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ABSTRACT

We study the interaction between a dipolar magnetic field rooted in the central star and the circumstellar
accretion disk in a classical T Tauri system. The MHD equations, including radiative energy transport, are
solved for an axisymmetric system with a resistive, turbulent gas. A Shakura-Sunyaev—type eddy viscosity
and a corresponding eddy magnetic diffusivity are assumed for the disk. The computations cover the disk and
its halo in a radial interval from 1.7 to 20 stellar radii. The initial magnetic field configuration is unstable.
Because of magnetocentrifugal forces caused by the rotational shear between star and disk, the magnetic field
is stretched outward and part of the field lines open. For a solar-mass pre-main-sequence star and an accre-
tion rate of 10~7 M, yr~!, a dipolar field of 1 kG (on the stellar surface) is not sufficient to disrupt the disk.
The outer, slowly rotating parts of the disk become disconnected, and about 1/10 of the accretion flow is lost
because of an outflow at midlatitudes. The critical field strength for the disruption of the disk lies between 1
and 10 kG. Outflows occur at midlatitudes, with mass fluxes of the order of 10% of the accretion rate of the
disk. We find solutions in which the magnetic field tends to spin down the stellar rotation without disk

disruption, but in these cases the accretion torque is dominant, and the star is still spun-up.

Subject headings: accretion, accretion disks — circumstellar matter — MHD — stars: magnetic fields —
stars: pre-main-sequence — stars: variables: other

On-line material: color figures

1. INTRODUCTION

A number of T Tauri stars show evidence for the presence
of magnetic fields with surface strengths of several kilogauss
(Guenther & Emerson 1996; Guenther et al. 1999; Johns-
Krull, Valenti, & Koresko 1999). In a classical T Tauri
system (CTTS), in which a pre-main-sequence star is sur-
rounded by an accretion disk, the inner parts of that disk
are then threaded by the stellar magnetic field. A sufficiently
strong magnetic field should not only change the structure
of the inner parts of the disk but also transfer a significant
amount of angular momentum between the star and the
disk. Magnetic coupling between the central T Tauri star
and a truncated disk has been proposed to be the mecha-
nism that prevents T Tauri stars from spinning up to
breakup velocity during the contraction toward the main
sequence (Cameron & Campbell 1993; Yi 1994; Armitage &
Clarke 1996; Li, Wickramasinghe, & Riidiger 1996;
Bouvier, Forestini, & Allain 1997). The rotation periods
typically lie between 0.1 and 8 days. The disk-locking sce-
nario predicts weak-line TTSs to rotate faster than CTTSs,
because of the lack of a disk. While some observations seem
to support that picture (Bouvier et al. 1993; Edwards et al.
1993; Ghosh 1995), others favor a single-moded distribu-
tion and thus show no evidence for a coupling between stars
and their disks in CTTSs (Stassun et al. 1999, 2001).

The coupling between an accretion disk and its central
object was first discussed by Ghosh & Lamb (1978, 1979a,
1979b). In their model of an accreting neutron star, the
dipolar magnetic field of the rotating star threads the sur-
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rounding disk. As the toroidal field generated by the rota-
tional shear between the star and disk reverses its sign at the
corotation radius, so does the torque exerted on the disk.
Inside the corotation radius, the magnetic field transfers
angular momentum from the disk to the star, while the outer
parts of the disk, which rotate slower than the star, brake
the stellar rotation. Because of the rapid decrease of the field
strength with radius, the inner parts dominate and the star
is spun-up unless the inner edge of the disk lies very close to
the corotation radius. Between the stellar surface and the
corotation radius the accretion flow follows the magnetic
field, and no disk exists. In this way a further spin-up of the
star is avoided, and a decelerating torque can be exerted on
the stellar surface.

The truncation radius is a crucial parameter of the disk-
locking model. Ghosh & Lamb (1979a) find

R =T/Ry, T'=q (GM*MZ) ) (1)
where o, < 1 is a dimensionless parameter, B« the field
strength on the stellar surface, R« the stellar radius, and M
the accretion rate. Elstner & Riidiger (2000) studied a two-
dimensional model in which the disk structure was treated
in a one+one-dimensional approach, while the magnetic
field was evolved using a two-dimensional induction solver
assuming Keplerian rotation in and rigid corotation with
the star above the disk. They found that for a field strength
of 200 G or more, the disk is depleted because of enhanced
accretion inside the corotation radius and eventually trun-
cated at the latter.

The assumption of a purely dipolar field and a rigidly
rotating halo above the disk appears unrealistic. The rota-
tional shear between the two footpoints of a field line will
cause an initially dipolar field threading a resistive disk to be
stretched in the radial direction first, and then the footpoints
to be pushed outward, away from the central star (Aly 1984;
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Lovelace, Romanova, & Bisnovatyi-Kogan 1995; Bardou &
Heyvaerts 1996; Agapitou & Papaloizou 2000).

Camenzind (1990), Ko6nigl (1991), Cameron & Campbell
(1993), Shu et al. (1994), and Ghosh (1995) have applied
the Ghosh & Lamb scenario to the problem of coupling a
T Tauri star to the surrounding disk by a dipolar magnetic
field. While the models of K&nigl (1991), Cameron & Camp-
bell (1993), and Ghosh (1995) assume the dipole to be only
weakly distorted, Camenzind (1990) and Shu et al. (1994)
assume a force-free field above the disk with an accretion
flow along the field lines close to the inner edge of the disk.
They conclude that only the inner part of the disk is mag-
netically connected to the star, while the outer parts of the
disk are threaded by open field lines.

For a reliable estimate of the total torque exerted on the
central star, knowledge of both the structure of the magne-
tized disk and the field configuration in the medium above
the disk is necessary. Uchida & Shibata (1985), Goodson,
Winglee, & Bohm (1997), and Miller & Stone (1997) carried
out two-dimensional simulations of magnetized disks, but
the works of Uchida & Shibata and of Goodson, Winglee,
& Bohm focused on the launching of jets, while Miller &
Stone studied the formation of a funnel flow toward the
poles of the central star. We therefore present a series of
computations that involve a fully two-dimensional model
of the disk structure as well as the evolution of an in-
itially dipolar magnetic field rooted in the central star and
threading the disk.

2. THE MODEL

With outer radii of several hundred AU, the ratio of the
outer and inner radii of a protoplanetary disk is about 10%.
For a dipolar magnetic field, the field strength decreases
with the third power of the distance from the star. There-
fore, only the innermost part of the disk is directly affected
by the stellar magnetic field. As we focus on the star-disk
interaction, we restrict our computations to that part of the
disk and the halo above. The gas is assumed to be ionized
and the degree of ionization to be sufficient for a single-fluid
approach to hold. The system can then be described by a set
of eight partial differential equations, namely, the conserva-
tion laws of mass,

dp _
V(o) =0, (2)
momentum,
ou
p|:5+(u-V)u:|:—Vp+f+V'Ta (3)

and gas energy,

oT
crp[a—i— (u-V)T] = —pVeu+ Py + Prag — A, (4)

and the induction equation,

OB
In equation (3) the force term reads
GM 1
f=pv r*+p“+UF0+4—V><B><B, (6)
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where T denotes the stress tensor. In equation (4)

Dyie = (T+V) - u (7)
denotes the viscous heating and

P = 471'77Tj2 , (8)

with the electric current j, is the magnetic heating term. In
equation (6) the term containing the radiative energy flux Fy
is the radiative force. It is only present in those cases in
which radiation is included (see below). The same holds for
the radiative cooling term in equation (4),

A = per(aT* — Ey) . 9)

For a description of the stress tensor T, see Klahr, Henning,
& Kley (1999).

Throughout this work we assume axisymmetry. A time-
dependent 2.5-dimensional finite-difference code for solving
the equations of radiation hydrodynamics based on the
method of constrained transport (Evans & Hawley 1988)
has been developed by Kley (1989). Stone & Norman
(1992a, 1992b) and Hawley & Stone (1995) describe a modi-
fication of the original Evans & Hawley scheme that ensures
stability by interpolating the field advection and Lorentz
force terms along the characteristics (method of characteris-
tics with constrained transport). To treat the full MHD sys-
tem of equations, the induction equation and Lorentz force
terms as described in Stone & Norman (1992b) have been
added to the Kley (1989) code, and an additional heating
term due to the ohmic dissipation was included in the equa-
tion for the gas energy. As tests, the wind solution by Weber
& Davis (1967) and the results of Stone & Norman (1994)
were reproduced.

In the nonmagnetic case the disk is in hydrostatic equilib-
rium, and its vertical structure is determined by a local
equilibrium between viscous heating and radiative cooling.
For finding an appropriate initial mass distribution and
very long runs, in which the thermal evolution of the disk is
an issue, we include the equation for the radiation energy
density, which is treated using the flux-limited diffusion
approximation (Levermore & Pomraning 1981):

0E K+o

o+ Ve (Eow) =VFo+A—p=——u-Fy ., (10)
where

Fo _p(;iig)wzo , (11)

X:mWEﬁd _ (13)

The Ansatz in equation (11) transforms the radiation energy
equation (10) into a diffusion equation that is valid in the
optically thin as well as in the optically thick case. For the
opacity, an analytical approximation of the opacity tables
by Alexander, Auguson, & Johnson (1989), derived by Bell
& Lin (1994), is used.

We assume a perfect gas described by the equation of
state

p=(n.+Xm)kT (14)
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where n, and n; are the number densities of the electrons and
ions, respectively. The number densities of the different
types of ion are related through the Saha equation:

niy1  gitl
= J(T) . 15
=T (15)

The code includes the ionization of hydrogen and helium.
Note that the degree of ionization enters the model in the
equation of state only. We always assume the molecular
electric conductivity of the gas to be large enough for the
MHD approach to hold.

The small-scale motions of the gas inside the disk are
assumed to be subsonic and turbulent. Their effect on the
large-scale flow is modeled by a turbulence viscosity,

vr = assCH), (16)

where ass < 1 is a free parameter, ¢, is the local sound
speed, and H), is the pressure scale height (Shakura &
Sunyaev 1973). If the pressure scale height exceeds the
height of the disk, the latter is used instead. With M = 107
M, yr~! and ass = 0.01, values between 10'* and 10! cm?
s~ ! result for v in the disk.

In turbulent conductive fluids the decay of large-scale
electric and magnetic fields is strongly enhanced by small-
scale motions. Provided the molecular electric conductivity
is high and the small-scale velocity field is statistically iso-
tropic, this enhanced decay can be described by a turbulent
magnetic diffusivity n7. Unlike the turbulence viscosity,
which plays an essential part in the process of accretion, 7
cannot be directly derived from the global properties of the
disk. Kitchatinov, Pipin, & Riidiger (1994) computed both
parameters using the second-order correlation approxima-
tion and found nearly identical values for slow rotation and
isotropic, homogeneous turbulence:

vr = %Tcorr<u/2> y N = %Tcorr<u/2> ) (17)

where 7., is the correlation time and ' the amplitude of
the velocity fluctuations. Lacking a detailed model for
turbulence in accretion disks, we relate the turbulent mag-
netic diffusivity to the turbulence viscosity through the
(turbulent) magnetic Prandtl number Pr,,:

vr

nr = Prm . (18)
Equation (17) suggests Pr,, = 1, which we assume through-
out this paper.

The molecular values for both the viscosity and the mag-
netic diffusivity can be neglected compared to the turbulent
values, as long as the degree of ionization is high enough to
justify the use of the MHD equations. Small but finite values
are used for the viscosity (2 orders of magnitude smaller
than in the disk) wherever the density drops below 10-12 g
cm 3, while the magnetic diffusivity is set to 0 in these areas.

The computations cover the disk itself and the halo
above. The inner radius is located at 1.7 stellar radii, about
one-third of the corotation radius, while a radius of 20 stel-
lar radii is chosen for the outer boundary, such that the
boundary conditions do not affect the inner parts, where the
interaction between the stellar magnetic field and the disk
occurs.

To generate the start solution, we switch the stellar
magnetic field off and the radiation transport on. The
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one-dimensional version of the original Kley code is then
used with the same set of input parameters to solve for the
vertical structure of the disk at the inner and outer radii of
the two-dimensional integration volume. The initial disk is
then generated by linear interpolation between these two
one-dimensional solutions. The rotation rate is assumed
Keplerian, the radial velocity is determined by the initial
mass accretion rate, and the vertical velocity component is
assumed to be 0.

While measurements of magnetic activity give an estimate
for the field strength in the stellar photosphere, the field
geometry is unknown. Since we assume axisymmetry
throughout this paper, the most natural choice for the
unperturbed stellar magnetic field is that of an axisymmetric
dipole:

By cosf
3

By sinf
g, — Bxsin

Br = ) 0 ) (19)

3
where r is to be taken in units of the stellar radius. The stel-
lar magnetic field can be treated as either an initial or an
external field.

The initial state consists of a disk interpolated from
one-dimensional vertical structure models and a halo of thin
perfectly conducting gas. The vertical structure models
are computed with a one-dimensional radiation hydro-
dynamics code and show very steep density gradients in the
atmosphere of the disk. A large density contrast between
disk and halo is necessary to ensure that the disk is not
significantly affected by purely mechanical interactions
with the halo and infall of gas from the latter. The density
distribution in the halo,

R n
p=po () | (20)
where Ry is the normalization radius (see below), contains
the input parameters py and n. With py = 10-12 g cm—3 and
n = 2, the density in the halo is about 4 orders of magnitude
smaller than in the disk, where it varies between 10~8 and
1019 g cm—3. The initial temperature of the gas in the halo
is 5000 K, while the maximum temperature in the disk is
7000 K. The gas in the halo is initially at rest, while the disk
rotates Keplerian everywhere. The stellar magnetic field
penetrates the disk; i.e., we start with a purely dipolar field.

In all runs the stellar rotation rate was 1/10 of the
breakup rotation rate

|G M x
Qg = . 21

With G = 6.67 x 10-8 g~ cm?3 s~2, the breakup rotation fre-
quency is Qx = 1.3 x 10~ s~1, and the stellar rotation fre-
quency 2 = 1.3 x 10-5 s~! corresponds to a rotation period
of 5.6 days.

We normalize radius, time, velocity, density, tempera-
ture, pressure, and magnetic field, respectively, as follows:

r=tro, 1ro=Rx, (22)

A r
t=1t th = 23
0> 0 GM ) ( )

I

v="0vy, vo=—, (24)

_to
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p=ppo, poinput parameter , (25)
2
A %
T=TT,, Tozﬁ, (26)
R A po
P=PPo, Po=—p— (27)
0
B:BB() y 30:1)0\/47'(,00 . (28)

The domain of the integration has four boundaries: the
inner and outer radii, the equator, and the axis of rotation.
At the inner boundary, the azimuthal velocity component
is kept fixed to match the stellar rotation period. For the
meridional part of the velocity field, an outflow boundary
condition is imposed; i.e., the tangential component
of the velocity is assumed continuous, while the vertical
component is either continuous (if directed outward) or 0
(otherwise). The azimuthal components of both the mag-
netic and the electric fields and all scalar quantities are con-
tinuous. Imposing the boundary condition on the azimuthal
component of the electric field rather than the poloidal mag-
netic field ensures that the magnetic field remains divergence
free. At the outer boundary, the same boundary conditions
hold as at the inner boundary, except for the azimuthal
velocity component, which is continuous rather than fixed.
The boundaries at the axis of rotation and the equator are
not real boundaries but an axis and a plane of symmetry,
respectively. The boundary conditions therefore all follow
from symmetry.

3. RESULTS

We start with a pure MHD model; i.e., equation (10) is
used for calculating the start solution only (model A). We
have made runs for field strengths By of 100 G, 1 kG, and 10
kG. While our focus is on the 1 kG case, which is closest to
observations, the 100 G and 1 kG cases can be regarded as
representing the limiting cases of very weak and very strong
fields, respectively. Figure 1 shows the evolution of the sys-
tem in the Bx = 1 kG run. Because of the open boundary
condition at the inner boundary, the halo is not in hydro-
static equilibrium. A Bondi-type spherically symmetric
accretion flow therefore develops immediately after the start
of the run, squeezing the stellar dipole by dragging the field
inward. Beginning at the inner edge of the disk, the field
lines in the halo start to bend outward. Field loops are
stretched in the radial direction, and the radial component
begins to dominate the poloidal field. Within these elon-
gated loops the gas moves radially outward. The field loops
eventually break up when they reach the boundary, leaving
parts of the disk disconnected from the star. At t = 100 the
polar caps of the star as well as most of the disk are threaded
by open field lines. Inside the disk the magnetic field is
mainly vertical, and its orientation does not vary with the
radius. Above the disk there are two areas of strong poloidal
field of opposite orientation, with a neutral zone in between,
at midlatitudes. As the run proceeds, the neutral zone
becomes very narrow, and the distribution of field lines over
latitude is roughly flat.

Figure 2 shows the inner region of the system at the begin-
ning and the end of the run. In the vicinity of the inner boun-
dary, the density has increased at all latitudes. The halo is
now divided into two regions: a high-density region close to
the star and directly above the disk and a low-density area.
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At midlatitudes an outflow from the high-density region
expands into the low-density region, while at high latitudes
the high-density region accretes gas from the low-density
region. The gap between the inner edge of the disk and the
inner boundary that was present in the initial model has
been closed. The density stratification of the innermost part
of the disk strongly deviates from the original standard disk
and shows a region of high-density inflow on top of a layer
with lower density. The poloidal magnetic field structure is
still close to the original dipole close to the inner boundary
but deviates substantially at midlatitudes and in the upper
layers of the disk and the layer immediately above.

The left panel of Figure 3 shows the value of the plasma
/6)

87p gas
ﬂ = Bz )

and the toroidal field component. Here § < 1 in the disk
and the high-density part of the halo, and S > 1 in the low-
density region, indicating that the latter is dominated by the
magnetic field. In the region shown, which is almost entirely
within the corotation radius, the toroidal field is predomi-
nantly positive in the northern and negative in the southern
hemisphere. Together with a poloidal field that points away
from the star in the northern and toward the star in the
southern hemisphere, the resulting magnetic torque is nega-
tive (transport toward the star).

Figure 4 shows the magnetic field geometries and density
distributions for 100 G and 10 kG at ¢t =679 and 173,
respectively. The simulation time was limited by technical
requirements. Strong fields in areas with low density lead to
high Alfvén velocities and thus small time steps because of
the Courant criterion. For the weak-field case of 100 G, the
magnetic field is compressed in the vertical direction by the
infalling gas. A current sheet separates a region of infalling
gas around the polar axis from the rest of the halo, where
the gas moves outward. The inner regions of the disk remain
coupled to the star, but open field lines originate from the
outer parts of the disk. The field orientation is essentially
vertical inside the disk but almost horizontal above. The
disk structure is not changed significantly, but there is a halo
around the star with a radius of about 5 stellar radii. In the
halo, about 3 stellar radii above the equatorial plane, a cur-
rent sheet separates the regions of closed and open field
lines.

In the 10 kG strong-field case, the inner parts of the disk
are disrupted. Beginning at the inner boundary, the gas
begins to flow along the magnetic field lines rather than
remain in the disk. The inner edge of the disk then moves
outward to 10 stellar radii, roughly twice the corotation
radius. The accretion flow is vertical at the inner edge of the
disk but essentially horizontal closer to the star and reaches
the inner boundary of the integration volume at midlati-
tudes. Between the inner edge of the disk and the inner
boundary, a halo forms. Field lines originating from the
polar caps of the star open, leaving the outer parts of the
disk disconnected from the star, as in the weak-field case.
Directly above the disk and at midlatitudes there are two
distinct regions of fast outflow with high mass density. The
mass loss through the outer boundary amounts to 30% of
the accretion rate at the inner boundary. This is, however,
still a transient state.

The pure MHD model contains viscous heating terms but
no radiative cooling. While this is not an issue for short

(29)
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Fic. 1.—Evolution of the magnetic field and the density distribution for model A with a dipole field strength of 1 kG. The diagrams show the system at
t=0, 39,75, 101, 119, and 146, respectively, from top left to bottom right. The white solid lines denote field lines, and the arrows the poloidal component of
the gas velocity. [See the electronic edition of the Journal for a color version of this figure.]

simulation times, it might prevent the system from reaching
an equilibrium. We therefore study a second model (model
B) using the same start solution but keeping the radiation
transport switched on, i.e., solving equation (10) together
with equations (2)—(5). We again make runs with 100 G, 1

kG, and 10 kG. Figure 5 shows the density, poloidal field,
and (meridional) gas flow for the extreme cases of 100 G
and 10 kG.

As in the pure MHD case, the weak field (100 G) is
squeezed by the gas infalling from the halo. A sheet of open
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FiG. 2.—Innermost region of the disk for Bx = 1 kG, model A. Left: Initial density distribution and poloidal magnetic field. Right: Density distribution,
poloidal magnetic field, and meridional gas flow at 1 = 146. [See the electronic edition of the Journal for a color version of this figure.]

field lines develops that separates the area close to the rota-
tion axis from the rest of the halo. The inner parts of the disk
are coupled to the star, while the outer parts are threaded by
open field lines. The transition between both regions occurs
at 8 stellar radii. Above the outer parts of the disk, field lines
are bent outward and their orientation is roughly parallel to
the disk surface. The halo is almost neutral at midlatitudes,
where a slow outflow occurs.

A very strong field of 10 kG disrupts the disk within 8
stellar radii. Field lines originating from the polar caps of
the star are open, while those with footpoints closer to the
equator are closed. A high-density outflow emerges at
midlatitudes. Between the inner boundary and the inner
edge of the disk, the region of maximum density lies at
about 1.5 stellar radii above the equatorial plane. The mag-
netic field is bent inward below and outward above the
region of maximal density.

The 1 kG case is shown in Figure 6. The density distribu-
tion differs considerably from the pure MHD case. The
innermost part of the disk has become very thin, and a small
gap is present between the inner edge of the disk and the
inner boundary. The almost spherical halo around the inner
boundary found in the pure MHD model is missing.
Instead, a high-density region has formed above the disk,
extending about 15° in latitude, with densities between 1
and 2 orders of magnitude lower than inside the disk. Gas
accretion through the inner boundary takes place through
this halo rather than the disk. The poloidal field structure is
similar to that found with model A, but the closed field line
region extends about twice as far in the disk plane, to about
8 stellar radii. The field lines threading the outer disk are still
bent outward, but not as strongly as in the weak-field case.

The toroidal field and plasma (3 for this case are shown in
the right panel of Figure 3. Asin model A, # > 1 in the disk
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FiG. 3.—Plasma (3 and toroidal magnetic field for the B« = 1 kG runs of models A (left) and B (right). Solid lines denote positive values of By, and broken
lines negative values. [See the electronic edition of the Journal for a color version of this figure.)

and high-density region of the halo, and 5 < 1 elsewhere.
The toroidal field distribution, however, is completely differ-
ent. Inside the disk, B, is positive in the upper and negative
in the lower part of the disk but has reversed signs in the
halo above. This leads to opposite toroidal field polarities
on the inner boundary for the two models.

4. DISCUSSION

Our computations show that the initial configuration
with a dipolar magnetic field rooted in a star surrounded by
a Keplerian disk is unstable. Unless the field strength on the
stellar surface exceeds a certain threshold of several kilo-
gauss, the field in the halo above the disk is wound up
because of the different rotation rates of the footpoints of
each field line. A toroidal field is generated, and the poloidal
field lines are stretched in the radial direction at midlati-
tudes. Field lines originating from the equatorial regions of
the stellar surface remain closed, while those originally con-

necting the polar caps of the star with the outer parts of the
disk break up, leaving star and disk threaded by open field
lines. For field strengths above the threshold value, the inner
parts of the disk are disrupted, and the accretion flow
changes from disk to magnetospheric accretion. For the
disk studied here with an accretion rate of 10~7 M, yr—! and
a viscosity parameter ass = 0.01, surrounding a solar-mass
star with a radius of 3 R., the critical field strength lies
between 1 and 10 kG, measured on the stellar surface. For
field strengths below the threshold value, the disk height
decreases inside the corotation radius. The magnetocentri-
fugal force exerted by the wound-up field drives an outflow
at midlatitudes. The mass-loss rate varies strongly with
time. It can reach a significant fraction of the mass accretion
rate and temporarily even exceed it. Outflow velocities reach
up to 200 km s~! at a 20 stellar radii distance from the star,
which exceeds the escape velocity of 60 km s~!. Because of
the open boundaries, our setup does not guarantee the exis-
tence of a stationary solution. As a consequence, none of
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Fi6. 4—Weak- and strong-field cases for model A. Left: For Bx = 100 G. Right: For Bx = 10kG. [See the electronic edition of the Journal for a color version

of this figure.]

our runs reached a stationary state. In the Bx = 100 G
model B case, which was run longest, the solution became
stationary in a statistical sense in the inner parts of the simu-
lation volume.

In contrast to pure MHD models usually focused on jet
collimation, both the disk and the halo are relatively cool in
our model (except in the vicinity of the inner boundary in
model A), with initial temperatures of a few thousand kel-
vins only. We have taken into account the low degree of ion-
ization at these temperatures in the equation of state only
and have assumed that the equations of MHD still hold. At
the limited resolution of our computations, eddy viscosity
and magnetic diffusivity coefficients have to be used rather
than their molecular counterparts anyway, and one can
hope that the turbulent diffusion processes do not strongly
depend on the molecular viscosity and ohmic resistivity, if
the latter exist at all.

The most striking difference between the models with and
without radiation is the structure of the halo. Model A

shows a high-density region around the central star with
temperatures up to 10° K. Model B lacks this halo around
the star and has a region of increased density above the disk
instead, and lower temperatures in the halo compared to
model B. In the runs with radiation transport switched on,
the disk showed a tendency to thicken, especially in the
outer parts, temporarily reaching an H/R aspect ratio of
about 1 in some cases. A run with zero field strength showed
that this behavior is not caused by the magnetic field but
appears to be a consequence of the rather moderate density
contrast between disk and halo chosen to limit the Alfvén
speed. An inspection of the halo’s thermal properties
revealed that the disk became unstable whenever the gas
temperature in the halo was between 5000 and 10,000 K, at
which the opacity is a rapidly increasing function of the tem-
perature, a condition known to cause disk instability.

The ratio of poloidal to toroidal field energies is less than
1 in all runs, increasing from 0.01 for a polar field strength
of 100 G to 1 in the 10 kG case. This is probably due to the
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FiG. 5.—Density, poloidal field lines, and meridional gas motion for the weak- and strong-field cases of model B. Left: For Bx = 100 G. Right: For
By = 10kG. [See the electronic edition of the Journal for a color version of this figure.]

fact that the force necessary to adjust the accretion flow to
the magnetic field depends on the densities of mass and
kinetic energy in the disk, which are always roughly the
same.

We now address the problem of angular momentum
transport. The azimuthal component of the equation of
motion expresses the conservation of angular momentum:

o0
2 2
0p—=V-t. 30
rosin” p— (30)
The magnetic contribution to the transport vector is
rsin 0B,
mag — T B ) (3 1)
and the total torque is given by the surface integral
Tnag = 27rr2/ (tmag *¥)sin 0 do . (32)
0

Defined as in equation (32), the torque is positive when
angular momentum is extracted from the star and negative
when the stellar rotation is accelerated. The initial configu-
ration always produces a negative torque.

With model A, the torque was found to be negative in the
100 G and 1 kG runs and positive in the 10 kG run. Figures
7 and 8 show the poloidal and toroidal field energies as well
as the magnetic torque as functions of time for model B and
values of 100 G and 1 kG, respectively. In both cases, the
total torque is negative at the beginning* and strongly varies
with time, even changing its sign, but becomes more steady
after + = 1000 and 500, respectively, and the sign is posi-
tive most of the time. In the Bx = 100 G case, the poloidal
field energy, magnetic toque, and kinetic energy become

4 The initial phase is not shown in the Bx = 1 kG case because of some
high (negative) peaks in the magnetic torque curve.
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FiG. 6.—Density, poloidal magnetic field, and velocity for Bx = 1 kG , model B. The right panel is an enlarged view of the inner part of the left. [See the

electronic edition of the Journal for a color version of this figure.]

essentially constant after # = 1000, but the toroidal field
energy continues to grow. This is due to the longer timescale
for the toroidal field evolution in the outer parts of the
disk, which do not contribute significantly to the magnetic
torque.

The surprising positive sign of the torque is a consequence
of the negative sign of the toroidal field component in the
upper hemisphere and the positive sign in the lower hemi-
sphere, at the inner boundary. The high-density region of
the halo corotates with the disk. In this region, the dominat-
ing generator of the toroidal field is the radial shear term in
the induction equation,

. o0
sin 6B, o
which is negative for positive B, and Keplerian rotation. At
the boundary, there is a sharp increase of the rotation rate,

generating a toroidal field of the opposite sign. For the flux
generated in this boundary layer to penetrate the disk, the
timescale of radial field diffusion,

l2
Tdiff = —, 33
p (33)
must be shorter than the timescale of field advection,
! (34
Tadv = — -
adv u )

r

With values of 10!! cm for the length scale /, 1014 cm? s—!
for the magnetic diffusivity 7, and 107 cm s~! for the radial
velocity component, 74 = 108 s, while 7,qy = 10° s. The
positive radial shear at the inner boundary, although very
strong, is therefore without effect, because the flux it
generates is immediately removed from the integration
volume.
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The timescale for the spin-down of a star rotating with
angular frequency €2 is given by the relation

IN=T, (35)
where

S 2p2
I:? pr*dr = Mk”R (36)
0
is the star’s moment of inertia and k the fractional radius of
gyration. The value of k depends on the density stratifica-
tion. We use k%2 = 0.2, as derived from polytrophic models
for fully convective stars (Rucinski 1988). For a solar-mass
T Tauri star, M =2 x 103 g and R = 2 x 10!! ¢m, equa-
tion (36) yields a value of 1.6 x 105 g cm?2. The spin-down
timescale is given by

Q
T == 37
4 (37)
In the 1 kG run, the value of the magnetic torque is of the
order of 2 x 1037 g cm? s~2, which would give a spin-down
time of about 3 Myr. However, by comparison of the mag-
netic torque with the accretion torque,

Toce = 2701 / (u,Qpr? sin® )rsinf0do ,  (38)
0

we find a value of 2.7 x 103° g cm? s—2 for the latter, exceed-
ing the magnetic torque by 2 orders of magnitude. The total
torque at the inner boundary is thus always negative, spin-
ning up the star.

For magnetic field strengths of the order of 1 kG, our
model produces outflows at midlatitudes, but no collima-
tion occurs. Although both the mass accretion rate and the
total magnetic torque vary strongly with time, we did not
encounter periodic or quasi-periodic behavior, as reported
by Goodson & Winglee (1999, hereafter GW99) and Matt et
al. (2002). This discrepancy is most likely due to different
choices of the viscosity parameter. While GW99 use a con-
stant value of 5 x 10! cm? s~! in their innermost box, ours
is smaller by 2 orders of magnitude in the disk, and 0 in the
halo. With the magnetic diffusivity parameter set to 0,
reconnection can take place because of the numerical diffu-
sion only, which is small compared to the eddy magnetic
diffusivity in the disk or the constant value used by GW99.

Shu et al. (1994) find that a stellar magnetic field strong
enough to truncate the circumstellar accretion disk is always
strong enough to drive a magnetocentrifugal wind with
mass-loss rates of the same order as the mass accretion rate
of the disk. In their model the truncation radius of the disk,
R,, is somewhat closer to the star than the X-point, Ry,
which marks the outer boundary of the zone from which
mass can flow onto the star through the funnel flow. Just
outside the X-point lies the region where the wind origi-
nates. Angular momentum transport from the star to the
disk is possible if the magnetic field is strong enough to keep
the magnetosphere in corotation with the star. The angular
momentum transferred to the disk is then mostly carried
away by the wind. For the location of the X-point, they
derive the estimate

BiRi 1/7
Ry =T'xRx, I'x=ax (G]\/I*]MZ> ) (39)
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with ax <1 a dimensionless parameter, which differs
from equation (1) only in the value of the dimensionless
parameter, which is slightly greater for the X-point than
for the truncation radius. With Bx = 1 kG, equation (39)
yields I'x = 4.8ax for our model. That the disk is not
truncated at this field strength in our model can thus be
easily explained if ax < 0.4, in which case the truncation
radius just lies too close to the star. For a field strength of
10 kG, a radius of 7.2 stellar radii would then follow for
the X-point. In Figures 4 and 5 the truncation radius is
about 10 stellar radii, somewhat larger than predicted by
the Shu et al. (1994) model. Since the system is far from
stationary, and the elapsed time was not long enough for
the field lines to open, we cannot decide how significant
this discrepancy is.

5. CONCLUSIONS

We have carried out MHD simulations of an accretion
disk around a T Tauri star with an initially dipolar mag-
netic field to study the field structure in the magneto-
sphere, the truncation of the disk, and the torque on the
star. We have carried out runs with and without radia-
tive energy transport. While in the pure MHD models a
hot halo with temperatures up to 10° K forms around
the star, models including radiation tend to produce
cooler magnetospheres with temperatures of a few thou-
sand kelvins and a layer of higher density above the disk,
which dominates the accretion flow close to the inner
boundary.

For an accretion rate of 10~7 M, yr~! and an inner radius
of 1.7 stellar radii, the field strength Bx necessary for disk
truncation lies between 1 and 10 kG, in agreement with the
purely analytical models by Ghosh & Lamb (1979a) and
Shu et al. (1994).

Magnetic fields of the order of 1 kG can drive outflows
with mass-loss rates of 1/10 of the disk accretion rate or
above. Our results confirm the finding of Shu et al. (1994)
that a field strong enough to disrupt the disk is also strong
enough to drive an outflow. We have, however, found cases
in which the wind exists without disk disruption.

The inner boundary in our simulations is located between
the corotation radius and the stellar surface, not on the stel-
lar surface. Although the poloidal magnetic flux and the
rotation rate are fixed, mass, angular momentum, and toroi-
dal magnetic flux can leave the system through this boun-
dary. For a complete treatment of the angular momentum
problem, it is necessary to extend the integration volume
down to the stellar surface and find a more realistic boun-
dary condition.

In this study we have explored the types of solution for
field strengths covering 2 orders of magnitude for a fixed
rotation rate rather than trying to find an equilibrium solu-
tion with disk truncation up to the corotation radius. From
these results as well as from the analytical models, it is clear
that for prescribed mass accretion and stellar rotation rates,
such an equilibrium state can only be reached for a unique
field strength, which can only be found by either tuning
the magnetic field strength for fixed rotation rate or vice
versa.

We have found three types of solutions: (1) A weak field is
compressed by the infalling gas, and the disk is only weakly
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affected. (2) A field of an intermediate strength of 1 kG
drives an outflow but is not strong enough to directly dis-
rupt the disk. We cannot exclude the possibility, however,
that (3) the inner parts of the disk are slowly drained
through magnetically enhanced accretion. A magnetic field

MAGNETIC STAR-DISK COUPLING 409

as strong as 10 kG disrupts the disk to radii beyond the
corotation radius by pushing the gas outward.

This work was supported by the Deutsche Forschungs-
gemeinschaft.
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