) 6 3 2 1
(0, 4) 8 4 3 2
(0, 6) 3 0 1 1
(0, 7) 24 1 13 2
(0, 9) 6 3 3 1
(2, 1) 24 5 12 0
(4, 1) 24 5 12 0

13 (0, 1) 28 1 12 4
(0, 2) 28 4 12 4
(0, 4) 28 3 12 4
(2, 1) 28 5 14 0
(2, 5) 28 2 14 0
(2, 8) 28 6 14 0

Table 5.1: all distinct proper orbits for m = 2 to 13. Each is identified by
one point (j, k) followed by period π, Cassini number C, winding number w
and number of zeroes z. Note that eq. (5.5) and eq. (5.12) are obeyed.
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5.4 Other invariants

The sequence of numbers of cycles [1, A015134] begins

(m, N(m)) = (2, 2) , (3, 2) , (4, 4) , (5, 3) , (6, 4) , (7, 4) , (8, 8) , (9, 5) ,

(10, 6) , (11, 14) , (12, 10) , (13, 7) , (14, 8) , (15, 12) , . . .

and, like the sequence of periods π01(m), it is irregular.
The examples in Table 5.1 include other invariants which help to distin-

guish cycles — ie, Cassini number and winding number.

5.4.1 Cassini number

Referring to eq. (5.3) let

detG ≡ ∆ (mod m) when 0 ≤ ∆ ≤ m− 1.

Since detG = g21 − g0g1 − g20 appears in the generalised Cassini formula,
eq. (3.17), define the ‘Cassini number ’ of an orbit from eq. (5.3) as

C
def
= min(∆,m−∆) (5.13)

when 0 ≤ C ≤ m/2 if m is even and m/2→ (m− 1)/2 if m is odd.
Since detQ = −1 each cycle comprises points (x, y) where

y2 − xy − x2 ≡ ±C (mod m)

with sign alternating. This is the equivalent of a first integral for a continuous-
time dynamical system. The Fibonacci cycle has C = 1 for all m.

Values of C partition phase space to some extent — see Table 5.1. But
counting by C is not clear-cut because the range of about 1

2
m C-values is not

always realised, and two distinct cycles may have the same C-value. There
seems to be nothing special about C = 0.

5.4.2 Fibonacci tiles

Fig. 5.2 shows two ‘Fibonacci tiles ’ [29], where each cycle of Q is a distinct
colour. Identifying opposite edges to make a torus, these patterns are the
square pixel-arrays invariant under the Q-map and the discrete cat-map.
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Figure 5.2: orbits distinguished by colour, m = 5 (N = 3), m = 37 (N = 19).

Figure 5.3: winding number w01

versus m for 2 ≤ m ≤ 3000.
Figure 5.4: ratio w01/π01 versus m
for 2 ≤ m ≤ 3000.

5.4.3 Winding number

The sequence of lattice points generated by eq. (5.1) closes on (0, 1) after a
non-zero number w(m) of modulo-m operations — ie, the cycle winds round
the toroidal lattice w(m) times with 1 ≤ w(m) < π(m).

Table 5.1 gives the winding number for each proper orbit included and
the first few Fibonacci winding numbers w01(m) are [1, A088551]

(m, w(m)) = (2, 1) , (3, 3) , (4, 2) , (5, 8) , (6, 11) , (7, 7) , (8, 4) ,

(9, 11) , (10, 28) , (11, 3) , (12, 9) , (13, 12) , (14, 23)

(15, 19) , (16, 9) , (17, 16) , (18, 11) , (19, 7) , . . .

Again there is no regularity — but Fig. 5.3 is strikingly similar to Fig. 5.1.
The prominent straight lines have half the slope, however. Indeed each step
in eq. (5.1) moves round the lattice 1

2
m(m + 1) points out of the m2 − 1
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available, so that w(m) ∼ π(m)/2 is expected.
Fig. 5.4 shows that there is considerable variation, consistent with the

bound
w(m) > 1

4
π(m) (5.14)

— ie, that the Fibonacci cycle has on average fewer than 4 points per transit
round the lattice.
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Chapter 6

Conclusion

To explore systematically the properties of Fibonacci numbers etc, recognise
the 2-dimensional (or N -dimensional) linear context, formulate definitions in
the corresponding natural language of matrices, and look at the implications
of each interesting matrix result.

For instance the straightforward multiplication of matrices leads to index-
reduction formulas that unify the host of bilinear Fibonacci-Lucas identities.

However these introductory notes do not deal with every possibility —
there’s plenty left as exercises for the student.
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Appendix A

General two-term recurrence

A.1 Simple initial values

Consider
ϕk+1 = a1ϕk + a2ϕk−1 (A.1)

with non-zero constants (a1, a2) and values

ϕ0 = 0, ϕ1 = 1.

Then the matrix expression corresponding to the Fibonacci case eq. (1.3) is(
ϕk+1 a2ϕk
ϕk a2ϕk−1

)
= P k where P

def
=

(
a1 a2
1 0

)
. (A.2)

Following the same manipulations as for Fibonacci numbers in Sec. 2.1 we
have:

ϕ−k = −ϕk/(−a2)k (A.3)

and along with the Cassini-equivalent

ϕk+1ϕk−1 − ϕ2
k = −(−a2)k−1. (A.4)

Also
ϕk+l = ϕkϕl+1 + a2ϕk−1ϕl (A.5)

and
a1ϕj+k+l = ϕj+1ϕk+1ϕl+1 + a1a2ϕjϕkϕl − a32ϕj−1ϕk−1ϕl−1.

Equating coefficients of ξk in the generating-function expansion

ϕ0 + ξϕ1 + ξ2ϕ2 + · · · = ξ

1− a1ξ − a2ξ2
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gives for k ≥ 0 an explicit solution of eq. (A.1) in terms of a1 and a2:

ϕk+1 =

[k/2]∑
r=0

(
k − r
r

)
ak−2r1 ar2. (A.6)

This generalises the Fibonacci result eq. (2.15), summing along a shallow
diagonal of Pascal’s triangle with a binomial coefficient from row n multiplied
by just those powers of a1 and a2 that accompany it in the expansion of
(a1 + a2)

n.

A.2 General initial values

If gk+1 = a1gk + a2gk−1 for general (g0, g1) then(
gk+1 a2gk
gk a2gk−1

)
= P k

(
g1 a2g0
g0 g1 − a1g0

)
, (A.7)

with P as in eq. (A.2) and so eg.

gk+1gk−1 − g2k = −(−a2)k−1(g21 − a1g0g1 − a2g20) (A.8)

and
gk+l = ϕkgl+1 + a2ϕk−1gl.

With l = 0 relate to {ϕk}:

gk = g1ϕk + a2g0ϕk−1, (A.9)

where the inverse follows from inverting eq. (A.7), as for Lucas.
Also:

a1gj+k+l = ϕj+1ϕk+1gl+1 + a1a2ϕjϕkgl − a32ϕj−1ϕk−1gl−1.

A.2.1 Example

Solutions (xn, yn) to the Pell equation [18]:

x2 −Dy2 = 1,

where (x, y, D) are positive integers and D is non-square, are given by(
xn Dyn
yn xn

)
=

(
α Dβ
β α

)n
for n = 0, 1, 2, . . . .
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Here (x1, y1) = (α, β) is a minimal nontrivial solution — ie,

α2 −Dβ2 = 1 and (α, β) 6= (x0, y0) = (1, 0) .

From the characteristic equation {xn} and {yn} obey gn+1 = 2αgn − gn−1
with (g0, g1) = (1, α) and (g0, g1) = (0, β) respectively.

So this example has (a1, a2) = (2α, −1).
Then alongside xnyn+1 − xn+1yn = β we have eg. from eq. (A.8)

xn+1xn−1 − x2n = α2 − 1 and yn+1yn−1 − y2n = −β2.

A.2.2 Bilinear index-reduction formula

Any matrix R that commutes with the matrix P of eq. (A.2) has the form

R =

(
g1 a2g0
g0 g1 − a1g0

)
as in eq. (A.7).

Therefore if a+ b = c+ d not only does P aP b = P cP d hold, but also

P aRP bS = P cRP dS where S
def
=

(
h1 a2h0
h0 h1 − a1h0

)
.

Using eq. (A.7) to define both {gk} from R and {hk} from S, the 22 entries
on each side rearrange to

gahb − gchd = (−a2)(ga−1hb−1 − gc−1hd−1)

when iteration as for the Fibonacci IRF eq. (2.4) gives

gahb − gchd = (−a2)r(ga−rhb−r − gc−rhd−r) (A.10)

where a, b, c, d, r = 0,±1,±2, . . . and a+ b = c+ d.

A.2.3 Sums

The N = 2 generating function is

g0 + ξg1 + ξ2g2 + · · · = g0 + (g1 − g0a1)ξ
1− a1ξ − a2ξ2

,

and the analogue of eq. (2.16) is

g0 + ξgk + ξ2g2k + · · · = g0 + ξ(g1ϕk − g0ϕk+1)

1− ξ(ϕk+1 + a2ϕk−1) + ξ2(−a2)k
.
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The generalisation of the finite sum in eq. (2.23) is

g0 + ξgk + · · ·+ ξngnk =
Gn

1− ξ(ϕk+1 + a2ϕk−1) + ξ2(−a2)k
, (A.11)

where the numerator

Gn ≡ g0 + ξ(g1ϕk − g0ϕk+1)

− ξn+1(g1ϕ(n+1)k + g0a2ϕ(n+1)k−1)

+ ξn+2(−a2)k(g1ϕnk + g0a2ϕnk−1)

has been simplified with the help of eq. (A.10) for g = h = ϕ.
The limit n→∞ exists for |ξ| < |σ|−k where σ is the leading eigenvalue

of matrix P defined in eq. (A.2). If σ is real (ie, if a21 + 4a2 > 0) then

σ = (ϕk+1/ϕk)k→∞ (A.12)

and, from eq. (A.4), a generalisation of eq. (2.11) is

σ = a1 −
∞∑
1

(−a2)k

ϕkϕk+1

.

The analogue of eq. (2.24) is

P k = ϕkP + a2ϕk−1I

and, acting on (g1, g0)
T with powers of P , eq. (2.26) generalises to

gkn =
n∑
r=0

(
n

r

)
(ϕk)

r(a2ϕk−1)
n−rgr. (A.13)

With eq. (A.3):

P−k =
1

(−a2)k
{−ϕkP + ϕk+1I} ,

and so in the case (g1, g0) = (1, 0) there is also:

ϕkn =
n∑
r=0

(
n

r

)
(ϕk)

r(ϕk+1)
n−r(−1)r+1ϕr. (A.14)

Evidently ϕk | ϕkn since ϕ0 = 0.
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A.3 Glucas

The denominator in eq. (A.11), compared to that in eq. (2.23) etc, suggests
that

νk
def
= tr(P k) = ϕk+1 + a2ϕk−1 (A.15)

relates to ϕk as Lucas to Fibonacci. Following Sec.4.2.2, such Glucas numbers
have ν0 = 2, ν1 = a1 and so

ν0 + ξν1 + ξ2ν2 + · · · = 2− a1ξ
1− a1ξ − a2ξ2

.

Inverting this case of eq. (A.7):(
ϕk+1 a2ϕk
ϕk a2ϕk−1

)
=

1

a21 + 4a2

(
νk+1 a2νk
νk a2νk−1

)(
a1 2a2
2 −a1

)
leads to

(a21 + 4a2)ϕk = νk+1 + a2νk−1 (A.16)

to compare with eq. (3.6).
Either by taking determinants or direct from eq. (A.8), we find a Cassini-

equivalent (compare eq. (3.8))

νk+1νk−1 − ν2k = (−a2)k−1(a21 + 4a2).

Ex: and so obtain another sum rule for σ (eq. (A.12)).

The trace definition of νk gives as analogue of eq. (3.13)

νk = σk+ + σk−, where σ+ + σ− = a1, σ+σ− = −a2. (A.17)

Eigenvalues σ± of P are defined with ± signs in the usual formula; the (real)
leading eigenvalue σ in eq. (A.12) could be either.

Then eq. (A.16) gives

ϕk =
σk+ − σk−
σ+ − σ−

as analogue of eq. (2.8). Note that σ+ − σ− =
√
a21 + 4a2. The formal limit

σ+ → σ− deals with equality.
Alongside eq. (A.3) we have

ν−k = νk/(−a2)k (A.18)

so that the simple-symmetry basis is

gk = (g1 − 1
2
g0a1)ϕk + 1

2
g0νk,
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to compare with eq. (3.22).
Eq. (A.18) also means that besides eq. (A.13) and eq. (A.14) we have

νkn =
n∑
r=0

(
n

r

)
(ϕk)

r(ϕk+1)
n−r(−1)rνr.

And from eq. (2.22) with A = ξP k (k 6= 0)

exp

(
∞∑
1

ξr

r
νrk

)
=

1

1− ξνk + ξ2(−a2)k
=

1

ϕk
(ϕk + ξϕ2k + ξ2ϕ3k + · · · )

for |ξ| < |σ|−k, and where ϕk | ϕrk.
The explicit factorisation analogous to eq. (2.18) is

ϕrk = ϕk

[(r−1)/2]∑
p=0

(
r − p− 1

p

)
(νk)

r−2p−1(−1)p(−a2)kp (A.19)

where eq. (A.6) is a special case.

A.4 Mixed bilinear IRF

The generalisation of the Fibonacci-Lucas IRF eq. (3.10) is

(a21 + 4a2)ϕaϕb − νcνd = (−a2)r[(a21 + 4a2)ϕa−rϕb−r − νc−rνd−r] (A.20)

where a+ b = c+ d and a, b, c, d, r = 0,±1,±2, . . . .
This relies on

Y
def
=

(
a1 2a2
2 −a1

)
obeying both (a21 + 4a2)Y

−1 = Y and PY = Y P — compare eq. (3.9).

A.5 Divisibility

Consider {ϕk} with k ≥ 0, obeying eq. (A.1) with non-zero integers (a1, a2)
and ϕ0 = 0, ϕ1 = 1. We have from eq. (A.14) and eq. (A.19) that ϕk | ϕrk.

To show the converse, ie, that ϕk | ϕm ⇒ k | m, use eq. (A.5) as

ϕm = ϕm−kϕk+1 + a2ϕm−k−1ϕk.

Then if ϕk and ϕk+1 are coprime

ϕk | ϕm ⇒ ϕk | ϕm−k ⇒ ϕk | ϕm−2k ⇒ · · · ⇒ ϕk | ϕr,
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where m ≡ r (mod k) — a contradiction unless r = 0.
From eg. eq. (A.6): gcd(ϕk, ϕk+1) = 1 ⇔ gcd(a1, a2) = 1. So finally

we have that if a1 and a2 are coprime, then ϕk | ϕm ⇔ k | m. This
includes the Fibonacci case, of course.

A.6 For pedestrians

A solution gk of gk+1 = a1gk + a2gk−1 is proportional to σk+ + Aσk− with
A = const and with distinct1 σ+ and σ− as in eq. (A.17); hence a dreary
routine way to verify any candidate identity.

For eq. (A.10) for instance, consider

(σa+ + Aσa−)(σb+ +Bσb−)− (σc+ + Aσc−)(σd+ +Bσd−)

which equals

σa+b+ − σc+d+ + AB(σa+b− − σc+d− )

+ (σ+σ−)b(Aσa−b− +Bσa−b+ )

− (σ+σ−)d(Aσc−d− +Bσc−d+ )

The first terms cancel if a+ b = c+ d, and then the substitution

(a, b, c, d)→ (a− r, b− r, c− r, d− r)

gives an overall factor (σ+σ−)−r to be compensated by (−a2)r.

Ex: verify eq. (A.20) this way.

A.7 Eigen-line

If the coefficients (a1, a2) in eq. (A.1) are positive integers, then y = σ+x
generalises the eigen-line of Sec. 2.3 in that for x > 0 it passes through a
corridor of integer points (x, y) = (ϕk, ϕk+1) on alternate sides.

From eq. (A.4) the corridor narrows according to

ak−12

ϕkϕk−1
→ σk−1−

σk+
→ 0 as k →∞.

The slowest-narrowing, corresponding to the maximum of σ−/σ+ over posi-
tive integers (a1, a2), is when a1 = a2 = 1 — ie, the Fibonacci case.

1The case of equality is an easy extension.
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A.8 Example

Illustrate with (a1, a2) = (−1, 2) — Fybonacci:

ϕk+1 = −ϕk + 2ϕk−1, ϕ0 = 0, ϕ1 = 1,

giving
1
3
← · · · 21

64
, 11
32
, 5
16
, 3
8
, 1
4
, 1
2
,0,1,−1, 3,−5, 11,−21, · · · ,

and Glucas:
νk+1 = −νk + 2νk−1, ν0 = 2, ν1 = −1,

giving
1← · · · 65

64
, 31
32
, 17
16
, 7
8
, 5
4
, 1
2
,2,−1, 5,−7, 17,−31, 65, · · · .

The symmetries of eq. (A.3) and eq. (A.18) are evident.
In closed form

ϕk = 1
3
[1− (−2)k] and νk = 1 + (−2)k

— ie, σ+ = 1 and σ− = σ = −2 .

A.9 Polynomials

An N = 2 example with a1 = x and a2 = 1.
For Fibonacci polynomials [30], ϕk → ϕk(x) obeying

ϕk+1(x) = xϕk(x) + ϕk−1(x) with ϕ0(x) = 0, ϕ1(x) = 1.

Then
ϕ2(x) = x, ϕ3(x) = x2 + 1, ϕ4(x) = x3 + 2x, . . . ,

ie, polynomials ϕk(x) of degree k − 1 with ϕk(−x) = (−1)k−1ϕk(x).
We have now

P (x) =

(
x 1
1 0

)
and [P (x)]−1 =

(
0 1
1 −x

)
where detP (x) = −1 and from eq. (A.3)

ϕ−k(x) = (−1)k+1ϕk(x).

So more generally ϕk(x) is a polynomial of degree |k| − 1.
Expansion of (I − ξP )−1 gives the generating function

ϕ0(x) + ξϕ1(x) + ξ2ϕ2(x) + · · · = ξ

1− xξ − ξ2
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— leading for k ≥ 0 to

ϕk+1(x) =

[k/2]∑
r=0

(
k − r
r

)
xk−2r, (A.21)

which is a special case of eq. (A.6).
From Sec. A, the corresponding Lucas polynomials [31] are νk → νk(x)

with ν0(x) = 2 plus ν1(x) = x. Then

ν2(x) = x2 + 2, ν3(x) = x3 + 3x, . . . ,

and ν−k(x) = νk(−x) = (−1)kνk(x). Evidently νk(x) has degree |k|.
The generating function is

ν0(x) + ξν1(x) + ξ2ν2(x) + · · · = 2− xξ
1− xξ − ξ2

,

from which the analog of eq. (A.21) can be written down.
In fact, from eq. (A.15) and eq. (A.16):

νk(x) = ϕk+1(x) + ϕk−1(x) and (x2 + 4)ϕk(x) = νk+1(x) + νk−1(x).

At each fixed x, the Fibonacci and Lucas polynomials obey the same mul-
tilinear relations and reduction and summation formulas as the numbers ϕk
and νk in Sec. A (simplified by a2 = 1) and have closed forms in terms of

σ± = 1
2
(x±

√
x2 + 4).

A wider ‘w-polynomial ’ context [32] has a1 = p(x) and a2 = q(x).
Obvious generalisation: to ‘tribonacci polynomials’ with x2 x 1

1 0 0
0 1 0

 and
ξ2

1− x2ξ − xξ2 − ξ3
,

. . . and so on.
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Appendix B

Formulas

There are collections of standard Fibonacci and Lucas formulas online at
MathWorld [3] and at Fibonacci Numbers, the Golden Section and the
Golden String [33], denoted respectively as ‘Eric’ and ‘Ron’. Eric’s collection
is the more sophisticated.

Any candidate relation can be checked either by induction or with the Bi-
net formulas1 eq. (2.8) and eq. (3.13) that give fk and `k in terms of λ± — eg.
as in Sec. A.6. It’s more satisfying, however, to find an explicit construction,
and the Q-matrix makes this possible. We illustrate with some formulas in
Ron’s list — using his scheme of reference to Dunlap [34], Vadja [4], etc.

Linear and bilinear formulas. Generally, the relations that are at most
bilinear come as special cases of the index-reduction formula (IRF) eq. (3.23):

gahb − gchd = (−1)r(ga−rhb−r − gc−rhd−r)

— ie, with gh as ff , f` or ``, and with suitable choices for (a, b, c, d, r).
However some ff -plus-`` results come more naturally from the mixed IRF
in eq. (3.10). Note that eq. (2.4) is the ff version of eq. (3.23).

• Of the ‘order-two’ Fibonacci relationships, Catalan’s identity [35] is
eq. (2.4) with

(a, b, c, d, r)→ (n, n, n+ r, n− r, n− r)

where Cassini/Simson in eq. (1.2) is a special case. Eq. (3.7) gives the
corresponding Lucas identity: `k+r`k−r − `2k = (−1)k[(−1)r`2r − 4].

1The manipulations use λ2± = λ± + 1, implying that λ+ + λ− = 1, λ+λ− = −1 and

λ+ − λ− =
√

5. Note that Eric uses α and β for λ±, but also denotes the golden ratio
τ ≡ λ+ by φ, while Ron consistently uses Φ ≡ λ+ and φ ≡ −λ−.
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• Equally, for d’Ocagne’s identity [36] use eq. (2.4) with

(a, b, c, d, r)→ (m, n+ 1, m+ 1, n, n) .

For others listed, take values of (a, b, c, d, r) in eq. (2.4) as follows —

• Lucas’ duplication formula: (2, 2n, n+ 1, n+ 1, 2),

• Vadja-11, Dunlap-7: (n+ 1, −n− 1, n, −n, n),

• Vadja-20a: (n+ i, n+ k, n, n+ i+ k, n),

and it’s pleasant exercise to deal with the rest likewise . . . however . . .

• Vadja-12 (and its analogue with f → `) comes most naturally direct
from eq. (1.1) — multiply fn−1 = fn+1 − fn by fn+2 = fn+1 + fn.

• Dunlap-10 is just eq. (2.2) with (k, l)→ (m, n−m).

To illustrate the Lucas formulas, take (a, b, c, d, r) in the `` version of
eq. (3.23) as follows — remembering that (`0, `1) = (2, 1) —

• ‘Cassini’ (see eq. (3.8)): (n+ 1, n− 1, n, n, n+ 1),

• Vadja-17a: (n+m, 0, n, m, m),

• Vadja-17c (duplication): (2n, 0, n, n, n).

Among the Fibonacci and Lucas results —

• Vadja-13 comes from eq. (2.4) with

(a, b, c, d, r)→ (2n, 1, n, n+ 1, n) ,

using (f0, f1) = (0, 1) plus eq. (2.1) and eq. (3.1). See also Sec. 3.3.

• Vadja-15a follows from the f` version of eq. (3.23) with

(a, b, c, d, r)→ (n, m, 0, m+ n, m) ,

plus eq. (3.2).

Otherwise from the mixed formula eq. (3.10) we have eg.

• Vadja-24: (a, b, c, d, r)→ (n, n, n, n, n+ 1),

• Vadja-25: (a, b, c, d, r)→ (n, n, n, n, −1).

The remaining ‘order-two’ (bilinear) identities are straightforward.
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Higher-order Fibonacci and Lucas.

• Vadja-32: from eq. (2.2) we have fm+n = fm+1fn + fmfn−1 when
n→ −n gives also (−1)n−1fm−n = fm+1fn − fmfn+1. Multiply these
two, and use eq. (1.1) twice.

• the Gelin-Cesàro identity [37] is (Cassini)2 plus the basic recurrence
eq. (1.1) several times. For the Lucasian equivalent, square eq. (3.8).

Fibonacci and Lucas summations. The finite sums are either special
cases of the results in Sec. 2.8, Sec. 2.9 and Sec. 3.2 or they are telescoping
series — ie, replacing each summand by a difference.

For instance, if gk+1 = gk + gk−1 then
q∑
p

gr = gq+2 − gp+1 (B.1)

when gr+2−gr+1 is inserted in place of gr. This generalises the familiar results
n∑
0

fr = fn+2 − 1 and
n∑
0

`r = `n+2 − 1.

Also, from the Vadja-12 difference formula add to the list

f 2
n+2 = 1 +

n∑
1

frfr+3,

which holds also for f → `.
There are endless extra results from eq. (2.23) and eq. (3.12) — eg.

n∑
1

f3r = 1
4
(f3n+3 + f3n − 2)

as well as
n∑
1

(−1)rf3r = 1
4
[(−1)n(f3n+3 − f3n)− 2].

Others are left as an exercise.
The infinite sums are specific ξ-values either in the generating-function

expansions eq. (2.14) and eq. (3.19) or in a derivative with respect to ξ.
To illustrate with eq. (2.16) — putting eg. k = 2, ξ = 1

4
:

∞∑
1

2−2rf2r = 4
5
.

These examples show how to tackle most of Ron’s remaining sum formulas,
given eq. (3.22) plus eg. the results of Sec. 2.9. Your next target is Eric’s list.
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