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I. | Introduction,

Planck's discovery in 1900 of the quantum properties or_e
light led to an enormously deeper understanding of the attributes_
and behaviour of matter, through the advent of the xnethods of
quantum mechanics. When, however, these same methods are turned
" to the problem of light.- and the electromagnetic field great
aifficulties arise which bave not been surmounted satisfactorily, ‘
so that Planck's observations st111 remain without a oonaistent
fundamental interpretation. _ . _ _ _

As is well lcnoxn, the quantum electrodyna.mics that have
bbeen developed suffer from the difficulty that, taken literally,
they predict infinite vaJnes for many- experimental quantities
.hich are obviously quite finite, such as,’ for example, the shift
in energy of speetral lines due to interaction of the atom and v
the field., The classical field theory of Maxwell and Lorentz
vserves as the .Jumping-off point for this quantum electrodynamics.

The latter theorv, however, does not take over the ideas of

classical theory concerning the internal etructure of the electron, N

Vvhich ideas are so necessary to the cle.ssical theory to a.ttain
. Tinite values for such quantities as the’ inertia of an electron.
The researches. of Dirac into the quantum properties of the
electron have been f:1¢] successml in interpreting such. propertiea

1._ It is impertant to develop a’ satisfactory quantum electro-
dmanics also for another reason, At the present time : '
ﬂaeoretical physics is confronted with a number of fundamental
insolved problems dealing vith the nucleus, the interactions of

" Protons- and neutrons, ete.  In an attempt to tackle these, meson
field theories have been 8et up in analogy to the elec_tromagnetic
Tiele theory, But the analogy is unfortunately all too perfect;
the infimte ansv.ers are all too prevalent and confusing.




2.
as its spin end magnetic moment, and.'the existence of the:
positron, that it is hard to believe that it should be
necessary in addition to attribute internal structure to 1t,

It hae become, therefore, :anreasingly more evident
that. before a satisfactory quantum electrodynamics can be
oeveloped it will be necessa.ry to develop a classical theory .
'capable of describing charges without internal structure. hamr
‘ .of .these have now been developed, but we will concern ourselves in
this thesis with the theory of action at a distance worked out
in 1941 by J. A. Wheeler and the author? . : -

The new viewpoint pictures electrodynamic interaction '
~ as direct interaction at a distance between particlee. . The
field then becomes & mathematical construction to aid in the A ‘
: -.)olutzon of problems involving these interactions. ‘The following
princrlples are essential to the altered viewpoint:
(1) The acceleration of a point charge is due on]y to the
sum of its interactions with other charged particles. A
charge does not act on itself. ' - o _
(2)  The force of interact1on which one charge exerts on another v
"is calculated by means of the Lorentz force fomula F ce[£+ x*‘"]
in which the fields are the fields generated by the first charge
»according to Kaxwell's equationa. _
(3) : The fundamental (mlcroscopic) phenomena in nature are o
symmetrlcal with respect to ipterchange of past and ﬁlture. ,Thia
requires that the solution of laxwell's equation to bez‘tu‘sed in
computing the interactions is to be half the retardedvplna balf
the advarxc-ed'solut;lon of Lienard and Wiechert. .

(2). Not pixblishedv.,See',howe_ver,' Phys. iRev.y 59, 683 (1841) -
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These principles, at i‘irst sight at such variance
with elementary notions of causality,do in fact lead to
sssential agreement with the results of the more usual form
of electrodynamics, and at the same. time permit a consiatent
cescription of point charges and lead to a unigue law of
’radiative damping. That this 1is the case has been ahown in the -
vork already referred to (Bee note 2). vIt is shown that these
principles are equivalent to the equations of motion reaulting
1rom a principle of least action. The ‘action function (due to :
' Tetrodes- &nd, independently, to Fokker"‘) involvee only the
‘coordinatee of the particlea, no- mention of i‘ields being made, ‘
T he field is therefore a derived concept, and cannot be pictured
as analogous to the vibrations of some medium, with its own .
. degrees: of freedom (for example, ‘the energy density ia not necessa.rily
: positive.). Perhaps a word or two bere as to what a.epecta of this
. theory make it a reasonable basis for a quantum theory of 1ight )
' vould not be amiss._ ' L
| . When one attempts to list thoeephenomena whicb seem to.
indicate that 1ight is quantized, the first type of phenomenon
vhich comes to mind are like the photoelectric ei‘fect or tho '
‘Compton effect. One 1s however, struck by the fa.* that eince o
these phenomena deal with the interaction of light and m&t.ter _
' “their explanation may lie in the quantum aspecte of ma.tter, rather
~ than requiring photons of light,  This supposition is ‘aided by
the fact tliat if one solves the problem of an atom being perturbed

(3). He ‘.I‘etrode, Zeite. f, Physik __Q, 317 (1922),

(4). A, D, Fokker, Zeits, f, Fhyaik 28, 386 (1929); Physica
(19"9), ‘Physica 12, 145 (1932).




by a potential varying sinusoidally with the time, vhich would

be the situation if matter were quantum mechanical and 11gh£ classical
one finds indeed that 1t will in all probability eject an electroxi |

vhose energy shovs an increase of hp, where P 1is the frequency

of variation of the pctential. In a similar way an electron

perturbed by the potential of two beams of light of different - o
frequencies and difterent directions will make txansitions to a

" state in which its momentum and energy 18 cha.nged-by ‘an’ amount

‘ just equal to that given by the formlas for the COmpton effect,,
with one beam correspo'w.ding in direction and wavelength to the .
1ncom1ng photon and the ot er to the outgoing one, In fact, '
one may correctly calculate in this vay the probabilities of
absorption and 1nduced emission of 1light by an atom. v ‘

."1en, however, we come to spontaneous emission and | .
the mechanism of the production of light, we come mach- nearer | |
to the real reason for the apparent: necessity of photons. The

“ract that an atom emits spontaneously at all is impossible |
to explain by the simple picture given above.- In empty space an -
atom emits 1ight and yet there 18 no, potential to per'turb the
s,atem and so force it to make a transition.. The explanation o
of mocdern quantum mechanical electrommamice is that the atom iav ‘
perturbed by the zero-point rluctuations of the quantized
radiation field. v .

It is here that the theory of action at a distance
¢lves us a diffe_rent viewpoint. It says that an atom alone in
empty space would, in fact, not radiate. Radia_tio:i i-a; a conse- -

(uence of the inveraction with other atoms (namely,-tnoee m
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‘he matter’ uhich absorbs the radiation). ‘We are i.hen leci to

Jhe possiblllt.y that the spontaneous radiation of an atom in
quantum mechanics also, may not be epoutaneous at a.ll, but induced
bv the interaction with other atoms, and that all of the apparent
quantwn properties of. light and the existence of. photons may be
nothing more than the result of ma.tter interacting with mtter

directly, and accordlnp; “to quantum uechanical laws,
An attempt to investigate%his possibility and. to

find a quantum analogue of the theory of action &t a distance,
nmeets first the dlfficulty tha‘ it may not be .correct to represem.
the field as a set of harmonic oscillatora, each with its own
degree of freedom, since the field in actuality is entirely ‘
determined by the particles. On the othervha'nd, en attempt to
deal quantum mechanically direct’ly with the partficle‘s', vhich would
seem to be the most. satisfactory way to p;'oc,eed, ia"'fa_ced with -
the circumstance that the eouat»ions of motion of the Aparticlea
are eipressed clasaically as.a consequence oi‘ a principle ot '
least action, and cannot, it appears, be expressed in
' hemiltonian form. ‘

' . For this reason a method of fonmlating a quantum analogue
of systems for which no Hamiltonian, but rather a principle '
of least action, exists has been*worked outs It ie a
desciption of this metnod which constitutes this thesis.
“Although. the method was worked out with the express purpose of .
applying it to the theory of action at a distance, it is in fact
1hde;eendent of that theory, and is complete in itself, - Neverthelese
mst of the illustrative examples will be taken from probleme
vhich aiiae in the" action at a distance elec’ crodynamies. In .. .

purticular, the problem of the equivalence in quantum mechanics:

-’
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of dlrect interaction and interaction through the agency of

an intermediate harmonic oscillator will be discussed in detail. .
The solution of this problem is essential if one is going to

be a.ble to compare a theory vhich considers i‘ield oscillators

as real mechanical and quantized systems, ‘with- a theory which

considers the field as Just a mathematical construction of

“classical electrodynamics required to simplify the discussion

of the mteractions between particles. On the other hand, no
-excuse need be given for including this problem, -as its solution
glves a very direct conﬁrmation, which would otherwise be lacking,
of the general utility and correctness of the proposed method
of formulating the quantum analog'ue of systems with a least
action principle. _ _ S

The results oi‘ the application 'oi’ these insthods to

..Quantum electrodynamics. is not included in this thesis, but will ‘

be reserved for-a i‘uture time vhen they shall have been more
completely worked out, It has been the purpose of this

_ introductmn to indicate the motivation for the problems vihich

are oiscussed herein, It is to be emphasized again tha.t the work .
described here is. complete in itself without regard to its A
arplication to electrodynamics, and it 1is this circumstanco
which makes it .appear advisable. to publish these results as an
independent paper, One should therei‘ore take the viewpoint that ~

the present paper is concerned with the problem of finding a
quantum mechanical description applicable to systems which in .
their classical analogue are expressible by a principle of least
action, and not necessarily by Hamiltonian equations of motion,

The thesis is divided into two main parts, The first

deals vith the properties of classical systems satisfying a l’“{&
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principle of least action, wh:lle the second part contains the

method of quantum mechenical description applicable to these systems.
;fn the first part are also included some mthematical remarks
about'.‘ﬁmctionala. All of the analysis will: apply to
'non-relat.iﬁstic sytems, The generalization to the relativistic

case is not ‘at present known.
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II. Least Action in glasgicgl ;.:ech_gg_:ggg.

1. The Concept of a Functional.

The mathematical concept of a funetlonal will play a
rather predominant role in what is to follow so that 1t seems
advisable to begin at once by describing a few of the properties of
mnctlonals and the notation used in this paper in connect:lon with
them, Ho attempt is made at mathematical rigor, - T

. To say F is a functiona.l of the function f(d means that
F is a number whose value depends on the form of the function f_(d

(vhere s is Just a parameter used to specify the form of 1—('7 ).
Thus, F = j ;/r/ e a(r' (8/) , isaﬁmctionalof
f(s) &ince “1t associates with every choice of the function f/rja
number, namely the integra.l. Also, the area. under a cu.rve is

a functiona.l of the function representing the curve, since to )

, each such function a number, the area, is associated. : The . |
expected value of the energy in quantum mechenics is a ﬁmctional
of the wave function. Again, F=§loj (8,2) 18 a functional, . |
\hicn is especially simple’ because its value depends only on: the value
"of the function }-Id at the one point rs0 . :

" We shall write, if Fisa mnctional of ;(r/ , F[ f/q]
A functional may have as its argument more than one ﬁmction,

or runctions of more than one parameter, aa,
oo q L
Flx9, ye] = | | x/ts/y/t:/u..w/t-:)/z‘/f

B ad

A i‘unctiona.l FL¢0c)] may be looked upon as a function
of en infinite number of variables, the variables being the value
of tke function §(¢) et each point e R *If the ,_i'nterval of the

range of g is divided up into a large number of poifnts ag and '

Lhe valu_.e of the wf‘unctio_n;at[ these poi‘nts ie’fllil:j: fv+ 8ay, then



approximately our functional may be written as a funct:l‘on of
the varisbles g o Thus, in tne case of equation(al) we
could write, approximately, ’ :

F { f j Z’ fa . ":) . v
a-. ‘ :
vie may'define & process a'nelogoue to differe-;t:latien for our' _
" functionals.  Suppose the function f.{oj :la altered sl:lghtly to
‘H-’j t 1107 'by the addition of a small function )./d o From =
our approxime:te viewpoint we. can say ‘that each’ of the var:lables '_
is changed from ¢ to f.r +,2, ¢ . The funct:lon is thereby changed
by an amount : '
O e BFlepin)
2z *7—,——' 2:
In the case of a cont:lnuous nunber of variables, the ‘ .
sun becomes an 1ntegra1 and ve may write, to the first order inﬂ '

Flg +aem] - FL por] + - /! m/zw/t . ,(z/j

vhere . 77) depends on F, and is what we shall call the ﬁmct:lonal
' . derivative of F with respect to q at t, and shall symbolize,

 with Edd 7IF[ ml - ' i
v ington ,’ by } J S & is not eimply ﬂ-’-—-}-

. | g K
as this. is in general infinitesmal, but is rather the sum :
of these ,Z;f over a short range of 1, eey from 1+k to :l - k,

divided by the :lnterval oi‘ the parameter 4‘-,'-
- Thus ve write,

F[f/o/+)/r}] F[g{r}] + /ﬂ%{);] A/t/a’é'l* &qﬁer ar/erzm:nul
, L (9

(s), A. 5. Edd:lngton, "The mathematical theory of relativity" f” :
(/723) ,bl3f v :
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For example, in equation (1) if we substitute "'f-f) for' f_ N we' ob.tain,
f{)j /[’ay 42;/'/4/#)1&.{/#/ Je fa/f /f{r/ e"',/,, 2[}/’/)/#/8"44’7‘
St h//rr!am: P8

“nerefore, in this case, we have )lf;[}_] lf/t/ p | :
. S '

. .s'i_mnar way, if FL§1t)] »$79) , then Z’Z;Er‘u e /e/ ‘vhere it) 1s

Dii‘auc's delté, 'smbol, defined by [ Slf/.’f/a‘-_/lf . f’y . for any con'tinuo.u‘s
function fe ' R TR o
| - The. function ?(r/ror which "f’" 1s zero for all t :ls

that function for which F is an extremum, For example, in
classical mechanics the . action, ' '

4- / L lje, ) 47 'po.g,-_.-_;.
18 a ﬁmctional of. f// Its ﬁmct:lonal derivative 15,

Ta ji{ .u(;a/,f/f/) } L2 /'*/ f’*/) : u.;

b{ftf ;

S cl is an -extyremum the right. hand a:Lde is zero.

2 The Principle of Least Action. ' 4

_ . For most mechan:lcal systems it 18 possible to: find a
ﬁmctional, a, called the action, ‘which- ass:lgna a mxmber to

" each poss:.ble mechanical path, 7”7 gl - . palt; / (we suppose N
degrees of freedom, each with a coordinate f.ld, a function’ of
a puameter (time) o) 4n such a manner that this number is '
@ extremum for an actual path f,(ai which could ar:lee in
accordance with the laws of motion. _ Since this extremum often
A“" a minimm this is called the princ:lple ‘of 1east action. It is

T



o“ten convenient to use the principle itself, raéher tha.n !
the x»ewt,onian equations of motion as the i\mdamental mechanical
'1aw. “The form of the i‘unctional 4[ f:// fﬂ/’j_]depends on the
mechanical problem in question. - .
According to the principle of 1east action, then, ir
ity {,,//Z]is the action functional, the equa:t.iona of motion

are N in number and are given by,

 ‘( We shali o'ften_ sinply write ;%‘f:g =0 oy as if ‘there'were'onli*"?
one variable), That is to say if all the der-ivativea of 4, with
_respect to 2L computed for the functions . ;,../f) are zero for o
all t and all n, then fullj describes a possible mechanical motion, =
for the system. o '

| We have given an example, in equat:lon ('N), for tbe ’

usual one dimensional problem vhen the action 1s the time integral L

of a I..agrangian (a function of position and velocity,only).
L ~another example consider an action funct.ion arising in connection

with the theory of action at a distances B _ S
V( / { m( mz/ y{.rlt)) . k’xlt/l(t*T}] /i' -‘-(”'2} :

“1t 1s approximately the action for a particle in a potential v
o V(x), and im.eract.ing witn itself in a dist.ant mirror by means- 0T -
retarded and advanced waves. _ The time it takes for light to
reach the mirror from the pa.rt.icle 18 assumed constant, and equal
to Bf . The quantity Ve dep_ends on the charge -on the particle ‘
: ."and its distance froz‘n the mirror; If we vary x(‘b) 'by a small

umount, UV y the consequent variation in a :ls,




a>

:g,a.- , f { el y,ut/ Vlmd ZN/ + /c‘udz it +r/ M‘iltrrj a\’a/]/t
ted

Carim t‘e/nélay

: [, {-mi‘/t/-l"_"”l‘,b; "'f”’ "‘.‘; /t,’r') J 'w/..,‘(tl by /"“‘

~ so that, according to our detinition '(7.2), we may writ,e,

;1& = ~miit)- V(W) '--.H/ffz:) - Rn-m) ’.-.('2-')
{

_ The equation of motion of this’ system is obtained, according 0 .
“(ael) by setting Wequal to zero. It will be seen that the force _
acting at time t depends on the motion of the particle at other times
"than t. -  The equations of motion cannot be described directly ’
in damilton:lan fom : ’

3. Conservation of Energy. v Constamts of the Ltt.v't.':!.on.8 _

_ co | The problem vie shall study in this section is that of S

dete‘mi'ling to vhat extent the concepts of conservation of -

| "energy, momentum, etc. 7 may be carried over to mechanical _

& problems with a general form of ection ﬁmction. ’ ‘The usual |

principle of conservation of energy asserts that there is a

function of positions at the time t, say, and of velocities of '

the particles whose valne, for the actual motion of the particles, A

' ; does not change with time. “In our more general case houever, the -
'_ forces do not involve the positions of the particles only

: | at one particular time, but usually a calculation of the

forces requires a knowledge of the pa.thef of the particles over

B some- considerable range ci‘ time (see for exan'ple, eq. 2.1y ). ', ,

It is not possible in this case generally to find a constant of the

notion which only involves the positions and velocities at one time. 5
‘ For e:;emple, in the theory of action at a distance, the .

' kinetic energy 01 the particles is not conserved. To find a {: '

- (8) 1his section ia not essential to an understanding of the
remamder of the paper. 2



conserved quantity one must add. a term corree onding to the “energy .

" 4n the field" The field, hov. ever, is a ﬁmctional oi‘ the motion S
" of the particles, so that it is possible to- express this"field -

; energy" in terms of the motion of the particles. . For our simple

| -example (//'z), account -of the eque.tions of motion (fz l), the |

: quantity, . -
. z‘/ fﬁﬁ'ﬂ + V{m/}-—ﬁ ‘[ x(r—r}xld/r+ .é x/t/x/tfr} _[l;.l) )

has, indeed, a zero derivative with respect to time. ’ T‘he fir‘st T
- two terms represent the ordinary enezgy of the pa.rticles. . The i

o vad(lltlonal terms, representing the energy of interaction with

" ine mirror (or rather, with itself) require a knowledge of the motion
B .of the particle ﬁ-om the time t .to tf . T o

» o _ Can we reallJ talk about conserve.tion, uhen the quantity
= conserved depends on the path of. the rarticles over considerable o
"‘_ranges of time? If the i‘orce agting on a particle be F(t) B&V’

-Vso that the particle satisfies the equation of motion mxlt/ » F/#
'."'then it is perfectly clear that the integral, o

r/t/ / [mw Fwalt//f LA """ |
has zero derivative wit‘h respect to t, when the path of the

particle sa*isfies the equation oi‘ motion. hany such- quantities -
IhaVlng the same properties could easily be devised. - We should

'v,"'not be inclined to sqy (/Jl) actually represents a quantity of

’l..intorest, in spite of its conatancjr. L v
R ~ The conservation of a phyeical quantity ia of considerable__
:”'intc rest because in aolving problems it permits us to forget

- 'great number of detaila. : The conservation of energy ca.n be ..
.;derived from the laws of motion, but its-value lies in the fact
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~that by the use of it certain broad aepecte oi’ a problem nay
be discuesed, vithout going into the _great detail that s oi‘ten
_required by a direct use of the laws of motion.

To compute the quam,ity I(t), of equati'on' (12-2),
: for two different times, 1) and. .ty thet are far apart, ‘in order
to compare I(ty) with I(tz), 1t is necessary to have detailed o
mfom\etion of the path during the enbtire interval t1 to to. ,.
The value of I is equally sensitive to the character ‘of. the path for
“all times between t4 and t,, even if these times lie very far e.part.
It ie for this reason that the quantity I(t) is or 1ittle interest.
CIfy however, F were to depend on x(t). only, 80 -that it might be -
derived from a potential,. (e.g., F= -V'(x) ), then the integrand
~is & periect differentie.l, and may be integrated to become :
—mlx.u} + V(xmu « A comparison of I for two times, tl and té, nov -
depends only on the motion in the neighborhood of these timee, §
_all of the intermediate details being, so to speak, integrated out.
R We therefore require two things if a quantity I(t) s
to attract our attention as being dynamical]y important. The firet
is that it be conserved, I(tl) = I(tg) « The second is -

) that I(t) should depend only 1oca1]y on the pa.th. " That 1s to
"i"say, if one changes ‘the path at some time L in a certe.in (arbitrary)
ib-wav, the c‘hange which is made in I(t) should decreaee to zero as »
t gets i\:rther and further from t. v That ie to say, we should 1ike
: »:the condition_ M’Q,_ — 0. _as,"‘ /t-z‘/f'* p (OO,} L '

o , ,W;..lt’/
' s‘atisfied§

(6)s- A more complete mathematical analysis than we include here
18 required to state rigorously just how fast it must approach zero
‘a3 [t-£'| approaches infinity. The proots stated herein are . .
certainly valid if the quantities in (/a#/) and (/%7) are assumed
to become and remain equal to zero for values of J¢- -2} greater ;.
~ than gome i‘inite one, no matter how large it may be. L




‘The energy expre'ssion (3. I') satisfies _this eriterion,
as we have a.:Lready pointed out. Under vhat circumstances can we
derive -an analogous constant of the motion for a general action '
sunction? - ' - |
' _ We shall, in the first place,in;:ose a condition on the' _
equations of motion which ‘seems to 'be necessary in order that an .
mtegral of the motion of tbe required type exist. A In the .
equation | ;7‘”} 0 ’ which holds for an arbitrary time, ty we
. shall suppose that the influence or changing the path at time t' ‘
becomes less and less as l't.-t'] approaches inﬁ.nity. L
1hat is to say, we require, o A
' ’I_:—:%l-)ﬁ?t—f >0 U /f'l"/“"“ LS
We next suppose that there exists a transformation (or
rather, a continuous group of transformations) of coordinates,
,: vhich we symbolize by 7‘" ',* g,,,»* X,,,/a) and wbich lea.ves the -
“action invariant (for example, the. transformation may be a rote.tion).
7 The transformation 1s to contain a psrameter, a, and. is to be o
‘ a continuous i‘unction of a. For:a equal to zero, the transformtion;
":'bshould reduce to tne identity, 80 that - X.(0)<0 For very'
- emall a we ma,y expand; Xnla) = O+ al+.. . That is to say,
- xor inximtesmal a, if the coordinates ?“ are changed to g..f l)’
© the action is lei‘t unchanged, B

a[g.u—/] [([}».(dmy(r/l | | W}-IJT

For example, if tue form of the action 1s unchenged if the Paﬂicles,
take the same path at a later time, we may take, f..l;l"fa fed)
In thig case, for small a, f...(t) g ?«(*/f'“f-.fﬂ*" .. 8o

? that a ;,'u/, .
For each such continuous set of. tramsi‘orms.tions theﬂ
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vill be a constant of the motion. . If the action is 1nvariant:w1_tn_
respect to change from §#/ to ;/H:;/, then an energy will existe - .
1If the action is invariant with respect to the translat:lon of

all the coordinates (rectangular coordinates, tnat is) by the same
distance, a, then a mo"xerrtum in the afrection of the. translation A
may be derived. For rotations around an axis tnrougn the angle, a,
the corresponding constant of the motxon is tne angular mmentmn '
around that axis. We may show this connection between ine groups .

of transformations and the constents of the motion, in Toe rollowing 3
way: For small a, from (/£2), we shall have, ' |

a f;,./ay] ﬂ[}n/ﬂ/fﬂ A

Expand.'lng the lef‘c side wir.h respect to the cnange in ihe. coordinatee

4/,.9’, according o (72) to tne Iirsv order in a we have,

d[;../r/w’/r/] d[;,w] *42'/ )'/t/ a/t _wf

and t‘xerefore, on accoum. ot (/£2 ),

m=zf )];~

Now consider the quam.iq,
T

I’T} ;f“,' W?z;.u

aO

~o®

f/”” _lr w0 0,

N 7%
On account of (/.2) we can a.‘.l.éo- write,

A m.w




4 T

. Consider the derivat ive of I with respect to T; 0"( 7‘/ § (. / ;;4 __/__
. ‘ )

According to the: equations of motion (972 /), this 18 ¢ seen to »
vanish, 80 that I(T) is independeut. of. T for the real motion, and -
is therefore conserved, We must now prove, in order that it
be accept,able as an important constant. of t‘he motion, that
NI, 5 . as /r-t/ — @ dor any . “ry.
?2;..#/ o : :
' 2Z(7)
‘Suppose first that t.)‘l‘. Let us compute ;,, W directly from
equat.ion (ne3y, obtaining, o -

Y =+/z’ ”YIU na ;{r+/TZ' Y% (o) LI S a/ (lry.f
. Ceg ’

A tult) 72;,,..#/ n;.lr/ Z ../yﬂg.lu
Now'we shall suppose that Id does not depend very ‘mich on -

valués of ;./ﬂfor times, t, far amay from & . That is to aay
N4

we. shall assume, R » E R
| ' 77;,../:/ "__'0- a8 I"--’f/'.“'*,‘@‘ o (’71}

In the first integral then, since t)T, and since only values
of 7 less than T appear in- the im.egrand, for all such values,
L~y £-T o As t-T approaches infinity, therefore,.
only terms in the first integral of (t7.2) for which £
‘epproaches. infinity appear. _ We shall suppoee that ::I/://
s.decreasea sui‘ficient]y rapidly with’ ‘increase in £- - tha.t the
intevra.l of it goes to zero as t=T becomes infinite. ', A similar
analysis applies 'to the second irrt.egral of (llz). Here the '

quanti y N o S approaches zero because of our: assumption
’ff...u/n;..lu _

(?7)s  In fact, for all practica.l casea which come t0° mind (energyo V-;
mo"lerrt,um, angular momentuw corresponding to time displacement, -

"1‘

translation, and rotation), ”; ..Il’; is actually zero if #t

'nr;‘:‘
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(1), anc.ve shall suppose this. approach eufficiently rapid that
t‘xe 1ntegral vanish :ln the ljmit. ’

Thus ve have shovn that 3?1 - 0 as t'7"">°‘y"k .

7o prove the correSponding relation for T-t —=> one nay
calculate Z;.Iﬂj with t< T from (/“/), and proceed in exactly
thé g,axpe IMANNEer, In this way we can establ:lsh the required
reiatibn (/7/)., This then shows that I(T) 1s an important
quantity which is conserved. '

' A particularly important example is, of course, the
energy expreasion. Thie is got by the. traneformation of
displacing the time, as has alrea.dy been mentioned, for which
ifY ;ﬂ,/lj The energy mtegral may therefore ‘be expreeeed,

ar.:cording to (/‘3) (we ha;ve changed the sign), aa,
, — ‘/ » .
. A e

£(T/ - Z';..U ”l /q r | (

In our example (/.2) we would get from this. formula,

o~

—w

- FUT) = -—/ xny[-mx/d V(ij éX”'frJ "'(.'- X_Il’

from wh:Lch (/z/) has been. derived by direct. integra ,

suppose we have two particles A and B which do n : interact

directly with each other, but there is a harmoni oscillator, O,
vith which both of the particles A and B intera¢t. The harmonic
oscillator, therefore serves as an intermedi by means of which

P&I'ticle A is mfluenceu oy the motion of part,:lcle B and vice Verea.




1.

In “hat waq/ is this interaction through the intemedie.te oscillator
(Luvalent to a direct interaction between the part.icles A a.nd B,
and can the motion of these particles, Ay B, be expreaeed by meana
of 8 principle of least a.ct:lon, not involving the oscillator? (In
whe theory of electrodynamics this. is the problem as to uhether the
int eractlon of particles through the intemediary of the ﬁ.eld '
oscillatora can alao be expressed as: a direct interaction at &
 ststances) ‘ . ' ,
' _ To make the problem ‘px_'eci_,;s_‘é,' we let y(t) and z(t)
,-epf,ésexit coordinates of t‘xie.part;clles. A and B at the time t. _
Let the Lagrangians of the ﬁart_icleé alone be de'sigxxgted-'py Ly and
L, Let them each interact with the oscillator (with coordinate
x(t)y ‘Lagranglan (" - w‘x/ 3 by means .of a term in the Lagrangian
‘for the entire systemy which 4s of the form (1‘, +Z) X "y where’
I, 1s a ﬁmction involving the coordinates of a.tom A-onlyy and Iz -
1s somé function of the coordinates of B. (We have assumed the .
‘interaction linear in the coordina.te of the oacillator.)
We then asks’ I the. act:lon integral fo_r y, zy Xy 18

/[1, +y ("""; /mw‘x* + IIy+:,JxJ/t e 44

i3 it possible to0 find: an a.ction d, y & functional of y(t), z(t),,
enly,such that, as far as the motion of the particlea Ay B, are
conc’erned‘(i.e.,'forv varistions of y(t)y z(t). ) the action a is

In the flrst place, since the actual motion of the particlea
A, B, depends not only on ¥, z, initially (or at any other time)
tut also on the initial cond1tions sat:laﬁed by the eacillator,
1t 15 clear that 'd 1s not determined absolutely, but the form

that 2 takes must 'h_a:ve some dependence on the state of the
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oscillator. : ‘
In the second place, since we are interested in an
.ction principle for the pazjt;icles; we must consider variations
o tre motion of these particles from the true motion, That is,
¢ must consider dynamically impossible paths for these particles.
se thus meet a new problém; when varying the motion of the part.icles '
A and B, what do we do about the oscillator? We cannot keep the
.atire motion of the oscillator fixed, for: that would require _
having this entire motion d:irectly expreased in the action integral,
and ve should be back where we started, with the act:lon (7%7).
' The answer to this question lies in the observation
madc: above that the - action must involve somehow some of the
properties of the oscillatcr. ~ In fact, since the oscillator
'i has one degree of freedom it will require two numbers (e.g. position
and velocity) to specify the state of the oscillator auf'ficiently
uccura’cely that the motion of the part.iclse A . and B 1s uniquely
determined. Therefore in the action function for these
;m'ucles, two parametera enter, which are arbitrazy, and '
xepresent ‘some properties of the motion of the oscillator. ' When
the variation in the motion of the particles is taken, these
quantities must be considered as constants, and thus, it is the
“roperties of the oscillator described by these quant.itiea which is
We ahould,not be suprised‘to find_ tha_.t the action function
for the perticles.depends on vhich properties of the _oscillaf(.or
are considered to be heid ﬁxed in the variation of y,’ ! and zo |
I’ is, on the other hand, somewhat unexpected that, as v.e shall
scey not all poasible conditions on the oscillator give rise

o motions of y and z which are simply expressible in terms of




an action principle. Let us see how.this works out in dété.il.
We shall assume that the functions I, and I
2ero for times, t, grea.ter than T and less than 0. We aha.ll
also assume ( for simplicity only) that 1,', is a mnction of . )
t and y(t) only, and does not depend on y(t). s_i_milarly_,, I; is
to be independent of 2(t)e Tfh’én,v from (ll-/')., ) the'ooua.tion of
- motion o-f particle y :I.B',_’.. N e - :
Wy _ :1, . aT, P R -
( | =57 M @M s siuilar equation for 2.
That i‘or the oacillator igy - . : ' '
m X tmwtX = [.T ’\‘/*I ,tj]°x (""‘y
- The: solution of this last equation is, where ve. have written J’ LT,
x{t/ s k/o/ th * .rloj [ Ys) :—mult-.sj JS’ (z/sj _
~This may be expressed in ot‘her waya, for example, .

Xlt.;l: S‘:‘;:(Z',-‘;/ [ xt0)- [ sews r/.vlr] R “““t [Xlr} / mu{rﬁs)r/«ﬂﬂ @-MV

or aga.‘ln,
oty __,,.[g,um.:tﬂv. mw('r—t/]+—_fmwg.,jm)/:—...[;“,wy.;}r{/: .9

. 'where we have written &, =L 2 xw. +xlr/ P xny -———IJ 4

and z'-—-[ur/nwmwruloi “““"] @1y

It is seen that RT is the: mean of the coordinate of the oscillator at

_ time T and yhat that coordinate would have been at this time if
" the oscillator had been free and atarted with its actual initial

i
o <=0nd;'.'c.ions. Similarly, Ro is the mean of the initial coordinate j
T !

and vhat that coordinate would have 'had to be, were the oacillator Do

1ree, to produce the actual final conditions at time T. Outside,,
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wné time ’range 0 to T the osciliator'is, ot ‘coursefsimply a free
oscillators . R '

.These expressions for x(t) may be substituted into (zl.l)
ond t_he corresponding equation for z, to obtain various expressione
sor the motion of the particles y, z; each expressed in terma of '
these part,icles and two parameters connected with the oscillator.
For the expression (113’) these parameters are x(O) and x(o), for
(204) they are x(0) and x(T); for (2/.5) they. are BO and RT. We
- chould- like to determine whether these expreasions .could be
" obtained fron an action prineiple for y and z only.

If the action be 4 , then the expression (21.7). must be

of t‘ne form ,Z,ZIE 0 . Tnat is to say,we must ‘have

e _ 4 2t Lo
'Zr/t/ { } * ke ¥ / XIlj (zz/ We seek the

.,oluuon of this expression i‘or each expression we may write for

" X(t)o

get of equations, one for -each value of t) does' not ‘aiways have

‘w solution. One of the nece_s'ssry*requirements_- is, since '

» / ua

i | v ;,W hrw ) that,

o ot X [ 91', X/:J
W[ )*-’, ﬂ] RIS Y

_ "'hls requiree, thereiore, if s #t, that x(t) satisfy, SRR

2Ty | xxly_ _‘ al‘, nxi)
27 It y/s) - / ?lr/tl : 6"‘?)

_ For the expression (21-3 )y we have,

uxlt}' ,..ww{t--f/ / g s<t B
T e ey

o ".;f -"?’/—",

Now en equation such as (z21) (whi'ch is really an infinite -
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wit.h this expression equation (22 2) is not satisfied 50 that we may
conclude that no simple action ﬁmction will describe the motion of
the part.iclea A and B if the initial po..ition and velocity of the
oscillator are considered as. fixed, '

On the otner nand, since tor the expression (2/+) we

gét', x/t/ mwlr—ﬂw“b‘ , 71;/ cf s<z E
oqyrsy) " MO Cln T ’}'. o (230
-’.g:nw/‘l.""}'“;:ﬁ‘ '9—1-""/ of :>t
T X Is y We W

corclude ’ since (z3.1) satisfies (zz.z.), that “an action does exist
1f the oscillator has a given initial and a g:wen fina.l position.v
In facty we may solve equation (zzl) with x(t) expressed a8 :Ln

" (21#4) and obtain, as an expression for the a.ct:lon, T

d / [ln‘l]./t + / [ Sluwlf-é/’(/o/-fuuwfﬂﬂ-] ﬂt//f-'. | - (z:;z):
T

- m ‘lt/a[: .uuw(r-t/ﬂuws' )’/-’)}’lt/'
A 2.0 D -
The motion ‘ot the part.icles is given by tni‘s 'a'ction
principle by requiring that it ‘oe a minimm ror variations of
y(t) and z(t), where the quantities x(O) and x(T) are considered os '
“fixed constants (ror example, they might. be zero). o '
In the case that x(t) is given by the express:lon (:u-f )
with Ry “and RT as constants, we ﬁnd,

nxe g Sivs CE-5) ?_1}/ F s<t - S |
- q,/;/ zmua : 24 g (2’,” : ’ :

RO 5 L) i ert o
T rema “""‘"{‘ 4 37/1- ) o s 80 that the relation

cta) ts satisried for this ca_ise also. Tne action tunction for .




this case is,

a-= f[‘(r*/ J’/t "‘;“.‘.,r_[ [A’,—.c-mwz‘ +J’.mw/r—i}])’/z‘/a/{f

| 5 @K//
/ / St -.y )’/t/)’/ }A-/t

This action is of particular inssmuch &s- in the special csse
Rp = Ko= o the integrand no longer depends on T, and tne limits
of integration of 0 to T may be replaced without error by—-o andoo

'ao that we obtain an action or the special form, '

w0 & | BRI
4 / [ly +l ]/f + z,md / uuwlt-s} r/t)r/:j/.r/t (244,9 ,

"ﬁ (4 i
. Ir, now, ai‘ter having paosed to 'r.he limit T = (o, ’ we assume tha.t

Y/t/ and Ly Lz do not depend ont explicitly, tne substitutuion

(t)-—? y(t+ o.) and- z(t) -+ z(t+ a) does not. alter the action

,nmction, 80 tbat an energy expression e:dsts i’or tnis action.

- (In electrodynamics it 1eads to the half advanced plus nalf retarded :

' interaction used. in the sction at a distance theory.)

. Exactly the same formulas result it it is that Yli'/depends
‘on’ t'he function y(t), as any genera.l ﬁmctional. | me action '
- -.or tne particles need not, be tne integral of a Legrangian in tne
original form (/1./). either. :‘ Ir there are more then one . .
““'intermediate oscillator, and ii‘ the oscillators are independent (i.e.,
if mno two or the oscillators interact directly) the expressions
" sor 't.he action, wiun tne oseillators eliminated are: similar w0 g
(22 1), \24/) and (z'/-l), t'{ér?fs a sum of interaction tems, ‘one for
esch oscillator. Thus, if the frequency of the J'h oscillator is

, , its me.ss myy the interaction with the pa.r‘ticlea given 'by Y, y.

‘end ‘there were N oscillators, (z‘/ 2), f,gr example, would read, :

L




B . t SR SN
X /[ltvlg]ﬂ/t "Z,g,,,,j ,_/ /:mw (1—})/#))'/}‘{,49 p,,}
Yo
By cox:tpotmding terns of the form (zr/) nmany different types of
mteraction may be obtained. 'For example, the interaction
of equation (17.2) would result from (257) 1f we had only one
-particle Xy (instead of y and z), and an infinite numbes of
' oaci]latore of unit mass (i“’uﬁwrlw oscillators with frequency
w in’ the range wto w+dw), each interacting with the particle
‘through the function Y /t/r X/t/ (the aame for each. oscillator). B
- If we look a little more closely at the type of :lnteraction ;
of (24.2) we_see that since r/¢/=I, /t/-fl' ) the interaction contains v
. terms of the form I, /¢/1, //and .Z',_/tjl' ('V as ‘well asJ;h:/.Z;/;I and.Z, (:UI,IJ.
Although the latter represent interactions between the particles A g
and B, the former type of tem representa an intere.ction o '
particle A with itself, and part:lc;Le B with itse]i‘, 8o to speak. :
What type of intermediate osci]lator system will 1ead to
interactions between particles, and to no interaction of a particle
. with itself? S .
This question is easily answered, when it is observed
that if, ‘in expression (2510) for exanple, ve take two oscillators,
- §=1, and j=2, so thatw,f"*“ﬂ".'w-'m 21 1}"1' j end

RRAS A A v Sinces y (/K1Y Kigne= =2LmL @1, rs)rw) ’ ﬂ»‘ef- .

interaction (.zr.l) could be written as,

4 / [zm. Jdt + L [ f muzwlrwzwff /J/I f*/J"‘/f 5y

Z‘epresent:lng interactions of the particlea with each other and
kaving no "self-action" terms, Exactly the same proceedure leads to

the same results 4n the casea (111) and (”‘/ ).




The original action, involving the oscillators, v.hich

’19&18 to a form of this kind is, from vhat we have said, :

/ [Ly+4 t (Z',+_1;/x, + (L, -T)x,+ ,‘m'(;;,»-w,y—f,a(;;-w:/]# :
'.. mis may be writteh’ by 'ﬁutting 7, =xex end g, . XX ’ .

/ [z, 1t L fI y Ny * .;1(71',7}',—'«:‘71,_27;)]/?‘:».

chis may be 1“““Ediat'?-1¥ genera]_ized to the case where there - 1
" are @ mimber of particles Yke  The action, E s
a o i .

[ [0+ 5m) 7, B Ok - mong]

411 leac to interactions. on:ly between pairs of part:lcles k,l, _ '~ .
no tems arising corresponding to t'h action of a particle on itself, 5:
v "'hese a.ctiou expressions will be of inportance “in the
: ‘next part of the paper vhen v.e discuss t'hem quantun mechanically _
Starting with a system with a Hamiltonian, ve: have, at least g

classically, found a corresponding non-Hamiltonian action
: b‘vzircmle, by 1eaving out one member of the system. We have, in

his, a way of checking a description which is intended as a
', ctneralization of. quantum mechanics. . We may start with a
": .4~iltonian sy.,tem, ‘vhere t‘ne quantum mechanics is Well lcnown, i

wut show that by suitable elimination of the intermediate N
ous ‘{1lator we get a system whose classical analogue obeys an

a:sticn principle of the type (23.2). or (a#/). We do’this on

i

yece “ .




. desc’_ription. of a syste;u whose classical mee}iaﬂicai behaﬁiour is

: be erpected to be unique; witness, for example, the Klein—Gordon ‘

’ quatlon and Dirac 'S equation for ‘the relativistlc behaviour of ’

27,

. I71. Least wmwuﬁm

- .Classical mechanics is the limiting form ofA‘quantum
r\echanics vhen Planck's constam, t ’ is considered as being
‘,anishmgly small. The classica.‘l system analogous t0 a
qmntum mechanical system (w hen ‘siuch an analogue exists) may
pe mathema*tically exhibited most directly by letting ® approach
zero in uhe quantum mechanical equa.tions. -

The inverse problem, that of._determining a quant.um mechanical

;:nov:n,' may not be so easily solved. ' 'Indeed, the 'solution cennot

an electron, both of vhich have 't.he same classical analogue and _

quite aifferent quantum mechanical consequences.

There exist, however, very useful mles appl:lcable when L
the classical equations may be put into ha.miltonian form, and
con.)ugate coordinates and momenta may be defined. These rules, '

leading to SchrUdinger s equations, or Heisenberg's matrix

-1omu1at10n are too well kriown to require description here.lb -

For clas sical systems, such as those described 1n

: LLL first part of this papery v vhich in general have no

A onian form, and for which congugate momenta and coordinates

" tuinot .be defined, no satisfactory methpd»of quentization hes been

riven, - In fact, the usual formalations of quantum mechanies use

">« concepts of Hamiltonian, and of mmenium in such a direct .

—

. ('u _ They are discussed very satisfactorily by Dirac in his book,

.¢ Principles of Quantum Lechanics" (Oxford 1935) on page 88y -
&l on pa,_,e 118, .




and fundamental way that it would seem almost impossible to

“do without them,

A formulation of quantum meehanics will be described

. nere which ‘does not require the ideas of a Hamiltonian or

_momentum operator for its expression. It has, as its central .

mathematical idea,. the analcgue of the action integral . of
classical mechanics, It is a solution to the problem of the ,‘ '

r.quantization of the clessical theory of least action described o
" in the first part of the paper, - . ' '

A generalization of quantum mechanics v.hich is to
apply to a wider range ‘of classical systems must satisfy at
least two condidtions. First, :Ln the limit as ‘Ii approaches

~ gero the quantum mechanical equations mist pass over into classical

equetions of ‘motion applica.ble to systems in this widened re.nge. :
And, gsecond, they must: be equivalent to the present formulations

'of quantum mecnanics applicable to classical systeme with

ltamiltonia. - . The form of quantum mecnanics to Dbe described ‘below

does indeed satisfy both these criteria for systems for which

- principle of least action existsg. A8 an additional argu.ment
we shall show that the action princ:.ples arising in classical
_"theory from the elimi.nation of an intermediate ha.rmonic oscillatdr :

: arigse in an analogous vay in quantum mechanics.




5‘1' ‘Tne Lagrangian in Quantunm Lechanics, B {" ,
| A des"ription of the proposea forxmlation of quantum
_.a chénics mi;,‘)t best begin by recallino some’ remarks made 'by Dir‘acz :
|co zx'em:i.n,_, the analogue of the La&rangian and ‘the action in cuantmnif.‘
j,bhamcs. I'hese remarks bear so directly on v.hat is to follov and'
\ e 60 necessary for an understa.uding of it, that it is thought R
.vhest to quote them in ~full, even though it results in a rather lené
o~ ation: Speaking of the vransformztion function (}t / }—r/ connecting
e rep*‘esentat:.ons referrin5 to tuo different times t and T, he says,
u"‘rom the analogy betv.een classical and quantum contact transfomations
oo e see that (fe/fr }corresponds in the classical tl‘eory to @ %
jsaere S is Eamilton ¥ principal function for the tme interval T to :
Y equal to the time-integra.l of the Lagrangian 1, ’

k '_ —5' [4/:.‘ L (21)

'akme an infinitesimal time interval t to Hft ) We see that (fa;f/ Fe }
corf'esponds to e 'ig This result gives probably the most fun.damente.l '
cuantum analogue for the classical Lagrangian function. it is e

;re ferable for the sake of analogy to consider the classical
bgranc,ian as a function of the coordinates at time t and the

scoorcnnates at time iﬂl’t ,:.nstead of a mnction of the coord:.nates
ad Velocities at time o . . '
"‘he.e is ‘an :unportant action principle in classical
‘Pechanics concerﬁing r.amilton's principal function (21). It S&Yﬂ o )
ther this function remains stationary for- small variations of the '
{2), Dirac, "The érinciples of Quantum ISechanics“, pl24 to 126. :



ectory of the system which do not alter ‘the . end po:lnts, i e, for

; variations of the q's at all interm.edim.e times be“een T a.nd 4
grend F+ fixed. Let us see what it corresponds to in the

tun theorye '

| Put

’64{*[ ”"f] /%[,{sm f-/] - B““,fe} 2

\at B/fhi/ corresponds to ( ol 8o ) in the quantum theory, Now
yse the time interval T >£ to: be divided up into a large
>1‘ Of Small time intervals 7.'_"{[,t “’4—,00.., 4..,"{ t #t, by

J_xtroduction of a sequence of intermediate times # ;‘ i,,, . Then

orresponding quantum equation, -which followa from the composit:l.on
ves y 18 )
80 = I fmfm)/fn. (f»»’f--:)/fm /7’/7')‘/5"’?/?«'24)
-ing written for 7, for brevity. » ~ At first sight there does . not
to be: am' close correspondence between (23) and (24). ~ We nust_, o
€Ty analyse the meaning of (23) rather more carefully. : |
rebard each factor B as ‘a functlon oi‘ tne q's at tne two
ox the time interval 1o whlc‘n it refers. ' This makes the right-
- side of (23) a function, not onJJ of f, and fr ’ but also of all

l n ex'*xediate q' s. Equation (23) 1s valid only when we substitute S

‘  he 1m.emed1ate q's in its nght-hand side their values for the .
lr ajectory, small variations in vhich- 1eave S(t,'l‘) stationsary and ;
fore ulso, from (22), leave B(t, T) stationary - It is the process
Ls'uuting these values for the intemediate q's wh:lch . :
i.on.*u to the 1ntegrations over all valuea for the intermediate

f‘ (™). The quantum analogue of Hami_lton's action principle




15 thus absorbed 4n the composition law ("’4) and the classical
requirement that the values of the intermediate q's shall make .

\5(1,, T) stationary corresponds to the condition in quantum mechanics
lmg,t all values of the intermediate q's are. important in proportion
w their contribution to the integral in {24).

Let us mee how ( 3) can be a limiting case of (24) for i
small- ‘e mast suppose the integrand in (24) to be of the fom
6'% y vhere F is a mnction of" ;,, ;,l ,, ;,, ;‘ which remains A
continuous as X tends to zero, 8o that the integrand is a rapidly
oscillating ﬁmction when i’ is small. The integral of such a
h-apidly oscillating i\mction will be. extremely small, except for Lo
the contribution arising from a region in the domain of integration
v.here comparatively large variations in the ;., produce only very
small vartations in F. ‘ ‘Such a region nust be the neighborhood

of a point where F is stationary for small variations oi’ the. f. . o
| hus the. integral in (24) is determined sssentiany by the valus
of the integrand at a point vhere the integrand is - stationary
for small variations oi‘ the intennediate q's, and 80, (24) goes -
overinto(za). o TR

~ We may mow- point out that not only does ( ;we/}ej correspond '
*10 ,uﬁ. [[L(""‘ " ;"“} St] ; where L(q,q) is the Lagrangian Lo "
ior the classical system considered as a ﬁmction of velocity and
coordinate, but that of‘ten it is actually equal to it, within a

normalization constant, in the 1imit as st approaches zeroe _
That is, to terms or order Sf if ;/;/fj /f is the volume element in q-space,

‘ P Im
¢/i~u,£ﬁf/ / /;,.,t/zt) Wh,f/ Z f Pl "‘"‘J%/ﬁf/ i,‘{,i; )

since h,“ and g, are just difi‘erent variables it might be advantageous f )
to avoid the subscripts, end to write- ( = fm: J. f ff) ‘

%
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as §£ o to the first order in Sb This ie an integral equation

10 determine ‘the wave. ﬁmction ;‘/ems/ ior the system at the time t*‘t |
.;m terms of ita value at time t. It therefore servee the same '
~ﬁ1nction as Schrodinser'a equation, and indeed is equivalent to T
that equation if the. normalization constant Al’ﬂ a i‘unction of 42, s - :‘
is chosen suitahly. S S o . g

" 'I‘o see how this comes about, we take the simplest case of

a particle of mass m moving in one dimension in a force field of

potertial V(x). - Thus the classice.l Lagrangian :mnction is »

L= —Lmnx‘ W“'/ e In accordance with equation (.n.l), then',

the wave function for this system must satisfy (where we have written‘

¢ for § £) for infinitesima.l & the equation, - '

3

net us substitute )’ = )Z-h\’ in the integral;

)‘/Xt-w/ / | [—J"fw’yj)ﬂnytj ("-9

Only values of )l close to zero will contribute to the integ:rel,
because, tor emall <y other values of 7( ma.ke the exponential

(3) One could Just as well write [ {""‘ K f—:} Ior L [&—"‘——Z hru}

the difference 'being of & higher order of emallness than we are concerned

With-




: oscillate 80 rapidly that tnere uill arise litt.le contribution to ]

'Taylor series around 70 ' obtaining, a..t‘ter rearrangmg the integral,

) %‘(&m} =

the integral, We are 't.herefore ‘led to expand l‘(lﬂ)tlin a .

V/xi

Y ;;v

 How, f e ;”;'E l‘ "/’1 fmtcc (see Pierces integral tablee 487),

: and by differentiating both aides v::lth respect to m, ‘one may show

én_d'vther?fbre, k 2¥ - ' # 9‘/-1- V/“'/P

tor tne equality to ‘hold we-mst chooeo,

vhich is Jjust ‘Schrodinger's eQuat.j.on for »’the ‘system in quest»:l__eg‘.‘

P

/ )Z , ét-w”‘,/, /th:_ Aed ‘5:; L

" 'The integral with 7 1n the integrand is Zero . since :I.t 13 the : i
; mtegral of an odd function. Therefore, AR ‘ I

_ a‘ ‘ : Lo ‘-’z,lj
f{.gtw) V : *‘Wx}[}”&t) 4 &A 7}: + terms in Eetc.} o

The left hand s:lae of this, for very small £ appmachea )‘“‘7 80 that

. LT

A@: ’—__-znicc .. (33.;} : S

-Eb:panding ‘the both sides of (a-r-l) in powers of & up to the first, L

M
P/x t/+e ?_ﬁ‘_‘l Wxt/ - & Vm/ Wxt/ * .&”_‘; .

- — ——— 3 e

PI7 4 ,2 74\"‘




This confirms the remark that equation (3z/ ) io
equivalent to Scnrodinger 8 differential equation for the wave
function 5‘ . Thus given a classical system describable 'by
» Lagrangian which is a function of velocitiee and coordinatea
“onlyy @ quantum mechanlcal description oi‘ an analogous aystem
gy be written down directly, withoutfirst working out a Hamiltonian.

If the problem 1nvolves more than one particle, or

vpart,icles w1th more than one degree oi rreedoxn, equation’ (chl)
'remalns formally the same, ir q and Q are’ considered to represent
"entire sets of coordinates, ‘and f 7 if represents the volume »
mtegral over the space of- these coordinates. The form of
>5chrodinger's equation whlcn will, be arrived at will be definite
and w111 not suffer from the type of ambiguity one iinde it one -

tries to substitute f % " for /9, in tne claseical Hamiltonian. el

It will be import.ant to con51der the consequencea ot
(le) when’ applied to conneci the wave .’mnction a.t one: time to
its value at some finite later vime, : v
,. Suppose we Jnow the wave function "(Ivzf-}at time t. and
desire it at time To Dividing the time interval up into a very
large number of small time intervals,f. to ﬁ to t»,..., t.-.to Ty
ad applyim;r relation (321) to each time interval we. o‘btain, if we'

write §,for tne coordinate associated with zimef‘,

'.u o0 . - “
%/5",11,,,) /B,L( 5 5 Bon {4 t} // i/ 7 4/;” Gy

7
Alat)

(4). We hav_e, of . course only proved the: equivalence in a very

:pacial case. It is apparent, however, that the proof may be

'eadlly extended to any Lagrangian whlch is a quadratic tunction
the velocities, in addition to, perhaps, some terms linear

Ln tae velocivy arising irom magnetic tields. ~The equivalence will ‘ ', :

¢ spnown 1n-a more general manner latere

34




, 'Tnue, by :lnducnon we £ind tne relation, L (3"’)

e £ fif, g u./;. o;,/f,- /;..
W9 ///h{f “[ s -t & } #“’ UJ} ;f/ - Attty Al z./ A(r-‘-»'

\,here in tne sum we shall write Q forf..,, and T for f,..,,, 'v In _:

the limit as we take’ Yiner and fmer subdiviaions of the interval
4, to T and thus make an ever 1ncreaaing number of auccess:lve Tl
integrations, the expresaion on the hﬂt eide of 38:7) becomea | . }
.equal to “9.7) ,' ‘The sum in the exponential resembles - :
. 4 l/g, / dt | with the integral written as a Riemann eum. _ -
‘ In a simila.r manner e can compute "/l-,l‘/ in terme of

: : the v.ave function at the later time T =£ 22 by the equation; '

9‘ /f'/ '} /jf"‘(fnm a"}j%[ 8[1/’“‘~"2 ,”'} /&"‘i)j 0::’/?““. IZ‘/"

A/t -..) A/f. b)
e et s C"'l)

Ce, Tbe calculation of rnatrix Elements :ln the Language oi’
"vaLégrangian...'_ ' R e .
= - » ’ “uppoee we. wish to compute the average value of some

..ﬁmction :F/;) of the coordinates et the time l’., vh:lch we shall

" ean (f/;/); ' ( fff ') } / ,4://) i / f/; / ;&//a,t/ /—' 4}' (sr-y

""Let': hémiry to exprees ‘this in terms of the wave function
-’at some more future time,t f..,, ;. 'by equation (th), and- in terms

| of the wave: ﬁmction A Fmt, t,:}at some earlier time 4= 2.‘,« by an -
v'equation analogous to (J.r./) (we shall let negative :lndi.ee

- stand for ‘times earlier than? ), We obtain




T

‘the future. Secondly, we, may generalize somewhat by taking

~calculate quantities such as ( x/f/;'.//%), uhich correspond to

| ,l"f an exponential of the form of equation (3¢ I), 'DY a wave function '

{fv(z;)> = /f;ﬂ’r}m,, ,,,,};%[‘g [L(fa. ; ,:.,, s »t )]} {/’)

G o AT o
A(f,..,,-— ,..) A’é t”) A(tn'ol ﬁ')
- NN .

ye s‘nall be dealing wit,h expressions of this form to a consicerable ,

"/fm e )

extent, so that we ghall make some remar}:s concerning it. In
the flret place, we will alwavs take t,.,, to be a, fixed t:lme

T verv far in the’ paat, and fae to be T, & time very far 1n

the wave function at T, arbitrarily, say X and not neceesar:lly

the same as vwheat the wa.ve function ¥ chosen at time T »
\sould become at this later time 7.‘, . In th:ls way we shall

nave an expression more like a matrix elemerit than an’ average.
e shall use t.‘ne symbol (x /f/;,)/V‘) to represent this quantity.
'.‘e shall continue to call it simply the average of T éven though

{t more. closely resembles a matrix element., vie m&v, of course

e -average 1.4lue of {-/gj at the slightly 1ater time iy 7 merely
replacing the {—/;.} appearing in the integral on the right hand
side of (J‘/ ) with. 1-/[ } - Thus,we. may ‘£ind the time rate of

*mge .0of the average value of f/ﬂ,

f(x M/IV? <~————-—————"“’""X, : Lt </ y ")/s”) ,‘ ._(J:‘.'z/;

here the Jast expression means that we are to replace }I{,lin the "

f/t:) fl}-/
tiegral of (3¢/) by 2 - . Ve may say then, that the .

wibol(y( [¢) means that the quantity inside is to be pultiplied f‘ !




Y at - 5 and one, )‘ at T; R and integrated over all coordinates. : ‘
;inam’ the limit as the subdivisions of time become finer and
giner i is to be taken. We .shall, for a while, disregard whieh
cave functions are put. into the expression, and’ shall simply
ritey (IF1)> ’ but we shall discuss this later. In this way ..
'ye cen define the average of F[ N’J where F is any ﬁmct.ional5 at
311 off(r}. ‘e need merely to express the functional approximately
s @ function of the values, fi, of q at the poima 2; E p].,ace

this ﬁmction in the integral of (u/) and’ pass to the limit.

:, The Equations of Motion in Lagrangian ssm.~ _
‘ ‘Let us now consider some functional, which, expressed
in terms of £, the values of g at the times Z 18 F/f? g -

" at is to say, a function of .. ¢4 F 2% 7% ete,  Let us calculate

' Fi{q > Repla.cing f bY' ?ffﬁn (3‘ 1) we see that we may integratc

by parts with reepect, 10 fxo . . The integrated part W be »
ass'umed to vaxiiSh, for if'we consider that the im:egrations-v Ll
over the other q' 8 were performed the remaining integrand would
e sirular to the square of the wave i‘unction at time £, \shich

'.;;‘esumably vanishes at infinity.r We find after integrating by
fu'ts, &n exyreasion similar to (3¢.7) but having a different
»xom for- {/[.); namely we find, ' |

i s performing the indicated differentiation we obtain,

’h- 9| ) -
ﬁ<lf L:l’ L =oAL “ f'sz""'-',z.)}I}

R

i PrOpertles of 'mnctionals and our notation with regardl e
-then is cescribed in the £irst. gection (p@)of the paper. [

.[L(ﬁ"—‘&, ..,)Jf.,,-f/]}l) (Jr-

“‘R




where we. have written l £ for the i\xr.etion ;; ) and l, for 5“

'._'lhe expreaeion in { ] may be remembered most. easily by o

PN

noting that its 1imit for infiniteeimal eubdivieiona is v"_
‘ This relation (372) ig mndamental in that, vhen compared
to eorreaponding expresaione in the usual form of. quantum mechanics, .
1t containe, as we. shall see, in one: equation, both the equationl ‘
of motion and the comnutation ruleo for- p and g« The way thie

comes: about ean be seen. most clearly by applying equation (37 "z )
to ‘the aimple example with [ = ME-‘ V()S/ o It then reada, (ﬁ'l)

{l /> 'x(/f' [‘" Z',’,'.'Z Z::) (t,,-t,,.,)ymj/) (u. Y

I F =X,, then. (35’/) ‘becomes, o e

PR =

(Y = (] (32 o - (i) - }é.ﬂ(‘é.-—t'.;)’fr;’_/n)l)"'?-7’

t&w "‘k

In the 1imit of fine subdivision oi‘ the time, since as £~ t,., —ro

~

'_'the last term becomes unimportant, we can write, .supposing as

usual that in all these equations the 1imit 18 to. be taken, '

(/ (/m Kuo X |y . Xx—v)l) 1(,,/) (u.:,{ -

Liers "tk t, ~tyy

._ This is equivalent to the statement, in t'he ordinary notation

: - of quantum mecha.nice, that the average value of” pq-qp is equal n

to the average value of5 I " The’ order of the factors in the

--‘usual mechanics here ehows up as the order of the terms in time. SRR

(Exact relations by which formilas of the notation of equation

(322) can be tranelated into relations in the more usual notation R

will be given in a 1ater section (page: 2))e. BRI
Again by equation (371) i’or F=Xm,say, ‘we' find, .

o~




(/Xm/f“‘. %/ 'fm(“' 'x"'j/) o in the limit. ("1)

ThuS s the difierence of two successive momentum measu.rements |
followed by a position measurement, mltiplied and averaged, :ls =
: mﬁnitesmal since the two’ successive momentum measurements —
give the. same result - but if tne position measurement occu.rs |
© petween the momentum measurements, in time, the result is no
~longer small, the position measurement having disturbed the -
_ momentum between the times the momentum vias measured. (Of course, ir’
- these quantities cannot actually be. looked upon ‘d$ ‘averages of - . .
| quantities in the classical sense because of the i in the- expressions.)» '
In equation (392 ) we . may replace < 'Xa( m x, St )p by its

tt' Py

"r -,
%value a moment later, namely, {l Yoy - )/) without changing
" the value of the expression by a finite amount. Thus (38.2)
mw be rearranged to read,

< /(X;m*Xn) I> - -'zt {fm "'tx) (I,,) (Jf.-zj ».

This describes the well known fact that a wave packet spreads T |
prabolically in time from a point, and that although the

' averege value of the displacement of a particle in the time dt
1s vdt, where v is the mean velocity, the. ‘mean value of ‘the
"Square of 'thls displacement 1s not oi‘ order dt2 but only of
order dt, Ve mention it here to point out ‘that although .-
_Lhe form for average velocity,isy - i‘rom equatlon (362 )y .

: <{Ml) N the average kinetic, energy, for .example, mst
Ly ~tx )

' - | Xepy=X i

,be written (I'm(x"’ Xe l(."_:!!i) rather than (I { " /) .
Lov-ta bty

:"he latter is infinite.. o L : o _

; If, in (33 I), we- had chosen for F the expression 6—,x,.6,_ s -

#




C v,

AN

where 5 is any ﬁmction of the coordinates, X belonging to
times f later than Z, ( £ 24.), and 6, 1s amr i’unction of the
coordinates belonging to times earlier than £ Ky “we would have

found, in Place of equation (.39.2), the relation,

(el oo B2l - 10y e

' law of motion, namely, mi - V/X/ =0 . This law and the

: cdmute.uon rules are of course equivalent to the conmutation rule° ‘ )

Tn1s :ls equivalent to. the ‘operator equation, in the usual notation

410 needed to completely solve .the problem Tor t,his system, and i

k'tk-l

’ r"his is equivalent to the ‘usual relation among averagea,

(latbe-thal) - 5(/&49

" since ¢ and’ ¢, are arbitrary i‘unctions of their coordinates,

ve may think of equat.ion (#0/) as- equivalent to the operator ‘_'
equation Af - f/” S
Replacing F simply by &6, wrt.h 6, ) 6‘, dei’ined as

| pefore, equation (36’:1) becomes ai‘her dividing through by (f,, fa-c )y

since the lei‘t side is. zero,

(|of 2 /*~:’;::)',,,,] ‘/)5 o

t t

of quantum mechanicS, which is the quantum analogue of Lewton'a

and the rules HF - FH,.ILF vith H<; P'-rle) in the usual
1or'mulation. Thus equations (#0.7) a.nd (40-2) state all thafe:‘

hence equation (38 ! ), or its generalization, equation (372 ), :
fPom vhich they can be derived is"all that is required.
Even tnougn ve-are going to extend this 't.o problems

1°P vhich no Hamiltoman exists, it may still be or interest to




describe the Hamiltonian from our point of view, ':Jhen one does
existe. Let us consider the average oi any functional F/IJ
me calculate the rate of change with time of this quantity
we may use a relation analogous to (J{ 2)e Another method :ls
as follows~ Suppose the variables ;‘ which app ear. in F are
1imited to indices between the times ¢ and z‘ ”’ /‘I’hat is to-
sayy F is a functional of only the variables | 7598 to ;, v » (In
| ‘the limit as our’ subdivisions in time become infinite, /may |
fzubecome infinite, but. we want lj .and f s to- remaiu bounded,  so
that F covers on]y a finite sPan of time). » Now, if in our
expression (36 {) for the average value of F. the values of’ the
times £, for i between,l and £’ viere increased by a constant '
small amount § it would be equivalent to calculating our 1-‘

at a. time S later, v.ith, however, the same wave functions
kept. fixed at fixed times, % and 77 o This will give us
5 ,)ust IFl) 4§ “{IFI) ‘to the first order in . §. Therefore, '
E(/FI) is the derivative with respect to s of the quantity
ve get by so augmenting the time varlables. . To eompute the
‘_m:iicated quantities ve look at equation (3¢ I) and notice that ,
: 1f all the times were altered as indicated, the only -change
,.."made in the i‘ommla would be to replacef 4., 'byz‘ -4u=§ and
u/" 5, Z -y +S‘ . Doing this, and taking the derivative

-lth Tespect to §, we find,

{IF[} (/{l Z;l'l,fl} {fl frr [ 'gg’%’)h} % {4-4..)]"— -

'F{l ('I« }lfl) thl‘b ‘1/2« :l 3 7"’) "4’/5'« 4’)}/)
- ' (4'-/}.




/ :
ere o(/)'f 1"4/"/ Equatlon (#47 ) only applies it F
o ains only coordina.tes between I and f.,:, and does not
lnvolve the Lime exphcitly. _ If F does involve ‘the time

T term), {/ ) should e added to tne rlgnt s:l.de.

‘-l

" Ve may compare. (ﬂ/ ) to the usual relation"{r}-—(”f-ﬂf)
e see tnat the analogue oI H is the expression in 'an { ]
i this equation, The term.. aft,- z.f,.,} arise from the ,
: d.fferentiation o1 the _normalizin.g zactor,A. Tney serve fo - R
seep the expression ror H finite in me l:lmit of infinitesimal
;ubd1v1sion, in spite of the fact that it nay contain terms - ,
of the’ fom< - 714) /) whose magnitude we have already diacussed. :

-

7;.~«r' examle, in view of (372) Ior the simple Lagrangian 5

mMYt_ it is seen that must be L - and that
e V(U .9 o e Z(_tj‘,é;flj ’

therefore, A(tfl_,.,) const. g t,_, ) as e have already found for
H~1g C&:e. (F' 334 .

40 Trdn.alation to the Ordlnary Notation of Quantum I'echa.nica. .
s What we have been doing 50 far 1s no more than to
;eexpress ordinary quantum mechanics in a somewhat dlfferent ‘
-~&’\:uage. In the next few pages vie shall require this altered ’_
‘. *a-’@lzxge in order 1o describe the generalization we are to make',.
to systems w:.thout a simple Lagrangzan functlon of coordinates o
Aend velocnies.v . Betore we do 'thlS, it is perhaps worth whileb :
to show how the relations vie have derived up to this point, for‘
“'Stems possessing a Hamltonian, H, say, may be most readily

j L“ﬁnslat,ed into the nr*re usual notation.

The ‘usual exnrese,lo'x tor the wave i‘u.nctlon at time ts

1” tPrms of the wave function at time t is given by means of




’ o

(nichy of course, is correct.  The left side of equation (‘3"/ )
(en translated with the aid of equationa (43.%) end ( ‘;’3-" ) does
jndeed vanieh in the 1init as the diviaion of time iut.o intex'vall
ecomes Tiner and Tiner, S S

As a further example we may mention the. equivaleneo T
between (i ﬂ”")/7 and the average of € % #(5-2) [ L (»5 ) +§02) b }] e‘ e T),f)’

o may be seen moat eaaily by conaidering the average of

tm tt‘-l

: e fx;) according to- obvious generalizationa of
. ¢quationa (73.4) ana ("'3-"). ' :
5, The Generalization to any Act:lon Function. | v
“ We now make the generalization to the case vhen tho
czassical action need not be of the form d flfhf/ Jf but ‘
iis gome other more general ﬁmctional of ;{l]‘. In oquation (3¢ I ), :
4 hes already been remarked, the phaae of the exponential io A
j"usg, J—]L/{,}}/f  written as aRiommaum due to our _
ebdivision of the time into i’inite, bnt small, intervals. - The
: obvious suggestion 18, then, to rep]ace this exponent bty % times
e mre general action., The action mst of course firat be .
4xpressed in en approximecte vay in terma of {. o in snch a way
fthat as the subdivision becomes i’iner ‘and finer 1t more nearly
fppproaches the action expressed as a functional of £f%/ .
‘ In order to get a olea‘rer‘ idea oi’"ﬁhat this will lead
: 10, let us chooae a simple action ﬁmction to koep in n:ind, for
"‘kh no Hamiltonian exiets. 'e may tabo, ' '

a [ [»«xw y/xm) ;,é‘ut/x/tfr/}/t : ' '.(41'1/‘

"u”‘ is an approximate action function for a particle in a potontial




{‘ . . a4s,
V(x) and vhich also interacta with itselr in a mirror, by means '

. of half advanced and half retarded waves, ewctly as in (l/~2).
In the expreasion of equation (3¢ /) the integral of L

extends only over a finite time range T to 7' - Our action (#f-Z) o

is meaningless i'or a i‘inite time | range. - In i‘act 1f we were to
mtegrate over the range i’rom 7 to 77 the action might still
depend on values oi‘ x(t)- outside this ra.nge. . ‘

This difficulty may be circumvented by altering our i_
: »xr.echanical problem. We may assume that at a certain very large
» positive time T. , and at a large negative time 7 yallof
the interactions (e.g.,the charges) have gone to zero and’ the '
particles are Just a set of tree particles (or at least their-
| .motion is. describable by . a Lagrangian). We may . then put
‘wave functions, X and ¥ y for these- times, when the ‘particles are
%ér'free,into (3¢1), . (We might then suppose that the motion in the
actual problem may be a limit of the motion as these times 7; and

T ‘move out to infinity). Ve therei’ore compute, by analogy to (3‘-/) 5

' the quantity, ' B ' : s

j!r .f'fr

‘ <“F/0 [1’ /}r)/%[xa(f' hM,h 7T)} F(ff-)f“r//ygt‘)#

In the. limit as 7( ~ 0 ‘this will 1ead to the classical

- 2, )since nothing 1s altered to’ invalidate that argument
: We may obtain the fundamental relation ot our. quantum
i mechanicS, analogous -to equation (37.1), by iutegrating the

"°1‘mulla for the average oi‘b,i %‘g—’/ by parts; to obtain, ,

lim 2227 ~~(x 38 w e

\

%

action principle, Sa O 4 in the way" outlined by Dirac (aee page B




i K )
45 vie bave remarked above, this contains ‘the analogue of the i

uations of motion as vell as the quantum commutation rules.

conservation of Energy ' Constants ot Lhe Lot.ion.

Because of the importance in ordinary quantum mechanics of
perators which correbpond to classical constmts of motion, we sha.ll ,
. -ention briefly the ana.logue of nhese operators in our generalized
rormulation, Since these are not needed for the rexnainder of the :
v,a;)er, they have not been studied in detail. _ |

. The notation will be as in t.he classical case described
in section 3, of the first part ot the paper.A The general oiscussion
gwen there applies equally well in this case, so tha.t we shall not.
rppeat it. We will suppose, for simplicity that there is only ‘
one coordinate, ﬂ}, instead of the K coordinat.es fq/ 7 o
" From the equations of motion (4t'z) we can ver:lfy directly

that ,

<1;~’Z’ [;I = ‘*’é: 9/57 *ri’l”}o .

I tl and 'f','z are far apart,, we can suppose that, as we have proved
"in the classical case, it the action is invariant with respect. '

?‘-!o the transformauon §r¢tas, the expression on the left of ("‘9’)

- mltiplying % , can be expressed as a difference Igl-:[-tz o where
- '72e functional 1{2 1nvolves ‘the coordinates’ in the neighbourhood

§"1‘°1 o, and If involves, in the ‘same way, coordinates for times in t,he
: nfiigh‘oourhood of tl. ' ' ' '




L g
£ the expression, 7, involves coordinates for only a finite
" range around ‘some’ time, 3,, and % and To are. outside this
| range (T2> ’Ea >%, ). then the right side is independent of T
and To This is the ana.logue of the fact that I is a constant
of the motion, In this case also, the left side becomea
aualogous to the quantity IF-FI, and the right side ie -Just a
_dfterential opere.tion perfox-med on F, The differential opere.tion V

s characteristic of the group of transformations Lrom’ which I :ls L
derived. : ' .

Thus, for a displacement in the x direction, the

differential operator is_ % , the corresponding constant of

. the motion is momentum in the x direction, and we’ have the-

R

AR

A

_ Vma.logue or the” opere.tor equation PiF - prtilf . Nore

‘ accurately, ve have the analogue of. the equation, o

H@rtJ g"lt.—t) -ult. %) -Lnlt.-t. - i
f‘ F-FER " het )-;_;’{for all. T and tg. o

. ¥or the time-dieplacement the diﬁ‘erentiel operator is 2;! ;%.

and the constant is the negative of the enerar, 80 that we have

lhe analogue of . HF-FH-’54’+3 if | If F does not depend _

Brplicitly on the time, we can write “the right side in the usual’ uay, ]
-F. 3 o o . _ . |

: For the energy expreseion, cle.ssically 1(’} ﬂ'j ‘.,_b

The i‘ormula (411) can be. deduced from (#47) most simply by writing

Top ¥ the Iorm, .b 7;' {‘:’-2 + 1“ :t'. :’J : the case tha.t

”“e coordinates are rectam,mlar. The method described in connection
‘ith @) (page 41) of augmenting all the times between tl and T,

\ *J a fixed amount 8 maw be applied here also to obtein an alter-

"'&tiVe expression for the energv. :




a. The Role of the Wave Function.

‘.in a form exactly similar to (3"‘1 ). Tbo q_uantity I,{;.)is expreesed

B

o Tne problem discuseed in, thie section is tnat of the
existence of a wave i\mction for times between T} and Tn. o
. _’ It is to be ‘noted, that in view of the relation (¢#%/ )
it is no longer possible to express the formule for the averagee

" in some such’ simple form as f f'F d Al | Suppose that F. is
'especially simple B0 that it contains on]y the- coordinate qo (For
example, perhaps we' want to compute the average value of Qo itseli’ )

According to equation (45 I), it mev be expressed in ‘the form, ‘ )
f f{;.} Fit,) J;T.'/zo (£8.1), where //{.) 13 the result of integrating :

the integrand of (44’1) with respect to every veria.ble ‘11 exoept 9oe
I ".l'his ie to be compared to the usual expreseion when a Hamiltonien Rt
'exists, Jd (f.)F(l.} ¢'/IJJ;€'4;. ‘ (1‘?.2). B They would
; be equivalent if /I}.) could be expressed as the product of two
functions # (;}and p;(;.) in a natural and ueeful vays In general,

. ho\\ever the integral oi‘ J:}Q‘ over all the variablee except qo
- oannot be 50 expresseds For the particular case ‘that a. ie the ‘
integra.l of an ordinary Legrangian function of velocity and a
| 'position, the exponerrtial can be broken up into two factors;

L%

._;;,4-{5{"( = i"ﬂ){t-twu frote ;..)#u;j-:_‘_._.)v'»'«,;},.f [

ey
14/' {L(t.—t )(t' t/ +L (5-_11 ',_ (t -£/-t-..],:."

| These factors contain on]y the variable. Qo :ln common, 8o that

vhen ‘the integrations on the other variebles are performed in
expres.aion (#5.) ! ), the result reamains tactorable, The quantity
;d,(;.) is the result of mtegrat:lng the. first fector, and is expressed

48,
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LQ, termsof . Y* by an equation 1like orie obtains from (Jf-/‘)l
py taking the c'omplex .conjugate (ée., :r.z). -

. We can take the viewpoint., then, that the wave f‘unction
ig just a mathematical construction, useful under certain ;
payt,icular conditions to analyze the problem presented by the
pore generalized quantum ‘mechanical equations (#6/) and (#5:2),
put not generally applicable. - It 1s no‘c. unreasonable that it
chould be impoeeible to find a quantity like & wave - f‘unction,
which has the property of. describing the state of the system
- gt one momezrt, and from which the atate at other moments may be
erived. In the more complicated mechanical aystems (e.g, the -
, example, (4‘9.7-) Jthe state of motion of a system at. a particular c
- time 18 not enough to determine in a ei_mple mamner the way that"
the system will change in time, It :le also necessary 't.o know
" the behaviour of the system at other timee; information which a
| Swave function is not designed to furnish. An itrteresting, .
at present unsolved, question is vmether there exist.s a quantity" o
4 analogous to a wave ﬁmction for t‘lese more general systems, and
vhich reducee to the ordinary vave runction in the case that the
~action is the integral of a Lagran.gian. That such exlst is, ot
course, not at all necessary. Quantwn mechanics can be worked ‘
»r’nurely witnout a wave ﬁmcuon, ‘by Speaking of matricea ‘and ex- |
' pectation values only. In practice, howevar, the wave i‘unction
is a great convenience, and dominatea most of our thought in .
: quantum mchanica. . For this reason we sha.ll find it eepecially
conveniem, in intex'preting the physical meaning of the theory,

Lo assume our mechanical system is. such that, no mattﬂr how
“Omplex between the time Tl and Tz, outside ot this range the
action is the integral of a Lagrangian. ‘In this way we may speak
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i

of the state of the system at times T, and '1‘2'9' ai least,' and

represent it by a wave function. This will enable us to
descnbe the meaninc ot the new generalization in terms with
which we are already familiar, This we do in theé next section,

8, Transition Probabilities. B _ ,

' We shall suppose, ;as auggested above, that our a.ction
has the form of the integral of a Lagrangian for times T, or: later,
énd for 'cimes Tl or earlier, but that it is arbitrary 1n between. ‘
v In th1s way, we may speak of the state of the system at time l‘l
as being given by a wave function )/ and of the state of the
system at time Ty by & wave ﬁmction X o e cen then make. the
 physical assumption that the probabllity that the evsten in state
¥ .a_.ur.n.gwl.iub_f_mm, a&.._ﬂJs_ng in the state x
is the square of the g‘gsglute value 9_ the guantity (1///}0)
The quantity may be deﬁned by the expression (‘If / ) with F rephced
' smply by unity. . .
| We can define other physical quantities in terms
| of this, by determining the changes in this probability, or
. rather in the quantity (11/'%), produced by perr.urbationa of
‘the motions v , " ‘ o
c ' - We shall indicate by a subscipt the action for which the
wantity {)/iJ¥) 16 caleulated, by writing (i1¥a 1f the action
isa , Suppose tne action is sligntly altered (in the interval
T to T5) to become 4+c¢ ¢ vhere € is a’ very small paremeters

. from the form of equation (46/) we would h&"en -

<x/,/¢>af£# lz., (X/é" 57%)& {“"ﬂ. y so»thaf. i_fé' is 'axﬁall o

. 'Mough to insure: convergence, we may write; -




nie

(z’/:/%&;;,z <"/’/") *“()f/;f//) - (t/#‘/)’)

ft'/ V4
g can therefore 1nterprete (Y/ 74 V) by sew:lng it 18
i{‘ s, //),w) V a.t €= 0 e Tt should be empha.sized
v »here that {X/,z}/;é) . where # and,é are any two ﬁmctionals

" cannot in general be written in a vay analogous to a matrix product

 (eeBes Z(X/}//ﬁ}(ﬂ J41¥> ) as cen be done in the usual

' ,—acnanies. (This 15 because } and ,& may overlap in time, and 80

neither be before the other.) " The term < )4 /;Zj/ b ) may either

~ %e interpreted as (;/,V/}‘) with £ replaced by A& y oTy

Aternatively, as the first order- change in ()’/J’/ I‘) on changing
4 vo ared (see equat:lon (r/z)). 4 N
We have, incioently, dex ived a perturba:t.ion equation o

- (s#/ )y which may be easily generalized (change a to a+rl in (ﬂ/),

'_differentiate bOth sides with ‘respect to Y 5 and set f=0) to. read,

{W/V%w (zw/P)f (x/w/f‘) i {x/u/f)f oy

This permits us. to express the average of a :t'unctional for one

actlon function in terms of averages. ofother__ runctiopals for

a slightly different. eetion.. 'Fo‘r some particular probl'ems,

such aS, for exanple, the: electrodynanﬂc one, 1t may turn out

what ‘the a.ction may be considered as the sum or wo terns, d. fﬂ/ 'y

The I‘irst expressible as the integral of a I..agrangian, '

. ‘vhile the second, not 50 expressible, may be considered as a sme.ll
Ferturbation, - Equation (/2 ) then permits the actuel matrix

tlements to.be exprese'e"d in terms of the matrix elements with the

Lagr&ngian 'Actiori, 4y alone. » Siﬂoe for this act}on, dyy the -




Cere 4t not for the perturbation,‘ f the system would ‘have no
- chance of being found. in. the state l 3 that is, ( X P) :0
} Therei‘ore from equation (-f'// ), to the order é‘ ‘the probability that .

]

| /(I///)‘), g / We shall further suppose that )/ 1s so0 chosen that,

, tra.ce the behaviour of the ﬁmction through the intervel Ty to T2’

'i’ro'blem is cémparatively simple because wave functions can be
finedy the relation (52 ) will serve as a prsctical'méthod
sor solving problems in these cases, R :

Perturbations may also be considered as producing

u-am:.itions. Suppose the state or the system at the ea.rly time

3 vas }‘ Let us choose some state Y ' at the time Tg, and.
a5k for the probability, with the perturbed action dﬂ'{ .that

the system will be found in ‘this state at. this time. It is Just

R T

T R

the system originally in state Fy ’ 18 i‘ound in the state).’ at the
time T2, ‘due ‘to the per'turbation - 1. e., “the transition probability -

v / (Xltéf/}‘)/ o fﬂ/j

is Justy -

For the special case: of a simple perturbing potential
actmg for a time 0 to T, we have 6-7: —/ fo .y 80 that
our transition probability becomes the more usual expression

(Compa.re, Dirac, "The Principles of Quen um Iz’.echanics", p.177, Eq.zl.)

*/ (x/{ m/sf)/

It is of interest to notice that if we are given that

T e

the wave function at time T1 is - )‘7 ’ mthough '..e cannot

ne can y nevertheless, answer the. question, " What will the

vave function be at the time T2, and’ later times?" (og course; »




L i &-je Jnou the vave function at the time T, we can find it flater, '
, since it satisfies a Schrddinger. equation from that ti‘me on.) If _
| e call the wa_\_re' function at time Ty, - "r;_ , and expand it in terms |
| ¢ a complete set of orthonormal wave functions . Y. at that time,

! cay %T; *Xa,. ){I.l s the ooeffic:lente an'will be Just <X,I’/}r‘;)a .
| ereforé, we have, }L Z’ x. {I II/V’) |
Z] k7 .

i on account of the form ('r-f'l) for calculating (x‘///)ﬁr> we ﬁnd
that this may also be eypressed asy, . S o (r.i./}

- o, Tl
ottt 10} K. preita

e R O T T I

in the lim:lt v.'hen the subdivisions. in time beoome :lnfinitely
\;ine, where aly- },,} is that part of the ection ﬁlnctional
agplicable for times from Tl to Tg.( Comprare Jf'/)

“

Expectation Values for. O’bserva.'blee . . %

'~ " . The physical interpretation which 1s given in the sbove §
"section, although the only consistent one available, ie rather ‘ %;

m.,atisfactory. "~ This 1s because t‘ne interpretation requires the »

‘ concept of atates representable by a wave function, while we have
yointed out that such a ¢ presentdtion ie in general impossible.

ie are therefore forced to alter our mechanical problem 80 that the o
a\.tlon haa a aimple form at large future and past times, so that we
ray - speak of a wave function at tuese times, at least. This =
\hfflculty ‘also finds itself reflected in .the mathematical

formilation of the operations performed in calcula.ting average

values from the equation “#5/)e Ve have not defined precisely .

\hat is to be done When the action doee not become simple at

times far from the preeent.




R TR

E One possibility that suggests itself is to devise aome
..ox*t. of limiting process so that the interpretation of the last
" gection could be used, ‘and the limit taken as T1—>~%® and T.--Hb-o .

R A T

~ The author ‘has made several. attempts in this - direction but they all’
a,,pear artificial, having mathematical, rather then physical, content,
An altemative possibility is’ to avoid the mention of wave
k-xunctions altogether, and use, as the fundamental physical ‘
concept, “the expectation value of a quantity, rather t.han & o
_ ‘transition probability. - ‘I'he work done in this connection, N o , -
'hich is presented in this section, is admittedly very incomplete o
'V'and the results tentative. It is included because mamf of ‘the. .
’ formulas derived would seem to. be of value, -and the author believes o
:— that the solution to the problem of physical interpretation will lie o
v--’somev.here in this direction. U ) : S ', '
; In ordinary quantum mechanics the mtrix element of an
_ '6per'ato'r A, between two states #. and }é , s given byg o

W AL A

The expected value for the quantity represented by the operator A, S

for the sta.te represented by the vave function }" ie, f o

A }P’A)ﬁ Ard. - Inanexactly similarwav, we have

. ueed our-definition (‘H‘ /) for a natrix element of a ﬁmctional I-‘ |
- between ‘the state whose wave: functiOn ‘at the time 'I'n is X and a ',
state whose wave ﬁmction at the time Tl is }é To compute the
g e:fpected value of the functional whose wave function at tbe tima (>

is 'ér ’ we calculate { }%/ F/}f—, ), uhere )‘-,1 ' ie given in terme

'
of 7‘1- 'by t'he equation (31)e

Another importart quantity in quantum mechanics ie the trace




i
of a matrix, 6 TalA] 'Z .A.m'v o .It measﬁfes the relative
(wmomalized) average expected value vhen a priori each state .
, . is considered as equally likely. We shall speak of it aimply
g5 the expectation of A, - ' ' ’
. ‘Let us suppose A is an operator which hae only- certain
"pmicéu-laz.f eigenvalues &y 80 that A L= _anl’,. ’ for some set of
cht_ions ) Let us also eubpcse E,IX) ) ‘ie‘ a 'mnction of x .
_vhich is zero unless x= an, and Ky, (d4u)*l+  Then let us ﬁml ﬁie B
wrace, Tr[BFan(A)] . Chmisa prc;jection operator). ' The R
matrix B- IA) has for its k,l element, in'& repreaentat:lon with o

“the funcuons X“ ’ [31—; (,q/]“ z ka[r M/Jm,t But since =

Ais diagonal :ln t}us represcentation,[ 14)] ml = 0 _ if m*l,

and equals /] othervr.lae. Therefore
| (,..) [o7, W]u . 5&1 @)
Now,F' (a,) o, unless 1= m s0 that- we ﬁnd, SN :

T [BFe M)] = - That is to sayy ‘the trace

: of B ,H{A) is the expected value of B for the state for. which the
ruantity A has the value Bge , R

" In a like manner it is not hard to s‘how that,

' T[Fs lB) F [,4 )J 1s equal 1o the probability that the
quantity B will be found to have the value by in a state ‘where it
is known that A has the value &g (neglecting degeneracies).

These examplea are given to reming’ the Teader: of the fact -
t’ha’& by means of the concept of trace all of the important

: Ph}’szlcal concepts can be derived, What corresponds to taking a .

F{6), - See J. vNeumann, "Lathematiache Grundlage der Quantemnechanﬂc"
; (19~2). P 93,11, | .




3 66,

trace in our form of quarrf.um mechanics?
As we can 8ee from equations (ﬂ'l) a.nd (5o /) the
exyression for( }‘ [#1¥% ) can be written in the fom,
ReRY, V‘ ) %194 f /; vhere //f, g} is given by a comp]icated
_wression obtained by substituting (s3./) into (£s/).  That i
to say, vwhat corresponds to the diagonal element Apn may be ~'

yritten in our case asf,ﬂ/;,;/)” {733 /f//; t{i " The sum of
the diagonal elements, and therefore the trace, corresponda to, '

ﬁ/"fﬂ ?/)ﬁ (# % (;/ a/f 0// o As is well known, nowever,_;

the sum over all n of /5// /[/:ls Jjust f(g- ;/, 8o that what corres

sponds to_the trace of # is j 1 8)d § o We are there- |
fore led to consider the quantity, DR ' V

(;{} #{‘_d[f ;”“ """*’J ?T]} '%é{x d[f'i/;"'l' 2 ”'*'J;ﬂ]]

’! [ f" 7'-) ﬁ7 a/g,, Z J;f, Qf’fL'_‘{f_w_ ;‘/l.- -:/;-.m

' ' ‘ sed)
T he passage to the limit of infinitely fine subaivis:lona is

JJnPl:i.ed, as usual. ' Since now there are no vave ﬁmctions, and
therefore nothing sPecial about the times Ty and Tg we can cens:lder
the true trace to-be the limit of the 7o ('£> ,defined in (ﬂ/), '
tor a aequence of mechanical systems -each--of- whlcn nas an action
ldem:ical to- the true one for Buccessively longer time intervala.
(The problem of convergence is ever presenb.) o ‘ ‘ ’

The trace defined in (5“1) is identical to the uaual
: trace of quantum mechanics if ? is a function of one coordinato "

{e.g,, %) only, and the action :ls the time integral of a

fi ‘afrdlxgian. It lacks, hov.ever, in ‘the general case, one N
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‘13 simply 7”-:_3'(;;;5)8/{;,-4} y 85 can be imediately verified. S

.lﬂ ovvt,ant property, and it is this tnat makes the results of ’

“is not always a real ;mmber; C.‘..A

l.
bhi.: section 80 uncert.ain._ The trace of an arbitrary functional

We lack some condition on ‘the i\mctiona.ls which we are
to place into (f‘-/), in order to obtain a real value, 80 ‘tnat we -
ccny s8y that the functional represents some. real observable quantity,
he expectation of which ie the trace. Tnat is o aay, we
1ack the conaition on a functional that it repreeent an observable,

: enalogous to the condition in ordinary quantum mecha.nica that an o

- operator, to repreeent an observable, must be Hemitian. i‘he

corrnct criterion ia not known to the author. The most obvious

i suggestions revolve around the’ generalization to (.rl /) which is
_obtained by letting 4 bea ﬁmction of the g' variables, as well .
asof g . A real trace is obtained 1z g is any function synmetrical
with respect to interchange of each q with the correspond.ing q' ‘

(ie' if#{ fllf" J f’zfo = #H. 7::’0 g f’;‘ ) T de  For .

: example . ;Z might be a i\xnction of %(qa-f- qj) ‘only, This synmeuvy. :

condition may be all that ie necessary to insure that the functional

'correspond to a: real observable. "~ The product, and tue sum of -

tuo such symmetrical i‘unctionals is again synmetrical.
We pass from the general problem of & criterion for o
any functional to that of trying to determine the form of certain’

special i\motionals which we should 1ike to identify with special

observables (in particular, pro,)ection ‘operators)s Let us

first try to find the # that we are to place in (s¢/) so. that

the resulting trace is the probability that q at the time t2 (i.e.,
Q(tg) ) has the value b if it is known that q at the time tl has
the value a.» If & is the integral ‘of a Lagrangian the answer

R A
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' on the “other hand, I nave not succeeded in prove that the trace of b

Anis quantity is in- general real. The trace ot, et

{H*ft. ) ;(ﬁmé, 4)

I'oal and gives the same value to the desired probability i .

18, ’ however,

1, ne action 1s an integral of a Lagrangian. S 7
 We may therefore tentatively assume that, e

<5{f{,fﬂg _‘/ ;(fi’ff{ a}) '(} gj,vee the

relative probability that, if q has the value a at the time tl, a;

X neasurement of q at the time f will lead. to by in the renge b,

,'that includee velocities, accelarations,etc.-).

- (The absolute: probability mey be votten by dividing by
T<J(k"*g{-d)) Yo )

- We shall likewise aaeume that

r<$(l[f!;+s +;E‘;o£ - §z ff;;] y) {{f{r_f_’fc a >’/ﬂ' 'g_ive‘e':'»

.the relative probability that, it q has the value a at the time ’El,
- a measurement of velocity at the time tn will lead to v in: ‘the range.‘

v, That this givea the correct anewer,in t.he ‘case of e

',Lagrangian action ‘which involves the coordinate q in. the kinetic o
energ tern as4my? yis shown belowe o it SN

~In a- eimilar way we can define the pro‘oabilitiee for ay
quantities involving 1inear combinations of the coordinatee (and _
~For example, the
PI‘Obability that. the difference in the coordinate q at; the time t3
-and ite value at the time tz is between b- and b+db ’ when it 18"

knov'n that at the time tl the velocity plus e timee the poeition

s a, is given by the trace ofy

s(zg»‘h ;;,rfg, b) s(nm‘izw fe *f:. +c(f¢,*h) “) “/‘ |

.gz

S




. p :

(Thls has been checked for a free harmonic oscilla.tor). It 1s |

O_,,,ible that this is even true if tn is before tl, and t2 after tl"
We shall now show that 7-'\ s(# [ Iaft*ft:" ft.*ft.] V)J’

.nere. ;2' involves times ear]ier than t2 does agree with the
1sual form for finding the probability of a given momentum, v,
\if the action is the integral of a Lagrangian, say émq2 V(). |
L'l the expression (¢ /) the integral on qr, can be. immediately

j?erformed, inasmuch as, (Jee 312) .

/f-r, {.[e:i(fﬁ,.h") Y/fr)] ’f[{?{@)"yqf,ﬂ: J/},..-f—,.',)%' . i

’ 1. hus the integral on. qm means merely replacing qm by Qme W_e |

nave thus again t.he game. expression es (5% 1) with one term integrated
yfx'om the end, We cam repeat this process mamr timea, telescoping
?me Lagrangiams, until we come to the térm Qe &4.5 . (That is to '
say, we could have taken To equal to t:— +£ v.ithout 1088 of
'generality). Let us- suppose alao that we ha.ve integrated all.
variables follouing ‘1t2 ‘and ‘ltg and the net’ result is L (ft‘, ;,').

in virtue of the form of the a.ction,) R That is to eay, ,
we st ca.lculate, v ‘
wm g e
. ' _ - ’(;t. J{h
+ [ "-"‘( It “’) V/f M}] /0( 7% ff) ‘//t #e J-’Fz’t—t /?17&7

e [ w( e 'g*'} V( itﬂ)]

The phases of the expo_nent.ials, vhen combined, 'reduce- eimplyvto S

(1t can be expressed in t‘nis form for am,' ;5 ea’ciefying our condit.ions , :




) . - I3 Ié
té.&['(‘.‘:_"___’ﬁ“/ - (;e.u oy
i ‘/ T < € — R
me mtegrsl on the § function, over ql ve ! requires that one

ubstitute -for this quantity feut* l ,m: y and multiply by ‘ ’ to '»
obtaln, in the final result,. C

/mt . ‘__Y?t‘ _'+_~ -** it. /(ft,, ;,‘)/;t‘ _Jf,‘._

ThiS agrees with- the usual expression for the probality of a .

g].ven rnomentmn py it p- ‘mve (The extra factor of' normalization, m,

comes from the fact that dp =mdve.) L

: 10, Application to the Forced Harmonic Oscillator.
' = As a special pro‘blem, because e shall need’ the results .
'in the next section, we consider, from the’ point of view of the } |
nodlfied quantum mechanics, the problem of the forced harmonic ,v
osclllator; that is, an oscillator interacting with another B
system,  This problem, 'when the oscillator is interacting with a B
' Laérangian system, can of course be handled by the usual methods. ’
of ‘quantum mechanics. We shall ‘gee, however, that the added
.*Oner of looking at all the times at once,. 80 to spea.k, vhich.
~ arises in such equations as (45 -}, has some advantages. With
a W&ve function, the oscillator -and the interacti:ng system are

80 firmly interlocked, mathemtically, that it is ha.rd to study

‘the properties of the oscillator without, at the same time,

o solving for the’ motion of the interacting system. - We shall

- be able here, however, to solve that half of the problem which

involves the oscillator, without solving the entire problem.

5 If x is the'c'oordinate of our oscillator, the action B




is of the form,

a - 4 +//f{/mx mqwx 'I')’/t/X} e ‘:((/r//‘

heI'e d, is the action of the other particles of the system ot which .
\ne oscillator is. a part, ‘and Y72/X is the interaction of the oscillato ;

© gith ‘the rest of the system. - Thus, if we syxnbolize the coordinatea N
of ‘the rest of the system by Q, Yt/ 1is some ﬁmctional of Q. “(We
‘ j,ﬂght also contemplate that the oscillator is not interacting -
with any other quantum me_c‘hanical s_ystem,‘ but is simply acted ‘on”

by @ forcing potentials In this ‘case, Yy is a simple ﬁmction

of ty and represents the force: acting on the os¢ illator ‘at time te) ‘
we shall suppose that 7/ /:ls zero for tines outside the range 0 t.o T,
- and shall compute matrix elements of the form (Xr/// % ) where |

)‘ is a vave function at t:lme tl 0, (it involves Q as ‘well as x),

and ZT is a wave function at time t.;‘l‘. . .Writing ‘this in more -

- detail, by equation (#+ /) it 1s, N

{Xr///Zg st/%_,w 1{00[4,’ fZ[g/x.,, ,..,,.,,‘

Yy -8,

l‘w t)]
X il e Do -._;/x;.-

o o

%(% ./

‘ (5/ 2)

| Where the Am are the normalizmg constants appropriate to the aetion_
d [Q‘J ’ and Qi 1s the variable Q at time 15, xj the variable x
at the time ti, and )’ zy(t:) o+ & Mction,perhaps,of the Qf.
#e are to set tp= T and to= 0. .

Inasmuch as the integrand is a quadratic function of tne
Xi (for 1#0 orm ) we may actually perform the integrations over




tnese Xi 9 and leave the integrations on Q:l to be performed 1ater.

Coyle V-
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411 simplify the work by teking a1l the intervals,tiy) = U »
equals “and equa.. to€ '« We are theretore led to consider the ’

quantith

;,(x.‘ xo,-r/ £+o ]H’%[:Z [""(x""x/t mek +rx]},ﬁ':";:'_ j;:-/;g

Ve sha.ll perform the integrations one ai‘ter the other,
«tarting with x; , then Xg, ‘etce ‘We ‘shall determine the result by

a recursive method. ] We can guess, that after the integrations fmm v

Xl to xi-1 have been performed, the intea'and will depend, except

yor a factor :mvolving other x‘a, quadratically on the variable "is o

" . according t0 the following form;

|

. that after the integratio

A Ea(x‘x f/;x.x.ﬂﬂ' xnn;‘) Jx, _ €29 N S
o ’37‘64 AR _ where A‘ 5 ?.‘ '
are constants, :tndependent of xi » Xi+1s etc., whioh are to 'oe

tound. The integral on x;[ may now. be performed, by writing

the exponent a8,y

"‘v-x[x ; /J.xm+i:{ tA(ﬂ.Xm*&)

o o éhangi'ng.the "

variable Xg 10 X ¥ —a Ax"’*s and using fcx d)’ tvt

- ob.tain, e L “’%’ ’1 (ﬁ"{'"”} ) .mltiplym this
- s, L ‘ £ _ 1plying -
k g
'by the term /# {ZMX,,, - Mhzx.ﬂ. nu‘z X '/‘ff xm) g{ -

the part of the exponential in (‘Z-I) depending on xy-l ) we f:lnd
n on. Xj_ is performed the dependence of




PO

ihe integral on X541 15’ )

At - L(IMXﬂ _ ot Xen mulr /ax'z—/’"' 5
: T ! -< ‘:_ B Ky oy X *7 A &_ﬂ .,"',4.}.'"“‘[

/l(l/r‘ . ] . .v . 2 ) ‘ ’ L
This 13 again of the form (é2 1), so that our guess is self-consistent,
if we set, ‘ v : . oo

. o~ G 1§ e E W l’f/" f63.4)

poofEhe O et B gy

- ﬁ- ,6‘-‘ e ‘ 3 . “ 3 ‘ _ f{ o .

(:z‘zz';.— 3y Tw 2N €29 |

weE ey

_ We note, therefore, /‘ is a constant 4”’ . We ‘shall - !
. splve the other equationa in the limit é'. ->o under- the asaumption
(vhich will be seli‘-consmtent, and is therefore correct) tha:t.

,.‘,,(“-.z__‘ﬂ& 7', A‘ S a:re a1l finite, - T
‘ Replaclng (‘?J) in (63.2) end setting «.-”—‘-"‘"ﬂ« (656), ’

find,

' Npyy = B M“".’szf a thfrti 1
L AT gy F PemtmTeIRESLL TEL
ef- x ’ _ .
by the series I-E ket A _an_d keeping no further terms, -
: 26 4 '/maﬂ E I
11nd, l‘ﬂ A - "" T e AS £' ""'o . then’ A‘
. be considered as a ﬁmctlon of tiy SO that dividing both s:ldes
' it _
by g y in ‘the lirr.x;lt vie may I ey 5_:_ . __— n _,,,,uz | "/‘_,.‘7}

This ‘has Athe“solution ).= __g,_,;‘ w(t """'4'”/ : {‘3‘"/ S:lnce, fer small

t,:(-'e.g.,'_ T=€), o is 2—"—‘ s A mist approach f—;. - This it does
if the cqnst. is zero in (6i8). Therefore, B
A. M‘ , 63 = ' oy

TfAE 'c" -‘?“"f"’r { ‘” T e




Flac? cnis in (‘3'/)' yielding’ Al:"fl = Yeee ui‘yt" ~A fl ;“’f""t} €4

‘ 101‘ .e,mall 6 . In the limit theﬁ, 5;— - - A 0" cr"‘jt

- CONIT
snis implies A— Vil .. ssince for t of. the order e g A :ls
{7»1'::. t‘he constant nmst be I/ﬁ;“;i 50 tha:._ fwe find,
o 4 )
A s thT , ( j

putting our values of x and /J into (‘Jf), find,

mh » B '
,_____..-—————* which leads t.o the dlfferential e uation
6# 8 "fl C( e ""‘"yf,,,t/ ' ‘ q v L

1[ ’,_ : wcﬁ‘wt . This equat.if)n has the genéral solution,

. M7
§ = _L__ / r{s)mws A * ::__“t

Since, for small values of ty of order £ 4 S approaches- X ) the
- constant here is -m wxo. Therefore, ' ‘ :

L mk + ot / ffgmus ds '(u‘-‘}'
§: .w.ut ﬂuw
| Replacing « . by its 1eading term, zc: in equation (a.r)

we._obtain, in “the nmit, the equation, g%l.g.. ..‘..'Z

Thus, vje ‘find, -_f [ﬂﬂj ‘H. (1‘13), and is subject to the

condition that as t7&, ’l"*;,:%"‘ o Ve may ‘now util;ze thesg,

results to compute G(xm, %03 T)e

Since it is clear from its mode ot fomtion that, L

m 1577 e ef(""” ff-wwmxm,.)
~y° 'l

‘b'(ﬁ_"‘x -AX..X,.,,

we may calculate G in the 1imit as 4o 3 M€ -rT, froxp_bur'




crpressions -(63.1), (633), (¢4.2), (¢43) and (¢#(), "After a little

algebraical rearrangement, 1t may be written in the rather

- Y=0, and is the well knovn' generating f\mction for t.he

'unperr,urbed harmonic os cillatorg

"{tm/ 2 fz,m,., q*’ st J&( 1) Hl8, <)t 2 ek

Ve shall need this Iomula in the. next. secr.ion.

convenient torm ( we have replaced xp by x, and x5 by x'),

i%,.’)‘,xﬂ'r)é G,(x-g x-by 7)/65,;‘;—; f j. l r/:)r‘/t/u;;_w/f-;u:/f_f,,; ‘,7,, b} §
£y
§

v;nere L '
; A= s ST )’/t/wwt ‘{L‘ S 6'”) ; ‘

Mwmur

b= /)’/t/wwlr—fjdlt (“.3}

and Go(Y, y" T) is the value to which G,,(); y, 7'} reduces when L

l/ ameat [ Y."*"b’?‘f.. m:u —2yy] G5y
60n y“T) z:tw }%zxmm‘ {( ) T ;_3”/} bsy)
Going back to equation ("Z)i we may now express the -~

average in question by the’ s:lmpliﬁed expression, . *

r@.‘..-r/o.

€59
It is the analogue,

in a sense, of the. solution (2I 3,4!) of the equatlons oi motion 1or

vhe oscilldt.or, in the clasuical case.‘ Here, as there, the

soluuon for the motion of the oscillator is expressed in terms
of the interacting system, without it actually be:Lng necessary to

solve tor the motion of this interacting system,




110 Particles Inveracting through an’ Intermediate :)scillator.
The problem which we discuss in this section 18 the
quantum analogue at the problem discussed in section 4 of the
yirst’ part of the paper, eiven two atoms A and B, each or v.nicn -
mteracts with &n oscilla:t.or 0, to what extent can the motion of the
oscillator be disregarded and the atoms be considered as
interacting direetly? Thi-e problem has been eolved in a special
case by Fer;ni-7 who has s'hown‘ that the oscillatorsf of t‘he - '
electro'nagnetic field WuiCh represent 1ongitudina1 uaves could.
be eliminated from the Namilt conian, provided an additionalltem‘
be added representing instantaneous Conlomb interactions' -
betneen the part.icles. Our problem is analogous 1o his except ‘
ihat in the general case, as we can see from tne classical ana.logue,
we shall expect. whav the interactions will not be inatantaneous, '
and hence not expressible in. Hamiltonian form, ) v
Drawing on the classical analogue we shall expect tbat o
the eystee with the oscillator is not equiValent to the eystem ‘
without the oscillator for all poesible motions of the oscillator, :

but only for those for which -some property (e.g., the initial and -

final position) of the. oscillator is fixed. i‘hese properties, .
in the cases discussed, are not propertiee of the system at
Just one time, 0 vie: will not expect to find the equivalence
simply by 8pecify1ng the state’ of the osci‘.'.lator at a certain time,
by means of a particular wave function, 1t 1s for tuis reason
, that- the ordinary methods o’f‘fquantum mechanics do not suffice to
solve this problem, | ' ' ' '

The natural question to ask, working from analogy with
the classical system, 1s: "What is the expected value of ;‘ s B

-

E." Ferm_i,“Rev_. of Mod. Phys; 4, (.1932) pral

s%mmmsfw




nupc‘t.'lOnal involving the particles only, if it is lcno\n that a.t
time Oy the. position of the oscillator was :\(0) @ , and that at

the time T it was x(T) "ﬂ 3" Ir we can show that the answer

10 this question is, with a given Tixed & and/G ’ the same as
the expectation of ﬂ calculated by a formula of exactly the
fcr"l (66.1) for an action principle involving ‘the particles a.lone, '.
¢ hen we shall Lave found the conditions under \nhiCh a direct

interaction can be represented as acting through an intermediate o
oscillator. . ' (
That is, we should like to. satisi‘y f“f [ 4 ”&

TP 42 OBy mond Ty (‘”Jf-f

}‘ v..here ‘the trace on- the left is computed for the action of the "

EEERN

particles and the oscilla.tor, and that On the right only involves
" the pa.rticles. (The constant appears because v-e are interested '
“only in relative expectations, and can nornalize the trace 1ater.) o

Wwe: shall simplify matters by. supposing the particles N
'. are represented by a set of coordinates, vhich we symbolize by Q-
Tt hat the action for the particles is 4, ) that the oscillator
has the coordmate x(t), v:ith the La.grwgian |yt Po X end
' that the Lagrangian of the interaction ig Yit)xH) v:here v is

some fu.nctiona.l of Q(t). Let the a.ction for the part.icles with -

the oscillator eliminated be ot vhere ,/ , @ functional of
Q only, the action oi‘ 1nteraction, is to be i‘ouno to satisfy (‘7/).,
If (67/) is to be satisfied for all arbitrary functionals,

;
?_ ', we ;nust have, on accou.nt o‘f‘.(-f‘ Ay, o o §
-
|
%

e




:68, ’

}}% [4'1/”‘)‘"9&* 5(1‘-—&0‘)'/#] /%‘—[4, +/f/g/1/{‘//f y/ﬁ-{!ll btx")/t]

(xrﬂ'r /;/mz_‘,}/ A /x ax....dv

| A AT )

..

: o ! the same . put B
¢ vhere 4, Y and,/ areAfunctionals of a different varia.'ble

(namely, Q )than 4, ¥ , and J , and the integ,rations over the
x's are. to be performed as prescribed in detail in (s¢/). We
can.divide out the @t /4' 40/ from each slde, of course, Our :

nain problem is to show that the lei‘t. side, v.hen integrated over.

' all the. coordinates of the oscillator, can be expressed @ a product
of an exponential ﬁmction of Q! only with an, exponential of minus
the same ﬁmction of Q only This vill be 'by no means generally .
true, and is a consecquence of our special choice of 5 :t‘unctions

“on tne left of (é81).

Since as far as the variables x are concerned, the action

1s Lagrangian, the integration over all x and x' form xT2 to xp.

‘can be ixzmediately performed in the v.ay indicated at the end of
»;}section © (see page 59). In a like manner the integrations from
xl'l to xo may be performed. The integrations on the x—primes fromA
'?""')(’ to Xy, can next be peri‘ormed according to- the method of '

A 4
“the last section, and they yeild o—r,fxrxa 7} [ Those on the

orresponding intermediate x's result in Gy /Xr, 'd . Thus we

mUSt prove that,

// Sy :/x.—x} ny'/xr,/n )6 (s, %oy }drr/& C”"/ ¢ * .F/ (68:2)

" The left side is simply 6—,,//’,’67757//‘3‘377, and by

e

TR

e




M
slde 15 of the form of the right side, if we take const. ‘—,;';;;T,—"

,.nd ‘4 equal to
e o[ (84"t ‘9] T 2 lpyiet) 3 / / rﬂ/r/yw u/t-:/z/t/u“““’ab

{ . . : 8
!

;\ith a and b as in (6523, - J is then the 'corresponding th:t.ng =
in.th 7’ replacing f everywhere. After a little rearranging, we, get,

// 4mw{r—t)+ﬁu«m t/dt~

[ [ ulr-t/u-w.{ r/-f/ )’/"//-df f

‘f. /mwwﬁﬂ’[ﬂ +& .Qr_ﬂ‘. -. ’ (6,/}

et et e
-

e ‘“’%w:‘é;ﬁmmwwu

r1hls is identical to the expression (23.2.) obtained for the acticn

in the correspondm.g classical problem in which the initial value

A

R e e

! of x 18 held a‘c x(0)=4. y and the final value at x(T) ,4. . The
auded constant term has, of course, no sn.gnificance. (It w:lll cancel

corresponding term 1n / ). -
v ‘Thus, the part.:lcles with the act:.on of interaction / 3
*»may be replaced by a system with an intemediate oscil]ator, o
provided that An’ calculating the expectation of any - functional
. of the particles, it is calculated under the conditions that the

oacillator'" initial position ie knovn to ‘be dL and its final

5 position is- known to be A . It is to be noted that we have

] not proved t.hat, in general, the system with the oscillator :la

B e R S e

: equivalent to one without, for that is not true. The equivalence .
'only holds if the oscillator is known to satisfy certa.in conditiona.
For the otbher example, (. )y of conditions lead:lng to .
which we have considered in the classical

an action principle,
o ask the questionx “What is the expected

case,y we are led, here,: t

. value of £ 4f it is lcnov'n that for the oscillator,

. ._.:""ﬁ;ﬁ;;

*
&




2Lx9 #HT) COOT —K(T) Z2LT [ 2 R
| and that, {-[X{fr/+X/0}coawr + X109 __E_Jifr ,7

To enswer this question we must try to satisfy an equation
analogous to (¢£/) but vvri»th 74 "-'L:——x’ 2§ "2’—’:-_’9"‘/ - replaced by,

J( [»"o-hY f-(.r,fx,/cwwr (x,,, *aree) ,{xf "‘Zg,;,,f} ._,_Q..). -

ew .

+ N (r0.]
S( {“' 5 +é "’0/“’"7’* (x"x'/ (’" %) mwr} —f’) | *Y :

In this case the :lntegratlons on x and X' can only be
performeci from x‘.l‘z to Xr,c s leaving an extra Lagrangian factor,v
and ‘those ﬁ-om X7y can proceed only to X -; « -The integrationa
between xo and xT can be ‘performed as before, giv1ng G ﬁmctiona. ‘
The result is that we must £ind an / to aat:lsiy:
| [4: U R x.r//"

[~(_3; *"‘WJ‘ >
/T:T‘ .

( [x.fx. flxrfx,/cna;r— ""’ ”lﬂ } /P.) s{,{m#wymn(ﬂ‘i__mur] p,)

c_:[ ( L"""”') "’“‘Xm] an , - q&[?( L, }" "“'&]
: _%:_r& 5’;’[“'/‘.. /f?;. 2 .dr _}

cd eI

Since the integration of- ‘this comp]icated expression
is perfectly straightforward, ‘we. shall not include it here. (It ,
is best to intograte w:lth respect to /Im; and Jt.g i‘irst. The term ‘-

e ot CE et n - |
e 3 T(,./e £ & can be neglected because it is of no import&nce
in- the limit as £-r 0.) The result is that the left Bide nay

27 et

: be made equa.l to the right side by choosing the constant a5 - ST ,'




~and taking / to be,
/ / mer-ﬂmm“’t r/t//z
W

\1th a similar expression 1or J

/ mw/z-:) )’//)’/da’fz/f (7/ J

’ obtained by replacing )’ by )’

ThlS is again in agreement v.ith the classical result. o

“To answer the question.

"Wha.t is the: expectation of -

if it is knovn that initially the position of thé oscillator is w,

L and its velocity is v ?% 4 we mst try. to satisfy an equation )
maiocous to (¢81)y Dt with 5{ trex -£):% ( ""’--«) ' replaced

s( .__w) Nees »——-x V).

Ir tilis is done, however, and .

"the integrations are cdrried out, the left side of (68 l) becomes,

27k #tinw [[l{rfy'rtﬂ(m)'mutmwumt/‘lt .+[

T ¢ .
l W-rlt/)lrfhﬂv)sa- w/t-dt/tlr?
[ /A ;} A

‘»It ie seen that (68 1) ca.nnot be satisfied ’by any c‘hoice of J
’ there now’ appear in the exponential (7/2) cross terms between

Y ana Y*, such as)’/t})’//. __This corresponds to the classical

. 'finding tnat no action exists in case the 1nitial position and .

'velocity are leld constant.

'l‘he.ae results serve as a confimation of our formal

. generalization to system.. \.1thout a Hamiltonian. ' They have

! vobvious application to. electrodynamics into which we will, houever,

not go here,

section, about equation (7r2).

a systen v

We should like to meke a remark, before closing this .
Even though it does ‘not lead to e

‘hich can be expressed by a quantum mechanical least action

& princ_iple, it is nevertheless correct, of course, that to find

_the average of the functional ? we st miltiply ;‘f ‘by the .

L
4




e,“,x-e.,s.ion (7.2) times J;;éx =04, 4 ‘) a.nd integrate ojrer all the Q
aic Q's  That is to say, the expected value of 79 tor this systern
is obtained in a way enalogous to (s67), except that the phase of
‘the exponential, v.hich in (56/) is of the form -*—[a[Q_] q[@’]j

is now of the formx B(¢, 47/ , \'.'here the quantity ; involves the
expression in (72), .

What should be the ’behayiou,r of the systen, described
in this vay, in the classicel limit as- k>0 7 D:lra.c 5 :
'argument (see pa.ge 29) in this case 1eads to the conclusion ' _
that only those values of Q and of Q' will be of importance \.'uhichv: .
satisfy both,

wmo/.z,o*d ~.~m m/w/
77’?/%’ ’ o ‘ 7]@'/;/

 Inasmuch as g(g, @)=—FI¢, 4) , the second of these - '
equations results from the firSt"’by interchahgé of the Q and Q's
Therefore one solution of these equatlo'za v.ould have the. propex'ty

r.hat Q)= Q'(t) where Q(t) satisfiea,

C 77&719 9'r¢/= aw ‘
’ with 4 as given by (7/2), this 1ea.ds immediately to

the clasaical equat.ion got by substituting for x(t) from (2“) into
(z11), and replacing x(0) by W, and %(0) by V. This suggests
a v«a,y of quantizing systems whlch classically do not' sati‘s‘fy

. a simple princ:lple of least actlon, but wie shall not investigate

thia here.

S




112 Conclusion.
D

We have presented, in the foregoing pa.ges, a generalization .'

“of quantum nechanics applicable to a system whose classical

analogue is descri’oed by a princiole of least action. . It is
mportant to enphasize, kovever, some ‘of the difficulties and
1mitations of the description presented here.

One of the most important hmitations ha.B already been .
discussed. The interpretation of the formulas from the physical
point of view 1$ rather unsatisfactory. ~ The interpretation in '”
terme oi‘ the concept of transition probability requirea our - "

alte“ing the mechanical syatem, and our spee.king of states of

‘the system at times very far i‘rom the present. T'he interpretation

in terms of e:q)ectationa, which avolds this difficulty, is

‘ mcomplete, since the criterion the.t e. ﬁmctional represent a

_real phys:.cal ooservable is lacking. It is possible that an.

analysis of the theory of measurements is required here. Av 'A

.concept such as the "reduction oi‘ the vave packet" is not dlrectly

- appl:.cable, i‘or in “the mathemtics -vie must describe the system .

for a.ll times, and if a measuremem. is going to be made in the .

. interval of interest, this fact must be; put somehow into the

: e;iuations ‘from the start. Summarizing: a physical mterpretation

 should ’be"sought w‘nich does not refer to the behavmur of- the

-'system at times very far distant from a present time of :Lntereet.v

A point of vagueness s the normaliza.tion factory A
No rule has been given to determine it for a given action -
cpression. This question is related to the difficult '
.,tnemat.ical quest" on as to the conditions under which - the
niting process of subdividing the ‘time scale, required by S

%

ations such as (‘H' l), a.ctually convergee.




7 " The pro'blem of tne form that relativ:lst:lc quantum
mechanics, ‘and the Dirac equation, take from this point of view
renains unsolved. Attempts to substitute, for the act:lon, the
| "classical relativistic form (1ntegral of proper time) have ‘met with
aifficulties associated with the fact ‘that the square root 1nvolved
becomee imoginary for certain values of the coordinatea over '
- which the action is mtem'ated. '

L The final test of any physical theory :l:les, o:t’ course,
in experiment. ~ No ceomparison to experiment. has ‘been mede 1n )
the paper.. The author hopes to apply these methods to quantum 4
-Velectrodynamics. It is only out of some such direct applicationv
that an experimental comparison can be made » |
- 'I'he author would like to express ‘his. gratitude to
»Professor John A.. Wheeler for his corrtinued advice and

- encouragement. -




_ABSTRACT: v -
’ 'n!E PRINCIPLE OF LEAST- ACTION :m QLMTUM mEcHANICS. -

§ A generalizauion of quantum mechanics ia given in. which -
_ t,he central mathematical concept is ‘the analogue ot ‘the eetion T

C4n classical nechanice. It is therefore applicable to
mechanical systems whose equationo of - motion cannot be put
mw nwulito au forme Iv s only re quircd tnat some form o
of least action principle be availabls.v v '

It ie. shovm that ii’ the action is the tine integral
of & function of velocity e.nd position (that io, if a Lagra.ngian
existe), the generaliza.tion reduces to t‘ne usual form of -

quantum mechamics.t . In the classical limit the quantum equations

go over- into ‘the correspondmg claeeical ones, with the same AR

action function. _ . v -

Ae a special problem, becavse of its application to
i electrodynamics, and because the results serve as a confirmation
of ‘the proposed generalization, the interaction of two aystems
through the agency of an- intermediate harmonic oscillator ia
discusned in detail. It is shown that in quantum mechanioe, just
" as in classical mechanics, under cer*l'ain circumstancee the

'oscillator can be completely eliminated, its place being taken 2

by a direct, but, in genera.l, not’ instantaneous, interaction

: between the two systems. o :
 The work is non-relativistic throu.ehout. o '
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