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Abstract

This paper investigates the impact of instructional days on student performance.

Because school year length is endogenously determined, I estimate the causal impact

of school year length through two quasi-experiments that exploit different sources of

variation in instructional days. The first identifies school year length’s effect through

weather-related cancellations in Colorado and Maryland. Weather-related cancella-

tions are made up at the end of school years, allowing relatively large fluctuations in

instructional days within school districts prior to test administration. Because school

cancellations are not recorded for past school years, this data limitation is overcome

by using two-sample indirect least squares. The second identification strategy takes

advantage of state-mandated changes in test-date administration in Minnesota, which

moved 5 times in 5 years. The results are similar for either source of instructional

day variation: more instructional time prior to test administration increases student

performance. The effects are consistent across various thresholds of performance and

grade levels.
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1 Introduction

The positive association between education and earnings is one of the most robust findings in

labor economics. However, not all educations are created equal. Indeed, quality has varied

historically across demographic groups both within the United States and across countries.

As a result, some policy makers have suggested increasing the quality of education as a tool in

reducing labor market gaps in wages and employment. Interestingly, the pupil teacher ratio

and per student spending —common policy interventions —have respectively fallen and risen

in recent years while school year length has been stable (see Figure 1). Longer school years

provide the potential for increased instruction time, review, and attention for individual

students. While school year length has largely not been a topic of serious discussion in

education policy, it has recently drawn more attention. Hawaii has been scolded by Secretary

of Education If increased school year length does improve student performance, it could also

be an alternative strategy for schools which have trouble attracting new or better teachers.

This paper offers quasi-experimental evidence on school year length and its consequences for

student performance.

There is a continuing debate on whether educational quality has a bearing on student

outcomes —with academics, educators, and policy makers on both sides. The discourse be-

gan with the Coleman Report (1966), which found that per pupil resources have little impact

on student success. Since then, for every study refuting the Coleman Report’s conclusions,

another supports them. Hanushek (1981) shows increased expenditure on teachers is un-

likely to improve performance. Meanwhile, Margo (1986) estimates that 27 percent of the

black/white literacy gap from 1920 to 1950 can be explained by differences in educational

inputs. Krueger (1999) finds Project STAR students randomly assigned to small classes do

better on standardized exams, though the benefits may be temporary. Relatively little work

has investigated the impact of school year length, but that done has continued in the same
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spirit of discord.

Initial research on school year length focused on labor market outcomes, while later

studies have investigated test scores. Card and Krueger (1992) compare workers raised

in different states, finding those from states with relatively longer school years earn more.

Pischke (2003) takes advantage of short school years mandated in Germany to unify their

schooling system. He concludes that shorter school years increase grade repetition, but have

no long-term effects on employment or wages. Through a similar regime change, Krashinsky

(2006) studies the elimination of the fifth year of high school in Ontario, Canada. Cohorts

with four years of high school had substantially lower grade point averages in college than

those who attended high school for five years. Contrary to other research, recent interna-

tional cross-section studies by Lee and Barro (2001) and Wobmann (2000) conclude school

year length has no impact on test scores. Eren and Mittlemet (2005) study the National

Longitudinal Survey of Youth, which asks whether an institution’s school year is longer or

shorter than 180 days. They find that the best performing students benefit from longer school

years while low performing students do worse with increased instructional time. Marcotte

(2007) investigates the reduced form relationship between yearly snowfall and test scores,

finding years with substantial snowfall are associated with lower performance in Maryland.

Like previous school quality research, a consensus has yet to be reached regarding school

year length’s effect on student outcomes.

Due to inclement weather, districts routinely cancel school to avoid the liability and

danger of traveling on unsafe roads. These cancellations, commonly called “snow days”, vary

from year to year and across districts, causing states to adopt policies in order to guarantee

school is in session suffi ciently. For example, the state of Colorado mandates that schools

must extend their school year into the summer if total instructional hours fall below 1040.

Given current scheduling, this amounts to less than three cancellations for most districts.
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Conveniently (for the purposes of this study), Colorado administers its standardized tests

in March, months before any missed days are ever made up. The same can be said for

Maryland, which administers its tests at the end of April while school releases in June.

Because histories of cancellations for Maryland schools are not maintained, Marcotte es-

timates the reduced form relationship between aggregate snowfall and student performance.

Marcotte and Hemelt (2007) obtain partial cancellation histories for Maryland, finding in-

structional days have significant effects on performance. However, due to the incomplete

nature of cancellation histories they pool together two testing regimes (MSPAP (1993-2002)

and MSA (2003-2005)) which introduces a potential selection problem: districts with rel-

atively few cancellations tend to not maintain cancellation histories as far back as other

schools.1 Colorado also fails to collect closure histories in any unified location. I overcome

this obstacle for both states by using a two sample estimation technique similar to two-sample

IV (Angrist and Krueger, 1995). For the 06/07 and 07/08 school years I have collected daily

cancellation informationby surveying schools in Colorado and Maryland. I combine a first

stage of weather’s impact on cancellations (for 2006-2008) and a reduced form of weather’s

relationship with student performance (for 2002-2006 in CO and 1993-2002 for MD) and

estimate the effect of school cancellations through indirect least squares. This approach al-

lows me to study the effect of weather-related cancellations over long periods of time, even

if cancellation histories are not maintained. Using this method, future studies can easily

confirm the effect weather-related cancellations on student outcomes, even if information on

cancellations is available only for the more recent school years.

A second identification strategy investigates test examination dates, which changed 5

times over 5 years in Minnesota. The changes in test dates alternated between moving the

test earlier and later. They were moved earlier by 10 and 11 school days (in 2002 and 2004),

and were scheduled later by 10 school days and 15 school days twice (in 2001, 2003, and

1Marcotte and Hemelt adjust for this using district-specific time trends.
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2005 respectively). This created substantial variation both increasing and decreasing the

amount of time students received prior to examination. In addition, using variation do to

test-date shifts may offer more external validity over variation in instructional timing due

to weather-related cancellations as snow days interrupt instruction in unanticipated fashion.

However variation due to a test-date shift is known by the teacher in advance and they can

make their plans according, perhaps replicating more closely how teacher would respond to

an extended school year.

This paper identifies the effect of instructional days from two different sources of vari-

ation, yet they both yield similar evidence regarding school year length’s effect on student

performance. Because the available performance variables are proportions, the effects are

estimated using familiar probability models for grouped data. In addition, because the la-

tent variable is a test score, the estimated effects on the latent variable have a valuable

economic interpretation: how many standard deviations average scale scores have changed.

Both the response probabilities and the implied effect on latent test scores yield evidence

that increased instructional days raise student performance. This suggests that extending

the school year can be a method of increasing student performance, and perhaps with it,

human capital accumulation.

2 School Year Length: Background and Identification

The education production function is a common model used to study the choices of admin-

istrators and their ultimate consequences. The administrators are free to pick the levels

of various inputs in the educational process, subject to their budgets and state guidelines.

Examples of inputs include teachers (in number or quality), textbooks, and the length of

instruction time. Outputs of the educational process include test scores, grades, graduation,

going to college, and finding jobs, among many others. Figure 1 compares the national
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trends of the pupil-teacher ratio and real per pupil spending against school year length over

the last century. Contrasting the trends, expenditures on teacher employment have risen

considerably, while little funds have been devoted to extending the amount of instructional

time students receive. If longer school years do improve student outcomes, they could be an

alternative to other policies that influence school quality.

The magnitude of school year length’s impact on student outcomes is largely an empirical

question. However, comparing across states or nations to assess school year length’s effect

can introduce problems of bias. Actual instructional days can be divided into two parts:

the planned instructional days and cancellations. Planned instructional days are under the

control of the administrator, subject to budgetary constraints and time. Most previous stud-

ies have focused on differences in planned instructional days, identified by comparing across

states or nations. However the differences in planned instructional days can be largely due to

differences in budgets, introducing possible upward bias. Also one might have concern that

struggling schools might extend their school year to improve performance on standardized

tests, which would bias school year length’s effect downward. Texas recently required all

districts to begin every year on the last Monday in August for this reason.2 Using planned

instructional days can bias school year length’s effect, and the sign of the bias is arguably

indeterminate. Thus studying the component of school year length under the control of

administrators —planned instructional days —may be counter productive.

Using variation in instructional days due to weather-related cancellations can eliminate

the selection problems associated with longer planned school years (which could indicate

greater school resources or poor performance on prior exams). The part determined outside

the control of administrators still informs about the general effects of increasing instructional

days, as weather-related cancellations reduce the amount of time teachers have to instruct,

2Dallas Morning News, Thursday May 4, 2006
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quiz, or meet with students.3

Cancellations due to weather identify the effect of instructional days based on yearly

fluctuations due to weather, when the test date is fixed. Another possibility is to study

situations were dates of examination are shifted. This approach could share some common

advantages with weather related cancellations. The variation occurs within districts, and

changing the date of test administration does not alter other school resources. Although

schools might wish to move their date of examination for endogenous reasons, in Minnesota

all the shifts were state-wide. In addition, from 2000 to 2005 the date of examination

alternated being shifted later and earlier. So trends which are relatively smooth—such as

changes in demographics or school quality—can be controlled for and thus prevent bias due

to spurious correlation. Because a changes in instructional time due to a test date shift

is known at the beginning of the school year, teachers have time to plan out their year

accordingly. For this key reason, examination date changes may more closely resemble an

extended or shortened school year, offering estimates with more external validity.

2.1 Exogeneity of Weather: Snowfall’s Spatial Distribution

A critical assumption in order for cancellations due to weather to identify the causal effect

of instructional days is that cancellations be randomly assigned to schools. Even though

weather is exogenous, if it is correlated with unobserved elements that impact student per-

formance, causal effects remain unidentified. Thus choosing the correct sample framework,

cross-section or panel, can be vital to identifying a causal effect.

Snow accumulates heavily along the mountain range in the middle of Colorado, and

neglects to impact the southeastern region. Income in Colorado follows nearly the same

spatial pattern. Though not as clear as Colorado’s, it seems the correlation between snowfall

3We discuss in Section IV reasons weather-related cancellations could under or overstate school year
length’s causal effect.
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and income is reversed in Maryland, with the poorest regions in the western strip of Maryland

receiving the most snow while the wealthiest regions receive only mild amounts.4 Although

snowfall is exogenous, choice of residence is not random throughout the two states.

To see the extent of correlation between snowfall and resources in Colorado andMaryland,

cross-section regressions are estimated using weather as the dependent variable. These are

done purely to measure correlation between levels of weather and levels of resources, with

the results presented in Table 2. In Colorado, districts with substantial snowfall tend to

be rich districts while the correlation between snowfall and student family income varies by

year in Maryland. However running the regression as a panel and controlling for district

fixed effects and year specific trends, none of the variables are by themselves or jointly

significant. So although snowfall exhibits spatial correlation with student or school resources,

schools experiencing variation in snowfall are not systematically experiencing changes in

school resources. Controlling for school level fixed effects and yearly trends can eliminate

the selection bias that would be introduced due to non-random selection of residence in

Maryland and Colorado.

2.2 Minnesota: Examination Date Variation

Another source of variation in instructional days exploited is the shifts in scheduled test date

administration for the Minnesota Comprehensive Assessment. Minnesota is one of six states

which mandates that school start after a specific date, with the remaining states leaving it

to the discretion of local school districts.5 Its September 1 starting date is also tied for the

latest.6 Between the years 2000 and 2005, the Minnesota Department of Education moved

the date for its assessment each year, and by several days each time. Because of the shared

mandated starting time for schools, shifts in the test date create the potential for more or
4Figures in the appendix demonstrate the spatial patterns across the two states.
5The other five are Texas, Indiana, North Carolina, Virginia, West Virginia. Taken from Education

Commission of the States.
6Minn. Stat. 120A.41. Also in consequence, most schools begin the day after labor day.

7



less instructional time. The trend of average test scores is plotted against the number of

instructional days prior to examination in Figure 3. Every time the test date is moved

earlier, the trend flattens out, while tests administered later in the year show considerably

more improvement. This is mirrored when plotting the change in average test scores against

the change in instructional days.

The same effects are observed at a more disaggregated level. Using school level average

test scores in Figure 4, I plot the distribution of the change in average scale scores for years

with tests earlier in the school year, contrasted with the distribution of the change in scores

for tests administered later in the year. The year-to-year change in scale scores is shifted

to the right for both grades when the test is administered later in the year. Lastly as a

robustness check, Figure 5 demonstrates variables strongly correlated with student ability

and school resources (fraction eligible for free lunch and teachers employed) were relatively

smooth through the same time period.

3 Specification and Estimation

The student performance data are results from the Colorado, Minnesota, and Maryland

State Assessments. Each of the tests has stakes for teachers and administrators, but not for

students.7 Mathematics exams are studied because they are relatively objective and cover a

consistent curriculum. All 3 states publicly make available grouped averages of performance,

which will be the dependent variables of interest when calculating school year length’s effect.

However, it is useful to consider a simple model of student performance at a micro level to

accurately interpret the results and establish identification.

7Depending on how close students are to a threshold they may exhert more or less effort to pass an exam,
which has stakes for the student. See Betts (1996).
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3.1 Micro Model of Student Performance

Consider a model of testing where a student’s performance depends on his or her observ-

able characteristics, his or her school’s resources, and instructional days. Instructional days

are the planned instructional days less cancellations, where cancellations are influenced by

weather (snowfall in particular) and planned instructional days depend on resources. With

information on individual student test scores, one could estimate linear regressions for the

following model.

Tist = Istβ +X ′itβX +R′stβR + ss + τ t + εist

Ist = Pst − Cst

Pst = R′stαR + est

Cst = wstα + vst

Tist : Student i′s test performance at school s at year t

Ist : Actual Instructional days for school s at year t

Pst : Planned instructional days for school s at year t

Cst : Cancellations for school s at year t

Xit : Characteristics for student i at year t

Rst : Resources at school s at year t

wst : Weather for school s at year t

ss : School fixed effect

τ t : Year fixed effect

At this point a student’s performance depends on resources, both at the individual and

school level, and instructional time. The reduced form impact of weather on student per-

formance is

dTist
dwst

= −βα.
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Ideally, we would construct a weather measure wst such that α = 1.8 If α = 1, then

there is no need for a first stage as using the reduced form estimates of weather would

be equivalent to the structural relationship instructional days and student performance.9

Aggregate snowfall is likely to be correlated with closures but can be improved upon.10 For

instance 10 days where it snows 1 inch will probably not lead to any cancellations. However,

one day with 10 inches of snow almost surely would. Aggregate snowfall would treat these

realizations of weather the same. To more accurately assess weather likely to cancel school, I

also construct measures of weather based on the number of days on which snowfall exceeded

thresholds. Of course another trade-off exists. Thirty inches of snow on one day might

cancel school for the next 3 or 4 days, but threshold variables would treat this as equivalent

to one day with 4 inches of snow. For completeness, both weather measures are considered.11

Consider now the reduced form representation, removing instructional days directly from the

regression.

Tist = wst(−βα) +X ′istβX +R′st(βR + βαR) + βvst + ss + τ t + εist

One can rewrite the expression above, getting

Tist = wstγ +X ′istβX +R′stψ + ss + τ t + uist, (1)

where (βest − βvst + εist) = uist, -βα = γ, and (βR + βαR) = ψ.

8In a slight abuse of notation I refer to different weather measures having different α′s. This could be
more accurately respresented as αwst . To avoid more cumbersome notation, we will refer to them all as α.

9The reduced form for any weather measure could be rescaled so that α = 1. Essentially a first stage
relationship tells one how to rescale the units on the weather variable so that α = 1.

10Marcottes chosen regressor. Marcotte uses yearly snowfall, I remove snow during winter vacation,
weekends, or school holidays.

11There are many other weather measures that could be used. However, any measure highly correlated
with cancellations that doesn’t impact students other than through cancellations is suffi cient and necessary
for identification.
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This regression would be easy enough to run, were micro-level data on student perfor-

mance available. However, state assessment results made publicly available contain grouped

information for grade levels within schools. Maryland publishes the proportion proficient

and advanced while Colorado releases the proportion partially proficient, proficient, and ad-

vanced. Minnesota reports the proportion partially proficient, proficient, advanced, and also

average test scores.12 One can still estimate the effects on student performance, but the data

requires it be done in the context of probability models.

Then if we are interested in the probability that Tist ≥ t∗, where t∗ is an academic

standard, the partial effects include the reduced form effect on test scores, along with the

density at the cut off point. To illustrate this point, let us rewrite the effect of weather

on student performance, given the data refer to the probability of exceeding an academic

standard.13

P (Tist ≥ t∗)

= P (Iwstγ +X ′istβX +R′stψ + ss + τ t + uist ≥ t∗)

= P (uist ≥ t∗ − (wstγ +X ′istβX +R′stψ + ss + τ t))

=⇒

dF

dwst
=

f(t∗ − (wstγ +X ′istβX +R′stψ + ss + τ t)) (γ)

(I) (II)

or

dF

dwst
=

f(t∗ − (wstγ +X ′istβX +R′stψ + ss + τ t)) (−βα)

(I) (II)

12Maryland calls its middle category satisfactory, while Colorado and Minnesota refer to it as proficient.
Maryland calls its highest category excellent, while Colorado and Minnesota name it advanced. In this
paper, satisfory and excellent proportions in Maryland will be refered to as proficient and advanced for
simplicity.

13We continue with the representation of a micro probability model. Grouped probability estimates have
similar similar response probabilities, controlling for average student characteristics rather than particular
traits.
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The partial effects have two components: the effect of weather on latent test scores

(II), and the density at the cutoff (I). One can estimate the impact at different academic

standards, grades, or demographic groups. However, differences in the response probabilities

reflect both variation in the latent effect on student performance or different densities of

students at the chosen standard. In addition, typical procedures used to scale effects can

be problematic in probability models.

When interpreting the practical size of coeffi cients, one method is to compare the es-

timated effect to the mean of the dependent variable. This can give the researcher an

approximation of the “percentage”effect. With probability models this is problematic be-

cause the choice of failure and success is arbitrary. For this problem, I could have chosen

to examine the probability of being below an academic standard. The new estimated ef-

fect is the same in magnitude, only with the sign reversed. However, the proportion of

students below the standard is by definition one less the proportion above. By comparing

the partial effect to the mean of the dependent variable, one can either inflate or deflate

the “percentage” effect depending on the arbitrary definition of success and failure.14 In

other words, using the mean to scale the effect is not invariant to the researcher’s choice

of success in probability models. This obstacle can be partially overcome depending upon

which probability model is implemented.

I proceed now to the estimators used in grouped probability models. Probability is

replaced by its sample next-of-kin, the proportion of the students exceeding a threshold

Minimum chi-square methods provide several different well studied estimators from which

to choose.15 I examine the linear probability model and normit presented below (with a

general dependent variable and vector of regressors).

14This is similar to estimating elasticities. We could use the initial or the end point to scale the change.
For this reason it is common to used the midpoint to get an average elasticity. In our case, the midpoint is
always .5 by definition of probability.

15See Madalla for an extensive chapter on micro and grouped probability models (1983).
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Linear Probability Model Pt = X ′tβ + ut

Normit Φ−1(Pt) = X ′tβ + ut

The linear probability model is familiar from binary outcomes, and the normit, the

grouped version of a probit, is a reasonable choice for test scores well-approximated by

a normal distribution.16 Also the β estimated by the normit regression has a valuable

interpretation. When taking the normit (inverse cumulative normal) transformation of the

proportion variable, the transformed variable is a standard normal variable. Due to the

normit transformation, the estimated β indicates how many standard deviations latent test

scores have shifted. Focusing on the impact on the latent variable (which is called the

the latent effect from this point on in the paper) rather than response probabilities also

provides an invariant way to compare partial effects, as the transformation eliminates the

density component. This is one of the few situations where the untransformed coeffi cient

in a probability model has a valuable economic interpretation. This is useful for comparing

effects across grades, proficiency standards, or states, which have both different standards

and densities of students.17

3.2 First Stage: Weather and Cancellations

Up to this point, the focus of the discussion has been on estimating the reduced-form effect

of weather on student performance, γ. In order to place a magnitude on how additional

school days affect student performance, the reduced-form effect needs to be scaled by the

relationship between weather and cancellations, α. Because cancellation histories are not

maintained, this data challenge is overcome by estimating a first stage equation for the

2006/2007 school year. The weather variables previously discussed are included as regressors

16Typically there is some skewing in tests. Early grades they are skewed right, and scores skewed left for
later grades. Grades in the middle are typically those most symetrically distributed.

17If the data are truely generated by a normal distribution and the effect of instructional days is linear,
then the latent effect will be the same across across thresholds. If the effect differs across performance
standards, this could be both due to non-normality or non-linearity of the effect.
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in the first stage regressions. Two possible specifications for a first stage are explored. A

high frequency approach estimates how well the weather variables predict closures on a

particular day. A low-frequency analysis estimates how weather over the course of the school

year predicts the number of cancellations occurring within that year.

The first specification’s dependent variable is an indicator for whether school is open

or cancelled at a particular district on a given day. Because the data are measured at the

daily level, there are likely to be some matching problems. For example, snowfall on a

Monday night would cancel school on Tuesday but is matched with Monday’s school closure

status. This measurement error will likely attenuate α towards zero. In addition, because

the threshold variables are indicators, α will be naturally bounded between zero and one.

Because β is the parameter of interest, attenuation of α would bias the estimate of β away

from from zero as the reduced form effect γ is divided by -α to recover β (cancellations refer

to lost days, so dividing by -α yields a β that corresponds to the effect of an additional day

of schooling). For this reason, it may useful to think of the indirect least squares estimates

as upper bounds.

Cancellationsd = αo + αwsd + ds + vsd, (2)

where s indicates district and subscript d denotes the day and ds is a district fixed-effect.

The low frequency approach uses the number of cancellations as the dependent variable,

aggregating equation (2). The true population parameters remain unchanged with this

aggregation for the population model, due to linearity. However misclassifications of weather

due to calendar effects may be reduced as a lot of snow on Monday evening or Tuesday

morning would both aggregate to 1 day with a lot of snow.18

18Notice for either specification, the other controls have been ommitted from the first stage. This is
mainly due to the fact that the regressors are not yet available for the 2006/2007 school year. In addition,
in the high frequency approach any variables that are time constant are absorbed because of the fixed effects.
Because this includes any regressors that don’t vary throughout a school year, the fixed effects are collinear
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For completeness, both the low-frequency and high-frequency methods to estimate α are

computed and if there is little mismatching of the weather variables, the estimates will be

similar. Regardless, after estimating α the standard errors need to be adjusted to account

for both the randomness of γ̂ and α̂. The limiting distribution of γ̂
α̂
is approximated using the

delta-method. Recall for an estimated parameter vector θ̂, g(θ̂) has the following limiting

distribution where G(θ) is the matrix of partial derivatives with respect to θ.

N(g(θ̂), G(θ)′V (θ̂)G(θ))

In our case, the form of g(θ̂) is γ̂
α̂
.19 The reduced forms for Colorado and Maryland

are estimated respectively for 2002-2006 and 1993-2002. For both states the first stage

is estimated for the 2006/2007 school year. Because the parameters are estimated from

separate samples, it is assumed that the off-diagonal elements of the variance-covariance

matrix are zero.

g(γ, α) = γ
α

G(γ, α) =

( 1
α
−γ
α2

)

γ̂

α̂
→d N

(
γ

α
,
var(γ̂)

α2
+
var(â)γ2

α4

)
(3)

Notice if α = 0, the mean and variance will be infinite, making the distribution unde-

fined. This makes a powerful first stage critical to this study, like any instrumental variables

approach.

with all school and student characteristics recorded at the yearly level.
19This typically requires continuity of the function of the parameters. This function is continuous

everywhere, except where α = 0. This is a common problem of exactly identified instrumental variables
equations. In the results section the first stage is suffi ciently powerful to reject the null that α = 0.
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3.3 Minnesota

For Minnesota, similar regressions are estimated, albeit without some of the complications

using weather to generate random variation in instructional days. The regressor of interest

is simply the number of days prior to examination. This is found by calculating the number

of potential school days between the first of day of school and the test date (removing

holidays, weekends etc.). Because historical school schedules are not maintained, winter

break is defined to be between December 23 and January 3. Though there might differences

in winter break length, the fixed effects will capture any time constant discrepancies. So

even if some schools have more instruction (due to winter break differences) than others, the

deviation in instructional days from the mean will be the same for all school districts. If

there are changes in winter break length over time (or weather-related cancellations), this

would introduce measurement error, attenuating the estimates. One caveat is that because

schools are experiencing the same deviation from their mean instructional time, instructional

days would be correlated with year effects. In order to adjust for trends (which Figure 5

strongly suggests exist), school specific quadratic trends are included in the regressions.

4 Results

4.1 Data Sources

The performance data are taken from mathematics results made publicly available from the

Maryland, Minnesota, and Colorado Departments of Education. The Maryland assessment

results are from 1993-2002, Colorado’s cover 2002-2006, and Minnesota’s span 2000-2005.

The 3rd, 5th, and 8th grades are studied in Maryland, the 8th grade is explored in Colorado,

and the 3rd and 5th grades are examined in Minnesota.20 Maryland and Minnesota also

20In Colorado, schools following a year-round schedule or 4-day school were excluded. This because details
regarding breaks for year-round schools were not maintained, and 4-day schools report which weekday they
have off since 2003, but not prior. Although the exam began administration in 2000, 2002 on is studied
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make available the variables used as controls, while the control characteristics for Colorado

are taken from the National Center of Educational Statistics. The weather data are daily

surface observations from the National Climatic Data Center (details contained in the ap-

pendix on the linkage). Data on cancellations for Colorado and Maryland were obtained

by calling school districts at the end of the 06/07 school year and checking web sites that

announce cancellations.21 The summary statistics are found in Table 3.

Control characteristics of the schools and their student bodies are included in the re-

gressions. Even though weather and the test date changes are plausibly exogenous events,

including the controls can prevent spurious correlation and also reduces sampling error.

Common controls to all regressions run include the fraction of students eligible for reduced

price lunches and the pupil teacher ratio. School fixed effects are included in all regressions,

while year dummies account for trends in Colorado and Maryland and quadratic school

specific trends are included for Minnesota. Maryland and Minnesota have a few unique

controls not available through the National Center of Educational Statistics.22 Colorado

and Maryland also both report information on teaching assistants per pupil. Maryland

and Minnesota both record the proportion of students which are limited-English proficient.

Maryland provides yearly data on per capita wealth and the fraction of students which are

Title I eligible and Minnesota has information on the average experience of teachers. Ex-

cluding or including these additional variables in Maryland or Minnesota has little impact on

the results. Also, all the reduced-form regressions are weighted by the number of students

taking the test, and because the level of snowfall is shared by all schools within a district in

a year, standard errors are clustered by district and year.23

because the scale scoring changed to a new regime in 2002.
21In Colorado 107/178 districts provided cancellation for 2006/2007 school year, while in Maryland 19/24

responded.
22For Colorado, controls for the 05/06 school year had not been released yet. The prior years values were

imputed for these missing obsevations. Also the mean of previous values was tried. The results are robust
to method of imputation, or excluding the controls.

23This is in part due to relatively few districts in Maryland. Only 24 exist, and some are quite large with
dozens of schools. Thus if one clustered at the district level, some clusters could take up excessively large
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4.2 First Stage Estimates

To infer the effect of additional instructional days on student performance, weather’s reduced

form effects need to be scaled by weather’s relationship with cancellations for Colorado and

Maryland. The high frequency approach employees a linear probability model and includes

district level fixed effects. An observation is a day for a district. Meanwhile, the low

frequency approach aggregates over the year and compares across districts.

Both approaches yield similar estimates for Maryland. Each additional inch of snowfall

increases the odds of a cancellation by .16. The high frequency estimate is precise enough

with an F-statistic of 20.15 to suggest the instrument is not weak. This suggests that

the reduced form coeffi cients should be scaled up by a factor of 6 in Maryland. Colorado

superintendents are more resistant to snow, as an additional inch of snow is estimated to

raise the probability of cancellation by .05, somewhat smaller than in Maryland. For every

day with snow greater than 4 inches, the probability that Colorado school districts cancel

school increases by .37. The high frequency regressions provide the most precise estimates of

the structural relationship between weather and cancellations, all passing weak instrument

standards, and hence are used for the indirect least squares estimates of an instructional

day’s effect. Any measure of weather could be linked with its reduced form for Colorado.

The number of days with snow greater 4 inches is used for Colorado and inches of snowfall

is used for Maryland for the final estimates presented in the next section, and the results are

similar across other weather measures.24

partitions of the variance-covariance matrix.
24The 4 inch threshold measure seems the most robust across the two frequencies. In addition, it may

be less sensative than snowfall to outliers such as the large snow-storm which hit Colorado December 20-23,
2006.
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4.3 Reduced Form Estimates

Both the linear probability model and normit will be used in estimating the reduced form

effect of snowfall and performance. Recall
dF

dwst
= f(·) (−αβ) . If one uses the same

weather variable and compares across performance measures, differential effects could reflect

both differences in effects on latent performance β, as well the density of students at the

cutoff. Because the density is always greater than or equal to zero we can identify the

sign of −αβ above, but relative magnitudes cannot be compared because of differences

in densities. Two model specifications are used to estimate the response probabilities,

and the effect on latent scale scores. The linear probability model is used in estimating

response probabilities, as it does not require specification of f(·) thus offering some additional

robustness properties.25 The untransformed normit coeffi cients will provide estimates of the

effect of weather on latent scale scores.

With more days with substantial snowfall, the proportion above each of the academic

standards falls. In addition, the effects are strongest low in the test score distribution, as

the impacts of all the weather variables on the proportion partially proficient are larger and

more statistically significant than the effects at other proficiency cutoffs.26 With each day

of snowfall with more than four inches, the fraction partially proficient declines by .0056

From the normit regression, an additional day with snow greater than 4 inches decreases

test scores by .015 standard deviations (at the partially proficient standard). The direction

of the effects is clear, increases in snow is associated with lower student performance.

Maryland shows similar results to Colorado’s, albeit with greater statistical precision.

The results are presented in Table 4. Rows labeled “proportion proficient" and “proportion

advanced" refer to the linear probability estimates, while “latent proficient" and “latent

25It should be noted that estimated normit response probabilities closely mirror those estimated by the
linear probability model and are available upon request.

26This could also be due to a local effect, if districts that experience the most variation in snowfall are
also those whose density is most concentrated around the partially proficient standard. See Angrist and
Imbens (1994).
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advanced" refer to the untransformed normit coeffi cients.27 An additional inch of snowfall

decreases the proportion scoring proficient by .00073 for the 5th grade and .00053 in the 8th

grade. Likewise, an inch of snowfall is estimated to decrease latent scale scores by .0024

standard deviations (for the fifth grade at the proficient standard). With the exception

of the third grade, the estimated effects are all significant. Once again, increased winter

weather, in the form of inches of snowfall, is associated with reduced performance for all

grades and proficiency levels.28

4.4 Final Estimates of the Effect of Additional Instructional Days

Because Colorado and Maryland’s indirect least squares estimates refer to the effect of losing

an instructional day, those estimates are multiplied by -1.29 With this slight transformation

in mind, Table 6 compares the estimates of the effect of an additional day of schooling for

all three states across various grades and thresholds of proficiency. Rows with proportion

variables are estimated using linear probability models, while rows denoted as latent refer

to untransformed normit coeffi cients. All have similar qualitative implications: additional

instructional days improve student performance. Most are highly significant, though there

are some differences in magnitude.

Because the density of students varies across grades and academic standards, the best

measures to compare across grades and states are probably the latent effects. The estimated

effects derived from weather-related cancellations are in general larger than those from test-

date changes. In Maryland, an additional day of schooling is estimated to improve test scores

by as much as .016 standard deviations, while an additional day improves test scores by at as

27Because the normit function is not defined for proportions equal to zero or 1, these are replaced with
small deviations, i.e. 0.01 and .99.

28This is somewhat different from Marcotte and Marcotte and Helmette, who find 3rd graders are most
strongly effected by instructional days.

29This is because the fixed effect regressions refer to deviations from means, the estimated coeffi cents can
refer to deviation above the mean (more snow days) or below (less snow days). Linearity of the regression
model allows this transformation.
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much as .013 standard deviations in Minnesota. For Colorado, the largest estimate suggests

an additional instructional day raises test scores by .039 standard deviations.

Several factors could explain these differences. First, the estimates reported for Colorado

and Maryland use only cancellations in the first stage regression. If delayed starts and early

releases (other events that disrupt class and reduce instructional time) are treated as can-

cellations in the first stage regressions, the final indirect least squares estimates decrease by

25 percent. Non-linearity could also play a role because of decreasing returns to instruc-

tional time (Minnesota had more variation than Maryland, which in turn had more than

Colorado). Also the effect of additional school days could vary due to test diffi culty, stu-

dent ability, or teacher quality. A few large snow storms impacted Colorado in 2006/2007,

which could have attenuated the first stage, and thereby biased the indirect least squares

estimates away from zero. Furthermore, weather-related cancellations may reduce critical

review time, whereas a moved test date allows teachers to reschedule their time to allow for

proper review. These reasons suggest the estimates of instructional days’effect derived from

weather-related cancellations could be considered as upper bounds.30

In Minnesota, bias could go in the other direction. Several of the test date changes post-

poned the test until after spring break. If students forget material while on vacation, the

Minnesota estimates could understate the effect of additional day of instruction. Also the

later dates may have allowed less time for post-assessment material. This could lead to spill

overs reducing the amount of material learned before the fourth grade, which could poten-

tially also affect test scores in the fifth grade. These factors suggest that the estimates due

to changes in test-date administration could be thought of as a lower bound for instructional

days’effect.31

30Teacher absences could be an additional concern (Miller et.al. 2007). Because teacher absences are
excluded from my data (due to availability), the indirect least squares estimates would be upward biased.
This supports the notion that the estimates due to weather related cancellation can be viewed as upper
bounds.

31One additional factor that could play a role is absolute age, as students are either older or younger

21



Lastly, both identification strategies refer to the effect of a contemporaneous change in

instructional days. In essence, they measure the temporary effects of increasing instructional

days for a particular school year. If the school year were permanently longer, there could be

positive spill-over effects. For this reason, the effect of a permanent increase in school year

length could be greater than those estimated in this paper.

4.5 Robustness Checks

I proceed to investigate two robustness checks. As pointed out in the previous section,

if the ability to remove snow is improving over time, the indirect least squares estimates

would overstate the effect of additional instructional days. Another factor that could play

a role is school attendance. If school is not cancelled when a snowstorm hits, students

might miss school and fall behind their classmates. This creates bias as the original reduced

form estimates of weather’s effect on cancellations would also include the effect of weather

on attendance, if there is one. These two sources of possible bias are investigated using

additional data sources.

Parameter stability is an implicit assumption of the two sample indirect least squares es-

timates. If technology in snowfall removal has improved more snow will be required to cancel

school, this would bias the indirect least squares estimates away from zero. This concern

is likely to be most relevant for Maryland, as the reduced form data go back to the 92/93

school year, while the first stage is estimated for the 06/07 school year. Harford County

School District in Maryland has maintained a rich history of weather-related cancellations.

From September 1988 through today, they have recorded daily cancellation, delay, and early

release information. In addition, total yearly cancellations have been recorded since 1975.

These additional data sources offer two ways to test the structural stability of weather’s re-

depending on the date of test administration. However students are only older when they take the test, not
when they are learning the material throughout the year. For evidence regarding absolute age, see Bedard
and Dhuey (2007).
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lationship with cancellations. A high frequency analysis estimates the relationship between

snowfall and daily cancellations for each school-year beginning in 1988. A low frequency

approach will the effect of yearly snowfall on total cancellations for ten year windows, be-

ginning with the 1974-1983 window and ending with 1998-2007 window. Figure 6 contains

the estimated coeffi cients for both approaches.32 Though the estimated relationship between

snowfall and cancellations varies across years, it seems to be noise rather than a systematic

trend. Also interestingly enough, the high frequency results from pooling across all years

suggest that an additional inch of snow increases the probability of a cancellation by .11.

This is similar to the earlier results for Maryland using all school districts with only the

06/07 school year.

A last robustness check explores whether snowfall impacts attendance. The hypothesis

studied in this paper has concerned the number of days teachers have for instructing their

students, not the number of instructional days students choose to attend. If snowfall causes

truancy, the indirect least squares estimates will be biased. This is not because the first stage

is invalid—rather it concerns the original structural model. Upward bias would occur as part of

the reduced form effect is due to attendance, but the current indirect least squares estimates

would attribute it all to cancellations. Beginning in 2005, the Colorado Department of

Education has recorded and published the total percentage of hours missed, the percentage

of hours missed and excused, and the percentage of hours missed and unexcused. The three

measures are regressed on yearly snowfall and the number of days with snow greater than 4

inches in separate regressions—with the results contained in Table 7. There is not a statistical

or practical relationship between snowfall and the total percentage of hours missed or the

percentage of missed hours unexcused.

There is some evidence that greater snowfall increases the number of excused absences.

32The yearly regression could not be estimated in 1997, 1998, and 2002 as there were no cancellations,
hence no variation in the depedent variable.

23



Although the effect is marginally significant, it is small in magnitude. For each day with snow

greater than 4 inches, the proportion of hours excused increases by .0008. No matter how it

is scaled, the effect is relatively small. In addition it is unknown when the days were missed.

Because cancellations require make-up days in the summer, parents could be excusing their

students from the make-up days at the end of the school year (because of previously arranged

family vacations or other activities). So although there is some evidence of possible bias

because winter storms cause excused absences, the correlation between snowfall and excused

absences is small in magnitude and could be explained by scenarios that would not bias the

results.

5 Conclusions

Prior research has been at odds over the effect of school inputs on student outcomes—both

labor market and academic. I find evidence consistent with increased instructional days

improving student performance. This supports Card and Krueger’s findings that longer

school years are associated with increased wages. Two different identification strategies

are employed in calculating the effect of an additional day of schooling, taking advantage

of exogenous variation in instruction due to both weather and state mandated shifts in

test administration. Also, it is encouraging that the estimates are similar to those of

Marcotte and Hemelt. This holds although the method used in Maryland is different along

with additional data from Colorado. A different source of instructional day variation in

Minnesota provide similar and even stronger results. Weather-related cancellations and test

date shifts both offer statistically significant evidence that additional school days increase

student performance.

The larger estimates suggest that 5 additional days of instruction would increase test

scores by .15 standard deviations, while the smaller suggest it could improve test scores
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by .05 standard deviations. It may be of use to compare these estimates to other policy

interventions, such as decreasing the pupil-teacher ratio. Krueger finds that being in a

small class increases a student’s percentile ranking by roughly 4 points. Comparing these

percentile effects to standard deviation shifts in scale scores offers rough comparison, and

also requires a distribution and location. If the data were generated by a normal distribution

and the student is at the median, increasing his or her percentile ranking by 4 percentile

points implies a scale score shift of .1 standard deviations. If a student were at the 90

percentile, increasing by his or her percentile ranking by 4 points implies the scale score

increased by .25 standard deviations. This is only a back-of-the-envelope comparison, but

it seems that a couple weeks of additional school days is a reasonable substitute for smaller

classes.

Although I find evidence of the potential benefits of extending the school year, this does

not necessarily justify requiring all schools to do so. In part this is because the costs of

lengthening the school year are not homogeneous across districts (due to air conditioning,

teacher salaries, transportation). Thus, locations where it is expensive to lengthen their

school year might optimally take advantage other policy interventions, such as reducing

the pupil-teacher ratio. This would be consistent with effi cient distribution of schooling

resources.

In conclusion, my final estimates are consistent with more instructional days raising

student performance. Because total instructional days in a school year (pre and post test

administration) are fixed despite changes in weather-related cancellations or test-date admin-

istration, the estimates relate to the effect of an increase in instructional days. Permanently

longer school years could have positive spill-over effects not accounted for by either estima-

tion strategy. The results in this paper suggests longer school years can improve student

performance, and perhaps increase human capital accumulated.
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6 Appendices

6.1 Figures

Colorado Mean Yearly Snowfall Colorado Median Income

[0.08,53.92]
(53.92,82.60]
(82.60,105.54]
(105.54,149.62]
(149.62,193.12]
(193.12,553.53]

Snowfall
[23125.00,34966.00]
(34966.00,38245.00]
(38245.00,42188.00]
(42188.00,48600.00]
(48600.00,59586.00]
(59586.00,90124.00]

Median Income

Maryland Mean Yearly Snowfall Maryland Median Income

[0.0,5.9]
(5.9,7.2]
(7.2,9.5]
(9.5,11.0]
(11.0,14.7]
(14.7,69.4]

Snowfall
[35438.0,41917.0]
(41917.0,47211.0]
(47211.0,59998.0]
(59998.0,63090.0]
(63090.0,67879.0]
(67879.0,85422.0]

Median Income

6.2 Creation of Snowfall Variables

For both Maryland and Colorado, weather data was extracted from the National Climatic
Data Center (NCDC) daily surface observations. In Maryland snowfall was taken as the
average of snowfall observed in county, as districts and counties are the same. A few counties
which did not maintain weather histories and were linked to the closest coop locations. Also
days with missing observations were imputed using the closest coops higher and lower in
elevation. In Colorado, school districts locations, in longitude and latitude, were extracted
from the National Center of Educational Statistics. This was then used to determine the
elevation of the school districts. Knowing both the latitude/longitude coordinates of the
schools and their elevations, school districts were linked with the two nearest weather stations
higher and lower. Then snowfall was computed the average of these nearby stations. The
first stage estimates use the data available from the NCDC as of August 2007.
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Figure 1
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Figure 1 shows that on average in the United States, while the pupil teacher ratio has fallen
and real expenditure per pupil has risen, school year length has remained relatively fixed.

Figure 2
A B

Colorado District-Level Variation in Instructional Time
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Figure 2 shows that the variation of instructional days within school districts in Colorado is
comparable to the between variation in planned instructional days in Colorado. This provides
evidence there can be suffi cient variation in instructional days to identify the effect comparing
within school districts.
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Figure 3
Trends in Minnesota Average Scale Scores and Instructional Days
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Figures 3 A and B show that the upward trend in average scale scores in Minnesota flattens
out when the test is administered earlier, and steepens when exams are later.

Figure 4
Distribution of Minnesota School Average Scale Score Changes, by Date of Test
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Figures 4 A and B demonstrate that the entire scale score (improvement) distribution is shifted
to the right when exams are shifted later. This shows that the relationship observed in Figure 3
is not driven merely by outliers.
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Figure 5

10
0

10
5

11
0

11
5

12
0

2000 2001 2002 2003 2004 2005
School Year

Instructional Days % Eligible for Free Lunch
Pupil Teacher Ratio

Minnesota Instructional Days and School Resources
Normalized by 1999/2000 Levels

Figure 5 demonstrates that school characteristics such as the pupil/teacher ratio and the % of
students receiving reduced price lunches change relatively smoothly compared to the changes in
test administration date.

Figure 6
Historical Stability of First Stage, Harford County Maryland
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Figure 6 shows that although there may be sampling variability using a particular school year
to estimate the relationship between snow and cancellations, a systematic trend does not seem
present.
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Table 1
Correlation Between Snowfall and Resources

Year 99/00 00/01 01/02 02/03 03/04 Panel

Colorado

Pupil Teacher Ratio · · .28**
(.14)

.17
(.15)

.12
(.08)

-.008
.159

% Reduced Price Lunch · · -17.26***
(4.62)

-12.99***
(4.11)

-12.99***
(4.11)

1.79
(3.034)

Fixed Effects No No No No No Yes
Year Dummies No No No No No Yes
F-Test · · 15.32*** 7.92*** 8.53*** 0.17
Maryland

Pupil Teacher Ratio
-.041
(.043)

.054
(.0493)

.025
(.020)

· · -.011
(.018)

% Reduced Price Lunch
-29.87
(35.74)

-35.99
(34.67)

-12.98
(14.40)

· · 1.027
(14.05)

Fixed Effects No No No No No Yes
Year Dummies No No No No No Yes
F-Test 0.53 0.72 1.65 · · .17

Dependent Variable: Yearly Snowfall. All results clustered at district-year level.
***significant at 1%, ** significant at 5%, % significant at 10%. Parentheses indicate standard errors.

Table 1 establishes that within a cross section there is non-random selection of residence, partic-
ularly in Colorado. Controlling for fixed effects, changes in weather appear unrelated to changes
in resources.
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Table 2
Summary Statistics

Variable Maryland Colorado Minnesota

% Advanced
.10

(.14)
.14

(.11)
.15

(.11)

% Proficient
.44

(.22)
.41

(.18)
.55

(.17)

% Partially Proficient · .72
(.16)

.71
(.15)

Snowfall
11.55

(13.55)
20.26

(10.80)
·

Pupil Teacher Ratio
16.5

(1.63)
16.3

(2.31)
16.0

(1.81)

% Eligible for Free Lunch
.33

(.25)
.37

(.24)
.33

(.22)

Teaching Assistants/1000 Students
10.91
(3.63)

17.97
(7.82)

·

Average Teacher Experience · · 16.85
(4.91)

Median Wealth Per Student
223, 785
(84, 966)

· ·

% Title One
.15

(.32)
· ·

% Limited English Proficient
.020
(.04)

· .054
(.11)

Parentheses indicate standard errors.
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Table 3
First Stage: Effect of Snowfall on Cancellations

High Frequency Low Frequency
Weather Measure Colorado Maryland Colorado Maryland

Snowfall
.052∗∗∗

(.004)
.16∗∗∗

(.03)
.013

(.010)
.14∗∗

(.056)
t-statistic 11.52 4.49 1.33 2.5
f-statistic 132.80 20.15 1.76 6.23

# Days Snow > 4 inches
.37∗∗∗

(043)
· .27∗∗

(.109)
·

t-statistic 8.66 · 2.68 ·
f-statistic 75.01 · 7.18 ·

# Days Snow >1 s.d.
.37∗∗∗

(.044)
· .23∗∗

(.11)
·

t-statistic 8.44 · 2.05 ·
f-statistic 71.27 · 4.21 ·
Fixed Effects yes yes no no
Number of Observations 17716 2681 107 18
***significant at 1%, ** significant at .5%, * significant at 10%
Results clustered at district-year level. Parentheses indicate standard errors.

Table 3 contains the estimated relationship between weather and cancellations. Snowfall—in
various measures—is strongly related with cancellations.
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Table 4
Colorado Reduced Form

Effect of an Additional Day with Snow>4 inches on Performance
Dependent Variable Grade 8
Response Probabilities

% Partially Proficient
−.0056∗∗

(.0024)

% Proficient
−.0030
(.0032)

% Advanced
−.0043∗∗

(.0021)
Shift of Scale Scores in Standard Deviations

Latent Partially Proficient
−.015∗

(.008)

Latent Proficient
−.0053
(.009)

Latent Advanced
−.0073
(.009)

Fixed Effects Yes
Controls Yes
***significant at 1%, ** significant at 5%, * significant at 10%
All results clustered at district-year level. Parentheses indicate standard errors.

Table 4 shows that additional days with snow exceeding four inches is associated with lower
performance in Colorado.

Table 5
Reduced Form Maryland

Effect of An Additional Inch of Snowfall on Performance
Dependent Variable Grade 3 Grade 5 Grade 8
Response Probability

Proportion Advanced
−.000052
(.00013)

−.00048∗∗∗

(.00015)
−.00046∗∗∗

(.00016)

Proportion Proficient
−.00050
(.00038)

−.00073∗∗

(.00032)
−.00053∗∗

(.00022)
Shift of Scale Scores in Standard Deviations

Latent Advanced
−.00049
(.00098)

−.0027∗∗∗

(.00081)
−.0021∗∗∗

(.00068)

Latent Proficient
−.0018
(.0012)

−.0024∗∗

(.0010)
−.0014∗∗

(.0006)
School Fixed Effects Yes Yes Yes
Controls Yes Yes Yes
***significant at 1%, ** significant at 5%, * significant at 10%
All results clustered at district-year level. Parentheses indicate standard errors

Table 5 shows that additional inches of snowfall in Maryland reduce performance, regardless of
threshold or grade studied.
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Table 6
Final Estimates of the Effect of an Additional Day of Schooling

Colorado Maryland Minnesota
Dependent Variable Grade 8 Grade 3 Grade 5 Grade 8 Grade 3 Grade 5
Response Probability

Proportion Advanced
.011∗∗

(.0055)
.00038

(.00081)
.0030∗∗∗

(.0011)
.0029∗∗

(.0012)
.0028∗∗∗

(.00027)
.0011∗∗∗

(.00016)

Proportion Proficient
.0081

(.0084)
.00031
(.0025)

.0045∗∗

(.0022)
.0033∗∗

(.0015)
.0045∗∗∗

(.00025)
.0031∗∗∗

(.00020)

Proportion Partially Proficient
.014∗∗

(.0069)
· · · .0022∗∗∗

(.00023)
.0020∗∗∗

(.00017)
Shift of Scale Scores in Standard Deviations

Latent Advanced
.019

(.024)
.003

(.0063)
.016∗∗∗

(.0062)
.013∗∗

(.0051)
.013∗∗∗

(.0012)
.0042∗∗∗

(.00067)

Latent Proficient
.013

(.024)
.011

(.0077)
.015∗∗

(.0069)
.0090∗∗

(.0042)
.012∗∗∗

(.00069)
.0089∗∗∗

(.00055)

Latent Partially Proficient
.039∗

(.021)
· · · .0074∗∗∗

(.00071)
.0070∗∗∗

(.00061)
Percentage Shift in Scale Scores

Log Average Score · · · · .00082∗∗∗

(.000085)
.00062∗∗∗

(.000064)
Controls Yes Yes Yes Yes Yes Yes
Fixed Effects Yes Yes Yes
Trend Year Dummies Year Dummies Quadratic By School

***significant at 1%, ** significant at .5%, * significant at 10%.
All regression clustered at district-year level. Parentheses indicate standard errors.

Table 6 presents the estimates of the effect of an additional day of instruction on performance.
The results all share the same sign (improvement), and many are highly significant. Estimates
derived from weather-related cancellations are relatively larger, while those due to test date shifts
are the most statistically significant.
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Table 7
Attendance and Snowfall, Colorado

% Hours Missed % Hours Missed Unexcused % Hours Missed Excused

Snowfall
−.00022
(.00014)

−.0001
(.0001)

.00007
(.00007)

Days w/Snow>4
.0006
(.001)

−.0003
(.0006)

.00085∗

(.0005)
Fixed-Effects Yes Yes Yes
Mean .057 .0135 .044

***significant at 1%, ** significant at .5%, * significant at 10%
All results clustered at district-year level

Table 7 contains estimates of the effect of snowfall on attendance in Colorado. For most
measures of attendance and weather, snowfall appears unrelated to truancy. The one measure
which exhibits statistical significance, is small regardless of how it is scaled.
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