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Abstract Heritable phenotypic variation in plants can be caused not only by underlying

genetic differences, but also by variation in epigenetic modifications such as DNA

methylation. However, we still know very little about how relevant such epigenetic vari-

ation is to the ecology and evolution of natural populations. We conducted a greenhouse

experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the

demethylating agent 5-azacytidine and examined the consequences of this treatment for

plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced

the growth and fitness of plants and delayed their flowering, but the degree of this response

varied significantly among genotypes. Differences in genotypes’ responses to demethyla-

tion were only weakly related to their genetic relatedness, which is consistent with the idea

that natural epigenetic variation is independent of genetic variation. Demethylation also

altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation

observed among plant individuals and genotype means. We have demonstrated that

epigenetic variation can have a dramatic impact on ecologically important plant traits and

their variability, as well as on the fitness of plants and their ecological interactions.

Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant

populations.
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89061 Reggio Calabria, Italy

C. L. Richards
Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA

M. Pigliucci
Department of Philosophy, City University of New York-Lehman College, Bronx, NY 10468, USA

123

Evol Ecol (2010) 24:541–553
DOI 10.1007/s10682-010-9372-7

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
5
3
1
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
.
3
.
2
0
2
0

http://dx.doi.org/10.1007/s10682-010-9372-7


Keywords Arabidopsis thaliana � 5-azacytidine � DNA methylation �
Epigenetics � Natural variation � Phenotypic plasticity

Introduction

One of the established principles of biology is that evolution by natural selection requires

heritable variation, and that the only source of such variation in natural populations is

genetic. Therefore, the ability of plant populations to adapt to local habitat conditions or

environmental change critically depends on the presence of genetic variation (Endler 1986;

Falconer and Mackay 1996; Linhart and Grant 1996); without genetic variation, evolu-

tionary change and adaptation are impossible. However, there is now increasing evidence

that, even in the absence of genetic variation, phenotypic variation can be caused by

variation in epigenetic modifications of the genome.

The term epigenetics generally refers to a set of molecular processes, including DNA

methylation, histone modification, and RNA interference, that can alter gene function and,

ultimately, the phenotype without changes in DNA sequence (Grant-Downton and

Dickinson 2005; Berger 2007; Bird 2007). The best described of these mechanisms is DNA

hypermethylation, where methylation of the 50-carbon of the cytosine aromatic ring results

in transcriptional silencing. Cytosine methylation is also strongly tied to the modification

of histones and the condensation of chromatin, and is an important factor in the regulation

of gene expression such as the silencing of duplicate genes after polyploid formation (Liu

and Wendel 2003; Osborn et al. 2003; Chen 2007). Recent research has shown that there is

natural variation in epigenetic modifications, very similar to that in DNA sequence, in

many different plant species (e.g. Cervera et al. 2002; Riddle and Richards 2002; Keyte

et al. 2006; Vaughn et al. 2007; Zhang et al. 2008), and that at least some of this variation

is heritable and independent of genetic variation, and therefore potentially subject to

evolution by natural selection (Kalisz and Purugganan 2004; Jablonka and Lamb 2005;

Rapp and Wendel 2005; Grant-Downton and Dickinson 2006; Richards 2006; Johannes

et al. 2008).

The study of epigenetic inheritance in natural populations is at an early stage. While it

is possible that it will eventually significantly improve our understanding of the mech-

anisms underlying phenotypic variation and the responses of organisms to environmental

change, currently there is a dearth of research that has addressed the causes and con-

sequences of epigenetic variation in an evolutionary ecological context. In order to

understand the relevance of heritable epigenetic variation, we need to: (1) investigate

how much of it is present in natural populations; (2) verify whether epigenetic variation

is at least partly independent of genetic variation; and in particular (3) study what sort of

significant effects does epigenetic inheritance have on ecologically important traits, on

fitness, and on ecological interactions. Here, we have attempted to contribute in par-

ticular to the third task.

A clear-cut demonstration of the ecological relevance of epigenetic variation is not a

trivial undertaking because of its co-occurrence with genetic variation. To be able to

unequivocally attribute phenotypic effects to underlying epigenetic variation, we must, by

experimental or statistical means, discern genetic from epigenetic effects (Bossdorf et al.

2008; Johannes et al. 2008). However, the simultaneous analysis of the phenotypic effects

of interrelated genetic and epigenetic variation, and their interactions, constitutes a sig-

nificant methodological and statistical challenge (Johannes et al. 2008).
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Previous studies that convincingly demonstrated phenotypic effects of epigenetic var-

iation often utilized natural or artificial epimutations that allowed the comparison of dif-

ferent epigenotypes of the same genotype (e.g., Cubas et al. 1999). A related technique is

to use the demethylating agent 5-azacytidine (5-azaC), a chemical that is incorporated into

DNA during replication and thereby inhibits the enzyme methyltransferase and causes

partial demethylation of the DNA (e.g., Jones 1985; Burn et al. 1993; Fieldes and Amyot

1999a; Tatra et al. 2000). The obvious advantage of such experimental epimutagenesis is

that it allows researchers to create different epigenetic variants of the same genotypes.

Because this can be done for many genotypes, it allows us to generalize across different

genetic backgrounds, and it is much more amenable to controlled, multi-factorial experi-

ments. The method is somewhat crude, but it can be a valuable first step in exploring the

potential phenotypic consequences of epigenetic variation.

Here, we have used 5-azaC to manipulate DNA methylation in a set of natural geno-

types of Arabidopsis thaliana and to examine the consequences of these modifications for

plant traits and their phenotypic plasticity. Specifically, we have asked the following

questions: (1) How does experimental alteration of DNA methylation affect the means and

variances of ecologically important phenotypic traits in A. thaliana? (2) Does experimental

demethylation alter the degree of phenotypic plasticity of plants in response to different

nutrient levels? (3) Do these responses to 5-azaC vary among different Arabidopsis
genotypes? (4) If yes, are genotypic differences in demethylation responses related to the

genetic distances among genotypes?

Materials and methods

Plant material

Arabidopsis thaliana (L.) Heynh. (Brassicaceae) is a small annual weed in the mustard

family (Brassicaceae). It is a predominantly selfing, ruderal species native to Eurasia but

now widely naturalized in the USA and elsewhere. A. thaliana has long been a model

species for plant genetics and molecular biology (Meyerowitz and Somerville 2002).

However, because of the growing body of knowledge about its physiology, development

and molecular biology, the logistic advantages it affords, and the availability of a broad

array of molecular tools, the species is now also frequently used as a model for addressing

basic questions at the interface of ecology and evolutionary biology (Pigliucci 1998;

Mitchell-Olds 2001; Koornneef et al. 2004). In this study, we used a total of 22 genotypes

of A. thaliana: 20 genotypes from natural populations, representing the species’ widest

geographical range (Table S1), and the two standard laboratory lines Landsberg erecta
(Ler-2) and Columbia (Col). The seeds were obtained from the Arabidopsis Stock Center

(TAIR; www.arabidopsis.org) where these genotypes, originally collected in the field, have

been propagated and maintained under uniform conditions for several generations.

Experiment

We conducted an experiment in which the 22 Arabidopsis genotypes were subjected to a

factorial combination of nutrient addition and experimental demethylation treatments. In

January 2006, all seeds were cold-stratified in the dark at 4�C for 1 week. For each

genotype, we used two petri dishes, one in which the filter paper was moistened with

1.4 ml water, and one in which it was moistened with 1.4 ml of a 50 lmol 5-azacytidine
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(5-azaC; Sigma Scientific, St. Louis, MO) solution. After this stratification period, we

transferred the petri dishes to an unheated greenhouse for another week under natural light

conditions until most seeds had germinated. The seedlings were transplanted into 72-cell

planting trays filled with a 50:50 mix of sand and vermiculite. The experiment followed a

split plot design with trays as plots, 5-azaC and nutrient treatments as whole plot factors,

and plant genotype as subplot factor. Low and high nutrient levels were created by adding

either one or eight pellets of a slow-release fertilizer (15-9-12 Osmocote Plus 8–9 M,

Scotts Miracle-Gro, Marysville, OH) to each cell in a planting tray. For each treatment

combination, there were three planting trays, each with three replicates per genotype. Thus,

there were 12 replicates of each genotype in each treatment combination, and a total of

1056 plants in the experiment. The trays were arranged randomly on two greenhouse

benches and watered as needed throughout the experiment. After approximately 45 days,

the first genotypes started flowering. Each plant was harvested at fruit maturity, 30 days

after first flowering. For each plant, we recorded (1) time to flowering, as the number of

days between the start of the greenhouse experiment and the first appearance of a white

petal, (2) rosette diameter to the nearest millimeter as a measure of plant size at the time of

flowering, (3) final plant height to the nearest millimeter, (4) the total number of basal and

lateral branches, (5) the total number of siliques, and (6) the final aboveground biomass in

milligrams after drying at 60�C for 24 h.

Statistical analyses

We used nested analysis of variance to test for the effects of demethylation, nutrient

availability, genotype, and their interactions on each of the response variables. The effects

of 5-azaC, nutrients and their interaction were tested at the plot level, using the tray mean

squares as error term, whereas the genotype effects and their interactions were tested at the

level of plant individuals, i.e. against the residual. To improve normality and homosce-

dasticity of the data, flowering time and plant height were square-root transformed, and all

other variables were log-transformed prior to the analyses. In addition, we ran a gen-

eralized linear model with binomial error and logit link to test for the effects of treatments,

genotypes and their interactions on plant mortality. We used the v2 deviances to calculate

variance ratios that were approximately F-distributed (McCullagh and Nelder 1989). All

analyses were done in JMP 6.0.3 (SAS Institute, Cary, NC).

To examine the effects of 5-azaC on phenotypic variation, we calculated coefficients of

variation for each phenotypic trait in the control versus 5-azaC treatment, and we used the

asymptotic test statistic by Miller (1991) to test for differences between these CVs. We ran

these tests both for the raw phenotypic variation among plant individuals, and for the

variation among genotype means, an estimate of quantitative genetic variation. As data

transformations equalize variances, the CVs were calculated from untransformed data. The

results of the genotype-level analyses did not qualitatively differ when CVs were calcu-

lated from raw genotypic means instead of least square means; we therefore present only

the results for comparisons of CVs based on raw data.

Finally, we examined whether differences between genotypes in their phenotypic

responses to 5-azaC were related to their genetic distance. We used data on 149 single-

nucelotide polymorphisms (SNPs) provided by Justin Borevitz (available at

http://naturalvariation.org/hapmap) and the dnadist program in PHYLIP (Felsenstein 2005)

to construct a genetic distance matrix of the 22 genotypes. Next, we calculated seven

Euclidean distance matrices based on the average percent phenotypic change of each

genotype in response to 5-azaC treatment: one matrix for each of the six traits, and one in
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which the changes in all traits were considered together. As the degree of change differed

greatly among traits, the response data were standardized prior to distance calculations. We

used Mantel tests to assess correlations between genetic and phenotypic distances.

Distance calculations and Mantel tests were done using the ecodist package (Goslee and

Urban 2007) in R (R Development Core Team 2007).

Results

Out of the 1056 individuals planted, 467 reached maturity. Plants treated with 5-azaC had

more than 40% higher rate of mortality than plants that were not treated (Table 1).

Analysis of deviance indicated that mortality was also significantly affected by plant

genotype and the 5-azaC by genotype interaction (Table 2). However, the full statistical

model explained only 15% of the total variation, so most of the mortality, which was

mostly likely caused by temperature stress in the greenhouse, was unrelated to any of the

experimental factors.

Table 1 Phenotypic differences between Arabidopsis thaliana plants germinated with or without
5-azacytidine

Control 5-azaC % Change

Mortality 45.83% 65.72% ?43.4

Flowering time (d) 50.19 (±0.78) 56.73 (±0.63) ?13.0

Size at flowering (cm) 1.91 (±0.08) 1.29 (±0.08) -32.2

Plant height (cm) 15.77 (±0.50) 11.89 (±0.56) -24.6

Branch number 5.39 (±0.25) 3.77 (±0.27) -30.0

Biomass (mg) 49.96 (±3.90) 24.05 (±3.07) -51.9

Fruit number 59.91 (±3.58) 37.71 (±4.58) -37.1

Size at flowering = rosette diameter

The values are means ± standard errors from the raw data

Table 2 Summary of analysis of deviance of plant mortality

Source DF Mean deviance Quasi-F

Plot level

5-Azacytidine 1 46.78 30.36***

Nutrients 1 3.83 2.49

A 9 N 1 2.99 1.94

Tray 12 1.54 1.19

Plant level

Genotype 21 3.09 2.38***

A 9 G 21 2.93 2.26**

N 9 G 21 0.54 0.41

A 9 N 9 G 21 0.53 0.41

Residual 956 1.30

DF degrees of freedom. ** P \ 0.01, *** P \ 0.001
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Experimental demethylation by 5-azaC strongly affected all of measured traits

(Table 1). On average, plants treated with 5-azaC flowered over 7 days later, and were

significantly smaller at the time of flowering than control plants (Table 1). Moreover,

plants treated with 5-azaC suffered a significant reduction in plant height and biomass, as

well as the numbers of branches and fruits produced (Table 1).

There was significant genetic variation in the degree to which 5-azaC affected flowering

time, size at flowering, and plant biomass (Table 3; Fig. 1). While in most Arabidopsis
genotypes, treatment with 5-azaC (averaged across both nutrient treatments) clearly

delayed flowering, the opposite was true for at least four genotypes (Fig. 1). Similarly, size

at flowering and total biomass were usually dramatically reduced by 5-azaC, but there were

a few genotypes that maintained or even increased their size in response to demethylation.

Treatment with 5-azaC generally altered plant responses to nutrient addition (Table 3;

Fig. 2). On average, demethylated plants that grew at high nutrient levels flowered

4.4 days later than demethylated plants at low nutrient levels, while in control (i.e., non-

demethylated) plants there was a tendency for nutrients to have the opposite effect on

flowering time (Fig. 2a). In addition, demethylated plants showed a significantly weaker

response to nutrient addition with regard to plant size at flowering and average branch

numbers (Fig. 2b/c). There was a significant 3-way interaction between the effects of

5-azacytidine, nutrients and genotype on flowering time, indicating that the degree to

which 5-AzaC altered the plasticity of this trait to nutrient additions varied among Ara-
bidopsis genotypes (Fig. 3). For instance, while control plants of the Bologna (Bl-1) and

Coimbra (Co-1) accessions showed identical phenological responses to nutrient additions,

treatment with 5-azaC induced a strong delay of flowering in response to nutrients in the

Spanish population, but did not change the response of the Italian population (Fig. 3).

Experimental treatment with 5-azaC significantly increased the phenotypic variability

among individuals in five out of six traits (Fig. 4a). The strongest effect was on repro-

duction, where treatment with 5-azaC increased the coefficient of variation by almost 60%.

The picture was slightly different when we examined genotypic means (Fig. 4b). Overall

coefficients were much lower, and while treatment with 5-azaC more than doubled the

estimated genotypic variation in fruit production and increased genotypic variation in

branch number, it did not significantly affect variability in other traits such as plant height

and biomass, and it even decreased the estimated genotypic variation in flowering time.

When constructing genetic distance matrices, the genotypes Di-2 and Ler-2 turned out

to be genetically identical, based on the SNP data used. The distance between these two

genotypes constituted an extreme outlier in the matrix correlations, and we therefore

omitted it from these analyses. When all phenotypic traits were considered together, there

Fig. 1 The variation among 22 genotypes of Arabidopsis thaliana in their phenotypic responses to
experimental demethlyation. Each line represents a different genotype
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was only a marginally significant correlation between the genetic distance of genotypes

and the dissimilarity of their phenotypic responses to 5-azaC treatment (Table 4). When

traits were considered separately, there was a significant correlation between genetic

Fig. 2 The effect of experimental demethylation through 5-azacytidine on the average phenotypic plasticity
of 22 genotypes of Arabidopsis thaliana in response to increased nutrient availability

Fig. 3 Genotypic variation
in the effects of experimental
demethylation on plant
phenotypic plasticity. The
reaction norms illustrate how
treatment with 5-azacytidine
alters the phenological response
to nutrient additions in 22
genotypes of Arabidopsis
thaliana. Two genotypes with
contrasting responses are
highlighted in bold
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Table 4 Mantel correlation tests between the genetic distances among 22 Arabidopsis genotypes and the
dissimilarity of their phenotypic responses to 5-azacytidine treatment

Phenotypic response in terms of… Correlation Significance

ALL TRAITS 0.1421 0.0716

Flowering time -0.0339 0.3364

Size at flowering 0.1417 0.0549

Height 0.1906 0.0158

Branch number -0.0328 0.3603

Biomass 0.2030 0.0057

Fruit number 0.1147 0.1160

Significance levels are based on 100,000 permutations
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distance and the height and biomass responses to 5-azaC, whereas correlations were non-

significant for all other traits (Table 4). However, none of the significant correlations

explained more than 4% of the variation in the data. These results were very consistent and

did not change qualitatively when we re-ran the analyses using Jukes-Cantor genetic

distances rather than simple distances based on the fraction of identical sites. We therefore

present only the results for simple genetic distances in Table 4.

Discussion

Although there is increasing evidence of heritable epigenetic variation in plants (e.g.

Cervera et al. 2002; Riddle and Richards 2002; Keyte et al. 2006; Vaughn et al. 2007;

Zhang et al. 2008), few connections have been made so far between epigenetic variation

and the variability and phenotypic plasticity of ecologically important plant traits

(Bossdorf et al. 2008). To improve our understanding of the ecological relevance of epi-

genetic variation, we conducted a greenhouse experiment in which we used 5-azacytidine to

manipulate DNA methylation in a set of natural genotypes of Arabidopsis thaliana.

In our study, we did not use molecular methods to verify demethylation at the molecular

level. However, many previous studies have demonstrated this effect of 5-azaC (e.g., Burn

et al. 1993; Tatra et al. 2000; Fieldes et al. 2005), and we think it is reasonable to assume

that reduced DNA methylation was the main cause of the observed phenotypic changes in

5-azaC-treated plants. One alternative explanation we cannot rule out is that demethylation

induced mobilization of transposable elements (Johannes et al. 2009), and that at least

some of the observed phenotypic changes results from such induced DNA sequence

changes. However, little is known about the frequency and phenotypic effects of such

transpositions, and it is very difficult to evaluate the likelihood of this alternative.

We found that experimental alteration of DNA methylation strongly affected the

growth, fitness and phenology of A. thaliana. There were large differences between

demethylated and control plants of the same genotype. A few other studies have also

demonstrated effects of demethylation through 5-azaC on ecologically important traits.

Burn et al. (1993) showed that treatment of A. thaliana and Thlaspi arvense with 5-azaC

significantly altered plant flowering times. In a series of experiments, Fieldes and col-

leagues (Fieldes 1994; Fieldes and Amyot 1999b; Fieldes et al. 2005) found that 5-azaC

affected the growth, fitness and phenology of Linum usitatissimum. These studies, and the

one presented here, show that epigenetic variation, independently of DNA variation, can

cause major shifts in plant phenotypes.

In most genotypes, demethylation caused a decrease in overall plant performance. This

general effect of demethylation or treatment with 5-azaC has been found by several pre-

vious studies (e.g., Burn et al. 1993; Fieldes 1994; Finnegan et al. 1996). Demethylation

resulted in a significant delay of plant flowering: on average, 5-azaC-treated plants flow-

ered 6.5 days later than control plants. This is in apparent contrast with several previous

studies that found 5-azaC or demethylation to induce early flowering in Arabidopsis (e.g.,

Burn et al. 1993; Finnegan et al. 1996, 1998) and other plant species (e.g., Fieldes and

Amyot 1999b; Kondo et al. 2007). However, recent research has shown that the transition

to flowering in Arabidopsis is a complex developmental process that involves both

methylation and demethylation of specific genes, and that, depending on the genetic

background, hypomethylation may either cause early or late flowering, or have no effect on

flowering time at all (Genger et al. 2003). Previous studies that found demethylation to

induce early flowering in Arabidopsis had often been using the artificial Landsberg erecta
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(Ler) line or Ler-based mutants. In our study, however, only two out of 22 Arabidopsis
ecotypes (Abd-0, Oy-0) flowered earlier when treated with 5-azaC, whereas in 13 ecotypes

flowering time was prolonged by over 5%. This suggests that the Ler ecotype may not be

representative of natural variation in Arabidopsis thaliana.

There was significant variation among Arabidopsis ecotypes in their responses to

experimental demethylation. However, these ecotypic differences in demethylation

responses were only weakly related to the genetic distances between genotypes, which is

consistent with the idea of natural epigenetic variation being independent of the corre-

sponding genetic variation (Richards 2006; Bossdorf et al. 2008). Alternatively, ecotypic

differences in the effects of 5-azaC could result from some kind of mechanical or physi-

ological differences between ecotypes that affect the absorption, transport and/or incor-

poration of 5-azaC, but are at the same time uncorrelated to DNA sequence variation, or

they could be—at least theoretically—due to ecotype-specific transposon activation. Both

alternatives are rather speculative, and we think that epigenetic variation is indeed the most

parsimonious explanation, particularly since its existence in Arabidopsis thaliana has

already been shown several times (e.g., Cervera et al. 2002; Riddle and Richards 2002;

Vaughn et al. 2007).

Treatment with 5-azaC increased phenotypic variability in most traits, which suggests

that 5-azaC may not be a very precise demethylation agent and it may therefore not only

reduce overall levels of methylation but also increase variation in methylation. Our result is

consistent with a study of Fieldes and Amyot (1999b) who found such effects of 5-azaC

were still present even in the fourth generation of untreated offspring. However, treatment

with 5-azaC not only altered overall phenotypic variability but also the apparent variability

of genotypic means of some traits. This has immediate implications for our understanding

of evolutionary processes, as measures of genotypic variation are commonly used for

estimating broad-sense heritability, one of the key parameters for predicting microevolu-

tion (e.g. Falconer and Mackay 1996). Thus, epigenetic variation can alter estimates of

evolutionary relevant phenotypic variation and of evolutionary potential.

Altering DNA methylation in Arabidopsis not only changed the means and variability of

ecologically important traits, but also their phenotypic plasticity. Demethylation decreased

the overall plasticity of plants to nutrient addition with regard to several morphological

parameters, and it substantially increased the plasticity of flowering time. We are only

aware of one previous study that experimentally tested for the effects of variation in DNA

methylation on plant phenotypic plasticity: Tatra et al. (2000) subjected two ecotypes of

Stellaria longipes to a factorial combination of light and 5-azaC and found that the

experimental demethylation significantly altered plants’ response to light. In our study, as

well as in the one by Tatra et al. (2000), there were significant differences between

different genotypes in the way that demethylation affected phenotypic plasticity (signifi-

cant three-way interaction between genotype, demethylation, and environmental treat-

ment), which suggests that genotype and epigenotype may interact in complex ways to

determine phenotypic plasticity.

In summary, epigenetic changes such as reduced DNA methylation can have a dramatic

impact on the mean, variability and plasticity of ecologically important plant traits. Epi-

genetic variation may thus be an overlooked factor in the evolutionary ecology of plant

populations.
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