
Coding Theory Massoud Malek

Hadamard Codes

♠ Hadamard Matrices and Kronecker Product. A Hadamard matrix of order n is a matrix
Hn with elements 1 or −1 such that HnHt

n = nIn. For example,

H1 = [1], H2 =
[

1 1
1 −1

]
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

An n×n Hadamard matrix with n > 2 exists only if 4 divides n. Since HnHt
n = nIn, any two

different rows of Hn must be orthogonal, and the matrix obtained from the permutation
of rows or columns of Hn is also a Hadamard matrix, but the symmetry may be lost.
Clearly −Hn is also a Hadamard matrix.

These matrices were introduced by Jacques Hadamard in 1893. And yet, despite
much attention by numerous mathematicians, the central question of existence has not
been answered: we do not know whether or not, for every integer m, there is an orthogonal
4m by 4m matrix of plus and minus ones; this, notwithstanding that the number of such
matrices seems to grow extremely rapidly with m, the combinatorial explosion coming
perhaps as early as m = 7. Still less is known about the classification of Hadamard
matrices for general m; but they have been enumerated for m < 7.

We denote by ek, the kth row of the n × n identity matrix In; the kth row of Hn is
denoted by hk; finally e = (1, 1, . . . , 1) is h1.

Theorem 1. Let Hn be a Hadamard matrix of order n = 4m. For any k = 1, 2, . . . , n, define the

1,−1 vector uk such that at most (m-1) components of the vector vk = hk + uk is different from the

components hk of Hn. Let sk = vkHt
n, then the kth component of sk is at least 4m-2(m-1)= 2m+2 and

the absolute value of other components are at most 2(m-1).

Proof. Since HnHt
n = nIn, we have rk = hkHt

n = 4n ek = 4m e4m. Note that if w is a (-1,1)
row vector of order n, then the kth component of wHn can not exceed n. We complete the
proof by observing that if hk and vk differs in only one component, then the kth component
of rk − sk is 2 and the absolute value of the other components of rk − sk can not exceed 2.
Now each time the number of nonzero components of uk increases to j, the kth component
of sk decreases by 2j, and the absolute value of other components of sk may increase by
up to 2j.

The Kronecker product also called tensor product or the direct product of two matrices
A and B is defined as follows:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB


For example

H4 = H2 ⊗H2 =
[

1 1
1 −1

]
⊗

[
1 1
1 −1

]
=


1 1
1 −1

∣∣∣ 1 1
1 −1

1 1
1 −1

∣∣∣ −1 −1
−1 1

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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For n > 4, in order to construct a Hadamard matrix of order n using the Kronecker
product, n must be divisible by 8. For example, H12 exists but can not be constructed
from any Hadamard matrix.

A class of Hamadard matrices H2n = H2 ⊗ Hn was defined by Sylvester under the
name of Anallagmatic Pavement. A Hadamard-Sylvester matrix viewed as pavements,
cells with 1’s are colored black and those with -1’s are colored white.

H1 = , H2 = , H4 = , H8 = .

Therefore, the n × n Hadamard-Sylvester matrix Hn must have n(n − 1)/2 white squares
and n(n + 1)/2 black square

♠ Hadamard Codes. Take the 4m × 4m Sylvester-Hadamard matrix H4m and −H4m and
change all the −1 entries to 0’s. Here is how to obtain them:

H4m → Ĥ4m = [−H4m + 2J4m] mod 3 and −H4m → Ĥ ′
4m = [H4m + 2J4m] mod 3,

where J4m is the 4m × 4m matrix whose entries are all ones. This gives us binary words
of length 4m. The binary codes formed by using 8m rows of Ĥ4m and Ĥ ′

4m are called
Hadamard codes. Here is a Hadamard code of order 16 using H8 = H2 ⊗H2 ⊗H2:

C8 =
{

1111 1111, 1010 1010, 1100 1100, 1001 1001, 1111 0000, 1010 0101, 1100 0011, 1001 0110,
0000 0000, 0101 0101, 0011 0011, 0110 0110, 0000 1111, 0101 10110, 0011 1100, 0110 1001

}
;

a generator may be the matrix

G =


1010 1010
1100 1100
1001 1001
1111 0000

 .

Now by the properties of Hadamard matrices, a Hadamard code is a [4m,2m,2m] linear
codes and it will correct any error pattern of weight (m-1).

Note that in order to change Ĥ4m into H4m or Ĥ ′
4m into −H4mwe proceeded as follows:

H4m = 2Ĥ4m − J4m and −H4m.

♠ Hadamard Codes and the Mariner 9 Mission. To examine the process of using codes we
shall look at a real application. The Mariner 9 was a space probe whose mission was to
fly by Mars and transmit pictures back to Earth. The black and white camera aboard
the Mariner 9 took the pictures, and a fine grid was then placed over the picture and
for each square of the grid the degree of blackness is measured on a scale from 0 to 63.
These numbers, expressed in binary are the data that is transmitted to Earth (more
precisely to the Jet Propulsion Laboratory of the California Institute of Technology in
Pasadena). On arrival the signal is very weak and it must be amplified. Noise from space
added to the signal and thermal noise from the amplifier have the effect that it happens
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occasionally that a signal transmitted as a 1 is interpreted by the receiver as a 0 and vice
versa. If the probability that this occurs is 0.05 then by the formula

Φp(v, w) = pn−d(1− p)d,

approximately 26% of all the pictures received would be incorrect. Thus, there is clearly
a need to code this information with an error correcting code. Now the question is, what
code should be used? Any code will increase the size of the data being sent and this
creates a problem. The Mariner 9 is a small vehicle and can not carry a huge transmitter,
so the transmitted signal had to be directional, but over the long distances involved a
directional signal has alignment problems. So, there was a maximum size to how much
data could be transmitted at one time (while the transmitter was aligned). This turned
out to be about 5 times the size of the original data, so since the data consisted of 6
bits (0,1) vectors of length 6) the codewords could be about 30 bits long. The 5-repeat
code was a possibility, having the advantage that it is very easy to implement, but it is
only 2-error correcting. An Hadamard code based on an Hamadard-Sylvester symmetric
matrix of order 32 on the other hand would be 7-error correcting and so worth the added
difficulty of implementing it. Using this code, the probability of error in the picture is
reduced to only 0.01% (the 5-repeat code would have a probability of error of about 1%).

We now turn our attention to the problems of coding and decoding the data using an
Hadamard code. At first glance, coding doesn’t seem to be a problem, after all there are
64 data types and 64 codewords, so any arbitrary assignment of data type to codeword
will work. The problem lies in the fact that the Mariner 9 is small, and this approach
would require storing all 64 32-bit codewords. It turns out to be more economical, in
terms of space and weight, to design hardware that will actually calculate the codewords
rather than read them out of a stored array. By choosing the Hadamard matrix correctly,
the Hadamard code will turn out to be a linear code and so this calculation is simply
multiplying the data by the generator matrix of the code. The correct choice for the
Hadamard matrix is the one obtained by repeatedly taking the Kronecker product of the
order 2 Hadamard matrix H32 = H2⊗H2⊗H2⊗H2⊗H2 ; this is the Symmetric Hamadard-
Sylvester matrix.

♣ Hadamard Decoding Algorithm. By using the fact that H4mHt
4m = H2

4m = 4m I4m and
Theorem 1, we use a simple scheme to decode any received word ŵ.

Step 1. A received signal ŵ, i.e. a sequence of 4m zeros and ones, is first changed into its
±1 form w (by changing each 0 to -1)as follows: w = 2ŵ − h1.

Step 2. Compute s = wH4m.
Step 3. If the received word ŵ is a codeword, then there are no errors and the syndrome

s = wH4m will be either ±4m ek.
Step 4. In the presence of errors, s will not be ±4m ek, but if the number of errors is at

most 7 then according to Theorem 1, the absolute value of the largest compo-
nent may not decrease below 2m+4 and the absolute value of other components
may decrease up to 2m-2. Thus the position of entry in s = wĤt

4m with the
largest absolute value will tell us which row of H4m or −H4m (if it is negative) was
transmitted.

Step 5. Too many errors, Impossible to decode ŵ.

Remark. While this is the actual algorithm used to decode the Mariner 9 signals, it
is a bit slow from the computational point of view (requiring 322 multiplications and
the corresponding additions for each codeword), so a number of computational tricks are
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employed to reduce the actual computation to less than 1/3 of what the algorithm calls
for.
Examples. Consider the Hadamard code C4m = C8, then

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


corrects any single error pattern.

a. Suppose ŵ = 1100 0011 is the received word, then
Step 1. w = 2ŵ − h1 = (1, 1,−1,−1, −1,−1, 1, 1).
Step 2. s = wH8 = (0, 0, 0, 0, 0, 0, 8, 0).
Step 3. The seventh component of s = 8e7 is the largest component, thus

v = h7 = (1, 1,−1,−1, −1,−1, 1, 1) and v̂ ≡ 2h1 − v mod 3 = 1100 0011.

b. Suppose ŵ = 1011 1010 is the received word, then
Step 1. w = 2ŵ − h1 = (1, 1,−1, 1, −1, 1,−1,−1).
Step 2. s = wH8 = (2, 6,−2, 2, 2,−2,−2, 2).
Step 4. The second component of 6 ≥ 4m− 2 = 6 is the largest component, thus

v = h2 = (1,−1, 1,−1, 1,−1, 1,−1) and v̂ ≡ 2h1 − v mod 3 = 1010 1010.

c. Suppose ŵ = 0001 1010 is the received word, then
Step 1. w = 2ŵ − h1 = (−1,−1,−1, 1, 1, 1, 1, 1).
Step 2. s = wH8 = (2, 2,−2,−2,−6, 2,−2,−2).
Step 4. The fifth component of s is −6 is the largest component in absolute value and

| − 6| = 6 ≥ 8− 2 = 6, thus
v = −h5 = (−1,−1,−1,−1, 1, 1, 1, 1) and v̂ ≡ 2h1 − v mod 3 = 0000 1111.

d. Suppose ŵ = 1111 1100 is the received word, then
Step 1. w = 2ŵ − h1 = (1, 1, 1, 1, 1, 1,−1,−1).
Step 2. s = wH8 = (4, 0, 0, 4, 4, 0, 0,−4).
Step 5. Since 4 < 4m− 2 = 6, there are too many errors in order for us to decode.

♥ Matlab. We only explain the algorithm for Example b.
% Choose n, then define the matrix Hn.
� n = 8 ; H = hadamard ( n )
% Suppose the vector ŵ = 1011 1010 is received. Then w = 2ŵ−h1 = (1, 1,−1, 1, −1, 1,−1,−1).
� w0 = [ 1 0 1 1 , 1 0 1 0 ] ; w = 2 ∗ w0−H( 1 , : )
w = 1 1 −1 1 −1 1 −1 −1
% Find the syndrome s.
� s = w ∗H

s = 2 6−2 2 2−2−2 2
% The second component of s = 6 ≥ 8− 2 = 6 is maximal, thus the codeword is :
� v = H (2 , : ) , v0 = rem(2 ∗H( 1 , : )− v, 3)
v = 1 −1 1−1 1−1 1−1
v0 = 1 0 1 0 1 0 1 0

Exercises. Use Hadamard-Sylvester matrix of order 8 to decode the following received
words: (a) ŵ = 1010 1011 (b) ŵ = 0000 1011 (c) ŵ = 0100 1011
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♠ Reed-Muller Codes. Another important class of linear block codes rich in algebraic
and geometric structure is the class of Ree-Muller codes, which includes the Extended
Hamming code. It was discovered by Muller in 1954, and the first decoding algorithm
was devised by Reed also in 1954. We present a recursive definition of these codes. The
rth order Ree-Muller code of length 2m will be denoted by RM(r, m), for r = 0, 1, . . . ,m.

(1) RM(0,m) = {00 . . . , 11 . . . 11}, RM(m,m) = IK2m

.

(2) RM(r, m) = {(x, y + x) : x ∈ RM(r, m− 1), y ∈ RM(r − 1,m− 1)} for = 1, 2 . . . , m− 1.

So RM(m,m) is all words of length 2m and RM(0,m) is just the all ones word and the zero
word. Now, we have

RM(0, 0) = {0, 1} = IK

RM(0, 1) = {00, 11} RM(1, 1) = {00, 01, 10, 11} = IK2

RM(0, 2) = {0000, 1111} RM(2, 2) = IK4

RM(1, 2) = { (x, y + x) : x ∈ {00, 01, 10, 11}, y ∈ {00, 11} }

Rather than use this description of the code, we will give a recursive construction for
the generator matrix of RM(r, m), which we will denote by G(r, m).
For r = 0, define G(0,m) = [11 . . . 11], for r = 1, 2, . . . ,m− 1, define G(r, m) by

G(r, m) =
[

G(r, m− 1) G(r, m− 1)
θ G(r − 1,m− 1)

]
,

and for r = m, define

G(m,m) =
[

G(m− 1,m)
00 . . . 01

]
.

For example, G(0, 1) = [ 1 1 ], G(0, 2) = [ 1 1 1 1 ], G(0, 3) = [ 1 1 1 1 1 1 1 1 ],

G(1, 1) =
[

11
01

]
, G(1, 2) =

[
G(1, 1) G(1, 1)

θ G(0, 0)

]
=

 11 11
01 01
00 11

 ,

G(2, 2) =
[

G(1, 2)
0001

]
=


1111
0101
0011
0001

 , G(1, 3) =
[

G(1, 2) G(1, 2)
θ G(0, 2)

]
=


1111 1111
0101 0101
0011 0011
0000 1111

 ,

G(2, 3) =
[

G(2, 2) G(2, 2)
θ G(1, 2)

]
=



1111 1111
0101 0101
0011 0011
0001 0001
0000 1111
0000 0101
0000 0011


,and G(3, 3) =

[
G(2, 3)

00000001

]
=



1111 1111
0101 0101
0011 0011
0001 0001
0000 1111
0000 0101
0000 0011
0000 0001



.

Theorem 2. The rth order Reed-Muller code RM(r, m) has the following properties:

(i) The length n = 2m, the distance d = 2m−r, and the dimension k =
r∑

i=0

(
m

i

)
.

(ii) If r > 0, then RM(r − 1,m) is contained in RM(r, m).
(iii) For r < m, the dual code of RM(r, m) is RM(m− r − 1,m).

We omit the proofs of these claims which are all based on induction. Note that
RM(1,m) is a small code with a large minimum distance; also notice that RM(m − 2,m)
has length 2m, dimension 2m−m−1, and distance 4 which makes it an Extended Hamming
code, and according to the above theorem, RM(1,m) is its dual.
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♣ Decoding Algorithm for First order Reed-Muller Codes. RM(1,m) can be decoded using

a Hadamard matrix of order 2 and the Kronecker product. Let H =
[

1 1
1 −1

]
, then

Hj
m = I2m−j ⊗H ⊗ I2j−1

for j = 1, 2 . . . , m. For example,

H1
2 = I2 ⊗H ⊗ I1 =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 , H2
2 = I1 ⊗H ⊗ I2 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



H1
3 = I4 ⊗H ⊗ I1 =



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1



H2
3 = I2 ⊗H ⊗ I2 =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1



H3
3 = I1 ⊗H ⊗ I4 =



1 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 0 0 −1


The recursive nature of the construction of RM(1,m) codes suggests that there is

a recursive approach to decoding as well. This is the intuitive basis for the following
decoding algorithm for RM(1,m).

♣ Decoding Algorithm for RM(1,m). Suppose a word w which is a sequence of zeros and
ones is received.

Step 1. Replace all the zeros by -1 in w to obtain w0 as follows: w0 = 2w − e.

Step 2. For j = 2, 3, . . . ,m, compute w1 = ŵHj
m and wj = wj−1H

j
m.

Step 3. Find the position j0 of the largest component (in absolute value) of wm. Let
v(j0) ∈ IKm be the binary representation of j0

0 → 000 . . . 00, 1 → 100 . . . 00, 2 → 010 . . . 00, 3 → 110 . . . 00, . . . . . . . . . , 2m−1 → 111 . . . 11.

If the jth
0 is positive, the presumed message is [1, v(j0)], and if it is negative, the

presumed message is [0, v(j0)].
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Examples. Consider the Reed-Muller code RM(1, 3) generated by the matrix G(1, 3).

a. Suppose w = 1010 1011 is the received word, then
Step 1. ŵ0 = 2w − e = (1,−1, 1,−1, 1,−1, 1, 1).
Step 2. Compute:

w1 = ŵH1
3 = (0, 2, 0, 2, 0, 2, 2, 0)

w2 = w1H
2
3 = (0, 4, 0, 0, 2, 2,−2, 2)

w3 = w1H
3
3 = (2, 6,−2, 2,−2, 2, 2,−2)

Step 3. The second component of w3 is 6 occurring in position 1. Since v(1) = 100 and
6 > 0, then the presumed message is m = 1100.

b. Suppose w = 1000 1111 is the received word, then
Step 1. ŵ = 2w − e = (1,−1,−1,−1, 1, 1, 1, 1).
Step 2. Compute:

w1 = ŵH1
3 = (0, 2,−2, 0, 2, 0, 2, 0)

w2 = w1H
2
3 = (−2, 2, 2, 2, 4, 0, 0, 0)

w3 = w1H
3
3 = (2, 2, 2, 2,−6, 2, 2, 2)

Step 3. The fifth component of w3 is −6 occurring in position 4. Since v(4) = 001 and
−6 < 0, then the presumed message is m = 0001.

♥ Matlab. We only explain the algorithm for Example b.

% Choose m, then define the 2×2 Hadamard matrix H and the matrices H1
m, H2

m, . . . , Hm
m .

� m = 3 ; H = hadamard ( 2 ) ;

� H31 = kron ( eye(4) , H ) ; H32 = kron ( kron ( eye(2) , H ), eye(2) ) ; H33 = kron( H , eye(4) )

% Suppose the vector ŵ = 1000 1111 is received. Then w0 = 2w− e = (1,−1,−1,−1, 1, 1, 1, 1).

� w = [ 1 0 0 0 , 1 1 1 1 ] ; e = ones(1, 2∧m) ; w0 = 2 ∗ w − e

w0 1 −1 −1 −1 −1 1 1 1

% Define w1 = w0H
1
3 , w2 = w1H

2
3 , and w3 = w2H

3
3

� w1 = w0 ∗H31 , w2 = w1 ∗H32 , w3 = w2 ∗H33 ;

w1 = 0 2 −2 0 2 0 2 0
w2 = −2 2 2 2 4 0 0 0
w3 = 2 2 2 2−6 2 2 2

% 4 → v(4) = 001 and −6 < 0, so v = 0001.

� v = 0001
v = 0 0 0 1

Exercises. Consider the Reed-Muller code RM(1, 3), then decode the following received
words:

(a) w = 0110 0111 (b) w = 0001 0100 (c) w = 1100 1110.

♥ Question. If the following message were received from outer space, why might it be
conjectured that it was sent by a race of human-like beings who have one arm twice as
long as the other?

00110000011000111111110110010011001001100101111000100100010010001001001100110
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♠ The Transmission of Photographs from Deep-Space.

♦ 1965 : Mariner 4 was the first spaceship to photograph another planet, taking 22
complete photographs of Mars. Each picture was broken down into 200 × 200 picture
elements. Each element was assigned a binary 6-tuple representing one of 64 brightness
levels from white (000000) to black (111111). Thus the total number of bits (i.e. binary
digits) per picture was 240, 000. Data was transmitted at the rate of 8 1

3 bits per second
and so it took 8 hours to transmit a single picture!

♦ 1969 − 1972 : Much improved pictures of Mars were obtained by Mariner 6,7 and 9
(Mariner 8) was lost during launching). There were three important reasons for this
improvement:

1. Each picture was broken down into 700× 832 elements (cf. 200× 200 of Mariner 4
and 400× 525 of US commercial television).

2. Mariner 9 was the first to be put into orbit around Mars.

3. The powerful Hadamard [Reed-Muller(32,64,16)] code was used for error correc-
tion. The data transmission rate was increased from 8 1

3 to 16, 200 bits per second.
Even so, picture bits were produced by Mariner 9’s cameras at more than 100, 000
per second, and so data had to be stored on magnetic tape before transmission.

♦ 1976 : Viking 1 landed softly on Mars and returned high quality photographs. Sur-
prisingly, transmission of a color picture in the form of binary data is almost as easy as
transmission of a black-and-white one. It is achieved simply by taking the same black-
and white photograph several times, each time through a different colored filter. The
black-and-white pictures are then transmitted as already described and the color picture
reconstructed back on Earth.

♦ 5 March 1979 : High-resolution color pictures of Jupiter and its moons were returned
by Voyager 1.

♦ 12 November 1980 : Voyager 1 returned the first high-resolution pictures of Saturn and
its moons.

♦ 25 August 1981 : Voyager 2 returned further excellent pictures of Saturn.

♦ 24 January 1986 : Voyager 2 passes Uranus.

♦ 24 August 1989 : Voyager 2 passes Neptune.

♥ Answer. Picture have actually been transmitted from Earth into outer space in this
way. Two large prime numbers were used so that a much more detailed picture could be
sent. It is reasonable to expect that a civilized recipient of such a message would be able
to work out how to reconstruct the picture, since factorization of a number into prime
factors is a property independent of language or notation.

California State University, East Bay


