Hadamard Codes

© Hadamard Matrices and Kronecker Product. A Hadamard matrix of order n is a matrix H_{n} with elements 1 or -1 such that $H_{n} H_{n}^{t}=n I_{n}$. For example,

$$
H_{1}=[1], \quad H_{2}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad H_{4}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

An $n \times n$ Hadamard matrix with $n>2$ exists only if 4 divides n. Since $H_{n} H_{n}^{t}=n I_{n}$, any two different rows of H_{n} must be orthogonal, and the matrix obtained from the permutation of rows or columns of H_{n} is also a Hadamard matrix, but the symmetry may be lost. Clearly $-H_{n}$ is also a Hadamard matrix.

These matrices were introduced by Jacques Hadamard in 1893. And yet, despite much attention by numerous mathematicians, the central question of existence has not been answered: we do not know whether or not, for every integer m , there is an orthogonal 4 m by 4 m matrix of plus and minus ones; this, notwithstanding that the number of such matrices seems to grow extremely rapidly with m , the combinatorial explosion coming perhaps as early as $m=7$. Still less is known about the classification of Hadamard matrices for general m ; but they have been enumerated for $m<7$.

We denote by e_{k}, the $k^{\text {th }}$ row of the $n \times n$ identity matrix I_{n}; the $k^{\text {th }}$ row of H_{n} is denoted by h_{k}; finally $e=(1,1, \ldots, 1)$ is h_{1}.

Theorem 1. Let H_{n} be a Hadamard matrix of order $n=4 m$. For any $k=1,2, \ldots, n$, define the $1,-1$ vector u_{k} such that at most (m-1) components of the vector $v_{k}=h_{k}+u_{k}$ is different from the components h_{k} of H_{n}. Let $s_{k}=v_{k} H_{n}^{t}$, then the $k^{t h}$ component of s_{k} is at least $4 m-2(m-1)=2 m+2$ and the absolute value of other components are at most 2(m-1).
Proof. Since $H_{n} H_{n}^{t}=n I_{n}$, we have $r_{k}=h_{k} H_{n}^{t}=4 n e_{k}=4 m e_{4 m}$. Note that if w is a $(-1,1)$ row vector of order n , then the $k^{\text {th }}$ component of $w H_{n}$ can not exceed n . We complete the proof by observing that if h_{k} and v_{k} differs in only one component, then the $k^{\text {th }}$ component of $r_{k}-s_{k}$ is 2 and the absolute value of the other components of $r_{k}-s_{k}$ can not exceed 2 . Now each time the number of nonzero components of u_{k} increases to j, the $k^{\text {th }}$ component of s_{k} decreases by $2 j$, and the absolute value of other components of s_{k} may increase by up to $2 j$.

The Kronecker product also called tensor product or the direct product of two matrices A and B is defined as follows:

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \ldots & a_{m n} B
\end{array}\right)
$$

For example

$$
H_{4}=H_{2} \otimes H_{2}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \otimes\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

For $n>4$, in order to construct a Hadamard matrix of order n using the Kronecker product, n must be divisible by 8 . For example, H_{12} exists but can not be constructed from any Hadamard matrix.

A class of Hamadard matrices $H_{2 n}=H_{2} \otimes H_{n}$ was defined by Sylvester under the name of Anallagmatic Pavement. A Hadamard-Sylvester matrix viewed as pavements, cells with 1's are colored black and those with -1 's are colored white.

Therefore, the $n \times n$ Hadamard-Sylvester matrix H_{n} must have $n(n-1) / 2$ white squares and $n(n+1) / 2$ black square
© Hadamard Codes. Take the $4 m \times 4 m$ Sylvester-Hadamard matrix $H_{4 m}$ and $-H_{4 m}$ and change all the -1 entries to 0 's. Here is how to obtain them:

$$
H_{4 m} \rightarrow \widehat{H}_{4 m}=\left[-H_{4 m}+2 J_{4 m}\right] \bmod 3 \text { and } \quad-H_{4 m} \rightarrow \widehat{H}_{4 m}^{\prime}=\left[H_{4 m}+2 J_{4 m}\right] \bmod 3,
$$

where $J_{4 m}$ is the $4 m \times 4 m$ matrix whose entries are all ones. This gives us binary words of length $4 m$. The binary codes formed by using $8 m$ rows of $\widehat{H}_{4 m}$ and $\widehat{H}_{4 m}^{\prime}$ are called Hadamard codes. Here is a Hadamard code of order 16 using $H_{8}=H_{2} \otimes H_{2} \otimes H_{2}$:
$C_{8}=\left\{\begin{array}{ccccccc}1111 & 1111,1010 & 1010,1100 & 1100,1001 & 1001,1111 & 0000,1010 & 0101,1100 \\ 0000 & 0000,0101 & 0101,0011 & 0011,0110 & 0110,0000 & 1111,0101 & 10110,0011 \\ 1100,0110 & 1001\end{array}\right\} ;$
a generator may be the matrix

$$
G=\left[\begin{array}{ll}
1010 & 1010 \\
1100 & 1100 \\
1001 & 1001 \\
1111 & 0000
\end{array}\right]
$$

Now by the properties of Hadamard matrices, a Hadamard code is a [$4 m, 2 m, 2 m$] linear codes and it will correct any error pattern of weight ($m-1$).

Note that in order to change $\widehat{H}_{4 m}$ into $H_{4 m}$ or $\widehat{H}_{4 m}^{\prime}$ into $-H_{4 m}$ we proceeded as follows:

$$
H_{4 m}=2 \widehat{H}_{4 m}-J_{4 m} \quad \text { and } \quad-H_{4 m} .
$$

@ Hadamard Codes and the Mariner 9 Mission. To examine the process of using codes we shall look at a real application. The Mariner 9 was a space probe whose mission was to fly by Mars and transmit pictures back to Earth. The black and white camera aboard the Mariner 9 took the pictures, and a fine grid was then placed over the picture and for each square of the grid the degree of blackness is measured on a scale from 0 to 63 . These numbers, expressed in binary are the data that is transmitted to Earth (more precisely to the Jet Propulsion Laboratory of the California Institute of Technology in Pasadena). On arrival the signal is very weak and it must be amplified. Noise from space added to the signal and thermal noise from the amplifier have the effect that it happens
occasionally that a signal transmitted as a 1 is interpreted by the receiver as a 0 and vice versa. If the probability that this occurs is 0.05 then by the formula

$$
\Phi_{p}(v, w)=p^{n-d}(1-p)^{d},
$$

approximately 26% of all the pictures received would be incorrect. Thus, there is clearly a need to code this information with an error correcting code. Now the question is, what code should be used? Any code will increase the size of the data being sent and this creates a problem. The Mariner 9 is a small vehicle and can not carry a huge transmitter, so the transmitted signal had to be directional, but over the long distances involved a directional signal has alignment problems. So, there was a maximum size to how much data could be transmitted at one time (while the transmitter was aligned). This turned out to be about 5 times the size of the original data, so since the data consisted of 6 bits $(0,1)$ vectors of length 6) the codewords could be about 30 bits long. The 5 -repeat code was a possibility, having the advantage that it is very easy to implement, but it is only 2 -error correcting. An Hadamard code based on an Hamadard-Sylvester symmetric matrix of order 32 on the other hand would be 7-error correcting and so worth the added difficulty of implementing it. Using this code, the probability of error in the picture is reduced to only 0.01% (the 5 -repeat code would have a probability of error of about 1%).

We now turn our attention to the problems of coding and decoding the data using an Hadamard code. At first glance, coding doesn't seem to be a problem, after all there are 64 data types and 64 codewords, so any arbitrary assignment of data type to codeword will work. The problem lies in the fact that the Mariner 9 is small, and this approach would require storing all 64 32-bit codewords. It turns out to be more economical, in terms of space and weight, to design hardware that will actually calculate the codewords rather than read them out of a stored array. By choosing the Hadamard matrix correctly, the Hadamard code will turn out to be a linear code and so this calculation is simply multiplying the data by the generator matrix of the code. The correct choice for the Hadamard matrix is the one obtained by repeatedly taking the Kronecker product of the order 2 Hadamard matrix $H_{32}=H_{2} \otimes H_{2} \otimes H_{2} \otimes H_{2} \otimes H_{2}$; this is the Symmetric HamadardSylvester matrix.
\& Hadamard Decoding Algorithm. By using the fact that $H_{4 m} H_{4 m}^{t}=H_{4 m}^{2}=4 m I_{4 m}$ and Theorem 1, we use a simple scheme to decode any received word \widehat{w}.
Step 1. A received signal \widehat{w}, i.e. a sequence of $4 m$ zeros and ones, is first changed into its ± 1 form w (by changing each 0 to -1)as follows: $w=2 \widehat{w}-h_{1}$.
Step 2. Compute $s=w H_{4 m}$.
Step 3. If the received word \widehat{w} is a codeword, then there are no errors and the syndrome $s=w H_{4 m}$ will be either $\pm 4 m e_{k}$.
Step 4. In the presence of errors, s will not be $\pm 4 m e_{k}$, but if the number of errors is at most 7 then according to Theorem 1 , the absolute value of the largest component may not decrease below $2 \mathrm{~m}+4$ and the absolute value of other components may decrease up to $2 \mathrm{~m}-2$. Thus the position of entry in $s=w \widehat{H}_{4 m}^{t}$ with the largest absolute value will tell us which row of $H_{4 m}$ or $-H_{4 m}$ (if it is negative) was transmitted.
Step 5. Too many errors, Impossible to decode \widehat{w}.
Remark. While this is the actual algorithm used to decode the Mariner 9 signals, it is a bit slow from the computational point of view (requiring 322 multiplications and the corresponding additions for each codeword), so a number of computational tricks are
employed to reduce the actual computation to less than $1 / 3$ of what the algorithm calls for.
Examples. Consider the Hadamard code $C_{4 m}=C_{8}$, then

$$
H_{8}=\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right)
$$

corrects any single error pattern.
a. Suppose $\widehat{w}=11000011$ is the received word, then

Step 1. $w=2 \widehat{w}-h_{1}=(1,1,-1,-1,-1,-1,1,1)$.
Step 2. $s=w H_{8}=(0,0,0,0,0,0,8,0)$.
Step 3. The seventh component of $s=8 e_{7}$ is the largest component, thus $v=h_{7}=(1,1,-1,-1,-1,-1,1,1) \quad$ and $\widehat{v} \equiv 2 h_{1}-v \bmod 3=11000011$.
b. Suppose $\widehat{w}=10111010$ is the received word, then

Step 1. $w=2 \widehat{w}-h_{1}=(1,1,-1,1,-1,1,-1,-1)$.
Step 2. $s=w H_{8}=(2,6,-2,2,2,-2,-2,2)$.
Step 4. The second component of $6 \geq 4 m-2=6$ is the largest component, thus $v=h_{2}=(1,-1,1,-1,1,-1,1,-1) \quad$ and $\widehat{v} \equiv 2 h_{1}-v \bmod 3=10101010$.
c. Suppose $\widehat{w}=00011010$ is the received word, then

Step 1. $w=2 \widehat{w}-h_{1}=(-1,-1,-1,1,1,1,1,1)$.
Step 2. $s=w H_{8}=(2,2,-2,-2,-6,2,-2,-2)$.
Step 4. The fifth component of s is -6 is the largest component in absolute value and $|-6|=6 \geq 8-2=6$, thus $v=-h_{5}=(-1,-1,-1,-1,1,1,1,1) \quad$ and $\widehat{v} \equiv 2 h_{1}-v \bmod 3=00001111$.
d. Suppose $\widehat{w}=11111100$ is the received word, then

Step 1. $w=2 \widehat{w}-h_{1}=(1,1,1,1,1,1,-1,-1)$.
Step 2. $s=w H_{8}=(4,0,0,4,4,0,0,-4)$.
Step 5. Since $4<4 m-2=6$, there are too many errors in order for us to decode.
\bigcirc Matlab. We only explain the algorithm for Example b.
\% Choose n, then define the matrix H_{n}.
$\gg n=8 ; H=\operatorname{hadamard}(n)$
\% Suppose the vector $\widehat{w}=10111010$ is received. Then $w=2 \widehat{w}-h_{1}=(1,1,-1,1,-1,1,-1,-1)$.
$\gg w 0=\left[\begin{array}{lllllll}1 & 0 & 1 & 1\end{array}, 10110\right] ; w=2 * w 0-H(1, ~:) ~$
$w=\begin{array}{llllllll}1 & 1 & -1 & 1 & -1 & 1 & -1 & -1\end{array}$
\% Find the syndrome s.
$\gg s=w * H$
$s=\quad 26-222-2-22$
\% The second component of $s=6 \geq 8-2=6$ is maximal, thus the codeword is :
$\gg v=H(2,:), v 0=\operatorname{rem}(2 * H(1,:)-v, 3)$
$v=\quad \begin{array}{llllllll}1 & -1 & 1-1 & 1-1 & 1 & -1\end{array}$
$v 0=$
10101010
Exercises. Use Hadamard-Sylvester matrix of order 8 to decode the following received
words: (a) $\widehat{w}=10101011$
(b) $\widehat{w}=00001011$
(c) $\widehat{w}=01001011$
a Reed-Muller Codes. Another important class of linear block codes rich in algebraic and geometric structure is the class of Ree-Muller codes, which includes the Extended Hamming code. It was discovered by Muller in 1954, and the first decoding algorithm was devised by Reed also in 1954 . We present a recursive definition of these codes. The $r^{t h}$ order Ree-Muller code of length 2^{m} will be denoted by $R M(r, m)$, for $r=0,1, \ldots, m$.
(1) $R M(0, m)=\{00 \ldots, 11 \ldots 11\}, R M(m, m)=\mathbb{K}^{2^{m}}$.
(2) $R M(r, m)=\{(x, y+x): x \in R M(r, m-1), y \in R M(r-1, m-1)\}$ for $=1,2 \ldots, m-1$.

So $R M(m, m)$ is all words of length 2^{m} and $R M(0, m)$ is just the all ones word and the zero word. Now, we have

$$
\begin{aligned}
& R M(0,0)=\{0,1\}=\mathbb{K} \\
& R M(0,1)=\{00,11\} \quad R M(1,1)=\{00,01,10,11\}=\mathbb{K}^{2} \\
& R M(0,2)=\{0000,1111\} \quad R M(2,2)=\mathbb{K}^{4} \\
& R M(1,2)=\{(x, y+x): x \in\{00,01,10,11\}, y \in\{00,11\}\}
\end{aligned}
$$

Rather than use this description of the code, we will give a recursive construction for the generator matrix of $R M(r, m)$, which we will denote by $G(r, m)$.
For $r=0$, define $G(0, m)=[11 \ldots 11]$, for $r=1,2, \ldots, m-1$, define $G(r, m)$ by

$$
G(r, m)=\left[\begin{array}{cc}
G(r, m-1) & G(r, m-1) \\
\theta & G(r-1, m-1)
\end{array}\right]
$$

and for $r=m$, define

$$
G(m, m)=\left[\begin{array}{c}
G(m-1, m) \\
00 \ldots 01
\end{array}\right]
$$

For example, $G(0,1)=\left[\begin{array}{ll}1 & 1\end{array}\right], G(0,2)=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right], G(0,3)=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$,

$$
\begin{gathered}
G(1,1)=\left[\begin{array}{l}
11 \\
01
\end{array}\right], G(1,2)=\left[\begin{array}{cc}
G(1,1) & G(1,1) \\
\theta & G(0,0)
\end{array}\right]=\left[\begin{array}{ll}
11 & 11 \\
01 & 01 \\
00 & 11
\end{array}\right], \\
G(2,2)=\left[\begin{array}{c}
G(1,2) \\
0001
\end{array}\right]=\left[\begin{array}{l}
1111 \\
0101 \\
0011 \\
0001
\end{array}\right], G(1,3)=\left[\begin{array}{cc}
G(1,2) & G(1,2) \\
\theta & G(0,2)
\end{array}\right]=\left[\begin{array}{ll}
1111 & 1111 \\
0101 & 0101 \\
0011 & 0011 \\
0000 & 1111
\end{array}\right], \\
G(2,3)=\left[\begin{array}{cc}
G(2,2) & G(2,2) \\
\theta & G(1,2)
\end{array}\right]=\left[\begin{array}{ll}
1111 & 1111 \\
0101 & 0101 \\
0011 & 0011 \\
0001 & 0001 \\
0000 & 1111 \\
0000 & 0101 \\
0000 & 0011
\end{array}\right], \text { and } G(3,3)=\left[\begin{array}{c}
G(2,3) \\
00000001
\end{array}\right]=\left[\begin{array}{ll}
0101 & 0101 \\
0011 & 0011 \\
0001 & 0001 \\
0000 & 1111 \\
0000 & 0101 \\
0000 & 0011 \\
0000 & 0001
\end{array}\right] .
\end{gathered}
$$

Theorem 2. The $r^{\text {th }}$ order Reed-Muller code $R M(r, m)$ has the following properties:
(i) The length $n=2^{m}$, the distance $d=2^{m-r}$, and the dimension $k=\sum_{i=0}^{r}\binom{m}{i}$.
(ii) If $r>0$, then $R M(r-1, m)$ is contained in $R M(r, m)$.
(iii) For $r<m$, the dual code of $R M(r, m)$ is $R M(m-r-1, m)$.

We omit the proofs of these claims which are all based on induction. Note that $R M(1, m)$ is a small code with a large minimum distance; also notice that $R M(m-2, m)$ has length 2^{m}, dimension $2^{m}-m-1$, and distance 4 which makes it an Extended Hamming code, and according to the above theorem, $R M(1, m)$ is its dual.
\& Decoding Algorithm for First order Reed-Muller Codes. $R M(1, m)$ can be decoded using a Hadamard matrix of order 2 and the Kronecker product. Let $H=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$, then

$$
H_{m}^{j}=I_{2^{m-j}} \otimes H \otimes I_{2^{j-1}}
$$

for $j=1,2 \ldots, m$. For example,

$$
\begin{gathered}
H_{2}^{1}=I_{2} \otimes H \otimes I_{1}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right], H_{2}^{2}=I_{1} \otimes H \otimes I_{2}=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \\
H_{3}^{1}=I_{4} \otimes H \otimes I_{1}=\left[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] \\
H_{3}^{2}=I_{2} \otimes H \otimes I_{2}=\left[\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right] \\
H_{3}^{3}=I_{1} \otimes H \otimes I_{4}=\left[\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}\right]
\end{gathered}
$$

The recursive nature of the construction of $R M(1, m)$ codes suggests that there is a recursive approach to decoding as well. This is the intuitive basis for the following decoding algorithm for $R M(1, m)$.

- Decoding Algorithm for $\mathbf{R M}(1, \mathbf{m})$. Suppose a word w which is a sequence of zeros and ones is received.
Step 1. Replace all the zeros by -1 in w to obtain w_{0} as follows: $w_{0}=2 w-e$.
Step 2. For $j=2,3, \ldots, m$, compute $w_{1}=\widehat{w} H_{m}^{j}$ and $w j=w_{j-1} H_{m}^{j}$.
Step 3. Find the position j_{0} of the largest component (in absolute value) of w_{m}. Let $v\left(j_{0}\right) \in \mathbb{K}^{m}$ be the binary representation of j_{0}
$0 \rightarrow 000 \ldots 00,1 \rightarrow 100 \ldots 00,2 \rightarrow 010 \ldots 00,3 \rightarrow 110 \ldots 00, \ldots \ldots \ldots, 2^{m}-1 \rightarrow 111 \ldots 11$.
If the $j_{0}^{\text {th }}$ is positive, the presumed message is $\left[1, v\left(j_{0}\right)\right]$, and if it is negative, the presumed message is $\left[0, v\left(j_{0}\right)\right]$.

Examples. Consider the Reed-Muller code $R M(1,3)$ generated by the matrix $G(1,3)$.
a. Suppose $w=10101011$ is the received word, then

Step 1. $\widehat{w}_{0}=2 w-e=(1,-1,1,-1,1,-1,1,1)$.
Step 2. Compute:

$$
\begin{aligned}
& w_{1}=\widehat{w} H_{3}^{1}=(0,2,0,2,0,2,2,0) \\
& w_{2}=w_{1} H_{3}^{2}=(0,4,0,0,2,2,-2,2) \\
& w_{3}=w_{1} H_{3}^{3}=(2,6,-2,2,-2,2,2,-2)
\end{aligned}
$$

Step 3. The second component of w_{3} is 6 occurring in position 1. Since $v(1)=100$ and $6>0$, then the presumed message is $m=1100$.
b. Suppose $w=10001111$ is the received word, then

Step 1. $\widehat{w}=2 w-e=(1,-1,-1,-1,1,1,1,1)$.
Step 2. Compute:

$$
\begin{aligned}
& w_{1}=\widehat{w} H_{3}^{1}=(0,2,-2,0,2,0,2,0) \\
& w_{2}=w_{1} H_{3}^{2}=(-2,2,2,2,4,0,0,0) \\
& w_{3}=w_{1} H_{3}^{3}=(2,2,2,2,-6,2,2,2)
\end{aligned}
$$

Step 3. The fifth component of w_{3} is -6 occurring in position 4. Since $v(4)=001$ and $-6<0$, then the presumed message is $m=0001$.
\bigcirc Matlab. We only explain the algorithm for Example b.
\% Choose m, then define the 2×2 Hadamard matrix H and the matrices $H_{m}^{1}, H_{m}^{2}, \ldots, H_{m}^{m}$.
$\gg m=3 ; H=$ hadamard (2);
$\gg H 31=\operatorname{kron}($ eye $(4), H) ; H 32=\operatorname{kron}(\operatorname{kron}($ eye $(2), H)$, eye $(2)) ; H 33=k r o n(H$, eye $(4))$
\% Suppose the vector $\widehat{w}=10001111$ is received. Then $w_{0}=2 w-e=(1,-1,-1,-1,1,1,1,1)$.

```
>w=[llllllllllll
    w0 1 -1 -1 -1 -1 1 1 1
```

$\%$ Define $w_{1}=w_{0} H_{3}^{1}, w_{2}=w_{1} H_{3}^{2}$, and $w_{3}=w_{2} H_{3}^{3}$
$\gg w 1=w_{0} * H 31, w 2=w_{1} * H 32, w 3=w_{2} * H 33$;
$w 1=\quad \begin{array}{lllllll}0 & 2 & -2 & 0 & 2 & 0 & 2\end{array}$
$w 2=\quad-\begin{array}{llllllll}-2 & 2 & 2 & 2 & 4 & 0 & 0 & 0\end{array}$
$w 3=\quad \begin{array}{llllllll}2 & 2 & 2 & 2 & -6 & 2 & 2 & 2\end{array}$
$\% 4 \rightarrow v(4)=001$ and $-6<0$, so $v=0001$.
$\gg v=0001$
$v=\quad 0001$
Exercises. Consider the Reed-Muller code $R M(1,3)$, then decode the following received words:
(a) $w=01100111$
(b) $w=00010100$
(c) $w=11001110$.
\bigcirc Question. If the following message were received from outer space, why might it be conjectured that it was sent by a race of human-like beings who have one arm twice as long as the other?

00110000011000111111110110010011001001100101111000100100010010001001001100110

© The Transmission of Photographs from Deep-Space.

$\diamond 1965$: Mariner 4 was the first spaceship to photograph another planet, taking 22 complete photographs of Mars. Each picture was broken down into 200×200 picture elements. Each element was assigned a binary 6-tuple representing one of 64 brightness levels from white (000000) to black (111111). Thus the total number of bits (i.e. binary digits) per picture was 240,000 . Data was transmitted at the rate of $8 \frac{1}{3}$ bits per second and so it took 8 hours to transmit a single picture!
$\diamond 1969$ - 1972 : Much improved pictures of Mars were obtained by Mariner 6,7 and $\mathbf{9}$ (Mariner 8) was lost during launching). There were three important reasons for this improvement:

1. Each picture was broken down into 700×832 elements (cf. 200×200 of Mariner 4 and 400×525 of US commercial television).
2. Mariner 9 was the first to be put into orbit around Mars.
3. The powerful Hadamard [Reed-Muller $(32,64,16)$] code was used for error correction. The data transmission rate was increased from $8 \frac{1}{3}$ to 16,200 bits per second. Even so, picture bits were produced by Mariner 9's cameras at more than 100, 000 per second, and so data had to be stored on magnetic tape before transmission.
$\diamond 1976$: Viking 1 landed softly on Mars and returned high quality photographs. Surprisingly, transmission of a color picture in the form of binary data is almost as easy as transmission of a black-and-white one. It is achieved simply by taking the same blackand white photograph several times, each time through a different colored filter. The black-and-white pictures are then transmitted as already described and the color picture reconstructed back on Earth.
$\diamond 5$ March 1979 : High-resolution color pictures of Jupiter and its moons were returned by Voyager 1.
$\diamond 12$ November 1980 : Voyager 1 returned the first high-resolution pictures of Saturn and its moons.
$\diamond 25$ August 1981: Voyager 2 returned further excellent pictures of Saturn.
$\diamond 24$ January 1986 : Voyager 2 passes Uranus.
$\diamond 24$ August 1989 : Voyager 2 passes Neptune.
\bigcirc Answer. Picture have actually been transmitted from Earth into outer space in this way. Two large prime numbers were used so that a much more detailed picture could be sent. It is reasonable to expect that a civilized recipient of such a message would be able to work out how to reconstruct the picture, since factorization of a number into prime factors is a property independent of language or notation.

California State University, East Bay

