UNCLASSIFIED

UNCLASSIFIED

492801

DEFENSE DOCUMENTATION CENTER
FOR
SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responaibility, nor any obllgation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveylng any rights or permiasion to manufacture, use or sell any patented invention that iny in any way be related thereto.

BALLISTIC RESEARCH LABORATORY
 MEMORANDUM RE. ORT NO. 139

SC/mo
Aberdeen Proving Ground, Md. April 15, 1943

OPTIMUM HEIGRT FOR TRE BURSTING OF A 105MM_SEELL

1. The statement of the problem and its solution: It is required to find the height at which it is most advantageous to have a 105 mm shell burst in order that the maximum injury may be inflicted on personnel.

It is found (as a result of the calculations to be presented) that the height at which it is most advantageous to have the shell burst is 75 feet.
2. Basis for the calculations: The experimental data on which the calculations were based are those of Mr. Tolch who has analyzed both the angular distribution of the fragments when a 105 mm shell bursts and the distribution in weight of these fragments.

Regarding the angular distribution it appears that the greater proportion of the fragments in the lateral spray is confined to an annular cone with a semi-angle of 7-1/20. We shall see later that the precise value of this semi-angle defining the angular width of the spray has no special influence on our results.

Regarding the distribution with mass of the fragments, Mr. Tolch's results can be relied upon for the heavier fragments (m $\gtrsim 0.01$ lbs), while for the smaller frag-
 ments the reliability becomes steadily less on account of the necessary incompleteness in the recovery of these fragments. In order, therefore, to obtain a reasonable extrapolation of the distribution for the smaller masses, the total mass contributed by the fragments in the various mass groups was plotted against the mass of the fragment and from a smooth curve dram through these points, a distribution was derived which formed the basis of further calculations. The observed and the derived distributions are compared in Table I. From this table, Table II giving the number of fragments in the downward lateral spray with masses greater than a given value was derived.

TABLE I
Distribution with Mass of the Fragments

m in 1 bs .	Observed	Derived
. 005 \}.		484
.007	250	340
. 009	200	260
.015	146	146
. 025	79.	80
. 035	51	52
. 045	45	36
. 055	27	27
. 065	16	20
. 075	10	16
. 085	9	13
. 095	8	11
. 105	13	9
.115		8
. 125		6
. 135		6
.145 ,	23	5.
. 155		$4^{\text {- }}$
. 165		3
. 175		2
. 185		1

-2-
3. The effectiveness and the ranges of the fragments of different masses: Another factor which it is necessary to decide on before we can estimate the height at which it is most advantageous to have the shell burst is concerned with the range and the effectiveness of a fragment of a given mass.

We shail suppose that a fragment is effective if it has a sufficient velocity to penetrate an inch of wood. Using a formula due to Welch (who has experimented on the penetration of wood by fragments of various masses) we find that a fragment of mass m (in ibs.) will be effective if it has a velocity greater than $\nabla_{*}(m)$ where

$$
\begin{equation*}
\cdot v_{*}(m)=210 m^{-1 / 3} \tag{1}
\end{equation*}
$$

where m is expressed in 1 bs . and ∇ in $\mathrm{ft} / \mathrm{sec}$.
Now the velocity with which the fragments are shot off from a 105 mm shell is of the order of $3500 \mathrm{ft} / \mathrm{sec}$. Consequently, a fragment of this shell which has a given mass m will be effective onjy if it has traversed a range less than a certain value $r(m)$. To determine this maximum range as a function of the mass of the fragment the following formulae

$$
\begin{array}{r}
\text { (again based on Welch) were used: } \\
\qquad(m)=s, \quad \nabla_{*}(m)=3500 \text { e } 1776 \mathrm{~m}^{1 / 3}, \tag{2}\\
\text { if } \nabla_{*}(m) \geqslant 1100
\end{array}
$$

and

$$
\begin{align*}
& r(m)=s_{1}+s_{s^{\prime}} \\
& \nabla_{*}(m)=3500 e^{-\left(s_{1}+\frac{1}{3} s_{R}\right) / 776 \mathrm{~m}^{2 / 3}}, \tag{3}\\
& 1100=3500 e^{-s_{1} / 776 \mathrm{~m}^{1 / 3}}, \text { if } \nabla_{*}(m)<1100 .
\end{align*}
$$

Using the foregoing formulae the following table was derived.

table III

The Maximum Range for the Effectiveness of Fragments of Various Masses

In	range	m	range
an 1bs.	in ft.	in lbs.	in ft.
. 0005	17	. 025	551
. 001	40	. 030	630
. 002	73	. 040	769
. 004	119	. 050	895
. 006	156	. 060	1006
. 008	203	. 080	1202
. 010	253	. 100	1376
. 015	368	. 200	2046
. 020	466	. 400	2801

In deriving Table III, we have, as we have already stated, used the British results on the retardation in air and the penetration into wood of fragments. However, it is now held that Welch's formula underestimates (possibly by a factor $2 / 3$) the retardation in air. On the other hand it appears that using Welch's results both for the penetration in air and in wood we are led to consistent results. Thus Inglis using a different criterion for effectiveness (namely that a fragment to be effective must have 150 ft . lbs. of energy) and using a retardation factor in air which is two thirds of Welch's finds ranges of the order of 70,110 and 280 ft . for masses 0.0023 , 0.0040 and 0.0095 lbs., respectively. These ranges of Inglis should be compared with the values we have derived namely 80 , 120 and 250 ft ., respectively. The agreement is satisfactory.
4. The estimate of the optimum height. The estimate of the optimum height was made on the basis of the following model.

Let the shell explode at a height h from the ground. We shall suppose further the lateral spray is symmetrical with respect to the $y z$ plane. Then the surface density of the fragments which arrive at the point (x, y) and which are effective is given by

$$
\rho(x, y)=\frac{1}{4 \theta} \int_{m_{*}}^{\infty} N(m) d m
$$

where θ (expressed in radians) is half the angular width of the spray and $m_{\text {. }}$ the smallest mass which arrives at (x, y) and which is still effective i.e., m_{*} is the mass which has the maximum effective range equal to $\left(h^{2}+x^{2}+y^{2}\right)^{1 / 2}$.

Now let A denote the effective area of a target. Then the area on the ground sprayed by fragments can be divided, in general, into two regions: An inner region I in which ρ is greater than A^{-1} and an outer region II in which ρ is less than A^{-1}. Under these circumstances it is clear that in region I where $p \geqslant A^{-1}$ we are super effective in the sense that the entire personnel in this region may be expected to be seriousiy affected. In the other region the probability of hitting a particular target is proportional to ρ. Thus the number of casualties is gtven? by

$$
\begin{equation*}
N=E A \sigma \tag{5}
\end{equation*}
$$

where σ denotes the number of targets per uriit area and

$$
E=A^{-1} \iint_{\text {region }} d x d y+\iint_{\text {region } I I} \rho(x, y) d x d y .
$$

In Table IV the density (apart from the factor $1 / 4 \theta$)
is tabulated for various vaiues of h. Finally the values of E derived on the basis of the results of Table IV are plotted in Fig. $1:$ It is seen that within the uncerteinties of the problem the optimum hoight is about $75 \mathrm{f}^{\prime} t$. for a wide range of target areas.

TABLE IV

$$
\int_{m ;}^{\infty} \frac{N(m) h}{r^{3}} d m \quad \quad \pi=\left(h^{2}+x^{2}+y^{2}\right)^{1 / 2}
$$

$\left(x^{2}+y^{2}\right)^{1 / 2} /$	$h=50$	$h=60$	$h=70$	$h=75$	$h=80$	$h=90$	$h=120$
25	-	-	-	-	-	.1380	.0586
50	-	-	-	-	-	.0955	.0459
75	-	.0874	.0945	.0722	.0673	.0559	.0318
100	.03765	.0378	.0338	.0334	.0324	.0330	.0189
125	.0166	.0169	.0176	.0174	.0176	.0168	.0127
150	.0076	.0084	.0089	.0091	.0093	.0089	.0078
175	.0041	.0047	.0051	.0050	.0052	.0052	.0050
200	.0023	.0027	.0029	.0030	.0030	.0031	.0033
250	.0010	.0011	.0013	.0013	.0014	.0015	.0017
300	.00049	.00057	.00065	.00069	.00072	.00078	.00092
400	.00016	.00018	.00021	.00022	.00024	.00026	.00033
500	.00007	.00008	.00009	.00010	.00010	.00011	.00014
600	.00003	.00004	.00004	.00005	.00005	.00005	.00007
700	.00002	.00002	.00002	.00002	.00003	.00003	.00004
800	.00001	.00001	.00001	.00001	.00001	.00002	.00002

5. Some General Hemarks: We have seen that the haight at which it is most advantageous to have a 105 mm shell burst is about 75 ft . for wide limits in the effective area of the target involved. The reason for this rough independence can be understood in terms of the following considerations:

Essentially the existence of an optimum height for burst depends on the extent to which the area on the ground where we are super-efficient (region I of $\{4$) can be reduced. It cannot however be concluded that the optimum height corresponds to reducing this area to zero. For the fragments which are most numerous are those with small masses and these have ranges of the order of h itself. Thus, when $h=75$, the fragments which are effective (i.e., with velocities greater than v_{f} [Cf. eq. 1]) and which arrive on the ground directiy below the point of burst must have masses greater than 0.00211b. (cf. Table III). Fragments with m in this neighborhood are the most numerous, but their effect is confined to a very small area. Accordingly we must go to somewhat larger masses (with correspondingly longer ranges) to be really efficient. In other words, at the optimum height we must necessarily be super efficient in the regions directly below the point of burst. In other words the area over which we are super efficient must be reduced as much as is compatible with the circumstances of the problem.

The considerations of the preceding paragraph account also for relative insensitiveness of the optimum height with iv. the tatret area within limits. For while a reduction in the effective target area requires a greater surface density of fragnents this can be achieved by even a slight reduction in h since by so doins we bring into range the smaller fragments which increase in number very rapidly with decreasing mass.

Again, it is clear that since a change in the half angle θ of the spray can be formally incorporated into the calculations as a change in target area, the optimum height is relatively insensitive also to changes in θ. For a given total number of fragments, the surface density daries inversely as θ. Hence, other things being equal a change in θ alters the surface densities by a constant factor and the final efficiency will be clearly the same if θ were kept unaltered but the target area increased by the same factor.

In our calculations we have assumed that the spray is symmetrical with respect to the yz-plane. A tilt of this spray with the vertical by a small angle φ can be taken into account by using for the optimum height the value
$75 \cos \varphi \quad$ (φ the angle of tilt of the spray with the vertical).

Considering all the uncertainties of the problem we may suggest as the optimum height for burst a value of 75 ft . In doubtful cases it might be safer to go down to as much as 70 ft . and in any event greater heights should be avoided as far as possible.

We may finally remark that if the shell bursts at 75 ft above the ground, the area which is effectively sprayed by the fragments is

160 ft by 20 ft (target area $={ }^{\circ} 58 \mathrm{ft}$)
and
130 ft by $20 \mathrm{ft} \quad$ (target $\underset{5 \mathrm{saf}}{\mathrm{ft}}$) $2-1 / 2$

Accordingly, when firing, it would be advantageous to have the shells burst at about 150 ft apart sideways and 20 ft apart dopth-wise (See Fig. 2)

Summary
This paper is devoted to determining the height at which it is most advantageous to have 105 mm shell burst in order that the maximum injury may be inflicted on personnel. On the basis of the experimental data of Touch on the fragmentation of the 105 mm shell it is concluded that the optimum height is about 75 ft. Also when the shell does burst at this height, it effectively covers an area of 150 ft by 20 ft .

S. Chanchasther.
S. Chandrasekhar

COMMENTS ON THE RELATION OF THE PRECEDING REPORT TO

 REGENT OBSERVATIONS AT FORT BRAGG.Recent experiments on the effect of ricochet and time fire of 105 mm H.E. Shells against personnel, conducted by the Field Artillery Board at Fort Bragg, indicate an optimum altitude of buret as 45 feet instead of the 75 feet suggested by the computations if Dr. Chandrasekhar. This brings up the question of the reason for this experimental discrepancy.

The main reason appears to be that the computations of Dr. Chandraseh ar were presumably based on a tacit assumption of more deeply entrenched personnel, protected against fragments coming in at oblique anoles, whereas the dummies used in the experiments at Fort Bragg came to within a few inches of the surface. This assumption would affect the computed optimum altitude of burst in two ways. First, obviously a very low burst gould only injure personnel in a very small area. Thus whereas in the exportmints at Fort Bragg, a burst at an altitude of $15-30$ feet is found effectlive over a rather wide area, deeply entrenched horizontal personnel would only be exposed to such a burst over a region perhaps 8 feet in diameter. And also, oblique hits have longer trajectories, and hence lass atriking velocity. This would explain the apparent decrease in striking velocity of small frarments from altitudes above 40 feet observed at Fort Bragg. It is usually supposed that this deceleration becomes important only for ranges of $70-100$ feet; these mould be consistent for frapments travelling obliquely at angles of $30^{\circ}-45^{\circ}$ with the horizontal.

Thus Dr. Chandrasekiants conclusions should apply to entrenched personnel, screened against oblique hits.

MEMORANDUM FOR Defense Technical Information Center, ATTN: DTIC-BCS, 8725 John J. Kingman Road, Suite 0944, Ft. Belvoir, VA 22060-6218

SUBJECT: Distribution Statement - Ballistic Research Laboratories Memorandum Report No. 139

1. Reference: Ballistic Research Laboratories Report No. 139, "Optimum Height for the Bursting of a 155MM Shell", by S. Chandrasekhar, April 1943, UNCLASSIFIED, AD no. 492801.
2. Subject matter experts and the Army Research Laboratory Security/CI Office have determined that the subject report may be released to the public. Request that you mark all of your copies of the document with the following distribution statement:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED
3. Please direct your questions to Mr. Douglas J. Kingsley, telephone 410-278-6960.

