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Decadal global temperature variability increases strongly with climate sensitivity 

   

Femke J.M.M. Nijsse, Peter M. Cox, Chris Huntingford and Mark S. Williamson 

 

Climate-related risks are not only dependent on the warming trend from greenhouse gases, 

but also on the variability about the trend.  However, assessment of the impacts of climate 

change tend to focus on the ultimate level of global warming1, only occasionally on the rate of 

global warming, and rarely on variability about the trend. Here we show that models which 

are more sensitive to greenhouse gas emissions i.e. higher equilibrium climate sensitivity 

(ECS) also have higher temperature variability on time scales of several years to several 

decades2. Counterintuitively, high sensitivity climates, as well as having a higher chance of 

rapid decadal warming, are also more likely to have had historical ‘hiatus’ periods than lower 

sensitivity climates. Cooling or “hiatus” decades over the historical period, which have been 

relatively uncommon, are more than twice as likely in a high ECS world (ECS = 4.5K) 

compared to a low ECS world (ECS=1.5K). As ECS also affects the background warming rate 

under future scenarios with unmitigated anthropogenic forcing, the probability of a hyper-

warming decade - over ten times the mean rate of global warming for the 20th century, is even 

more sensitive to ECS. 

In this study, we look specifically at the combined effects of climate sensitivity and climate 

variability, which could stretch the ability of human and natural systems to adapt3,4,5.  Our approach 

is to study how decadal trends in global annual mean surface temperature vary with climate 

sensitivity across the CMIP5 multi-model ensemble3. The latter is partially motivated by the 2000-

2012 slowdown of surface temperature increase, sometimes known as the ‘warming hiatus’. This 

slowdown has led some to suggest estimates of ECS below 1.5 K.4,5 However, rather than making 

periods of no warming more likely for low climate sensitivities, we show the converse - that 



warming slowdowns can be expected more in high sensitivity climates. The background to our 

claim is the well-known property that a more sensitive dynamical system responds to a perturbation 

more strongly and is slower to recover than a less sensitive one.6,7 Forcing from fast random, 

weather-like perturbations, additional to slow anthropogenic forcing, can push the climate’s 

temperature trend in both warm and cool directions. For more sensitive systems these excursions 

will be both larger and longer-lived, giving larger and longer-lived temperature trends. 

We formalise this intuition by calculating the temperature trend ܾ (K yr-1) over a window of time 

ܹ(yrs), usually a decade.  How much the temperature trend varies (quantified as the standard 

deviation of ܾ) with climate sensitivity is the main focus of study in this paper. We follow the 

approach of using conceptual analytically soluble stochastic climate models to understand the 

climate system pioneered by Hasselmann and others8,9. In particular, we solve for ܾ and its standard 

deviation ߪ௕, using the Hasselmann model which describes the response of the annual global mean 

surface temperature anomaly ΔT (K) to forcing ܳ (W m-2): 

ܥ
ܶ߂݀
ݐ݀
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where ܳ parameterizes fast, internally generated perturbations as a random variable. External driving 

factors such as anthropogenic forcing due to increases in greenhouse gases may also be included in 

this term (see methods). The temperature response to ܳ depends on the effective heat capacity C (W 

yr m-2 K-1) and the climate feedback  λ (W m-2 K-1), the latter describing the net effect of all the 

individual negative and positive feedbacks within the climate. Climates with larger values of λ have 

a stronger overall negative (restoring) feedback on temperature anomalies and lower equilibrium 

climate sensitivity ECS (K). ECS is defined as the steady-state warming in response to the forcing 

from a doubling of atmospheric CO2 and is inversely proportional to λ: ECS = Q2xCO2/λ . Although 

the simple Hasselmann model is an imperfect representation of the climate system, it serves here to 

formulate a hypothesised relationship between variability and ECS, that we subsequently evaluate 

against the results from state-of-the-art Earth System Models. 



Taking ܳ to be given only by stochastic forcing of magnitude ߪொ, analogous to an unforced, control 

climate model simulation, the Hasselmann model can be solved to first approximation (the full 

expression is given in the Supplementary Information). This gives a relation for the standard 

deviation of b as a function of the trend length ܹ and climate sensitivity: 
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As expected, this equation predicts higher variability in warming trends (larger ߪ௕ሻ	for more 

sensitive climates (higher ECS). Although the single-box Hasselmann model is a poor 

representation of warming climates on long time-scales10, the two-box model11, which better 

describes oceanic heat storage, produces the same qualitative relationship (Supplementary Methods, 

Eqn 19). Wigley & Raper (1990)9 also noted the relation between long term temperature trends and 

climate sensitivity in numerical simulations of a stochastically forced upwelling diffusion model. 

Relating temperature variability to climate sensitivity can be thought of as a heuristic application of 

the Fluctuation-Dissipation theorem12,13, a tool used in many fields of physics.14 This way of 

modelling the response to a radiative forcing is complementary to methods that estimate λ  as the 

sum of individual feedbacks. Metrics of variability derived from whole-system approaches can in 

principle be linked back to individual feedbacks15,16. 

Figure 1: Decadal variability in global temperature. a. Global mean surface temperature anomaly 

over a modelled 500-year period with no external forcing, for two control simulations in the CMIP5 

database. HadGEM2-ES (brown line) is an example of a model with high climate sensitivity, while 

GISS-E2-R (purple line) has a low climate sensitivity. Heavy lines are 10 year running means. b. 

Multi-model histograms of decadal variability for low (purple) and high (brown) climate 

sensitivities in 500 year control simulations. Normal curves fitted to histograms. The individual 

models are listed in the Table S1 with their climate feedback parameter λ and equilibrium climate 

sensitivity ECS. 



Observations have been used in combination with simple stochastic climate models to constrain 

long term variability9 and ECS17. In contrast, we use an ensemble of state of the art climate models 

(CMIP5 model ensemble3) to first look for evidence of this relation in control simulations, before 

studying its implications in a climate perturbed by fossil fuel burning. Using the control, rather than 

historical or future simulations, allows for a cleaner test of the hypothesised link between internal 

variability and sensitivity. This is because historical simulations have additional external forcing 

and generally simulate shorter periods. Models were included in our analysis if they had a control 

run spanning at least 500 years. Figure 1a shows the timeseries of annual global mean temperature 

of a high ECS model (HadGEM2-ES, brown line) and a low ECS model  (GISS-E2-R, purple line). 

The thick line shows the 10 year running mean. The low sensitivity model shows shorter and 

smaller variation on the decadal timescale, in contrast to the longer and larger temperature trends in 

the high sensitivity model. Figure 1b shows composite distributions of decadal temperature trends 

for higher sensitivity (ECS > 3.0 K, brown) and lower sensitivity models (ECS < 3.0K, purple). 

There is a clear distinction between high and low ECS models, the former having wider histograms 

indicating more variability in global temperature trends. Previous studies have noted a relationship 

between tropical decadal temperature variability and sensitivity in the CMIP5 ensemble18.  

 

 

 

 



 

 

In Figure 2a we plot decadal (ܹ= 10 years) values of ߪ௕ against ECS for each CMIP5 model 

control simulation. In Figure 2b standard deviations of decadal trends are plotted for the historical 

against the control simulations. Decadal trends in the historical simulations are larger due to a non-

constant background trend. This causes differing means for the 1880-1950 period compared to the 

1950-2012 one. Combining these two periods leads to a larger standard deviation of decadal trends, 

which explains the larger historical	ߪ௕ in Figure 2b. Using all 31 models and model variants in the 

CMIP5 archive, we find a similar but slightly weaker relationship (see SI Figure 1).  While our 

theory predicts a weakly nonlinear relationship between the standard deviation of trends and ECS, 

we chose a linear regression between ߪ௕ and ECS to prevent overfitting. Nonlinearities like this 

may be expected when  the dominant time-scale of the climate system and the time-scale of the 

variability metric are of the same order of magnitude19.  

 

Figure 2. Emergent relationship between ECS and warming trends. a. Standard deviation of 10-

year temperature trends in an ensemble of 500-yr control runs versus ECS. The dotted line is a 

linear ordinary least square fit with Pearson r=0.86. b. Ten-year variability in the control runs 

versus the 10-year variability in the historical period (1881-2017).   



 

Figure 3: Varying window lengths. a. log-log plot of trend length versus standard deviation of the 

trend using the control simulations, differentiated in colour (as marked) between ECS value. b. 

Correlation (Pearson r) of the emergent relationship in a, between ECS and ߪ௕,	as a function of 

trend length.  

 

Figure 3a shows the variability of temperature trends of duration 3-50 years. Variability in trends of 

duration 5-25 years separate the low sensitivity (blue lines, lower variability) and high sensitivity 

models (orange lines, higher variability).  The correlation between ECS and ߪ௕ shown in figure 3b 

is particularly strong for temperature trends of length 7 to 15 years (r>0.8).  

We have explored the possible impact of the El Niño-Southern Oscillation (ENSO) on our ECS 

versus �b  correlation, and its dependence on trend length. To characterise ENSO, we use the 

NINO3.4 index which is based-on temperatures in the region between 120 ºW–170 ºW and 5 ºS–5 

ºN.20 By removing the ENSO signal, based on this index, it is shown that ENSO is not the dominant 

factor in our relationship (Figure S2a). It is notable however that the peak correlation at around 10 

years disappears once the ENSO influence is removed, suggesting that the peak is mainly a 

consequence of ENSO variability. There may also be a smaller contribution to the peak correlation 

due to longer timescales in the climate response (Figure S3). Excluding ENSO deteriorates the 



relationship between ߪ௕	and ECS for all window lengths (Figure S2).  This is consistent with ENSO 

providing a useful additional stochastic forcing of the climate system, which helps to reveal ECS.  

Figure 4a plots equal probability contours for anomalies in the decadal temperature change as a 

function of ECS over the historical period. The probabilities are computed by combining the 

relationship beween the decadal variability and ECS as derived from the control run, with the 

background warming from the historical runs (Figure S5). Over the historical period (1960-2012) 

there is a small correlation between the background warming and ECS. Figure 4a is asymmetric, in 

contrast to Fig S5, because the probability of warming episodes is increased by the ECS-dependent 

background warming. Figure S4 shows that trends and variability are separable: removing the 

forced trend by subtracting the mean of initial value ensembles (for those models with a sufficient 

amount of initial value runs), successfully retrieves the variability found in the control simulations. 

 

Cooling or warming decadal episodes that occur only 5% of the time, show a large sensitivity to 

ECS. In Figure 4b, corresponding to the grey line in 4a, we plot the probability of a cooling decade 

assuming a background warming rate consistent with the historical simulations for each model. This 

includes the weak increase in the warming trend with ECS, as well as the stronger increase in 

variability with increasing ECS. Even with these two opposing effects, the sensitivity of decadal 

variability to ECS implies that a ‘hiatus’ period was 2.2 [90% CrI 0.68 – 11] times as likely in a 

high ECS world (ECS = 4.5K) compared to a low ECS world (ECS=1.5). While some studies 

indicate that the recent slowdown can partially be explained by a decrease in forcing21,22, our results 

show that even in the case forcing remained constant, a temporarily reduced trend does not imply 

ECS to be lower.  

For a given future scenario of increasing anthropogenic forcing, ECS affects both the mean and the 

variability in the rate of global warming. Figure 4c plots probability contours for different absolute 

decadal warming rates as a function of ECS, under the RCP8.5 scenario. Figure 4d shows how ECS 



affects the probability of a ‘hyper-warming decade’ – which we define here as one with a warming-

rate exceeding 0.7 K decade-1 (i.e. ten times faster than the mean rate of global warming over the 

20th century). Whereas a hyperwarming decade very rarely occurs for ECS<2.5K, it occurs 8% of 

the time for ECS>3.5K. 

Our findings indicate that the concept of equilibrium climate sensitivity (ECS) is relevant not only 

to the mean global warming at a given level of atmospheric CO2, but also to temperature variability 

on decadal timescales. Counter-intuitively, this suggests that the slowdown in global warming from 

2002-2012 was more likely in a high ECS world. It also means that decades of very rapid warming, 

which would stretch the adaptive capacity of ecosystems and society, are also much more likely if 

ECS is high. A previous constraint based on global temperature variability found a most likely value 

for ECS at 2.8 K23, which is lower than suggested by some other recent studies16,24,25. Achieving a 

better consensus on the risk that we live in a high ECS climate is therefore of critical importance to 

both the climate mitigation challenge and also to inform efforts to build resilience to climate 

variability. 
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Methods: 

Data selection 

We selected models based on a set of three criteria.  

1. Maximum of one model per modelling group to avoid bias towards certain modelling 

centres. 

2. Top of the atmosphere fluxes and forcing at 4xCO2 should be available so that it can be 

tested that ECS is independent of internal forcing strength. 

3. There must be at least 500 years of control data available.  

For all models with more than 500 years, the last 500 years were chosen. Note that drift, if linear, 

does not affect the metric ߪ௕.  

Calculation of probabilities 

The background warming for the historical period and future projections were computed using OLS 

linear regression between the temperature change and ECS. The temperature change itself was also 

computed using OLS linear regression between annual temperatures and time. Temperature time-

series in models with multiple initial value members were averaged before a warming rate was 

computed. 

In the second step, the emergent relationship between ECS and ߪ௕ from the control simulations was 

used. Using a normal distribution for the decadal trend with the standard deviation dependent on 

ECS, probabilities are computed for either a period of cooling or a period of warming. In the case of 

an ECS-dependent background rate, the mean of the distribution is adjusted. This procedure is used 

for figure 4.  



Finally, for the comparison of probabilities, i.e. the comparison of probability to have a decade of 

decreasing temperatures in a high ECS world, versus a low ECS world, a Bayesian linear regression 

was used for the emergent relationship using the STAN software. Weakly informative priors were 

used.26 This allowed us to get a collection of linear fits between ߪ௕ and ECS. Note that in this 

collection, there are fits with a shallower and steeper slope compared to OLS linear regression. This 

translates into a having both high ߪ௕ for low ECS and a low ߪ௕ for high ECS in the shallow fits and 

visa versa for the steeper fits. From these pairs, pairs of probabilies of cooling decades are 

computed (as described in the previous paragraph), and these are divided to compute how much 

more likely a period of cooling is in a high ECS world compared to a low ECS world. Using pairs 

of regression lines leads to a larger estimate of uncertainty than a naïve approach with OLS 

reression would have.  

Analysis effect ENSO 

The effect of ENSO was studied by regressing out the NINO3.4 index. A linear regression between 

GMST and NINO3.4 was first performed, and then decadal trends were computed using the GMST 

residuals. 

Analytic relationship ECS and variation trend. 

A trend b of a W-yr time series is computed using an ordinary least squares fit of the timeseries. The 

slope b in such a fit is given by: 

ܾ ൌ
ሺݎܽݒ݋ܥ ௧ܶݐሻ
ሻݐሺݎܸܽ

 

Where ௧ܶ is the temperature at time ݐ. To obtain an analytical solution for the typical size of a trend 

ܾ in the absence of external forcing, the standard deviation ߪ௕, we write the Hasselmann model as a 

stochastic differential equation (SDE) where Q parametrized as a white noise process (the 

derivative of a Wiener process W) with standard deviation ߪொ. 



ܶ݀ܥ ൌ െλܶ݀ݐ ൅ σொܹ݀	

Using the Green’s function associated with this Stochastic Differential Equation, namely GHasselmann 

=1 /C e-t/τ, ߬ ൌ  .we can write down the solution of temperature as a stochastic integral i.e ,ߣ/ܥ

௧ܶ ൌ ொߪ නܩு௔௦௦௘௟௠௔௡௡
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Using this solution we can now find ܾ and its standard deviation for a trend of W years. 

Multiple steps of algebraic manipulation, which are given in the Supplementary Information, then 

lead to 

ሾܾሿݎܸܽ ൌ
12σொ

ଶ

ܹଷλଶ
ሺ1 െ ݂ሺτ,Wሻሻ 

To first order, ߪ௕ is linearly proportional to 1/λ, which is in turn proportional to equilibrium climate 

sensitivity, defined as ܵܥܧ ൌ ܳଶൈ஼ைమ/ߣ. The smaller W is, however, the more deviations towards 

nonlinearity occur. 

A similar result can be obtained when a deep ocean layer is added to give a two-box model11.  

ܶ݀ܥ ൌ ሺെλܶ െ ሺܶߛ െ ଴ܶሻሻ݀ݐ ൅ σொܹ݀	

଴݀ܶܥ ൌ ሺܶߛ െ ଴ܶሻ݀ݐ 

 

Here the zero subscript denotes the deep ocean layer and ߛ is a heat exchange parameter. The 

Green’s function for the top layer is27: 
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With ߬௙ and ߬௦ denoting the fast and slow time scales and ܽ௙ and ܽ௦ the partial contribution of the 

fast and the slow mode to the response. Similarly to the Hasselmann model, ߪ௕	is proportional to 
ଵ

ఒ
 

to first order. 
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