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Abstract. Jupiter’s ring shows vertical corrugations reminiscent of those recently detected in the

rings of Saturn. The Galileo spacecraft imaged a pair of superimposed ripple patterns in 1996

and again in 2000. These patterns behave as two independent spirals, each winding up at a rate

defined by Jupiter’s gravity field. The dominant pattern originated between July and October

1994, when the entire ring was tilted by ~ 2 km. We associate this with the Shoemaker-Levy 9

impacts of July 1994. New Horizons images still show this pattern 13 years later, and suggest

that subsequent events may also have tilted the ring. Impacts by comets or their dust streams are

regular occurrences in planetary rings, altering them in ways that remain detectable decades

later.

On November 9, 1996, the Galileo spacecraft imaged a systematic, unexplained pattern of

brightness variations in Jupiter’s main ring, suggesting vertical ripples in the ring’s surface (1).

More recently, Cassini images have revealed a similar pattern in Saturn’s rings. That pattern

arose from an initially inclined ring, which was slowly twisted into a spiral by Saturn’s gravity

(2,3). A closer analysis of Galileo data now confirms that the patterns in the rings of Jupiter and

Saturn obey identical kinematics, except that Jupiter’s ring contains two ripple patterns, not one.

Galileo viewed the rings from nearly edge-on, with opening angle B = 0.48° (Fig. 1, Table

S1). The intensity I of an optically thin ring is proportional to the amount of material along the

line of sight, so it varies as sin(B)-1. For the Jovian ring, optical depth ! < 10-5 (4,5), so this

dependence applies. In this limit, the Sun’s opening angle plays no role, because every particle is

illuminated equally.

A nonzero surface slope modifies the effective local opening angle, naturally leading to

variations in I (6):

I " 1 / sin(B) [1 - sin(#)/sin(B) Z$(R,#)]. (1)
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Here Z(R,#) describes the local height of the ring above the equatorial plane in polar coordinates

(R,#). The radial component of the local slope is Z$(R,#) % &Z/&R; we neglect the slope’s much

smaller tangential component (6,7). Longitudes are measured from the ansa line passing through

the ring’s tip, where a radial vector is perpendicular to the line of sight.

Note that the dependence of I on sin(#) naturally predicts the reversals of contrast observed

in the Galileo image. We have applied Eq. 1 to derive the function Z$(R) at # = 0 (Fig. 1C).

Slopes approach 3% or ~ 1.5°. However, unlike the pattern in Saturn’s rings (2,3), this one is not

a pure sinusoid; a Fourier transform shows two distinct peaks (Fig. 2A). In a least-squares

modeling of Z$(R), two sinusoids successfully account for the location of nearly every peak and

trough. Matches to the amplitudes are imperfect, however, suggesting that the ring slope may be

modulated by other factors that we have not yet considered. The dominant pattern has a

wavelength 'long = 1920 ± 150 km and a vertical amplitude Zlong = 2.4 ± 0.7 km; the shorter-

wavelength pattern has 'short = 630 ± 20 km and Zshort = 0.6 ± 0.2 km.

If these sinusoidally varying slopes are analogous to the corrugations observed at Saturn

(2,3), then they arose from an initially tilted ring that slowly twisted into a spiral pattern due to

differential nodal regression. The wavelength of these patterns depends only on the local

gravitational field and the amount of time T that has elapsed since the ring became tilted (2,3).

Near the middle of the main Jovian ring, the predicted wavelength is

' = ~ 4200 km / (T/years). (2)

The numerical factor is derived from Jupiter’s gravitational harmonics (8). It varies by ~ 15%

within the radial limits considered but, for practical purposes, can be treated as a constant when

modeling individual profiles (6).

Compared to Saturn’s ~ 30-km periodicity, the longer wavelengths at Jupiter would imply

much younger features. For the long-wavelength pattern, T = 800 ± 60 days, indicating that a

ring-tilting event occurred between July 1 and November 1, 1994. The shorter wavelength

corresponds to T = 2430 ± 80 days, meaning that the feature originated between early January

and early June, 1990; the midpoint is March 19.

Two Galileo images from June 21, 2000 confirm that this pattern is evolving in the predicted

manner. The images individually have very poor signal-to-noise properties, and charged particle

impacts into the camera’s CCD corrupt many pixels (Fig. S1). Nevertheless, combined
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processing of both images has enabled us to identify and eliminate most of the corrupted pixels

(Fig. 3A). Contrast reversals show up clearly after processing (Fig. 3B), from which we have

derived Z$(R) (Fig. 3C). Fourier processing once more identifies two dominant peaks, but now

they are at shorter wavelengths (Fig. 2B). Modeling of the ring profile as a superposition of two

sinusoids provides a very good description of the data (Fig. 3C, dashed line), with 'long = 695 ±

55 km; Zlong = 1.8 ± 0.4 km; 'short = 414 ± 20 km; Zshort = 0.6 ± 0.2 km. For comparison, if we use

Eq. 2 to extrapolate the patterns seen in 1996 forward over the intervening 1289 days, we would

expect 'long = 734 km and 'short = 412 km. Thus, the wavelengths and amplitudes seen in 2000

are consistent with the expected rate of winding of these spiral features.

To complete our data analysis, we examined four images taken just before New Horizons

crossed the Jovian ring plane on March 1, 2007 (Figs. S2–S4). Fourier analysis reveals the

continuing effects of SL9’s impact (Fig. 2C). Although Zlong has diminished to ~ 350 km, this

detection attests to the features’ longevity. The shorter pattern can no longer be detected.

However, two suggestive new patterns appear, with ' ( 1315 km and 775 km (Fig. S4C). If

confirmed by later detections, these would indicate that the rings received additional km-scale

tilts around September 2001 and December 2003.

A suitable explanation for ring-tilting events must satisfy some very specific requirements.

First, each event must occur within a very brief time span (2,3). The nodal regression rate for

orbits in the main Jovian ring is 8.5°/day, enough to smear out the effects of any event lasting

more than a few weeks. Second, these events must be infrequent, with 2–4 occurrences between

~ 1985 and ~ 2006. Within this context, it is natural to associate the long pattern with the SL9

impacts of July 16–20, 1994. They occurred within the identified window spanning

July–October. Although SL9 was earlier regarded as a “once a century” impact, the observed

collision of another object into Jupiter on July 19, 2009 suggests that such events may be 5–10

times more frequent than previously thought (9). The chance of one occurring at random within

the identified four-month window is 1–3%.

The triggering event for the secondary pattern in Galileo images is less clear. SL9 fractured

during its prior perijove on July 7, 1992. It crossed the equator at R ~ 115,000 km (10),

apparently producing no measurable effect on the ring less than 15,000 km further out. The

perijove before that was in mid-1990, within the window defined by the short wavelength and

raising the possibility that SL9 triggered this pattern as well. However, backward integrations of
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SL9’s trajectory place this perijove much further from Jupiter (10,11). Such integrations have

large uncertainties, arising from the chaotic nature of SL9’s orbit, and because we do not know

where to position the center of SL9’s mass prior to its breakup (10,11). Thus, we cannot rule out

the possibility that SL9 triggered the 1990 pattern, although it must have passed much closer to

the ring than it did in 1992. Alternatively, the secondary pattern may have been triggered by a

different, unseen comet; this hypothesis is generally compatible with more recent, higher

estimates for the frequency of impacts (9). History records other very close passages of Jupiter

by comets 16P/Brooks 2 in 1886 and P/Gehrels 3 in 1970 (12).

What mechanism might have enabled SL9 to alter the Jovian ring so dramatically? In 1994,

SL9’s solid fragments entered Jupiter at southern latitudes on a north-bound trajectory; they

never reached the ring plane. However, dust grains associated with SL9’s fragments could have

been deflected past the planet and into the ring by solar radiation pressure (Fig. 4) (6). Others

have explored the effects of radiation pressure on SL9’s dust (13,14), but not with an eye toward

the consequences for the ring system. We define ) as the ratio of radiation pressure to solar

gravity (15). Integrations show that grains with ) = 0.007 (radius ( 50 µm), if released at the

time of the 1992 perijove and breakup, would be deflected directly into the main ring in 1994

(6). Larger grains can never intercept the ring but smaller ones, if released later, can. The

fragments were emitting dust continuously between the 1992 breakup and the 1994 impact

(14,16), providing a continuous source of potential ring impactors. Regardless of their ejection

date, integrations show that all particles crossing the main Jovian ring do so within the same ~

10° sector of inertial longitude and within a time span of a few days (6); thus, they naturally

satisfy the requirement to offset the ring quickly and systematically.

 Because Jupiter’s ring is optically thin, every ring constituent responds independently to the

influx of cometary dust. To tilt an orbit by 2 km requires that, on average, particles intercept ~

10-6 of their own mass (6). For a ring of 1-cm particles spanning the orbits of Metis and Adrastea

(128,000–129,000 km), an integrated fluence of ~ 10-6 g/cm2 would be required, or ~ 1013 g in

total. Our simulations indicate that 0.2–0.5% of SL9’s ejecta smaller than 50 µm will intercept

this ring (6). We therefore require SL9 to produce ~ 2–5 * 1015 g of dust, amounting to a volume

~ 2–5 km3. For comparison, estimates of the initial diameter of the intact comet range from D ~

1.5 km (17) to 10 km (18). Corresponding volume estimates are V = 2–500 km3. A meta-study

(19) concludes D = 3.5 km (V ( 20 km3). The fragments of SL9 underwent substantial collisional
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evolution shortly after the breakup (13); this can lead to a steep size distribution in which a

substantial fraction of the mass is concentrated in the smallest particles. If so, then the larger

estimates for SL9’s volume are compatible with our requirements. Our results are difficult to

reconcile with the smallest size estimates, which are based on dynamical models of how a

loosely-bound rubble pile would break apart (17).

For a given fluence of cometary dust, larger ring bodies are deflected to smaller tilt angles in

inverse proportion to their radii. We chose 1 cm for the above calculation because cm-sized

particles are likely to achieve the largest tilts; smaller particles can be shattered by the 50-µm

impactors (6). Thus, our mass estimate is only valid if the size distribution is steep, so that the

ring’s appearance is dominated by the smallest surviving particles (and their ejecta). The Jovian

ring’s dust population does steepen markedly above ~ 30 µm (5), suggesting that this assumption

is plausible.

The kinematics of these spirals requires that the wavelength be nearly uniform at any given

time, but the tilts need not be. In an optically thin ring, they will vary depending on the local ring

particle sizes. In Fig. 1C, the inward decrease of the slopes may simply indicate a decreasing

population of the cm-sized particles. This is consistent with ring photometry that indicates a

rapidly decreasing number of embedded macroscopic bodies interior to the orbit of Metis

(20,21).

We now recognize that impacts by comets and/or their dust clouds are common occurrences

in planetary rings. On at least three occasions over the last few decades, these collisions have

carried sufficient momentum to tilt a ring of Jupiter or Saturn off its axis by an observable

distance. Once such a tilt is established, it can persist for decades, with the passage of time

recorded in its ever-tightening spiral. Within these subtle patterns, planetary rings chronicle their

own battered histories.

Figure Captions

Fig. 1.

(A) Galileo image C0368974139 from November 9, 1996 shows the Jovian ring’s tip. Indicated

are the directions in which longitude # and radius R are measured. (B) We expanded the image

vertically, co-added two similar frames for improved signal-to-noise, and subtracted a duplicate
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of the image after reversing it top-to-bottom. Most of the image nearly cancels itself out, but the

signals of the ripples are reinforced. Neutral gray corresponds to zero; darker areas are negative.

(C) A derived profile of the ring’s surface slope vs. radius (solid line). For comparison, the

dashed line shows a fit involving superimposed patterns triggered on July 19, 1994 and March

19, 1990. In this fit, we have neglected the expected variation in ' with R (6). Note that panels

(A–C) have been aligned vertically to employ the same radial/horizontal scale.

Fig. 2.

Fourier transforms of each radial profile of the ring’s surface slope, Z$(R). Data are from Galileo

in 1996 (A) and 2000 (B), and from New Horizons in 2007 (C). Vertical lines mark the expected

wavenumber (1/') for features triggered on July 19, 1994 (dashed) and on March 19, 1990

(dotted). On the vertical axes, the Fourier amplitude values roughly indicate the height of a

single sinusoid, of fixed wavelength but variable phase, that best fits the profile.

Fig. 3.

(A) Two Galileo images from 2000 have been overlaid and combined to produce a clear image

of the ring’s ansa (6). (B) After flipping the image vertically and subtracting, enhancement

reveals the pattern of contrast reversals indicating vertical undulations. (C) A derived radial

profile of the ring’s slope (solid line). For comparison, the dashed line is a best fit using two

sinusoidal patterns, with wavelengths defined by our assumed trigger dates of July 19, 1994 and

March 19, 1990. The three panels have been aligned to employ the same radial scale; note that

this scale is much smaller than that in Fig. 1.

Fig. 4.

The influence of solar radiation pressure on the motion of SL9’s fragments is shown as a

function of ). Integrations assume that the pieces separated at low relative velocity during the

1992 perijove. The heavy arrow () = 0) shows the path of the large, observed fragments. The

trajectories of smaller particles are displaced leftward in the diagram; corresponding ) values are

labeled around the periphery. Particles with ) ( 0.007 (heavy dashed line) impact the main ring.
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Materials, Methods and Models

1. Data Analysis

1.1 Ring Intensity Model

If a ring has spiral undulations of fixed wavelength ! and fixed amplitude Z0, then the

vertical height of the ring surface can be defined by

Z(R,") = Z0 sin(2#[R-R0]/! + [" - "0]) , (S1)

using polar coordinates (R,"), and with (R0,"0) locating any zero point of the function.

The radial and longitudinal components of the surface slope are, respectively,

$Z/$R = Z0 cos(2#[R-R0]/! + [" - "0]) % 2#/! (S2)

and

1/R $Z/$" = Z0 cos(2#[R-R0]/! + [" - "0]) / R , (S3)

The radial component is larger than the longitudinal by a factor 2#R/! << 1. This justifies

our neglect of the longitudinal component; we treat the local slope as simply Z& ' $Z/$R.

We describe the observed intensity of the ring as a function I(R,"). If the ring were

flat and axisymmetric, then the intensity would be

Iflat(R) = I((R) / sin(B) , (S4)

where I((R) is the intensity profile from a viewpoint perpendicular to the ring plane, and B

is the ring opening angle, separating the line of sight from the equator plane. We define B

to be nonnegative. The local slope of the ring changes the effective value of B. The unit

surface normal vector at (R,") is

[-Z&cos("), -Z&sin("), 1] / (1 + Z&2)1/2 (S5)

in rectangular coordinates [x, y, z]. If we define " = 0 along the ring radius vector

perpendicular to the line of sight (Fig. 1A), then the unit vector pointing to the observer is

[0, -cos(B), sin(B)] (S6)



3

in the same coordinate frame. The complement of the angle between these vectors is the

local, effective ring opening angle, Beff. The inner product of Eqs. S5 and S6 determines

this angle:

sin(Beff) = [sin(B) + Z& sin(") cos(B)] / (1 + Z&2)1/2 . (S7)

In practice, B  and Z & are both small, which leads directly to our model for intensity

variations (Eq. 1):

I(R,") = I((R) / sin(Beff) ) Iflat(R) [1 - Z&(R,") sin(") / sin(B)] . (S8)

1.2 Image Processing

Table S1 lists the images used in this study. The Galileo images from 2000 provided

our finest resolution on the Jovian ring, but required special handling to remove

numerous bright spots caused by energetic particles hitting the CCD (Fig. S1). Each pixel

was compared to the mean value of its four nearest neighbors, and if the difference

exceeded a specified threshold, it was rejected. This process was repeated until it

converged, and then the values of the rejected pixels were replaced by the local mean

value.

The dark sky regions of the images are often nonzero, due to instrumental effects and

to off-axis light entering the camera optics. In the Galileo images, the background light is

generally rather uniform; it could be successfully modeled by a simple linear ramp

function. New Horizons images were affected by a serious “ghosting” problem, however.

We corrected this problem by noting that the pattern is nearly stable within the CCD,

even though the rings are positioned at different locations. The rings occupy only a small

portion of each image, so among the four images it became possible to map out the ghost

pattern completely. This pattern was then subtracted from each of the images (Fig. S2).

We rotated each image into an orientation where the ansa line is exactly horizontal

across the image. Images from the same set were adjusted and positioned to have

identical geometry. This involved an iterative process using quantitative tests, such as

maximizing the correlation or minimizing the root-mean-square (RMS) difference

between pairs of images. We reprojected the images onto spatial grids roughly twice as

fine as that of the sources; this ensured that the intrinsic spatial resolution of each image
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was preserved. Within each set, the images were then co-added pixel by pixel to improve

the signal-to-noise ratio. We rejected any pixels that were excessively bright in one image

relative to the others, on the assumption that such pixels were probably corrupted. The

combined images resulting from this processing were very clear and generally free of

obvious flaws (Figs. 3A, S3).

1.3 Slope Derivation

A narrow strip of pixels centered on the ansa line of each image was resampled into a

new rectangular grid in (R,sin(")) (Fig. S4A). To suppress noise, we employed a gaussian

filter to blur the image by a few pixels prior to this step. Each column in the new image

could then be described by a linear function I = a + b sin(") (Eq. S8), where

Iflat = a (S9)

and

Z& = -b/a sin(B) (S10)

(Fig. S4B,C; cf., 1C, 3C). We ignored the inner and outer regions of the resulting profiles

Z&(R), where values became highly erratic because Iflat was small.

1.4 Slope Modeling

For the Fourier analysis, we first trimmed away the innermost points in the slope

profile, where no evidence for the ripple patterns could be seen; Figs. 1C, 3C and S4C

show the ranges retained. The remaining data consists of a sequence of N radial locations

Rk and slopes Z&k. Given wavelength !, the Fourier amplitude is defined as (A2 + B2)1/2,

where

A = 1/N * Zk cos(2#Rk/!) (S11)

and

B = 1/N * Zk sin(2#Rk/!) . (S12)

Once we identified candidate wavelengths by their peaks in the Fourier analysis, we

performed non-linear, least-squares fitting to the profiles to determine the optimal
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wavelength, phase and amplitude of each sinusoidal pattern. Uncertainties correspond to

1-+ confidence intervals based on ,2 statistics.

1.5 Chirp Modeling

Because of the nonlinear dependence of nodal regression rate on the radial distance

from Jupiter, the numeric coefficent in Eq. 2 actually varies by ~ 15% between radial

limits of 125,000 and 129,000 km in the Jovian system; see Hedman et al. (3) for

formulas and details. As a result, the radial pattern is actually a “chirp”, not a sinusoid.

Successive waves can be envisioned as changing linearly:

! = -, -[1 + .], -[1 + 2.], … -[1 + N.] , (S13)

where -  is the starting wavelength and . << 1 describes the fractional change in

wavelength from one cycle to the next. Successive cycles of this pattern will fall at radial

locations:

R = 0, -, -[2 + .], -[3 + 2.], … -[N + . (N2–N)/2] . (S14)

Converting the cycle number into a continuous variable x, we obtain

R(x) = -[x + . x2/2] . (S15)

However, we have chosen to model the ring patterns using a fixed wavelength !

instead:

R&(x) = R0& + !x . (S16)

How large are the errors that arise from this approximation? In least-squares fitting, the

sinusoidal model will match the chirp as closely as is mathematically feasible, but

features will necessarily shift. We estimate the magnitude of these shifts by defining /(x)

' R&(x) - R(x) and assuming that in the fitting procedure, the sinusoidal model will adjust

to limit the extreme values of |/|. Because /(x) is a parabola, this minimization is

accomplished when

/(0) = /(N) = -/(N/2) . (S17)

These equations can be readily solved for the coefficients in Eq. S16, yielding

! = -[1 + . N/2] ; (S18)
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R0& = .-N2/16 (S19)

The second equation defines /max = /(0), the upper limit on the radial offset arising from

the assumption of a fixed wavelength. If we define /R = N! as the full radial extent of

our data, and q = . N/2 as the full fractional change in wavelength within this range, then

/max = q/8 /R . (S20)

Thus, although q = 15%, the assumption of a fixed wavelength in our analysis introduces

radial errors of only ~ 2% (80 km) in Figs. 1C and 3C. On the scale of these plots, such

errors can be safely neglected.

Consistent with our intuition, a comparison of Eqs. S13 and S18 indicates that the

best-fit fixed wavelength will be the value near the middle of the chirp. As a result, any

determination of the elapsed time since a ripple pattern began must employ the winding

rate relevant to the midpoint of the profile modeled.

2. Dynamical Models

2.1 Impact Dynamics and Tilt Amplitudes

We consider the consequences of a cometary dust grain impacting a ring particle.

Working in the local frame of the ring before impact, momentum conservation can be

stated

 mc vc = mr& vr + me ve , (S21)

where m is particle mass, v is velocity, and subscripts refer to the cometary impactor (c),

the ring particle (r), and the impact ejecta (e). Boldface indicates a vector. For quantities

that change during impact, final values are indicated by primes. Above, ve is understood

to be the mass-weighted mean velocity of all ejecta after impact.

When mc/mr > 10-7, a collision at tens of km/s is likely to result in catastrophic

disruption (22), meaning that mr& 0 0. In this case, the initial momentum gets distributed

over the total mass, and the resulting orbital tilt is

Z = R ve(/vo ) R (vc(/vo) mc/mr

= Zmax mc/mr . (S22)
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Here, vo is the orbital velocity of the ring particle, R is its orbital radius, and subscript (

indicates the component of v perpendicular to the ring plane. For convenience, we define

Zmax = R (vc(/vo), the tilt reached by a ring particle that intercepts its own mass. For the

Jovian ring, Zmax ) 130,000 km.

Smaller impacts are non-disruptive cratering events, where yield factors are

Y ' me/mc ~ 5 (vc / [km/s])2 (S23)

 (23). In the Jovian ring, vc ~ 50 km/s, implying Y ~ 10 4. In this limit, the initial

momentum is not distributed uniformly between the ring particle and the ejecta. Energy

conservation can be written

f mc vc
2 = mr& vr

2
 + me [ve

2 + +2(ve)]

= mr& vr
2

 + me g ve
2 . (S24)

Here f represents the fraction of the initial energy that goes into kinetic energy, rather

than heat, after impact. Because ve is the mean of a distribution, we must include +2(ve) to

account for the difference between the square of the mean and the mean of the square.

For convenience, we define g ' 1 + +2(ve)/ve
2. Combining Eqs. S23 and S24 yields a

momentum ratio

mr&vr / mcvc ~ (Yf / g)1/2 . (S25)

With f and g both expected to be of order unity and Y ~ 104, we conservatively predict

this ratio to be ~ 30. The reason the value is not unity is that the ejecta systematically

carry momentum away from the impact site in the opposite direction. Compared to Eq.

S22,

Z = R vr(/vo = Zmax mc/mr (Yf / g)1/2 . (S26)

This may appear to be gaining “something for nothing.” For an optically thick ring the

ejecta would quickly deposit their opposite linear momentum elsewhere in the ring and

the magnification factor would be lost. However, the Jovian ring’s optical depth 1 ~ 10-5

(4,5) and collision time scales are measured in decades; the orbital nodes of the ejecta

precess many times in the interim, preventing them from delivering any net tilt back to

the ring.
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Note that, because mc/mr < 10-7 in Eq. S26, the largest possible tilt that can be

imparted by a single, non-catastrophic collision is ~ 400 m; most deflections will be

smaller. Therefore, to tilt the Jovian ring by ~ 2 km will require most particles to receive

multiple impacts. Let M(c) be the total integrated mass of comet particles of radius

smaller than c, which pass through a ring of surface area A. The expected tilt reached by a

ring particle of radius r is

Z(r) = Zmax (Yf / g)1/2 % M(r/K) / mr % #r2 / A (S27)

This is Eq. S26 integrated over the cometary mass crossing the ring, and also scaled by

the fractional cross-section of the ring particle. Here, K ~ (107 2c/2r)1/3 ~ 200 is the size

ratio required for catastrophic collisions; we will show below that such impacts play a

negligible role in the Jovian ring. We have assumed densities 2c and 2r are similar.

As a concrete application of Eq. S27, we define a nominal ring bounded by the orbits

of Metis and Adrastea (128,000–129,000 km), yielding A  = 8 3 108 km2. If this ring is

composed primarily of bodies with r = 1 cm, then M ~ 5 3 1012 g of cometary dust must

pass through it to achieve a 2-km tilt. This corresponds to a total volume of 0.005 km3,

exclusive of grains larger than r/K = 50 µm.

2.2 Orbital Integrations

We carry out numerical integrations of the SL9 fragments’ motion between their 1992

perijove and breakup through their July 1994 impacts. We employ a fourth-order Runge-

Kutta integrator with adaptive step size. SPICE kernels obtained from the Planetary Data

System (PDS) provide the positions of Jupiter, the Sun, the Galilean satellites, and

Saturn, and a test particle responds accordingly. We include the J2 and J4 gravity

moments of Jupiter, and allow for the effects of radiation pressure via a parameter 4,

which defines the ratio of the radiation pressure force to the Sun’s gravity (15). By using

the SPICE kernels, the problem is reduced to one of integrating individual test particles

rather than integrating the entire Solar System. Other perturbations on the comet, such as

those caused by outgassing and erosion, are neglected. Lorentz forces are completely

negligible for particles in the size range we consider.
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The SPICE kernels provide the initial position and velocity for 21 fragments of SL9

at the time of their 1992 perijove. However, the values are not sufficiently precise to

integrate the fragments’ motion over long periods of time. To compensate, we begin by

tabulating the position of each fragment at one-day intervals from perijove to impact,

using SPICE tools. We then solve for the initial state vector that minimizes the RMS

residuals between the integrated and tabulated locations. Upon completion of this

procedure, our integrator matches the motion of each fragment with residuals of a few

hundred km. This discrepancy is small compared to the spread among the fragments’

trajectories; we therefore regard our integrations as representative of SL9, even if they

differ slightly from the best orbital models (11).

We then explore the perturbations needed for a particle to hit the ring instead of the

planet. Typical ejection speeds of dust grains from the fragments are ~ 1 m/s (14).

Neglecting radiation pressure, our integrations show that such speeds are insufficient to

bypass the planet; relative speeds of ~ 30 m/s are required before the paths of ejecta can

intersect the ring.

Figure 4 shows sample integrations in which solar radiation pressure has been

included. Shown are the paths of dust grains through the system in 1994, after having

been launched with zero initial velocity from fragment K at its 1992 perijove. In the limit

of geometric optics, particle size and 4 are inversely related (15):

4(c) ) 0.33 µm/c . (S28)

The coefficient is uncertain, depending on the albedo and density of the cometary grains,

but the inverse relationship holds regardless. We adopt this relationship in the discussion

to follow, while noting that uncertainty in the absolute scaling remains.

Figure 4 can be summarized by a function R(c), defining the ring plane intercept

point for a comet particle of size c, if launched from a fragment at the time of the 1992

perijove. A more complete description of the impactors must also include their

dependence on the moment t at which they are launched; this could occur at any time

between the perijove and the impact ~ 742 days later. The resulting function R(c,t) is

nearly independent of the source fragment, so we use K for all further analysis. Our

integrations also reveal that small (~ 1 m/s) random velocities at the time of ejection do

not change the results significantly.
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Because our integrations are deterministic, for any given launch time t there exists a

range of particle sizes (c1, c2) that will later intersect the nominal ring (Fig. S5); these are

the solutions to the equations |R|(c1,t) = 129,000 km and |R|(c2,t) = 128,000 km. The

mean follows a roughly linear decrease from c0 ) 50 µm at perijove to near zero just

before impact. The fractional width /c/c = 0.5–0.7% over this time span. At any given

moment, only ejecta within a very narrow range of sizes will be launched onto paths that

later intersect the ring, but every particle in this size range will do so. This is an idealized

view of the system, surely, and neglects a variety of randomizing effects such as the

slightly different trajectory of each fragment, the effects of rotation and vaporization, and

the small ejection velocity of each grain. Such factors will “blur out” the narrow size

distribution of ring impactors at any given moment. Nevertheless, the distribution of

impactors launched at time t will still be centered on roughly the same size and will still

carry a comparable fluence of mass into the ring.

2.3 Impactor Populations and Dust Fluence Estimates

We distinguish two populations of particles that serve as potential impactors into the

Jovian ring. First are those grains created during the breakup event around perijove in

1992. The existence of this population (P1) is supported by early images of SL9, in which

the fragments are already shrouded by a broad stream of dust (16). A second population

(P2) comprises those particles that were ejected after breakup (14).

Colliding populations typically obey a power-law model, in which

n(c) dc = nj (c/µm)-p dc (S29)

defines the total number of particles in the size range c to c+dc. The coefficient nj has

dimensions of length-1, making the integral over c dimensionless. We apply the subscript

j = 1 or 2 to distinguish models for populations P1 and P2, respectively. Exponent p is

typically 2–4, which ensures that the mass of the population is dominated by the upper

end of the distribution,

Mj(cmax) = 4#/3 2c nj (cmax/µm)4-p / (4-p) µm4 , (S30)

where cmax is the upper cutoff. For p = 4, both limits come into play, but the dependence

is only logarithmic:
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Mj(cmin,cmax) = 4#/3 2c nj log(cmax/cmin) µm4 . (S31)

Population 1 was created within a short time span around perijove at t = 0. As the

integrations illustrate, only particles in a narrow size range will intersect the ring. Total

mass within this range can be expressed as a fraction of the mass in P1. It is convenient to

divide P1 into the particles smaller and larger than co, because only the former can

possibly interact with the ring. Referring exclusively to the smaller particles, the

fractional mass F1 intersecting the ring is (/c/co) (4-p) or, if p = 4, (/c/co) log(cmin/c0). In

either case, the coefficient on (/co/co) is of order unity, yielding F1 ~ 0.5%.

Population 2 was created continuously during SL9’s final orbit. In this case, the

information in Fig. S5 enables us to determine the fraction F2 of particles smaller than co

that intersect the ring. If the dust is ejected at a uniform rate, then the fraction of particles

of size c intersecting the ring is simply F2(c) = [t2(c) - t1(c)]/P, where P ) 742 days is the

orbital period and (t1,t2) are the solutions to |R|(c,t1) = 129,000 km and |R|(c,t2) = 128,000

km. We can integrate F2(c) times the size distribution to determine the total mass fraction

F2 of particles smaller than co = 50 µm that intersect the ring. We find a roughly linear

trend with p, with F2 = 0.35% for p = 2 and F2 = 0.15% for p 0 4. The fractions F1 and

F2 are similar, permitting us to adopt 0.2–0.5% as the fraction of SL9 dust that will

intercept our nominal 1000-km wide ring.
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Fig. S1.

(A) Charged particles hitting the CCD created a dense overlay of corrupted pixels in

Galileo image C0552599400. (B) An iterative procedure systematically masked out any

pixels that were too different from their nearest neighbors. The resulting image is much

cleaner. Combined analysis of this image with C0552603500, taken 39 minutes later,

produced the image shown in Fig. 3A.



13

Fig. S2.

“Before” and “after” versions of New Horizons image 0035079924. (A) The image

initially showed a “ghost” pattern from light scattered within the optics. However, three

other images showed a similar pattern but with the ring falling at slightly different

positions within the frame. This made it possible to isolate the ghost pattern and subtract

it away from each image (B).
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Fig. S3.

The final, rotated and co-added version of our four New Horizons images.
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Fig. S4.

(A) The ring tip in Fig. S3 has been reprojected onto a uniform grid in [R,sin(")]. The

columns of this image can then be modeled as described in the text to produce (B), a

mean radial profile of ring intensity, Iflat, and (C), a model for the ring slope. The dashed

line shows a best-fit model comprising two sinusoids: !1 = 1315 km; Z1 = 2.3 km; !2 =

775 km; Z2 = 1.0 km. The third peak in the Fourier transform, which we associate with

SL9 in Fig. 2C, has a much smaller amplitude and is not included in this model.
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Fig. S5.

The size of a cometary dusty grain destined to impact the Jovian ring, based on the date

of release at low velocity from fragment K. The gray zone represents the size range

around the mean that will intersect a 1000-km wide ring. This zone has been expanded by

a factor of 30 to make it more visible in the figure; typically, the vertical width is

0.5–0.7% of the mean.
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Table S1.

Summary of images.

Image
Set

Image ID Observation Time Opening
Angle
B (°)

Range to
Jupiter

(1000 km)

Image
Resolution
(km/pixel)

Phase
Angle

(°)

Galileo 1996
C0368974139 1996-11-09T04:15 0.48 2,259 22 179.2
C0368991900 1996-11-09T07:15 0.48 2,333 23 178.3
C0368992339 1996-11-09T07:20 0.48 2,331 23 177.6

 Galileo 2000
C0552599400 2000-05-21T12:30 0.45 639 6.4 21
C0552603500 2000-05-21T13:11 0.39 663 6.6 5.8

New Horizons 2007
0035079784 2007-03-01T18:31 0.79 3,488 17 139
0035079854 2007-03-01T18:32 0.79 3,489 17 139
0035079924 2007-03-01T18:33 0.79 3,490 17 139
0035080321 2007-03-01T18:40 0.79 3,496 17 139


