Commodore 64: How To Use Those Mysterious CIA Timers

lass Mail Permit Pending

- -
orid L

Postage Paid in Milton, Ontario

- The Tech/News Journal For Commodore Computers Vol. 5
The Transition g
To Machine Language

e How BASIC Works: What Happens After You Press RETURN
¢ Converting BASIC To Machine Language

¢ Rocket Thruster Simulation In BASIC AND In Machine Code
* Machine Language Monitor In BASIC: A Learning Tool

* The Stack: What Happens In This BASIC Forbidden Zone?

* Merging Commodore BASIC Programs Together

e Butterfield: Use Your Commodore 64 To Emulate The SX-64
* Plus Lots More... And ALL On Commodore!

The Reference Transactor Is Coming! (See News BRK for details)

._' S

A

==

__ ;.__l__-. |

ellPro 64 quickly

Sp

th a standard dictionary expandable
o your personal voc

Wi

| -
4]
.
b
L]
£=
o
B
b
3
u-
o
=
oy
]
(4}
=
L]
0

-
<
)
&
-
ar
w
o
v

Q00 waords

A

8 =

el T Fopdriy

= [

a1
ﬂ-..._“r_ .*
.- L: "
s A »
] i
L] L L
=N -
5
E %
oL
s
N o -&
. |]
] L
- = -.I
I—. ' 5
i
4
L &
5 - X
)
Bk 1
i L M
g3 A
" 5 | 1
% 1 L 4
.
A L
-
% .
b .
1 .
" r

[1
o W
Wl
- &
L . 1
} ! L
]
i i
==
|
L2 B ,
I [
|
: _
! - L
¥ LR -....-. 1
% 4 % _
.....-“.__ =

..ﬂ... :
- .
.h.lu..-.. ._.......__ i
o5 N
B 3 _
- T
o x ..
3 =
|}
[

- OBJECTIVES

i This book will provide managers,
engineers, manufacturing personnel
- and any interested persons an
 understanding of the fundamentals of
- Computer Aided Design [CAD]} and
- Computer Aided manufacturing {CAM])
applications and technology.

 PROGRAM
 DESCRIPTION

The program will expose you to the
_ various CAD/CAM terminologies used.
 Herdware and software comparisons
will be explored with heavy emphasis on
their advantages and disadvantages.
Cost justification and implementation
are presented using case studies.

WHO SHOULD
PARTICIPATE

The course is designed for but not

mited to:

. — Those managers, engineers and
research professionals associated with

the manufacturing industry.

— Personnel from Product, Tool
Design, Plant Layout and Plant
Engineering who are interested In

CAD/CAM.

. ADVANTAGES—
- END RESULT

This program will enable participants to:
1. Learn basic CAD/CAM Vocabulary.
2. Better understand the various hard-

ware and software components us-
ed in a typical CAD work station.

3.Select the existing CAD/CAM

system most appropriate for cur-
rent and projected needs.

4.Make an effective cost justification
as to Why they SHOULD or
SHOULD NOT implement a

CAD/CAM system.

CAD/CAM! DONT SPEND 25k, 50k
‘or $500,000 BEFORE YOU SPEND $79”

5. Apply and use computer graphics as
a productivity tool.

PROGRAM
CONTENT

1. Introduction
a. History of CAD/CAM

b. Importance of CAD/CAM

2. Graphics work station peripherals
8. Input
b. Output

c. Advantages and disadvantages
of input and output devices.

3. Computer Graphics Systems
(Hardware]

a. Micros

b. Minis

¢. Main Frames

d. Turnkey Graphics systems
4. Softwars

a. Operating systems

b. Graphics Packages

c. Graphics Modules

9. Computer Aided Design
a. Geometric Definitions
[Points, Lines, Circles, ETC..]
b. Control functions
c. Graphics Manipulations
d. Drafting Functions
e. Filing functions

f. Applications

CONTIMUING EDUCATION FOR BETTER |

CAD / CAM:
A PRODUCTIVITY

EE ENHANCEMENT TOOL

B. Implementation
a. Determining needs

b. Purchasing and Installing
c. Getting Started

7. Cost Justification and Survey
a. Cost comparisons of two and four
work station systemns.

b. Presentation of recent survey of
CAD system users

ZANIM SYSTEMS MAKES THIS SPECIAL
OFFER: IF YOU BUY CAD/CAM: A
PRODUCTIVITY ENHANCEMENT
TOOL BEFORE APRIL 15TH, WE WILL
INCLUDE FREE OF CHARGETHESE TWO

PAPERS PUBLISHED NATIONALLY BY

ZANIM SYSTEMS CAD/CAM EXPERT.
1. "Creation of a Large Data Base for
a Small Graphics System"’

2. "Shortest Path Algorithm Using
Computer Graphics™

Of course you could spend as much as
$495, $595 or $695 for a similar 3 day
seminar even though this book is not a
computer program.

We tell you Apri 15th for a special
reason...this product may be tax
deductible depending on your field or
needs. This 170 page course will satisfy
any of your CAD/CAM needs. We
guarantee it.

Please send $79 to:

ZANIM SYSTEMS
CAD/CAM GROUP
P.0. BOX 4364
FLINT, MI 48504
(313) 233-5731

GUANTITY DISCOUNTS AVAILABLE FOR COLLEGES,
UNIVERSITIES AND/OR SEMINAR USE.

SOFTWARE FOR
VIC * COMMODORE 64 « PET
FROM KING MICROWARE

o S D COPY FAST EFFICIENT SINGLE DISC COPIER FOR THE 1541 $19.95

e WORDS & CALCS SPREAD SHEET FOR THE C-64 ALLOWS TEXT $42.95

e CHART PAC 64 FINEST CHART MAKER ARQUND $42.95

o SMARTEES ACTION PACKED MAZE GAME $22.95
W' THE BANKER

- DESRTR iaos

e DAISY — DATA ADAPTABLE INFORMATION SYSTEM
— THE DATA BASE WITH A DIFFERENCE $39.95
— ALLOWS YOU TO CALCULATE BETWEEN FIELDS

e ASTRO POSITIONS FIND THE STARS AND CAST

YOUR HOROSCOPE $43.95
LOOK AT THE LANGUAGES WE HAVE
vyES' WE HAVE PASCAL $52.95
ULTRABASIC wITH TURTLE GRAPHICS AND SOUND $42.95
TINY BASIC COMPILER $22.95
TINY FORTH FIG FORTH IMPLEMENTATION $22.95
EDIT/ASM COMPLETE EDITOR ASSEMBLER PACKAGE $36.95
64-BUDGETEER VIC TINY PILOT SCREEN DUMP
64-CRIBBAGE VIC BUDGETEER SPRITE-AID
SKIER-64 VIC VIGIL VIC HIRES
64 QUICK-CHART VIC CRIBBAGE VIC JOYSTICK PAINTER
SYNTHY-84 GRAPHVICS VIC CHING
We are actively seeking SOFTWARE AUTHORS.
WHY NOT SEND US YOUR PROGRAM FOR m:‘_.a
EVALUATION. MICROWARE
Dealer Inquiries invited <
Write for our FREE Catalogue S

for VIC and C-64 5850 Cote des Neiges

Montreal, Quebec H35 126
Canadian manufacturer and distributor for ABACUS Software Products

Volume 5
Issue 02

Circulation 40,000

The Transition To Machine Language Ediorial . 5
cereeasanas 16

Un-products? (C64 Keyboard & Drums Synthesizer)
Response? Response: (Auto Liner Revisited)
Existing Lost Copy. (more on Program Generators)

NewsBRK ... 6 Letters

The Retérence Transactor 5 Coming!
s OH Thie Trarisartin Yoo 3500 D CH T

Hisck lasue Quantaty Urders

F‘ll II]\.['T I| I1'iI il FH II!!#IH?I.

Department TR

f‘rnnuu}:‘nlnﬂ 115 Il{!{itﬂ:&!lﬂ F'1||il':,'
Uanmmodore International Anngunees Now

- s
Microcomipuners Aol Rebaterd Perspbeeral e ioes Bltﬂ and. Pleces
kernal 3 For The Commodore 64
Hail, Knehart and Winston Now Publishing Software Cylinder Screen

Commodore Hecoves Koyai Warrant
FFHHEHJH‘{ '.?rng Wril::rH [Couateest '

ﬂllirlF‘HT T ﬂ.ruup ani! e HulrlF‘FT i barriie * i
Tutersal Lhskette For The SuperFEl Down Scroll G4
Prostrammang The PET/CHM

The Asatogoe OF Thie Compeshes 84

The Anatosty OF The 1341 Disk Drive amaZAMARAing
MASTFR.A4 \ IN QT
JUSER - A New Programmena Language Stop RUN/STOP

.'-i.|||z:5'|r'i-|F£-: sl Sefiware Frowss Fabal roseein =

Musie Froduction Service
Flestadraw's Neewe 1 Verstomn

Upenis Uhannel Of Communication Low-Res Screen Copy
Flesiclhaw 10 Oiffers A Raislnra OF Codinps Een Ee
New' Diskovery Eardy Math Programs .i"' ¥
Thartie Toylamd b Marror
Teaches Basic Computer Condepts . g
"Hrsrsies (TTR Hirse Bare Haahi '.dmming Sl weare FEdm S{Tdn
Lommedore b1 Memory Expander Cr_!fsta[

Bt [ernbdueer" Thisk Besicdoal Noise Frase
SALY Communications Intertace and Fnnter Adapter

Number Hase Converter
Flevtrmnr Fongergnind Analysis Serureby Sysiem The Lin=Cursor

Cursed Commodore Cuarsor!

Sorry, But That DOES Compute

FTOUTEM With Calour Maods
e Machine Language Book For The Commodore b4 Vachine Langu age FTOUTSM

CompuKinks
The MANAGER Column
Review: MailPro64
Perspective: To GET Or Not To GET .
All About Commodore Abbreviations
Messing With The Stack
The Un-TokenTwins
Merging BASIC Programs

An Introduction To The Tools

And Techniques Of Machine Language
Your BASIC Monitor

Finding Pi Experimentally ..
Translating A BASIC Program
To Machine Language
A Few Of The Stranger

6502 Op Codes Explained ..

¥

Getting BASIC To Communicate

With Your Machine Code ...
CIATimersc00000.

6526 Time Of Day Clock

Joycursor
Butterfield: SX64 Emulator .

Advertising Section
AdvertisingIndex

®

& ®

ceoo. 18

e 24
cecee &3
veee. 34
ceres 36
PR ¥ {
cees. 49
eeess 0l
ceaa. D3

voes OO
cen.. 08

cene. 63

coaa. 66
P -

ceses 106
veeo. 83
.e... 86
ceeae 90
ceea 91

. 92
eoo. o104

The Transactor)

..

Volume 5, Issue 02 |

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

Managing Editor
Karl J. M. Hildon

Editor

Richard Evers
Advertising Manager

Kelly M. George
416 820 1662

angled top.

mode. To clarify two potential character mix-ups, zeroes will appear as ')' and the letter “o" will vl course
be 1n lower case. Secondly, the lower case [(1) has a flat top as opposed to the number | which has an

Many programs will contain reverse video characters that represent cursor movements, colours, or
function keys. These will also be shown exactly as they would appear vn your screen, bul they're listed
here for reference. Also remember: CTRI~<q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you
insert will not be critical to correct operation of the program, When it Is, the required number of spaces

EI?HT'E::IE::: will be shown. For example;
Subscriptions print” flush right - would be shown as - print” [space [{l]flush right”
Mandy Sedgwick
‘ontrihuting Write

E‘:‘ gt Eaal Cursor Characters For PET / CBM / VIC / 64
Don Bell Down - losert -
Michael Bertrand Up ~ Delete -
Daniel Bingamon Right - i Clear Scrn -
Brad Bjorndahi Left - [Lf1] Howe ,,=
Jim Butterfield :

RYS - STOr -
Elizabeth Deal BVE O - I
Domenic Defrancisen)
Bob Drake
Mike Forani . Colour Charactera For VIC / 64
Joff Goebel e i
Melissa (abhins SRR = H A, :
Dave Geik White - Brown -~ §
Phil Honsinger Red - Y Lt Red -~ §
Mike Panning Cyan -~ [Cyn] Greyl -~
Howy Parkins Purple — [Pur] Grey2 -
Glen Pearce Green - |} Lt. Green - §
Louis F. Sander Blee - B L Blue - ¥4
George Shirinian Yellow = [Vel| Grey3 - [Gr3]

Elarren | Spruvt
Colin Thompson
Mike Todd

Vikash Verma
lames Whitewoiod
Chris Zamara

Production
Attic Typesetting Lid.

Printing

Printed in Canada hy
MacLean Hunter Printing

The Transactor is pubhished bi-monthly by Transactor Fublishing Inc It s
inn no way connecled with Commodore Business Machines Lid. or Comimuo-

dore Incorporated. Commodore and Commodore product names (PET,
CHM, VIC, b4) are registered trademarks of Commadore Inc.

Volume 5 Subscriptions: Canada %15 Cdn

USA $I5US.
All other $18 US.

Send all subscriptions to: The Transactor, Subscriptions Department, 500
Steeles Avenue, Milton, Ontano, Canada, L9T1T 3P/, 416 8/6 4741, From
Turonto call 826 1662, Nule: Subscriptions are handled at this address
ONLY.

Back Issues: $4.50 each, SOLD QUT: The Best of The Transactor
Violime 3, Volume 4, Issues 4, 5, & & no langer available.

Juanhity Urders:

second Class Mal
Permil Pending

ACCESS

Access Compuler Services CompulLil

630B Magnetic Drive PO Box 352
Nownswview (ntano, M3 204 Port Coguntlam, BC
(416) 736 4402 V5C 4K6

Dealer Inquiries ONLY: 604 164 1221
I 800 268 1238
Subscription related inquiries

are handled ONLY at Milton HQ

Function Keys For VIC / 64

Fl - Fh ~
F2 - Fé -
F3 - F7 -
Fi- H] F8 -

LS A Lhstnbutor Pramme News, 2404 West Hirsch,
Chicago, IL, 60622, (512) 384 5350

Want to adverhise a praduct or service? Uall or write for more information

Editorial contributions are always welcome and will appear in the issue
immediately following receipt. Remuneralion s $4{0 per printed page.

Preferred media is 2031, 4040, 8050, or 8230 diskettes with WordPro,
WordCraft, Superscript, or SEQ text files. Program listings over 25 lines
shonild be provided on disk or tape. Mannscnpts should be typewritten,
double spaced, with special characters or formats clearly marked. Photos of
authors or equipment, and illustrations will be included with articles
depending on quality. Diskettes, tapes and/or photos will be returned on
request.

All matenal accepted becomes the property of The Transactor. All material
15 copyright by Transactor Publications Inc. Reproduction in any form
without permission Is in vielation of applicable laws, Please re-confirm any
permissions granted prior to this notice. Solicited material is accepted on an
all rights basis only, Write to the subscriptions address above for a writers
package.

The opimions expressed in contnbuted articles are not necessarly those ot
The Transactor. Although accuracy s a major objective, The Transaclor
cannot assume liability for errors in articles or programs.

e

Volume 5, Issve 02

T

From The Saitor-s Desk,

The Transition To Machine Language

Why are so many afraid of Machine Language? Even the name is
intimidating, like it's the dialect spoken on some silicon based
planet in another galaxy or something. Perhaps we should give il
some other name. Somehow | feel this wouldn’t be enough,

though.

So what is it? [s it the concept of reaching inside that thing called
the microprocessor? Agreed, programming in raw hexadecimal
can be a painful experience, one which nobody should be sub-
jected to and still be expected to maintain enthusiasm. No, poking
hex codes might be ok for the first couple of 5 byte programs, bul
any more and you'll soon be turned off.

Using a goud Assembler will lake the sting away., Most offer 6
character labels on variables and subroutines. Calling a subroutine
by its name 15 much more practical than remembering ifs number,
Still, most say even assembly language is too unsophisticated. . .
no error messages, no string handling, no floating point variables,
no this, no that. . . you have to do everything yoursell!

Ok, | admit, there are things vou can do in BASIC that would be
hideously mind bending in machine language. Multiplication and
division of fractions is one task | would cringe over, same with
triginometry, and worse, calculus! But nobody said you should use
machine language all the time, In fact BASIC is perfect when you
need only a few calculations, a bit of file handling, and most
printers can’t go faster than BASIC anyways.

Except there are things vou just can’'t accomplish within reason-
able time in BASIC. Imagine a ten lield, cascade sort, .. wilh
enough data you wouldn’t see the results in your own lifetime!
This 1s where machine language truly makes its mark. Moving text
around 15 a natural for machine code. And you don't need to ‘re-
invent the wheel. There are lots of sort routines and other
machine language utilities around that yvou can usually just slip
into your BASIC, and the crafty soon learn how to use ROM
subroutines for some particularly nasty jobs. Even writing them
vourself can often save you time in the long run. 1 don't need to
remind you, machine language is lightning fast!

With the right tools, mixing machine language with BASIC is not
only easy, but the results are much more rewarding. Yet we still
avoid it. | believe one problem is the process which humans seem
to naturally enjoy learning, that is, the easy way first. And too often
the easy way is determined for us.

When [first learned to ski. | was taught how to ‘snow plow’. Then
when | tried parallel skiing, | found myself constantly reverting to

snow plowing. Il ook a long tme (o break that habil. | think the
same is true between BASIC and assembler. “'Learn BASIC first, it'll
give you a feel for programming , we're told. Then we get too
comnfortable in BASICs' care-free environment.

In my opinion, a students’ first taste of computer programming
should be a generous helping of machine language. With no prior
experience of the high level approach, they would have nothing to
compare against, and the apprehension would be eliminated. Only
the fear of the unknown must then be overcome, which is true for
learning anything new. After assembling a month or two of simple
machine language efforts, unveil the high level interpreter and
suddenly they gain new appreciation for programming. "RUN, you
mean all | have to do is say RUN?" But with the order reversed,
several new fears develop, Suddenly it's no longer possible to just
say 'RUN’, and the learner retreats.

Exposure to assembling machine language instills other disci-
plines ton; pre-planning, variable definitions, correct structuring,
and clear commenting and documentation, to name a few, are all
necessary ingredients for machine language. They're impaortant in
BASIC too, but how many of you have deemed them “unnecessary’
al one time or another, Then, 6 months later, you need to add a
variable to that program but don’t know if it's already been used.
Or you can't remember what that silly looking subroutine does at
line 53427! High level environments lend themselves nicely to
side-stepping. Those that acquire a little machine language disci-
pline early will naturally apply it when the time comes o wrile in
BASIC. And when that machine language subroutine just can't be
substituted, it will be treated like a natural step towards comple-
tion, rather than a job to be procrastinated as long as possible,

[urge you to try vour hand at machine language or assembler,
Read through the listings in this issue or disassemble some code in
a program you're using. Supermon has a disassembler in it and it's
available from TPUG and most club libraries,

Your computer is a creature of machine language. BASIC is there
merely to tame the creature, Well it's time to cast away ihe
protective shield and confront the creature on its own turf. You'll
find the challenge of the microprocessor is is no greater than any
other challenge, and once vou conquer it, vou'll be classilying
BASIC as an unworthy opponent!

There's nothing as constant as change, , . until next issue, |
remain,

Karl J.H. Hildon
Managing Editor, The Transactor

Post Script: Notice our circulation higures? Almost double our last

number! Consequently we couldn't get enough Concorde book
paper in time for this issue so it had to be printed on this shiny

stult. We were disappointed too, but we'll be back printing on the
quality stuff next issue!

The Transactor

Volume S, Issue 02

News BRK

Transactor News
The Reference Transactor Is Coming!

We've been gelling so much response over The Relerence Issue
(Volume 4, Issue 05) that we've simply run out trying to meet the
demand. Reference Issue “Users” have reported buying every
copy in the store just to have extras when one wears out, Others
have spent several dollars getting every page laminated. On behalf
of The T., I'd like to thank evervone for their compliments
regarding Issue 05 and particularly those who have forwarded
corrections and suggestions for nnprovements,

Although we will not be re-printing Volume 4, Issue 05, the NEW
Reference Transactor is already in maotion. Scheduled to be re
leased around September 1st, 1984, it will be offered as a separate
item from Transactor Publishing Inc. and will therefore not be
included with a regular subscription. The book will be printed on
fine quality #1 book paper and “ring bound” so it will lie flat when
opened to any page. Cover pages will be made of a thicker stock to
prevent untimely wear. Several new sections are planned includ
ing a complete list of PEEK and POKFE procedures for all of
memory, an expanded Glossary and book list, disk memory maps,
plus all memory maps and pertinent data for the new Commodore
cquipment that should be on the market by then.

The price will be somewhere hetween $12.95 and $§24.95. A rather
large spread | agree. The reason? We may include a diskette sewn
into the cover of every book. The disk would contain copies of any
utility type subroutines listed inside, plus a whole batch of pro-
grams that get a lot of use around The Transactor development
department. Programs like Supermon (versions for all models),
assemblers and un-assemblers, disk monitors, file readers, data
generators, intelligent directory readers, games utilities, sort rou-
lines, copy programs, programmers aids, communications soft-
ware, lext editors, plus anything else we can dig up that comes in
handy when you need it most. And with some 7 years of collecting
these programs, we'll have plenty to dig through!

Please do not submit orders yet. This time we plan to print enough
so there will be plenty to go around. Final details, including
quantity orders, will be released in our next issue (August '84).

Best Of The Transactor Volume 3 SOLD OUT!

Our current subscription cards show a space for ordering “The
Best Of The Transactor Volume 3", Please do not complete this
section as they too are all sold out. A "Best Of The Transaclor
Volumes 1 to 4" has been considered, but no firm plans have been
set for its production so, once again, please do not submit orders
yet. It may also sport a diskette of programs contained within, . .
details to [ollow next issue,

Back Issue Quantity Orders

Please note that back issues are to be ordered from The Transactor
head office in Milton, Ontario, and the current issue from our
distribulor nearest you, The current issue becomes a back 1ssue as
soon as the next issue is released, At this point our distributors
return the unused portion of their shipment, Therelore you can
only get them from us.

Recently we've been receiving several orders for quantities of back
issues [rom US retailers. However, between shipping charges, the
quantity discount, and customs service charges, we actually lose
on the transaction. In light of this situation, quantity orders from
the LISA for back issues will be costed at 25% of retail value plus
£40.00 for postage, handling, and customs surcharges.

Subscription Problems

If you have a problem with receiving magazines, we want it fixed
as quickly as you do! To help speed the process, please wrile us
with a complete explanation of the situation. If you paid by
cheque, send us a copy - not that we don’t helieve you've paid, it
just helps us find vou easier and track the problem to the source.

The Transactor

Volume 5, Issue 02

[f you bave renewed your subscription and find you are receiving
two of each issue, then you've probably been entered twice in our
mailing list system. In this case your subscription has been dupli-
cated when it should have been extended. This is our mistake, but
if not reported, vou will receive less issues than vou are entitled to,
If vou're currently receiving duplicate issues thal you haven't
ordered, please inform us so we can correct it, And please keep the
duplicates with our apologies.

Department “I'R’

Each address given in the News BRK section will now include the
line, "Dept. TR." Please include this in the address should you
write for more information on a product listed here. It saves vou
the trouble of noting where you found the initial product informa-
tion {which we appreciate nonetheless}) and it also gives the
manufacturer (or maybe potential advertiser?) an idea of how
much response The Transactor might generate for them (which we
also appreciate).

Commodore News

Commodore U.S, Updating Policy

To receive an update for any of Commaodore’s software, send $5.00
LIS, plus the original diskette, along with the replacement diskette
card or a receipt to,

Commuodore Disk Replacement
1200 Wilson Drive

West Chester, PA 19380

Commodore International Announces New
Microcomputers And Related Peripheral Devices

NEW YORK, NY. — Commaodore International Limited (NY-
SE:CBU) introduced a new line of microcomputers, related periph-
eral devices and accessories, many of which have never been
shown publicly. The new introductions were made al the Hanno-
ver Fair in Hannover, West Germany.

Among the new products publicly shown for the very first time
anywhere in the world were two new microcomputer systems for
the business market.

The first system is a 16-bit, Z8000 microprocessor based computer
system which features a Unix-oriented operating svstem, 256K
bytes, or 256,000 characters of huilt-in user RAM, or random
access memory, 80 column colour graphics, and built-in dual
floppy disk drives. Optional hard disks and printers will also be
available for this new system.

The second system, a 16 bit, 8088 microprocessor based Commo-
dore PC. is a transportable system with software compatihility with
the IBM Personal Computer, and also includes 256K bytes of
built=in user RAM. This system has more features and will be sold
at a lower price than the [BM Personal Computer,

In addition to the two new business systems, other computers
shown at Hannover were two microcomputers designed for the

home market, the Commadore 16, featuring 16K bytes, or 16,000
characters of built-in user RAM, and the Commodore 264, the
series name for a 64K microcomputer that ws originally introduged
at the Consumer Electronics Show in Las Vegas, Nevada in early
January.

Among printers and other accessories introduced at the Hannover
Fair were four new printers designed for the VIC-20, the Commo-
dore 64, and the new 264 series, These include a low cost dol
matrix printer, a higher-end dot malrix printer, a colour dot matrix
printer, and a low cost daisy wheel printer.

Finally, Commodore also introduced three new accessories for the
64, including a touch screen, a light pen and the Commodore CAT,
a mouse~like device,

All products, except the two business systems, will be available
during the last half of 1984, while delivery dates for the business
systems will be announced. Contact:

Mr. Steven A, Greenberg
30 Rockefeller Plaza
NEW YORK, N.Y. 10112,
(212) 246-1000

Commodore Receives Royal Warrant

Comumnodore Business Machines (UK) Limited, the leading micro-
computer manufacturer, has become the first manufacturing com-
pany to be granted the Royal Warrant of Appointment by Her
Majesty The Queen of England for computer business systems,

General Manager of Commodore UK, Mr, Howard Stanworth, said:
"As a high technology company with a growing manufacturing
and ancillary supplier base in the UK we are delighted and
honoured to receive the Royal Warrant of Appointment to Her
Majesty The Queen.”

The Warrant carries the legend "By Appointinent to Her Majesty
The Queen, manulacturers of Computer Business Systems, Com-
modore Business Machines (UK) Limited Slough” and is for an
initial period of ten years.

Commodore UK is based at Ajax Avenue, Slough, England and has
a factory at Corby, Northants, which produces more than 5,000
microcomputers a day.

The Company currently employs a total of more than 300 people
and later this year will create up to 1000 jobs when it opens its
European manufacturing and distribution headquarters at Corby.

Ilts best known producls include the Commeodore 8000 series
systemns, the VIC 20 home computer and the Commodore 64,
recently voted "Home Computer of the Year” by a number of
international computer journals. For further information, please
cortact:

Mr. Wu Yhee Ming (Managing Direclor)
Systems Technology Pte. Ltd.

149 Rochor Road #04-10

Fu Lu Shou Complex

Singapore 0718

The Transactor

Yolume 5, Issuve 02

General News
Computer Song Writing Contest

Vince Fleming of Strangeland Music (ASCAF) and Dan Seitz of
Aleph-Baze Music (BMI) have announced they will join the panel
of judges for EnTech Software’s First Annual Computer Song
Writing Contest. Aleph-Baze and Strangeland are music publish-
ing companies in the Los Angeles arca. Other contest judges will
be named soon, and may possibly include executives from CBS
and Capitol Records.

EnTech's Computer Song Writing Contest, the first of its kind, will
award $1,000 and free studio time to the best musical composition
written on the Commodore 64 with EnTech's "Studio 64", Studio
musicians, an arranger, and a producer will help turn the winner's
composition into a hit song.

Contest entry blanks are available al participating dealers, and
entries will be accepted through November 1, 1984, For more
information, contact:

Mathew Stern

ENTECH Computer Song Writing Contest
PO Box 185

Dept TR’

Sun Valley, CA 91353

818 768-6646.

Holt, Rinehart and Winston Now Publishing Software

Canadian book publisher Holt, Rinehart & Winston has made the
move to publishing software; one of the first of the large publishing
firms to do so in this country. Already a distributor of CBS software,
as well as Compute!, Hayden Books and dilithium Press computer
books and software, HRW is going to develop, manufacture and
sell software here in Canada.

“What we intend to offer”, said Carl Cross, Viee President of the
Trade and Professional Division, “are quality products for the
home educational and business applications market. We don't
want any ‘three month wonders’, we're looking at solid items with
a longer selling life and strong backlist potential.

Carl also said that, while HRW’s emphasis would be on Canadian
authors and content, they would also be looking for software
which has potential for international marketing, particularly in the
United States where their connections with CB5 guarantee them a
large markel reach.

HRW intends to bring out its first product, already under develop-
ment inhouse, in early summer of this year. Others will follow
throughout the year. They are currently assembling a staff to
manage the projects and have hired lan Chadwick, former editor of
InfoAge Magazine, freelance writer and author of "Mapping the
Atari”, as Software Editor,

Rather than hiring a large staff base of programmers and devel-
opers, Holt will work with a wide variety of talented, outside
resource people. They are interested in discussing projects with
any Canadian programmers, authors, teachers or developers who
feel they can contribute to the developement of software for the

popular home and business microcomputers, including the Apple
lle, Maclntosh, IBM PC and PCjr, Commodore 64, Atari 800XL and
others. Interested parties should contact Carl Cross or lan

Chadwick at (416) 255-4491 during normal business hours.

Holt, Rinehart and Winston of Canada, Limited
Dept TR

29 Horner Avenue

Toronto, Ontario MB8Z 4X6

SuperPET News
SuperPET User’'s Group and the SuperPET Gazette

The SuperPET User's Group, with members from Canada, the
U.5., and Europe, has commenced publication of “The SuperPET
Uazette”. This newsletter aims to provide valuable information on
using the SuperPET, For example, the September 1982 issue
included articles on the following subjects:

Waterloo microBASIC: The Keyvhoard and its Codes
Using BASIC Procedures in Immediate Mode
SuperPET News

A [ree copy of the September issue, which contains information on
how to become a SuperPET User’s Group member, can be ob-
tained by sending a request along with a [1.S. 20-cent stamp to:

The Editor
SuperPET Gazette
PO Box 411

Dept ‘TR’

Hatteras, NC 27943

Tutorial Diskette For The SuperPET

This product contains five tutorial files divided into 19 sections,
describing a variety of aspects of the SuperPET capabilities. The
maost central facility of the SuperPET is the microEDITOR, but
unfortunately it is also the facility which is least well documented.
This tutorial disk discusses all uses and commands of the editor
and could be considered an equivalent to the programming—lan-
guage examples supplied by Waterloo on the tutorial disk. This
tutorial also contains much reference material not provided by
Waterloo or Commodore. Many of the facilities described will only
work under version 1.l (and hopefully any later versions) of the
Waterloo software,

This diskette contains this DESCRIPTION file, a CONTENTS file
which Is a table of contents for the tutorial sections: TUTORIAL
files numbered 1 through 5 containing the actual ttorial; and a
LICENSE file which explains the product warranty and conditions
of use. In addition there are some public-domain programs distrib-

uted as a courtesy, All the contents of the disk are briefly described
in the DIRECTORY lile.

The topics in the tutorial files are not presented in any particular
order, except to some extent from more general to more ‘techni-
cal’. It would be possible to read the entire 5 tutonals in order,
{(although with 10000+ words it would take some time! but a
better approach might be to start with the topics of known interest

heTomadgar

and delve into the others as the need arises. You might want to
extract out into other files or print out some subsets of the tutorials
for quick reference. If you have the Waterloo 'Help! facility (and a
dual drive) you could use it to automate scrolling through the
tutorial files.

The CONTENTS file shows the file name and exacl line number ol
each section header. You can go to a particular section by just
typing this line number after GETting the file, or of course you can
always find the next section header with a + /SEC command, Of
course you should try out the various edit facilities while you are
going through the tutorial - you will learn to use the SuperPET
facilities by USING them. Naturally you should start by crealing a
backup copy of the tutorial disk before you do anything else (copy
programs are supplied for that purpose).

We wish you the best of luck in mastering your Commodore
superPET. It i1s one of the most sophisticated micro systems
available and an excellent vehicle for learning to compute, Do try

to do whal you can on your own, but you should feel free to call on

help. The BIBLIOGRAPHY file will lead you to some groups and
other sources as well as books. Feel free to write to this address if

you have questions:

Dyadic Resources Corporation
PO Box 1524, Stn. ‘A’

Dept ‘TR’

Vancouver, BC V6C 2PT

Books
Programming The PET/CBM

The UK edition of ‘Programming the PET/CBM' is available in the
US (after Compute! discontinued printing) from this address:

Holford Enterprises
6065 Roswell Road
Suite 1398

Dept TR

Atlanta, GA 30328

The Machine Language Book For The Commodore 64

The Machine Language Book For The Commodore 64 is aimed at
the Commaodore 64 owner who wants to progress beyond BASIC, [f
the reader wants to write programs that run faster, use less
memory or perform functions that are not available in BASIC, then
this book will help him understand machine language.

This is a 200+ page detailed guide to the complete instruction set
of the 6510 processor of the Commaodore 64. The book is filled with
examples of machine language routines so that the reader can
learn from working programs. These examples are geared specifi-
cally to architecture of the Commodore 64,

Included in these pages are listings of three full length programs.
One is a working assembler so the reader can create his own
machine language programs. The second is a working disas-
sembler so the reader can inspect other machine language pro-
grams. The third is a 6510 simulator so that the reader can better

understand the operation of the processor.

The Machine Language Book For The Commodore 64 is scheduled
for release in April in softcover for $19.95. Available from your
local dealer or directly from Abacus Software,

Abacus Software

PO Box 7211

Dept ‘TR’

Grand Rapids, Ml 48510
616 241-5510

The Anatomy Of The Commodore 64

The Anatomy Of The Commodore 64 is aimed at the Commodore
64 owner who wants to better understand his micro, It is a 300
page detailed guide to the lesser known features of the 64, Here’s
an outline of the conlents;

1. Machine Language Programming On The Commodore 64
2. The Next Step ~ Assembler Language Programming

3. A Close-Up Look At The Commodore 64

4. Music Synthesizer Programming

5. Graphics Programming

6. BASIC From A Different Viewpoint

7. Comparison Of The VIC-20 And The Commodore 64

8. Input And Output Control

9. ROM Listings

Those readers that need o delve deeply into their computer, we've
included a fully commented listing of the ROMS. Here's an authori-
tative source for Commodore 64 information.

The Anatomy Of The Commodore 64 in softcover $19.95. Availa-
ble from your local dealer or directly from Abacus Software.

The Anatomy Of The 1541 Disk Drive

The Anatomy Of The 1541 Disk Drive is aimed at the Commodore
64 owner who wants to better understand his disk drive, It is a
300 + page detailed guide that explains the mysteries of using the
floppy disk. Here's an outline of the contents:

1. Getting Started
2. Storing Programs On Disk
3. Disk Commands
4. Sequential Data Storage
2. Relative Data Storage
6. Disk Error Messages
7. Direct Access Commands
8. Overview Of DOS Operation
8. Structure Of A Diskette
10. Utiltiy Programs
1. 1541 ROM Listings

II you've been confused about using files on the 1541 then this
guide clearly explains their use with many examples. We've also
included listings of many useful utilities that you can use including

a DISK MONITOR.

Those readers that need to delve deeply into their disk drive, we've
included a [ully commented listing of the 1541 ROMS. Here's the
authoritative source for 1541 Disk Drive Information.

The Transactor

Volume §, Issue 02

The Anatomy Of The 1541 Disk Drive scheduled for March 1984 in
softcover $19.95. Available from your local dealer or directly from
Abacus Software.

Software News
MASTER-64

MASTER=64 is simply the best, most comprehensive professional
application program development package. No other software
package offers near the features of MASTER-64. MASTER-64 has
commands for programmer’s aid, screen management, superior
indexed file management, high multiprecision arithmetic, ma-
chine language monitor and much more. And software that you
develop using MASTER-64 can be distributed without paying
rovalties,

MASTER 64 adds almost 100 new commands to BASIC that
include:

SCREEN MANAGEMENT = define, input, edit and output data in
exacting format to/from screen. Save, load or swap predefined
screen.

ISAM FILE SYSTEM - complete support of up o 10 indexed
sequential files. Data packing gives up to 40% more data storage.
Fast indexed or sequential retrieval.

PRINTER GENERATION - define and format printer pages similar
to screen management.

BASIC EXTENSIONS = multi-precision (22 digits) anithmetic, di-
rect disk access, dale control, more,

PROGRAMMER'S AID - auto, renumber, delete, print using, find,
if then else, trace, dump, error, etc.

BASIC 4.0 COMMANDS - for compatibility with other Commaodore
micros. Includes relative record access

MACHINE LANGUAGE MONITOR - built into MASTER-64 for
added usefulness.

For serious programming development, nothing comes close to
the power of MASTER-64. MASTER-64 comes complete with a
comprehensive 160 page user's manual in three-ring hinder, the
MASTER~b4 development system and the MASTER-64 runtime

package.,

MASTER-64 Software & Manual on diskette $84.95. Available now
from vour local dealer or directly from Abacus Software

JOSEF - A New Programming Language

JOSEF is a new powerful educational programming language for
microcomputers which combines the spirit of the Logo Turtle with
the structure of Pascal. With the Turtle it shares extendability
(programs bhecome new language words), the challenging vet
toy=like and natural programming environment with visual orien-
tation, and the possibility to execute commands directly without
the need Lo wrile programs.

JOSEF has standard programming features such as variable, as-
signment and i/o statements, control structures, procedures and
functions with parameters and recursion, as well as unusual
constructs such as programmable interrupts allowing the writing
of games controlled from the keyboard., A consequence of the

screen oriented nature of the language is that pseudo-graphics is
possible without special hardware.

The latest Version 1.1 contains a built-in interactive tutorial that
allows the user to learn the language directly from and in interac-
Lion with the computer,

JOSEF is a rabot who uses the screen of an ordinary terminal or
microcomputer as a geographical map of his world and can be
programmed to perform natural everyday tasks, He can move on
the map, write on it, manipulate user-created objects, commum-
cale, sense information about the map, and so on. The program
contains a map editor which allows the user to create his/her own
maps.

JOSEF is intended for people who want to learn about program-
ming in an interesting and natural way, children, but also for
mature programmers looking for something different, JOSEF is
ideal for education, particularly because of the increasing empha-
sis on teaching Pascal in high school programs.

The program runs on a number of computers with enough mem-
ory and sufficient disk drive capacity, The cost is $45 for individual
users and 565 for schools (permission to make multiple copies).

A textbook for the language called The First Book of JOSEF (list
price $13.95) by Ilvan Tomek and published by Prentice-Hall is
available in bookstores and from Kobetek Systems.

Designed by Distributed by:;
Modular Systems 82 Kobetek Systems

POB 1456, Wolfville, 1113 Commercial Str.,
Nova Scotia, Canada New Minas

BOP 1X0 Dept ‘TR’

Nova Scotia, B4N 3EG
902 678-7771

Application Software From Fabtronics

Utiltiy File - VIC 20 (+3K)/C64 ~ Tape/Disk $27.95 (formerly
"Energy Master"). Extensive energy consumption data processing
program o calculate, display, store, print out data including daily
averages/totals and cost projections for any number of days.

Electric: KW H.

Water: Gals/cu~ft (automatic conversion)
Gas: cu-tt/meters

Oil: Gals/litres

Propane: Pounds

Special Features - prior meter readings are retrieved within auto-
matically, also any utility not applicable is bypassed.

Utility File Il - Cb4 Disk $87.90. A commercial version of above
wilh accounts payable including statements and billing on selected
commercial forms.

Fill=-A~Form = VIC 20/C64 = Tape $17.95 Disk $19.95. A numer-
ous selection of in house plain paper business/commercial forms
to help the private enterpreneur. Printer required,

The Transactor

e

Tenant File - VIC 20/C64 - Tape/Disk $19.95. Maintain a record
on each tenant with 22 fields of information including: active or
closed, name, rental rate, rent due day, unit * tenant in, social
security *, residence phone *, business phone *, auto yr/make,
plate #, driver lic #, sec. dep aml paid, sec. dep date paid, sec. dep
amt returned, retention reason, date moved in, date moved out, *
of bad checks, condition of unit on move in, condition of unit on
maove out, comments/information pertinent to renant or file

Rental Manager - Co4 - Disk $47.95. Spreadsheet & data records
for rental applications die orented tracking/billing and recording
of payments. Also prints statements will support the following
entries: account *, rate, unit or item ¥, payment schedule, due
date, depaosits, payments (10 per mo), utility charges, mise. chrgs,
dates in, dates out, name of occupant or user

Fab Mail = VIC 20/C64 - Tape $16,95 Disk $19.95, A super user
friendly mailing list with features others wish they had thought of,
ez select/edit, user selection of gemini 10x and similar printer
abilities, also great for cataloging/filing/sorting.

I'ab Business - C64 - Disk $47.95. A mail order or small business
must. Lasy invoice/packing list/label all in one, supports charge
card data and allows quick selection of items when used with
“inventory d-base"program. “Fab-Mail” data also quickly re-
trieved. Plain paper or selected comm. forms.

Inventory D-Base - Cb4 - sk 327.95. A stand alone program
that is also compatible with fab-business. Allows quick selection of
items during invoicing.

Printing on all programs where applicable are compatible with
commaodore 1525, MPS801, Epson, Gemini, Prowriter, C=ltoh,
Epson MX/RX/FX B0-100, Okidata 82/83/84/92/94, Axiom GP/
100, Gorilla Banana and similar printers when properly interfaced,

S&H $3.00 — Visa/MC welcome no surcharge — all prices U.S,
funds - (cashjo.d. to U.S. only add $2.00. NY add sales tax

Music Production Service

[am introducing a professional music production service for
educational and game programmers at all levels who are inter-
ested in putting together the maost attractive possible software for
the Commodore 64 in order to stand out in todays's competitive
market,

Music is a powerlul tool for communication, Think of the majestic
main theme from the “Star Wars” epics, or of Woody Woodpeck-
er's laugh at the beginning of a cartoon. Obviously music can
provide an emotional response as immediate and as strong as a
visual display alone, and when the two are combined, the effect
which results can be potent.

The sound capability of the Commodore 641 is extensive. However,
without expertise in digital sound synthesis, three-voice harmony
and counterpoint, specialized systems of intonation, musical copy-
right law, composition, and arranging, it can be difficult to produce
high quality music.

With 20 years of experience as a composer/arranger, performing
musician, and music educator, | can help with virtually any aspect

of musical programming for the Commaodaore 64, up to and includ-
Ing complete interactive soundtracks for software. | have written
for big bands, rock bands, school bands, club bands, brass quin-
tets, woodwind ensembles, soloists, and now computers, | have
played principal trumpet with the St. Pul Chamber Orchestra, the
San Juse Symphony, and the Marin Symphony, played on records
with Dave Brubeck and the St. Paul Chamber Orchestra, and
played on many TV and radio shows and commercials, | have
taught for the University of Minnesota and Macalester College,
given clinics and master classes, and taught hundreds of private
students.

If you would like an audio tape demonstrating a variety of different
kinds of music that can be produced on the Commaodare 64, send
$4.00 to Tom Jeffries, 2915 Harrison, Oakland, CA 94611, Further

information;

Tom Jelfries

2915 Harrison

Dept ‘TR

Oakland, CA 94611
415 451-3314

Flexidraw’s New 3.0 Version
Opens Channel Of Communication

sSan Diego, CA — Inkwell Systems increased the versatility of
Flexidraw,; graphics software and light pen, lo include a communi-
cation program which enables two C-64 owners to send and
receive graphics and text created by Flexidraw via modem.

This program, titled Transgraph, is easily accessed from a light pen
driven menu and implemented by a series of on-screen
user-friendly prompts. Any Flexidraw file can be sent or received
using the VIC or HES modemn, saved to disk and printed at both
locations.

Sherry Kuzara, President of Inkwell Systems said “Transgraph
represents a major step in the evolution of atfordable business and
personal communication,” According to Kuzara, the network
capabilities of Transgraph coupled with the “print out” feature can
fill many business and personal needs, previously only available
in systems costing thousands of dollars.

Flexidraw will still retail for $149.95. Registered owners will be
notitied by mail and can update their Flexidraw 2.1 version for a
nominal fee, Distribulor and dealer inquiries can be directed to
Inkwell Systems:

Mr. Byrne Elliort/Ms. Sherry Kuzara
Inkwell Systems

P.O. Box 85152 MB290

7770 Vickers 5t., *202

Depl TR

San Diego, CA 92138

619 268-8792

Flexidraw 3.0 Offers A Rainbow Of Colours
San Diego, CA — March 20, 1984, Inkwell Systems has expanded

the capabilities of Flexidraw:; graphics software and light pen
combination, to include an interactive high resolution colour

The Transactor

Volume §, lssue 02

program, Graphics previously created with Flexidraw can now be
painted in a dazzling array of 16 high-resolution colours.

Completely light pen and menu driven, the new addition to
Flexidraw version 3.0 entitled Pen Palette, features a similar
screen/menu format as Flexidraw. With the ease of an artist using
a paint brush and palette, the user chooses colour combinations
from a series of paint pots located on the menu and applys these
colours to areas on the work screen using the light pen.

Special features found on Pen Palette include; two demonstration
programs illustrating colour animation capabitities, and the ability
to save colour files to disk or re-load using the light pen driven
menu selector,

Flestidraw will still retail for $149.95. Reyistered owners will be
notified by mail and can update their Flexidraw 2.1 version for a
nominal fee. Distributor and dealer inquiries can be directed to
Inkwell Systems.

New Diskovery Early Math Programs

Internatinal Publishing & Software, Inc., announces the release of
TAKE-AWAY ZOO and The ADDING MACHINE; two early math
learning programs for 4 to 8 vear olds. Take-Away Zoo and Adding
Machine are the lalest additions to L.P.5.'s successtul DISKOVERY
Learning Works. line. Both use humorous graphics, sound and

colour to create the fun and excitement needed to insure high
student interest and long lasting learning.

These two new programs each consist of a set of three different but
refated aclivities designed to help the child become more success-
ful in arithmetic at school, As the child helps the "animal-master”
move animals in and out of their cages, he/she learns and
practices addition and subtraction.

Each aspect of each activity is user controlled to allow the child to
set the pace of the learning. These math activities are designed to
give every child a successful addition or subtraction learning
experience. While the activities are fun and exciting to play, they
provide a constant challenge for the children,

ADDING MACHINE and TAKE-AWAY ZOO feature the DIS-
KOVERY ELECTRIC REPORT CARD. This user-transparent spe-
cial feature tells the teacher or parent {or child) the activities the
child used, errors made (actually showing the problems answered
incorrectly), final score and percentage right. The ELECTRONIC
REPORT CARD is on, constantly providing complete up-to-date
information an the child’s progress at any time; even in the middle
of an activity.

Each program teaches, tests, reviews and scores in an exciting
game format which helps and encourages children to praclice
school subjects at home.

DISKOVERY Learning Materials are written and designed by
leading educators ensuring that each skill taught matches the
school curriculunm,

TAKE-AWAY ZOO and THE ADDING MACHINE are currently
available for the Commodore 64 and the Timex Sinclair 2068
computers. Apple 1l and HE and TRSR0 versions will be available

by mid-June, 1984 The suggested Retail Price for disk versions of
either program is $29.95. Dealer and distributor enquires are
welcome. Write to; |

International Publishing & Software lnc,
3948 Chesswood Drive

Dept TR’

Downsview, Ontario M3J 2W6

416 636-9409

Turtle Toyland Jr.
Teachea Basic Computer Concepts

For children aged six and up, the challenge of learning about
computers and computer concepts has been made easier, and a lot
more fun, with the introduction of Turtle Toyland Jr. by Human
Engineered Software of Brisbane California, and distributed by
Micron Distributing.

Available for the Commodore 64, IBM Personal Computer and
Coleco systems, Turtle Toyland Jr. operates with just a joystick,
teaching children computer concepts by moving a turtle across the
computer screen to build film strips.

Turtle Toyland Jr. is an ideal introduction to creative programming
for young children. Because the program translates a child's
joystick movements into reproducible turtle graphics, children
learn programming concepts and techniques,

To achieve the best resuits from the game it is recommended that a
carefully designed sequence of activities is followed, beginning
with a playground to discover how to move the turtle and draw
images. From this introductory phase, children move on to turtle
training and thern on to the Crossroads to decide where to go next.

After a stop in Training Land, children can try four other se-
quences: Music Land, Sprite Land, the Roybox and Input/Output
Land. In Music Land, children can learn to write their own music
using the joystick to control notes from a piano, horn, guitar and
flute. The music created can be stored in the Toybox.

Children in Sprite Land fill in squares with the turtie to draw
sprites, which are animated drawings. Sprites can aiso be stored in
the Toybox. In Input/Output Land, saved files in the Toybox can
be called up and played again.

Turtle Toyland Jr. was developed jointly by Human Engineered
Software and Childware Corporatin, an innovalive software devel-
opment group.

These and other innovative educational programs are distributed
through Micron Distributing or can be found at your local com-
puler store.

Micron Distributing

408 Queen St. West,

Dept TR

Toronto, Untario, M5V 2A5
416 H93-9862

Yolume §, lssue 02

‘Horses OTB": Horse Race Handicapping Software

Horses OFTH is a thoroughbred horse race handicapping program.
This program can be used for off track betting (OTB).

Slatistics from a large number of races are combined with com-
puter simulation methods to calculate opltimum betling strategies.
Data complied from over 1000 races shows superior performance
from this system.

The program is easy to use, The computer asks quesfions about
each horse in each race. The user needs to obtain the "Daily
Racing Form™ and answer the questions using the data from the
form. The computer will tell the user which horses to bet on, No
judgement or comparison of odds is necessary and the user does
not need to know the track odds.

The complete instruction manual includes an explanation on how
to use Horses OTB, facts on all inpul dala needed and how lo
correct any mistakes on the data entered. The manual also con-
tains tips on money management and presents simulated results of
the money management techniques.

Horses OTH sells for $34.95 and 1s avalable on disk for the
Commodore 64, It can be ordered by mail or through local dealers,
Or contact;

Iim Golts

3G Company, Incorporated
RT3, Box 28BA

Dept TR

Gaston, Oregon 97119
503 662--1492

Commodore 64 Memory Expander

The unexpandable memory configuration of the Commeodore 64 is
no fonger unexpandable! LETCO, the pioneer of the popular 64K
memory expander for the VIC 20, announces the adapter (Model
64KVA) to use with their 64KV memory expander on the Commo-
dore 64. When used on the C=64, the addresses from $8000 to
$9FTFF will have B separate blocks of BK locations, each block
selected by a single poke instruction. Current owners of the b4KV
only need the adapter to use their memory on the C-64.

The adapter (Model 64KVA) is priced at $29.95 The memory
(Model b4KV) for use on the VIC 20, is priced at $109.95, The
combination {Model G4KVA) for use on the C-64, is priced at

$130.95. Complete instructions are included with each product.
All products are covered by a 90 day warranty on parts and labor
and of course satisfaction is guaranteed within a 15 day return
perind,

LETCO will soon announce the ullimate expander for the 64, thal
will allow up to 256K bytes of expansion. Of course, current
products will be compatible and pricing is expected to be about
$140 per 64K byte module.

LETCO 18 currently working with many popular software suppliers
to incorporate these added capabilities lo their current and future
releases, Just think of the power that can be added to your word
processer or spreadsheet programs. All products are available
directly from:

LETCO

Leader Electronic Technology Company
1310 Wells Road

Dept TR’

Plain City, OH 43064

614 873-4410

‘Bit Scrubber’: Disk Residual Noise Eraser

Now - Wake up that old pile of diskettes you don’t want to throw
away! Every computer has a comman purpose-—knowledge stored
in program format. But when dealing with giga and mega kilobvtes
of data, one single bit erroneously entered can render a program
useless, create frustration, time delay and profit loss. Editing a
program also generates on-disk magnetic clutter causing a display
of “error messages”, "disk overload”, etc.

In addition, power supply fluctuations and disks remaining in the
computer during system power down, produce a magnetic held
around the drive head correspondent to these currents, generating
evern more noise. When the head attemipts to read/write data from
this portion of the disk, it cannot, and eventually this affects the
entire file.

During normal use, as a data file 15 revised, the head erases
previously stored data and replaces it with new data. This erasing
process is not perfect, always leaving a lrace ol magnetic noise.
After many write/erase operations, this noise level justifies thor-
ough disk erasure.

Uisk storage media replacement is expensive and time consum-
ing. For these reasons, Techstar, Inc, has developed the "Bit
scrubber”. The fastest and most positive method o magnetically
“clean” and standardize both new and used diskettes,

The "Bit Scrubber” ean restore used and noisy disks to their
original magnetic quality, providing a cost efficient method of
“error-free” storage eliminating the expense of purchasing new
Hoppy disks.

The “Bit Scrubber” can reclaim and maintain “SSSD" (single-
~sided, single density), “SSDD” (single-sided, double density),
“DSDN" (double-sided, double density), "SSQD", “DSQD", efe.
and any other type of commercially available floppy disk.

When used periodically, the "Bit Scrubber” prevenls noise accu-

e o = . = = S

—

The Transactor =

mulation on the disk, assuring reliable data storage and extending
the life of this costly recording medium.

¢ “Bit Scrubber” will clean 8", 5 1/4” and the new mini diskettes,
¢ Patented high energy magnetic “gap” insures uniform particle
orientation.

e Shielded magnetic circuit protects programmed disks.

* Dimensions: 9" x 4" x 1-3/4", Weight: 5 lbs.

$49.95 - plus $4.00 shipping and handling charges (Fla. residents
add 5% sales tax)

Techstar Inc.

8651 N.W. 56th Street
Miami, FL. 33166
Dept ‘TR’

305 592-0201

SADI Communications Interface and Printer Adapter

The c¢cMc SADI is a microprocessor based interface designed to
allow communication between Commodore PET and CBM com-
puters and a wide range of devices including serial and parallel
printers, CRTs, modems, acoustic couplers, hardcopy terminals nd
other computers. SADI's two independent ports (one serial in/out
and one parallel out) give the Commodore computers tremendous
flexibility as controllers and as dumb or smart terminals. Data can
travel between the computer and one or both ports or between
ports.

General features include true ASCIl conversion, cursor move
conversions for program listings, and automatic insertion or dele-
tion of linefeeds. The SADI can also issue a form feed or any
number of blank lines. The device address is switch selectible
(0-15). Serial features include 11 baud rates (75 to 9600), selectible
parity and a 32 character input buffer with x-on / x-off feature.
For the parallel device the ‘busy’, ‘ready’ and ‘data’ polarities are
selectible.

The SADI is easily programmed using BASIC commands, and is
compatible with Wordpro, VISICALC and other software. It comes
assembled and tested with case, PET IEEE cable and power
supply. Thirty day money back trial period.

Retail price in USA $295.00, optional 230 V power supply $30.00.

Shirley Fletcher

Connecticut microComputer Inc.
36 Del Mar Drive

Brookfield, CT 06804

Dept ‘TR’

203 775-4595

Twx: 710-456-0052

Electronic Fingerprint Analysis Security System

Identix Incorporated has recently completed two rounds of ven-
ture capital funding totaling $2.25 million. The lead investors are
Citicorp Venture Capital of New York and Genesis Capital Ltd. of
Bellevue, Washington.

[dentix makes a computer terminal that verifies a person’s identity
by means of encoding a fingerprint. The terminals will be used to
protect buildings and computers from unauthorized entry.

The Identix terminals are based on a patented design by the
company's founder, Randall C. Fowler. Although Identix is 19
months old, the technology goes back about 12 years, when
Fowler developed a device to record fingerprints on F.B.l. cards.
Within the last several years, the costs of computer chips have
decreased sufficiently to allow microprocessors to perform finger-
print analyses. Identix is using the Motorola 68000 chip — widely
used in personal computers — in its fingerprint terminals. Produc-
tion models of the terminals are being manufactured now.

Identix forsees that its terminals will be used in a number of
applications: (1) to control access to buildings and laboratories and
(2) for verification of persons involved in financial transactions
such as automatic teller machines (ATMs). The banking and
financial industries will be a major target of Identix’'s marketing
effort.

Another large market that Identix foresees is in computer access
control. An Identix terminal can positively identify a person who
wishes to gain access to a computer. With the security of corporate
computers being a major issue, the Identix terminals provide
much greater assurance than passwords — which are the primary
safeguards at this time.

In addition to company president, Randy Fowler, the management
team includes: Ken Ruby, vice president of engineering; Dave
Larin, vice president of marketing; and Frank Fowler, vice presi-
dent of sales. Randy Fowler was formerly vice president and
general manager of Flow Industries, Energy Division. Ruby was
chief engineer at Motorola’s Mechanical Laboratories in Phoenix,
Arizona. Larin was formerly vice president of marketing at Reticon
Corporation in Sunnyvale. Frank Fowler (not related to the com-
pany president) was formerly vice president of marketing at Red-
wood Software, San Jose.

Randy Fowler
Identix Incorporated
2452 Watson Court
Dept ‘TR’

Palo Alto, CA 94303
415 858-1001

The Transactor

Volume 5, Issue 02

armng

Letters

Un-products?: | am writing this letter in reference to The
Transactor issues for January and July 1983. In these two
issues, two products - a synthesizer keyboard and a drum
synthesizer for the Commodore 64 were described. I've
heard nothing of these products since. | was wondering if
yvou had any more information as to the release of these
products or even if they have been cancelled. As well, is
there any other information that vou might be able to send
on computer music and interfacing instruments to the C64?.

R. Cooper, Thornhill, Ontario

I'm afraid both the synthesizer kevboard and the drum
synthesizer have been shoved to Commaodore s back burner
as it were. Too bad too. Designer Paul Higginbottom, as |
recall, spent many long nights working on that project and
the version [saw flast was literally stunning. I think Commo-
dore’s “reasoning’ is that it takes 3 SID chips to make one
kevboard, so for every keyvboard they make, they could have
made 3 Chds. Get the picture?

There are several Music packages out now for the 64 -
which one is best is hard to say unless you're a musician
AND a hacker. See News BRK for more info on this. Perhaps
Ron Jeffries would have some advise for you. instriiment
interfacing is another story. 1 know Chris Zamara was
waorking on an idea, but said that problems with the SID chip
fnasty clicks) had his ambition somewhat cooled Anyone
out there with further suggestions are invited to write in. -
M Ed

Response? Response: The program listed above has
become very familiar to me, chiefly through my proof-read-

ing efforts. | have been unsuccessful in getting it to run in
practise. This letter incidentally, is by a golden ager (myself)
with a "B.SW" on a C64+ 1541+ 1525 chain. Your very
excellent journal lends itself admirably to the untutored
neophyte in the occult art of plunking. Please be kind! | am
as a village “G.P." reading about the fine points of
open-heart surgery in a medical treatise. | know naught, but
itis fun trying to figure it all out. Your magazine format is just
great for my 3~ring binder. | could almost pun on the use of
that word in this context. So, to the point; not being Jim B, |
gotta ask, ‘'What is the correct reply to the prompt: “auto:
start, increment”"?’

It is probably a blunder on my part. | have been conditioned
to wait a couple of months before attempting programs
appearing in the media. It keeps the blood pressure down to
have the expected errata in hand before transcribing a long
program. It must be a gimmick to sell magazines! After the
botch-up that Commodaore have made of their user manuals
- even | could see the goofs after a weeks trial. Closer to
home, | would love to know how to put the “Function Key"”
thing to work!

Pardon' I am getting carried away. See you in your next
edition. Keep the Ads out of the way. The “Star” would
never dream of putting Mom's cross=word on Dad's sports
page so vou are thinking right. Sincerely,

Ralph McKnight, Hudson, Quebec

The program “above™ Is referring to the program “Aulo
Liner” that appeared in The T. Volume 4, [ssue 06. Howwever,
the blunder was on our part, specifically my part. You see, in
my attempts to publish versions of programs for every

The Transactor

Volume 5, Issue 02

Commodore model, I got somewhat hasty with Auto-Liner
The PEEK address in line 60040 of the 80 column version
starts with the second space of the third line down ie. the
screen start address, plus 3 times 80, plus 1, equals 33009
For the C64 version I took the screen start address (1024)
and added 3 lines plus 1. But I forgot the lines are only 40
characters long. So the result was actually 6 lines, not 3.
Oops. Some other errors also slipped by. Since then, a mister
Keith Preston has sent us a new and improved version that
we ‘ve reprinted in this issues’ Bits and Pieces section.

Auto Liner's purpose in life was to reduce a little of the work
involved in transcribing programs (although I admit, the first
64 version doesn t do that very well -tongue in cheek- by the
way, for those reading, the 80 column version works as
shown in Issue 06). It prints a line number, s on the
cursor, and enters that line for you when you hit Return.
After that, the next line number is printed for you to continue.
So to answer your first question, the response Io “stan,
increment” is your choice for the first line number you wish
to start you program with, followed by the amount to adid to
each previous line numaber to give you the next. For example,
if you're entering a program that shows lines ascending by
10, your increment is therefore 10. “Start™ is simply the first
line of the program. You probably would have figured this
out had the program worked - as i was, no combination of
“start,increment’’ would have got you going.

l've used Auto Liner myself, except with one minor modifica-
tion. In bettween the variable S and the semi—colon on line
60010, | inserted the word DATA within quotes. Now Auto
Liner prints the line number, followed by “DATA" so that all f
need do is enter the numbers and commas contained on
each data line. Convenient. . ., when it 1boOrRs.

The Function Key program (I assume the one by Darren
Spruyt) is a program that allows you to define what will
appear when you hit a function key. This you probably
know, but using it is a matter of necessity. For example, if
you find vourself repeatedly PEEKing at some memory
locations, you need not type PRINT PEEK(etc. every lime.
Just define a function key appropriately, and when you need
this information, press only one key instead of retyping the
whole shot. Of course you need Darren s prograrn in order (o
define the function keys initially. It also works good for
reading the error channel with:

open 1,8,15: for j= 11040: sys43906 #1,e3%
' printed;: if st =0 then nexl

(Basic 2.0 use sys51844, VIC20) use sys52098) hnagine
yping this every time you want to read a disk error. Wil
Darren’s utility (for the Commmodore 64 only), define an F

e

key, and depending how many disk errors you get, you'll
save yourself a lot of time.

As for magazine selling girmimicks, I'd like to think that errors
in listings reduce repeat sales of a magazine. | suppose
ervors are a fact of life, but we do try to be careful. Lastly, |
agree. . . Commodore’s User Manuals do leave something to
be desired, but spotling "bolch-ups™ is an effective learning
process. Their Programmers Reference Guides, though, are
actually quile good. Thanks for wnting and thanks for the
compliments. - M.Ed.

Existing Lost Copy: | am a relalively new subscriber to
your magazine. | recently received my [irst issue and copied
several of the programs, the most recent of which was "A
Simple Disk Copier For The Commodore 64" by Jim Bulter-
field.

In the text, Mr. Butterfield states, that when the program is
run, “You'll be asked for the file type... Nexl, you'll be
asked for the name of the program or lile you wish to
copy. . . If it can't find the file it will reply 'NO GO, otherwise
it will ask OTHER DISK READY?. . . etc".

All the program does for me is copy itself on the disk, and
when run agin it displays a disk error 'FILE EXISTS and |
have another useless program. Perhaps | have done some-
thing incorrectly. [admit to being a novice at this, but | am
trying to learn and | find this very frustrating.

Milton Reich, Brooklyn, New York

The program you entered was actually a program generator
for COPY FILE 64. (By now you have probably seen the
directory that shows this program name) Ornice the generator
program s RUN, the generalor itsell becomes virtually use-
less. . . you need not even SAVE it. A LOAD ol the directory
will show a new file that you yoursell never put there with a
SAVE cormnmand — the generaltor did it! The next step is.

LOAD "COPY FILE 64" B

When that finishes, you can LIST COPY FILE 64 and see the
program that was “generated”. RUN this program and
follow the original instructions. Perhaps this was a lille
unclear in the article. Just remmember that a program “gener-
ator’ is a program that writes another program which must
be subsequently LOADed to be used. After this is done once,
the generalor is of no further use, but the program you have
now, "COPY FILE 64", will be of much further use I'm sure-
M.Ed,

The Transactar

Yolume §, Issve 02

Bits and Pieces

Kernal 3 For The Commodore 64

Commaodore has released Kernal 3 - a new retro fit ROM for
the C64. The “Kernal” is one of 4 ROMs found inside the 64.
It's called the Kernal because it handles the fundamental or
“inner most” operations of the machine. Reportedly, fixes
over Kernal 2 are:

1) The INPUT command has been fixed so that the INPUT
prompt is not included with the response when the prompt
is greater than 40 characters.

2) The problem with DELeting the last character of the last
line on the screen has been corrected. Recall, if you start
typing on the last line of the screen for 80 characters such
that the sereen scrolls twice, and then use DEL to move back
and delete the 80th character, the CIA that lies above the
colour table is disturbed and becomes very unfriendly. Now
eliminated.

3) A problem was found in the RS-232 routines that oc-
curred with either even or odd parity enabled that could
result in inaccurate status reads.

4) Serial Bus Timing has been slightly modified to allow for
several chained peripherals. When too many peripherals
were connected on the serial bus the system would occa-
sionally mishehave.

To test for Kernal 3, PRINT PEEK(65408). Details of price
and availability are not vet available - call vour local dealer
or Commodore Service.

Cylinder Screen

For an interesting but useless screen effect on your 8000/
9000 series machine, try this POKE from Dave Gzik of
Burlington, Ontario:

POKE 59521, 40

When the video chip recovers from this punch you'll notice
that your screen has bee twisted into a cylinder. Reset or
PRINT CHR$(14) will restore order.

Down Scroll 64

Another of Murphy's unwritten laws states that “while
trying to accomplish a specific task you will always accom-
plish some other task that brings you no closer to your
original goal”. Paul Blair of Holder, Australia has recon-
firmed this law with the following submission,

.. .came across this while doing something else - all the
best discoveries happen that way. The routine will scroll the
Commodore 64 screen down starting from line D ie, from
the top line with D=0, second line with D=1, etc. Colour
changes from line to line are also allowed. At the end of the
routine, some pointers are left a bit untidy, so use with
caution. A PRINT or two on the end seems to restore
order. . . thought you might like it - regards, Paul Blair”.

e

100d=0:x=211:v=15:a=532860
110 pokea, 1 :pokea+1,3

120 print"-" :
130reada%:v=v~1:pokea,v:ifa$="end" thenend
140 print" |

150 fort=11t0 10 : print a%.d : next

160 fort=0to 14 : poke x + 3, d : sys 59749 : next

170 print: fordl=1102000: next: d=d+1:goto 130
180 data " scroll down with this pgm’

190 data "it's really very easy to use”

200 data “include it in games and so on”

210 data " list the pgm to see the setup”

220 data " see how you can select scroll start?

230 data "have fun paul blair”

240 data "end”

Equivalent VIC 20 and BASIC 2.0 routines have not been
investigated but presumably would work depending on
their ROMs, Fat 40 and 8000/9000 series machines don't
need a routine like this -~ use PRINT CHR$(153) instead.

FTOUTSM With Colour Mods

Remember FTOUTSM? - For Those Of Us That Smoke M~
-1 Originally written by Benny Pruden of Norristown, PA,
it has since been updated by Louis Black of Oshawa, Ontario
to include colour on the C64. A VIC 20 version would not
pose too big a problem. . . just swap out the numbers that
reflect the screen width and address locations, as well as the
POKEs in line 4 for border and background colours, and
swap in the appropriate VIC 20 equivalents. Line 1 and 3
must be entered using abbreviated keywords on at least
some of the commands to make them fit on one line. If
abbreviations are new to you, see Louis Sanders’ article this
issue on Commodore BASIC Abbreviations,

o print" 8"

1 ¢c=32:forn = 1t041:gosub3.¢c = 192-¢:fora = 0ton
forb = 1024 + ato2024stepn:pokeb c:nextb,a n

2 end

3 x =int{(15«rnd(1)):y = int(15+rnd(1)): poked3280,x
:pokeS53281 y:fori = 110100 next:return

Machine Language FTOUTSM

In keeping with our theme this issue, here's FTOUTSM in
machine language for the 64. Writer Chris Zamara said he
had to insert a delay loop into the code because it was just
too fast to have any adverse effect on your brain. Although
it's still faster than the BASIC version, you will also notice
that it's much smoother. Once again, the Surgeon General

advises that danger to mental health increases geometrically
with the number of FTOUTSM iterations. And as they say on
the 20-Minute Workout, “do not over FTOUTSM yourself".
And Murphys' first law says, “if something can go
FTOUTSM, it will”. And Mr T. says “jus try it, fool”

1000 rem machine code ftoutsm

1010 for |=49152 10 49330 : read x

1020 poke |, x : ch=ch+ x : next

1030 if ch <> 24671 then print" checksum error” : end
1040 sy3 49152 : goto 1040

1080 cate M S 482, Q 0 3 0, 9
1060 data 50, 160, 0, 32, 129,192, 169, 32
1070 data 141, 5,192,169, 1,141, 6,6 192

1080 data 32, 52, 192, 32, 129, 192, 165, 197
1090 data 201, 63,240, 10,238, 6,192 173
1100 data 6, 192,201, 42, 144 234 169, O

1110 data 141, 33,208, 96,173, 5,192, 73
1120 data 128, 141, 5,192,169, 0,141, 3
1130 data 192, 32, 82, 192,238, 3,192, 173
1140 data 3, 192,205, 6, 192, 240, 242, 144
1150 data 240, 96, 24,173, 3,192,105, O
1160 data 133, 253, 189, 0, 105, 4, 133,254

1170 data 173, 5, 192, 145 253 32, 169, 192
1180 data 24, 165, 253, 109, 6, 192, 133, 253
1180 data 168, 254, 105, 0, 133, 254, 201, 7
1200 data 144, 230, 165, 253, 201, 192, 144, 224
1210 data 96, 169, 0, 133, 251, 169, 216, 133
1220 data 252, 173, 7, 192, 145, 251, 230, 251
1230 data 208, 2,230, 252, 165, 252, 201, 219
1240 data 144, 239, 165, 251, 201, 232, 144,233
1250 data 173, 33,208,205, 7,192,208, O
1260 data 96, 174, 8,192, 234,234,234, 202
1270 data 208, 250, 96

amaZAMARAIing
(Sorry Chris ~ | just couldn’t resist it) Here's another blitzoid
screenzler: Timescroll for the C64 from Chris Zamara of

Downsview, Ontario. Notice how the line is padded with
spaces in two spots? Change the number of these spaces for
different effects. Line 20 details the exact number to start
with. You can also change variabie R to 53280 (the border
colour register) for madded adness.

10 a=0:b=1r=53281 fori = Oto1step0
' poker,a: poker,b:next
20 rem step0:3 spaces poker,a: 7 spaces poke elc.

Quick Nate: The VIC 20, matched task for task, is the
fastest of the Commodore machines.

Vaolumes 5, Issue 02

......................................

Stop RUN/STOP

Most of you have no doubt seen at least one RUN/STOP
disable for the C64. The following POKE was published
several issues ago. It disables RUN/STOP (and RUN/
STOP-RESTORE) without affecting the TI clock, but don't
try LOADing or SAVing and expect normal results!

POKE 808, PEEK(808)-16

Therefore, this should only be used after the program has
been LOADed and only with program that do not LOAD
subsequent software modules. This next routine is by James
Whitewood of Milton, Ontario. It does everything the above
POKE does without messing up LOAD and SAVE.

10lo=12 « 4096

20 c=int(lo/256) : b =lo-c+*256
30fori=lotoi+4:reada: pokeia: next
40 poke 808, b : poke 809, ¢ : end

50 data 169, 255, 133, 145, 96

The address computed in line 10 as variable LO can be any
available memory ie. the cassette buffer will host this rou-
tine just fine. Notice how line 30 uses the loop variable | in
the calculation “I+ 4" to specify the end of the loop. This is
quite legal since | is set to LO and entered in the simple
variables table (just like any other variable) before BASIC
interprets the TO operative. However, you might also notice
that 4 is one less than the number of DATA items. In
situations like these, inclusive logic must be used to deter-
mine the number of loop iterations.

Cursed Commodore Cursor!

Keith Preston of Ottawa, Ontario, has these comments on
invoking the built-in cursor routines while a program is
running, as detailed in The T.

“Several articles in Volume 4, [ssue 6 suggest that a flashing
cursor, the neophyte's comforter, may be retained during a
Commodore GET by invoking POKE 204, 0. These are
“Auto Liner” on page 18, "Subroutine Eliminators” on page
37 and “Three GET Subroutines™ on page 38. When using
the C64, however, the single POKE does not guarantee a
flashing cursor for more than the first character of an input
string (as requested in "Auto Liner”). Furthermore, the
cursor may disappear upon hitting RETURN! To prevent
this, simply add:

POKE 207, 0

in any line after the GET. A further;

POKE 204, 1 : POKF 207, 0

betore exiting the input routine ensures a return to normal
cursor function.

The accompanying short routine illustrates the technique
and should be used to replace “Auto Liner”. A number of
other minor errors in that program have also been cor-
rected.”

60000 input " 64 auto. start, increment " :s.|
60010 print " |[EREEE" ; s;:poke204,0
60020 getad . fa$ = "" then 60020
60030 poke 207, O : print a$; : if asc(a$)<>13
J then 60020
60040 p = peek(1145 +len(str$(s) : f p=32 or p= 160
then 60010
60050 print “s="s+i ":i="i ":goto600 10"
60060 poke 631,13 : pokeB32,13 : poke198, 2
60070 poke 204, 1 . poke 207, 0 : end

60000 input "4.0/2.0 auto: start, increment " s,

60010 print " [EHEE " ; s;:poke167,0

60020 getad . ifa$="" then 60020

60030 poke 170, O : print a3; : if asc(a$)<>13
then 60020

60040 p = peek(33009 + len(sr$(s))) : if p=32 or p= 160
then 60010

60050 print "s="s+i ":i="i ":goto600 10"

60060 poke 623,13 : poke624,13 : poke 158, 2

60070 poke 167, 1. poke 170, 0 : end

Also have a look at Elizabeth Deal's article, “To GET Or Not
To GET", later in this issue - Ed.

Sorry, But That DOES Compute
Ernesl Blaschke of Sudbury, Ontario has these comments:

“In the commercial world, we all have heard the phrase:
“Surry, the computer made a mistake!”. We know, of course,
thal it is the programmer and not the computer that made
the mistake. Computers don't make mistakes. Right?

Well let me show you that your computer will make mis-
takes and will logically contradict itself. Yet, not all is lost. A
programmer should know the computers’ weaknesses and
keep it [rom making true mistakes,

Type inlo your computer the direct command:

PRINT518

The Transactor

The reply will be 390625. The computer has in fact pro-
duced the correct value which is 5#5#5+5+5+5+5+«5

Now enter the following small program:

10if518 = 390625 then print "true”
20if 5t B <> 390625 then print " false”

Type “RUN" and the computer will print “false”, contradict-
ing its previous statement that 518 = 350625.

You probably know that your computer will reply with -1 to
a true statement and with 0 to a false one.

If you aren’t sure about this, try:
PRINT (2+2 =4)

The computer replies with -1 (true). PRINT (2=2=235) will
result in 0 (false). However, even using this approach, the
computer stubbornly denies its own findings that

518 = 300625.
PRINT (518 = 390625) will reply with 0, false.

So what happened? The problem is that the computer
calculates 518 in floating point arithmetic and due to round-
off errors thinks the result is slightly greater than 380625.
For printing, it “rounds off" the value in memory to the
correct 300625 However, equality tests fail since the com-
puter perceives the true result to be larger, and therefore
unequal.

There are whole sets of problems where it is essential for the
programmer to avoid this pitfall in order for the computer to
do its task reliably. Bearing potential roundoff errors in
mind, the programmer should have typed:

PRINT (INT(518) = 300625)

This would result with the -1 or true response. Of course
this is limited to numbers that can be anticipated to have no
fractional content. For numhbers with magnitude to the right
of the decimal point, the programmer should consider
moving the decimal point right by multiplying by some
multiple of 10, say 100 or 1000, or as many significant digits
as desired. Then take the INTeger portion of this number
and divide by the same multiple of 10.

I hope to have convinced you may not blindly trust every-
thing that appears on the screen or consider your com-
puter's logic infalible.”

Low-Res Screen Copy

If you've ever attempted to do a low resolution screen dump
of a screen containing graphics, you've seen that the printer
leaves a little horrible space on carriage returns. This leaves
the printout looking like it went through a shredder. But by
using “LOW RES COPY"”, you can eliminate that space on
the printout. The program itself is only 14 lines long,
somewhat shorter than the 22 lines of “Screen Copy” in the
VIC 1525 user’'s manual. | find this program to be a very
handy utility when the time arises that you need a true low
resolution screen copy. Brian Dobbs, Timmins, Ontario,

100 si$ =chr$(15) . bs$ =chr$(8) . d=1024 ; open4 4
110fora=dtod+ 39

120 print#4, si$,;

130 b = peek(a)

140 if b>-1 and b<32 then &3 = chri(b + 64)
150 if b>31 and b<64 then &% = chr(b)

160 if b>>63 and b<896 then &% = chri(b + 32)
170 it b>95 and b<128 then e$ = chr$(b + 64)
180 print#4, 3,

190 next

200 print#4, bs$

210d=d+40 ; it d>1984 then 230

220 goto 110

230 end

Eep Eep

Eep Eep is a short interrupt driven routine that uses the
cursor countdown timing register to drive the CB2Z trans-
ducer (it's nol really a speaker so it's called a transducer).
Eep Eep only works on BASIC 4.0 machines but could be
modified to drive the SID or VIC 20 sound registers. How-
ever, il's only good for two things really: one, it demon-
strates the concepl of pre-interrupt code. Notice the first 9
numbers in the DATA statements - you can almost read
them without a dissassembler. They go LDA with 131, S5TA
in location 144, LDA with 2, STA in location 145, and RTS
(96). 2 times 256 plus 131 equals 643 which is where the
actual pre~interrupt program begins (LDA with 10 right after
the RTS). This is one of the most common methods to
engage a pre-interrupt routine, and the quickest ways to
spol one - something to remember when you find some old
listing lying around.

Al the end of line 1090 are three 234's. These are NOPs. It
means simply No OPeration or NO oPeration, whichever
you prefer, The reason these are here is to accommeodate the
three POKEs in line 1035. Line 1035 can be left out for a
different Eep Eep. RUN the program as is, then remove 1035
and RUN again.

The Transactar

Yolume 3, lssue 02

Line 1100 contains the code JMP to location $E455. This is
the regular interrupt routine that the computer usually goes
to when there is no pre~interrupt code - another way to spot
pre-interrupt routines.

Eep Eep plays with the same chip responsible for LOADs
and SAVEs. It's suggested you purge your machine of Eep
Eep before continuing with more serious work.

Oh va, the other thing Eep Eep does effectively is drive you
bonkers. Just hook vour computer up to your stereo, start
Eep Eep, and tell no-one to touch your equipment. Then
leave.

1000 rem eep eep — rte 1984

1010 for |=634 10 676 : read x

1020 poke |, X : ch=ch + x : next

1030 if ch <> 6145 then print” checksum error” : end
1035 poke 671, 238 : poke 672, 147 : poke 673, 2
1040 sys 634

1050 data 169, 131, 133, 144, 169, 2,133, 145
1060 data 96, 169, 16, 141, 75,6232, 169, 20
1070 data 141, 74,6232, 165, 168, 141, 72,6232
1080 data 160, 0, 200, 208, 253, 169, 0, 141
1090 data 75, 232, 141, 74, 232,234,234, 234
1100 data 76, 85, 228

Mirror

Mirror is another pre-interrupt routine also written by
Richard Evers. It was written for no other reason but to see it
work.

1000 rem mirror 40 - rte 1984

1010 for | =634 to 682 : read x

1020 poke |, x : ch=ch + x : next

1030 if ch <> 6710 then print" checksum error" ' end
1040 sys 634

1050 data 169, 131, 133, 144, 169, 2, 133, 145
1060 data 96, 162, 0, 160, 255, 183, 0, 128
1070 data 183, 232, 130, 136, 232, 208, 246, 238
1080 data 137, 2,206, 140, 2,173,137, 2
1090 data 201, 130, 208, 233, 169, 128, 141, 137
1100 data 2, 169, 130, 141,140, 2, 76, 85
1110 data 228

1000 rem mirror 80 - rte 1984

1010 for | =634 to 682 : read x

1020 poke |, x : ch=ch + x : next

1030 if ch <> 6696 then print" checksum error® * end
1040 sys 634

1050 data 169, 131, 133, 144,169, 2, 133, 145
1060 data 96, 162, 0, 160, 255,189, 0, 128
1070 data 153, 208, 134, 136, 232, 208, 246, 238
1080 data 137, 2,206, 140, 2, 173,137, 2
1090 data 201, 132, 208, 233, 169, 128, 141, 137
1100 data 2,169, 134, 141,140, 2, 76, 85
1110 data 228

The C64 version is a little longer due to colour table
servicing required for Kernal 2 machines. However, it stops
working after a Clear Screen is done, until the POKE in line
1040 is given. Can someone help us here? It's probably just
some silly oversight that we can't seem to spot because of
the clouds between us and the screen - you know the ones
we mean, they're made of clear air? Hmm.

1000 rem mirror 64 - rte 1984

1010 for | = 828 t0 900 : read x

1020 poke j, x : ch=ch +x : next

1030 if ch<> 8190 then print” checksum error " : end
1040 poke 53281, 493-peek(53281) : sys 828
1050 gata 169, 71,141, 20, 3,168, 3, 141
1060 data 21, 3, 96,162, 0, 160, 255, 189
1070 cata 0O, 4,153,232, 6,189, 0,184
1080 data 153, 232, 186, 136, 232, 208, 240, 238
1090 data 77, 3,206, 80, 3,238, 83, 3
1100 data 206, 86, 3,173, 77, 3,201, 6
1110 data 208, 221, 169, 4,141, 77, 3,169
1120 data 6,141, 80, 3,169,184, 141, 83
1130 data 3,169, 186, 141, 86, 3, 76, 49
1140 data 234

Ram Scan

Ram Scan might be useful to somebody out there. Once
engaged, it continually displays as many bytes of memory as
will fit on the screen. Positioned over Zero Page, it will show
the various timers, et¢, in action. Same with the VIA and PIA
registers up at $E800. To move the display use the cursor
keys - cursor up/down moves it by one line of bytes, cursor
left/right by one byte at a time. The STOP key puts you back
in BASIC. Other than this, it too will give some pretty eye
crossing patterns, something Richard seems to enjoy inflict-
ing. Try moving the display around just below, and then
above the first screen address.

1000 rem ram scan 80 - rte 1984

1010 for |=634 to 724 : read x

1020 poke |, x : ch=ch + X : next

1030 if ch <> 11974 then print" checksum error”™ : end
1040 sys 634

The Transactor

Volume 5, lssue 02

1050 data 185, 151, 201, 265, 240, 43, 166, 152
1060 data 224, 0,208, 10,201, 17,208, 16
1070 data 238, 178, 2, 76,171, 2,201, 17
1080 data 208, 16,206,178, 2, 76,171, 2
1090 data 201, 29,208, 6,238,177, 2, 76
{100 data 171, 2,201, 29,208, 3,206 177
1110data 2,160, 0,174,178, 2,185 0
1120 data 2565, 183, 0, 128, 200, 208, 247, 238
1130 data 178, 2,238,181, 2,173,181, 2
1140 data 201, 136, 208, 234, 142, 178, 2, 169
1150 data 128, 141, 181, 2, 165, 1565, 201, 239
1160 data 208, 166, 06

1000 rem ram scan 40

1010 for |=634 to 744 : read x

1020 poke |, x : ch=ch + x : next

1030 if ch <> 14739 then print " checksum error”
1040 sys 634

1060 data 169, 147, 32, 210, 255, 185, 151, 201
10680 data 255, 240, 41,166, 152, 208, 10, 201
1070 data 17,208, 16,238,199, 2, 76,174
1080 data 2,201, 17,208, 16,2086, 199, 2
1080 data 76,174, 2 201, 29 208, 6 238
1100 data 198, 2, 76,174, 2. 201, 29 208
1110data 3,206, 198, 2,173,188, 2, 6133
1120 data 251, 173, 189, 2, 133,252,169, 19
1130 data 32, 210, 285, 32, 23,215,160, 0
1140 data 174,189, 2,185, 0,255 153, 5§
1160 data 128, 200, 208, 247, 238, 199, 2, 238
1160 data 202, 2,173,202, 2, 201,132, 208
1170 data 234, 142,199, 2 1869, 128, 141, 202
1180 data 2, 32,6 225,255, 76,6127, 2

1000 rem ram scan 64

1010 for j=828 to 916 : read x

1020 poke |, x : ch=ch + x : next

1030 if ch <> 10348 then print " checksum error "
1040 poke 53281, 493-peek(53281) : sys 828
10560 data 165, 203, 201, 64, 240, 42 174, 141
1060 data 2,208, 10,6201, 7,208, 16, 238
1070 data 115, 3,184, 80, 27,201, 7,208
1080 data 16, 206, 115, 3,184, 80, 17, 201
1080 data 2,208, 6,238 114, 3,6 184, 80
1100data 7,201, 2,208 3,206, 114, 3
1110 data 160, 0,174,118, 3,185 0, 2585
1120 data 163, 0, 4, 200, 208, 247, 238, 115
1130 data 3,238,118, 3,173,118, 3, 201
1140 data 8,208, 234, 142 115, 3,168, 4
1150 data 141, 118, 3, 32,6225, 255, 184, 80
1160 data 167

- end

- end

Crystal

Crystal is just a short little program that draws a crystaline |
pattern on your screen, Aside from that it demos how very
little code it takes to get something happening - something |
like a game layout, a game intro, or an attract mode fora |
game you may have just finished and thought you didn't |
have room for an attract mode feature. '*“

Crystal also demonstrates a technique that all programmers |
should be used to or else get used to ~ portability, Some |
programs aren't suited to be run on all machines, but those |
that could potentially be run on any machine should include |
for the user all necessary conversion information. It doesn't |
take long and it's a courtesy that adds an extra professional |
touch.

100 rem crystal
110 rem 8000/8000 series : sw =80 4
120 rem 4000 + 64 - sw =40 !
130 rem vic 20 Sw=22 ¥
140 rem 4.0 basic :s8=32768 i
150 rem c64 : 55 = 1024 (defaull) I
160 rem vic 20 : 85 = 7680 (default)

170 rerm sw = screen width : s = screen start
180 print” - 65 =32768 : sw=80
rem + place your variables here

190 x= 1y m {:dxe=1:dy=1
200 poke ss + x + swry 81 pokess + x + swey 81
210x=x +dx: ifx=00rx=8w-1thendx = -dx
220y =y +dy ffy=00ry = 24 thendy = -dy
230 5 = poek(ss + X + swry) ! ifs =81thendx = -dx

' poke ss 4+ x4+ swry, 86 : goto210
240 goto 200

Number Base Converter

This next program works on BASIC 4.0 machines only
because it uses some internal ROM routines of the built in
Machine Language Monitor which the other machines don't
have. Quite simply, it will convert numbers from one num-
her base to another that are in hexadecimal, decimal, or
binary.

There are two internal ROM routines used here: the first,
SYS HD (where HD =55124), inputs a hexadecimal number
from the keyboard and places its high order and low order
components in locations 252 and 251. The program takes
over from there and uses variable NO to huild a decimal
representation (line 12 or 13),

The Transactar

Voalume 5, lssue D2

The second, SYS DH (where DH=55063), is the MLM
routine for outputing a hexadecimal number whose high
order and low order components are in locations 252 and
251 (line 15 or 19).

0 rem save ™ @0:hex/dec/bin conv” 8:verify
"0:hex/dec/bin conv” 8

1 rem = richard evers - march 8th 1984 - 4.0 only +

10 input” nerdec, hex in, >hex,
dec n, bin“au. hin c":q%

11 print " BR" ;:hd = 55124:dh = 5§5063:if q$ = "B "then
input” ecimal " ;no:golo16

12ifa$="b"then print " ghex val " ;:syshd
no = peek(251) + 266+peek(252):goto16

1311 g% = "h"then print " @hox val " ;:syshd
printpeek(261) + 266+ peek(252).goto10

14ifg%="H" orq$="D" then input'.binary
number " ;bn$: golo17

15 input " [lldecimal * ;a:b = inl(a/256).c = a 266+b
poke2&1,c:poke252 h:sysdh:goto10

16 print:a = 32768:forc = 1to18:b = int(no/a): printb;
:no = no-b*a:a=al2:nextc:goto10

17 a=0:c=1lorb=len(bn§jtoistep 1
:a=a+ val(mid$(bns, b, 1))rc:c = c*2:nextb

18 ifg® = "D "then print " decimal " a : gola10

19 print" 8" ;b =inl(a/256):c = a- 256+h
poke251,c:poke252 b:sysdh:goto10

The Un-Cursor

Still another pre-interrupt routine is this one called Un-Cur-
sor. As the name might imply, Un-Cursor flashes every-
thing on the screen except the space at the cursor position.
Al least that was the original intention - the real cursor
seerns Lo slip in an appearance every ance in a while.

These pre-interrupt routines we've been bombarding you
with may have no place in your ufilities library, but they do
serve one vital purpose. By giving you several examples we
believe we accomplish two things - eliminating the fear and
apprehension of messing with the fundamental operation of
the machine is an important step towards becoming profi-
cient with your computer. And second, when you come up
with your own idea for a pre-interrupt program, we hope
one ol these examples will serve as a guide to completing
your task,

1000 rem un-cursor 80

1010 for =634 to 6892 : read x

1020 poke §, x . ch=ch+ x : nexi

1030 it ch <> 7656 then print " checksum error ™ : end
1040 sys 634

1050 data 169, 131, 133, 144, 169,
1060 data 96, 165, 170, 201, 1,240, 41, 169
1070 data 128, 133, 88,169, 0,133, 87,168
1080 data 177, 87, 73,128,145, 87, 200, 208
1090 data 247, 230, 88, 165, 88, 201, 136, 208
1100 data 239, 238, 134, 2,173,134, 2, 201
1110data 2,208, 5,169, 0,6 141,134 2
1120 data 76, 85, 228

2,133, 145

1000 rem un-cursor 40

1010 for =634 to 692 : read x

1020 poke |, x : ch=ch + x : next

1030 if ch <> 7652 then print” checksum error " ; end
1040 sys 634

1050 data 169, 131, 133, 144, 169,
1060 data 96, 165, 170,201, 1,240, 41,169
1070 data 128, 133, 88,169, 0,133, 87, 168
1080 data 177, 87, 73,128, 145, 87, 200, 208
1090 data 247, 230, 88, 165, 88, 201, 132, 208
1100 data 239, 238, 134, 2,173,134, 2, 201
1110data 2,208, 5,169, 0,141,134, 2
1120 data 76, 85, 228

2,133, 145

1000 rem un-cursor 64

1010 for | =828 to 888 : read x

1020 poke |, x : ch =ch + x : next

1030 if ch <> 6949 then print " checksum error " ; end
1040 sys 828

1050 data 169, 71, 141, 20, 3,169, 3, 141
1060 data 21, 3, 96, 165, 207,201, 1,240
1070 data 41,169, 4,133, 88,169, 0,133

1080 data 87,168, 177, 87, 73,128, 145, 87
1090 data 200, 208, 247, 230, 88, 165, 88, 201

1100 data 8, 208,239,238, 74, 3,173. 74
1110data 3,201, 2,208, 5 169, 0, 141
1120data 74, 3, 76, 49,234

1000 rem un-cursor 20

1010 for j = 828 t0 888 : read x

1020 poke |, x : ch=cCh + X : next

1030 if ch <> 7141 then print" checksum error” : end
1040 sys 828 "

1050 data 169, 71,141, 20, 3,169, 3, 141
1060 data 21, 3, 96, 165, 207,201, 1,240
1070 data 41, 169, 30,133, 88,169, 0,133

1080 data 87, 168, 177, 87, 73,128, 145, 87
1090 data 200, 208, 247, 230, 88, 165, 88, 201

1100 data 32, 208,239,238, 74, 3,173, 74
1110data 3,201, 2,208, 56169, 0, 141
1120data 74, 3, 76, 191, 234

The Transacter

Volume 3, lssue 02

CompuKinks.

All right Earthiing, turn around slowly
and keep your hands up!

il o o e S

ML T o

j\cﬂﬂﬂg

He’'s the new shop assistant.
He seems to like it here,
but | don't think he’s gonna work out.

el i Tl T T s et - 2 2 2

L L L e B P = -

e e e A 8 B B BN B B B 0 W R DR I=0 0 0=p R0 R I=0 AnE 0 Y

L

Volume 35, lssue 02

[MGAM£ STAREINWNG TED PETROERY

~

9 g <4

{.-"
=

>\ Vi 75 /

CEEAL T O T ;

h Vo TEL THERE'Ss A0 SUcCrw TrIYNG AS A WHRET...FoRrR STRATEMEAT/"

THIS 1S SOR NEW DELOXE JoysTick

e a5 Velume 5, Issve 02

e e T

STEP T =THE SI0" CHIP MUST
e SET UP FOR PROPER ATTACK
DECAY . SUSTAIN , RELEASE, FILTRATION
AND BREQUENLY CHARACTRRISTICS,

ARWUN

COMPUTER GENIUS

STEPIL CompecTinG TNTERFAE
FOR EXTERNAI ANALOGUE INPUT
USING OWly A SOLDERING IRON AND
Ni6Y RESISTANCE TELERONE CABLES

ARCANES , SEARCH M- FOR AN
ERGONOMIC LSER = INTERFALE
BOR THE SYSTEM « « &

W)

STPIL PUliik, wWER LEVER TO
vy DR MEGAWAITS FROM)
PICKERING #OR KIS OwWlY NEEDS.

The MANAGER Column

Letters to the Manager

Many subscribers have written to me about their frustration
with the manual and their desire to find more documenta-
tion for the program. Instead of writing everyone on an
individual basis, | will use this column as my way of
answering all your letters, First off, make sure you have the
latest version of the ‘64 MANAGER, i.e. version 1.06b,
Secondly, I am not aware of any other sources of documen-
tation for the '64 MANAGER other than the manual and
what you can glean from my columns. If | feel there is
sufficient demand and | have the time and energy, | will
attempt to put together a booklet of additional documenta-
tion.

Subjects covered in previous ‘64 MANAGER columns are as
follows:

overview of '64 MANAGER
technical details on the screen file

Vol 4 lssue 03

Vol 4 Issue 05 Gift (Mailing) List part |

designing a screen in CREATE/REVISE
option

creating a file

entering records

Vol 4 1ssue 06 Gift(Mailing) List part 2

Potential Benefits of this Application
Review of Screen Format

Tricks for Entering Records Quickly
Searches

Vol 5 Issue 01 Gift(Mailing) List part 2
Designing Reports
Using Report Generate

......

Don Bell
Milton, Ontario

Nelson Fung ol Dallas, Texas wants to know how to modify
the program to produce an 80 column printout. The Com-
modore '64 is a 40 column computer so you will never be
able 1o get an 80 column display or report on the screen.
However, you can get 80 column reports on a printer, In the
Report Generale option, specify output to printer, line length
80, lines per page 66. Of course, your report must be
designed as an 80 column report. When describing the
LISTZONE the column number references must reflect the

starting column positions ol each print area in the LIST
ZONE.

A tew answers [or Pete Musselman of Royerford, PA. No you
cannot use two 104] disk drives. The section on ‘Accumu-
late’ on page 14 of the manual has an example of an
arithmetic file. Do not let it throw you, it's just an example.
The ‘accumulate’ function can only be used if yvou have
used the "ARITHMETIC' option to create an arithmetic file.
For example, in this issue there is a checkbook application.
In order for the application to calculate a running balance,
we had to do some arithmetic. This arithmetic was created
in ARITHMETIC OPTION and stored in an arithmetic file,
Now when we request ‘accurnulate’ in the ENTER/EDIT
option, the program will quickly read through all the re-
cords, select records salisfying the search criteria, perform
the arithmetic on these records, and display the balance at
the screen localion specified in Arithmetic.

AW, Lauer of Fredericksburg, VA wants to know how to
begin a search at a particular record number. Unfortunately,
the only direct way of doing this is by inserting a numeric
field for the record number in your screen design. Then
using the search string editor (F5), indicate records greater
than a specified record number. Another way around this
problem might be if there is a date [ield and records are
usually entered in order of date, Sort on Lhe date field, then

|
S |

___The Transactor

Yolume 5, lssue 02

]

the search criteria will be greater than a specific date. If vou
have an alphabetical key you are sorting on, then you could
specify records greater than ‘N', for example.

Warren Knighton of Wassau, WI. had problems with the
Rearrange a File function in the MANIPULATE files option.
This is the function you will use if you want to change your
file design. Unfortunately, I've also had several problems
with this option as well. If the program stops before comple-
tion, before trying it again do the following. Load the Enter/
Edit option and see how many of the records got transferred
from the old file to the new file. If most of them are there,
then you may be OK. The next problem is that they may
appear to be there, but when you do a search for specific
records they don't show up. To correct this problem use the
Fix a File function in the MANIPULATE FILES option.

Richard Boisvert of Woonsocket, R.1. has been using the ‘64
MANAGER as a detective for the Woonsocket Police Depart-
ment. Each record in his file has 6 fields in which to list
stolen objects, When a stolen object is recovered he wants to
scarch all 6 fields at once. Refer to the section of the manual
on the ‘hunt’ option in the search criteria (p.27). The
important points are (1) the use of complex search criteria
(F5); (2) the use of ‘H' to specify hunt for the object anywhere
in the field; and (3) use of the logical operator ‘OR to include
many different searches. To locate a stolen object (e.g. Atari
game) which could be at any location in any of the 6 fields,
you would use the following complex search criteria (F5).
HT'ATARI' OR H2'ATARI' OR H3’ATARI OR H4'ATARI’ OR
H5'ATARI" OR HE6'ATARI. You can also get more complex
searches by looking for a number of objects at once. H1'A-
TARI OR HI'SHOTGUN' OR H2ATARI' OR
H2'SHOTGUN', .. If the description of an object is ambigu-
ous or you did not always describe it in the same way, vou
could again use the ‘OR’ statement to hunt for the object
under different descriptions, eg. HI'WALKMAN' OR
H1'CASSETTE".

An Introduction to ARITHMETIC

Don’t be frightened away by the description of the ARITH-
METIC option in the manual. | know at first it looks like
advanced math, but once you grasp some basic concepts it's
fairly simple.

The search criteria and the Arithmetic work together to give
you very powerful accumulate and report possibilities. Us-
ing the Arithmetic editor in the ARITHMETIC option, vou
can describe what calculations you want to do on fields in
your records. Upon exiting the option, a special file (AR fi-
lename) is created where your arithmetic is stored. When-

ever you are doing a search, accumulate or report, the
search criteria select relevant records, then the Arithmetic
file operates on those records calculating new amounts and
displaying them at predefined places on the screen,

In the ARITHMETIC option vou define bins or registers
where you want to store numbers, You can perform arith-
metic on numbers in the registers and you can display the
contents of the registers at any location on any of your
screens.

Why would you want to use ARITHMETIC? You might want
to accumulate a total of the amount fields in our records. We
might want to know subtotals as well as totals at break
points in our reports. Sometimes it is desirable to transfer
data from one screen to another. There are of course
limitless reasons for wanting to use Arithmetic to create new
information about your file.

Checkbook Application With ARITHMETIC

| have chosen to do a checkbook application as the Arithme-
tic logic is fairly simple,

You may have noticed the checkbook application in the
back of the ‘64 MANAGER manual. It has a nice-looking
colourful screen and includes most of the information you
want to store about your cheques, Initially [was just going to
use the application as is, go over how to copy the screens,
reports and arithmetic, However, once | got working with it
on a practical level (I always try to make an application work
in the real world!), I found it had several limitations. The
way it works, it could only handle 2 kinds of transactions -
cheques and deposits, What about withdrawals, bank
charges, loan and bill payments? Another problem is that
the balance just shows up in the middle of the screen
without any heading indicating that it is indeed the balance,
Of course, like the other applications included on the disk,
there is no indication of how to use the application.

This article is an attempt to overcome the deficiencies of the
original checkbook application. This application should
provide a workable tool for verifying your bank statement,
balancing vour checkbook, and generating numerous re-
ports about your bank account.

Screen Design

I have redesigned the screen to enable the distinction
between 5 different kinds of account transactions - bank
charges, loan payments, cheques, deposits and with-
drawals. In accordance with these modifications, | have also

The Transactor

redesigned the ‘arithimetic’ that calculates the balance. The
balance is displayed in the screen heading next lo the title
"BALANCE"” so you'll know what it is when il magically
appears. | dropped the field "Signed By" as | do nol have a
joint account. If you have a joint account, you may warl
include it.

While on the subject of screen design, lel me give you soime
reasons for my screen design. One of the big factors to
consider is a design that facilitates minimal keystrokes. For
example, not all records require entries in the flields for
CHECK#*, WRITTEN TO and DESCRIPTION. Therefore | put
them at the bottom of the screen so the user would not be
forced to cursor over these fields if they are not relevant.

Secondly, fields that need lo be updated or revised should
also be near the top of the screen. The OUTSTANDING field
will have to be updated each lime you gel your bank
statemment (i.e. change the slatus of transactions from out-
standing to not outstanding). Thus | chose to make OU'-
STANDING the first lield in the record.

A third factor in screen design is the visibility of the most
important pieces ol information - in our case the balance
and the amount. These £ pieces of information were place in
very prominent positions in the top lelt corner of the screen.

Another factor in screen design is the correlation belween
the sequence ol data entry on the screen and the sequence
ol information in the source document. In this case a
compromise had to be made o accommodale the other
factors. The sequence ol entering dala on the screen 1s
almost the same as reading it from your checkbook with the

exception of AMOUNT.,

Finally, the screen should be visually pleasing to look al.
Text and lields should be easily read, and spaced lor clarity.
Field prompts should not be ambiguous. The items on the
screen should be well-balanced, reflecting the rules of good
picture composition. Follow your crealive instincts (o
brighten the screen up with color, There are too many dull
computer screens oul there already!

The Enter/Edit Screen

The following illustration shows the Enter/Edit form that
was designed in the CREATE/REVISE option. Field lengths
and field types (A= alphanumeric N=numeric) are shown,
Note: there is no field under the title 'BALANCE’; this place
(starting at line 3, column 31)is reserved as a display posi-
tion for the account balance.

ROYAL CHECKING ACCOUNT* 503-209-9

DON BELL BALANCE $
OUTSTANDING(Y/N) DATE AMOUNT
[1A] [t 6N 1] [$t TN 1]
TRANSACTION
[1A]
=BANK CHARGE C=CHEQUE D=DEPOSIT
L=LOAN PAYMENT W=WITHDRAWAL
EXPENSE TYPE
[12A1)
AUTO FOOD MORTG./RENT
CASH INSURANCE REPAIRS
CLOTHING MEDICAL TAXES UTILITIES
CONTRIBUTIONS MISC. TELEPHONE
CHECK# WRITTEN TO
[t 4N 1] it 25A 1]
DESCRIPTION
[t 8 00 'l
Checkbook Arithmetic

Load the ARITHMETIC option [rom the main menu. You are
now going o indicate that you want to have only one display
position on the screen where the result of your arithmetic
(the balance) will be displayed. You will also describe the
exact screen location and length of the display position. In
our case, we wail to display the balance for our account
next to the title ‘BALANCE’ in line 3 of our Enter/Edit
screen. Complete the screen as below:

e ——————r e ———

|

ARITHMETIC

NO. OF DISPLAY POSITION ON SCREEN 17 1

1. LINE?3 COLUMN? 31 LENGTH? 9

Press back arrow (+)

We only use one register, R1, to store the current balance in
our account. The object of our arithmetic is simply to
calculate the current balance, move it into the register Rl
where it is stored and then display it next to the title
'BALANCE’ on the screen.

The Transactor

o

VYolume 5, Issve 02

When calculating the balance in our account, we are dealing
with several different kinds of transactions — deposits,
checks, withdrawals, bank charges, etc. When looking at all
transactions as a group, they all do one of two things - they
either add to the balance or they subtract from it. The only
transaction that adds to the balance is a deposit. All other
transactions are subtracted from the balance.

Now you are in the EDIT MODE of Arithmetic. You will
enter the arithmetic logic for calculating the balance. Com-
plete the screen as below. Only deposits are added to the
halance, all other transactions are subtracted. Therefore our
logic is that if the transaction is a deposit (if field 4 ='D’) then
add the amount in field 3(N3) to R1, ELSE (otherwise)
subtract the amount in field 3 (N3) from R1. The ENDIF is
required to complete the previous IF statement. Note: all
lines beginning with ;" are documentary comment lines not
required to execute the Arithmetic.

w—amrroa 2

CALCULATE BALANCE

AF A DEPOSIT ADD I'TTO R

IF (F4="D") THEN R1 + N3 TO Rl

SUBTRACT ALL OTHER TRANSACTIONS
ELSE R1 - N3 TO R1

ENDIF

:MUVE THE BALANCE IN R1 TO DISPLAY

;POSITION 1 WITH 2 DECIMAL PLACES

R17TO 2DI

EDIT MODE
Press back arrow

CHECKING STRUCTURE
ARE YOU SURE(Y/N)?
Enter 'Y’ <RETURN>
STORING MATH

Making Field Entries in the Enter/Edit Option

On the Enter/Edit menu at the bottom of the screen 'E 1s for
entering/adding a new record. II you wanl o change a
record you first have to get the record ('G’) then change it
('C).

Field 1 (OUSTANDING(Y/N) requires a "Y' or ‘N" entry. Field

2 requires a 6 digit number for the date in the form
YYMMDD, e.g. 840404 for April 4, 1984, One letter codes
(c.g. D = DEPOSIT) are entered in the Transaction field.
Two-letter codes are entered in the Expense Type field (e.g.
All=AUTO). Remember to use F3 to duplicate an entry in
the previous record, or Shift ‘E’ to duplicate an entire record
already on the screen. Often it is faster to duplicate a similar
record you have already created and then modify it, then it
s to type in a whole new record.

Setting Up the File Using A Bank Statement

Record 1 must have starting balance for your bank account
in the ‘amount’ field. Begin with your last bank statement
balance. Enter the 'Balance Forward' amount from the
previous statement as the ‘amount’ in record *1 and record
the transaction as ‘D’ for deposit. Then enter all the subse-
quent transactions on the bank statement. As the bank
knows about all these transactions they will all be entered as
NOT outstanding (i.e. field 1 will always be ‘N') . Don't forget
bank charges, loan payments, withdrawals, etc. NSF
cheques are treated just as they are on your bank statement
i.e. they are entered twice ~ first as cheques and then as
deposits since they are returned to your account. (We're
going to first check are anthmetic against theirs.) When
vou've made all the entries exactly like theirs, then try an
accumulate. The final balance should be the same as on the
bank statement. If there is a problem, check the records and
the arithmetic. IU's unlikely their computer made an error,
but it is possible, I worse comes lo worse, check the
statement with your calculator.

Now using your checkbook, enler all outstanding lransac-
lions thal have nol appeared on any of your bank slate-
ments. Make sure field 1 is 'Y’ [or all these transactions. You
will now have entered in your file all relevant transactions
since your previous bank stalement.,

Il you wish to gel the current balance in your bank account,
do an ‘accumulate’ with no search criteria. If you wish Lo test
the bank stalement balance again now thal you have en-
tered all the transaction records (o dale, do an ‘accuimulale’
specilying only transactions thal are nol outsltanding (i.e.
F1="N"Is the search criteria).

Updating the File Each Month

1. When you get your next bank statement is a good time to
update the lile. Start by entering all new lransactions from
yvour checkbook('Y" for OUTSTANDING). Make sure you
include all checks, deposits and withdrawals.

2. Now enter into your MANAGER file any transactions that

The Transactor

Volume 5, Issue 02

appear on your bank statement that are not in your check-
book, e.g. bank charges and loan payments. They are
entered as NOT QOUTSTANDING in field 1. Your MANAGER

file should now contain all transactions to date.

3. Now vou are going to search for all outstanding transac-
tions in your MANAGER file that also appear on your bank
statement. If an outstanding transaction in your MANAGER
file also appears on your bank statement, then you will have
to change the status of the record to NOT OUTSTANDING.
Note: during this process the balance shown on the screen
will not be correct. Do not worry about it.

While in the Enter/Edit option:

Place cursor in field 1

Press S (for search)

Enter 'Y in field 1

Press F3 (indicates a position dependent search)
Press back arrow. (to execute the search)

You will now be presented with the first outstanding transac-
tion. If it appears on your bank statement, checkmark it on
the statement and do the following:

Press ‘C’ for change

Change "Y' to ‘N for OUTSTANDING.

Press back arrow to store the revised record

Press space bar to find the next outstanding transaction

If a transaction does not appear on your bank statement, it is
still outstanding. Do not change anything. Press space bar to
view the next outstanding transaction. . .and so on.

Keep repeating this updating process until all the transac-
tions in your MANAGERfile that are also on your bank
statement have an ‘N’ instead of a Y™ in field 1.

Verifying the Bank Statement

Now you can verify the bank statement balance using your
MANAGER file.

While in the Enter/Edit option do an ‘Accumulate’ specify-
ing only transactions that are not outstanding (i.e. search
criteria is F1 ="N")

Type ‘A’ for accumulate
Press F5 to access the search string editor,
Type F1="N’

Press back arrow
Getting the Current Balance in Your Account

If you wish to get the current balance in your bank account,

do an ‘accumulate’ with no search criteria. This will aceumau-
late amounts in all records in the file.

Note: ‘Accumulate’ rapidly executes the search criteria and
the arithmetic without forcing you to examine each record
in detail. It is very handy for accumulating a total amount.

Useful Searches

One of the big advantages of having your checkbook elec-
tronically filed is that you can rapidly search for and find
individual transactions. For example, you might want to
look for all checks written for your auto maintenance. In the
Enter/Edit mode press S’ for search, enter ‘au’ as expense
type, press F3 for a position independent search, press back
arrow. Press space bar to get the next record, and so on.
Similarly, vou could search for any other expense type. You
will also notice that the balance displayed will be the
accumulated amounts of the search as a negative amount. If
you only want the total amount spent for a particular
expense type, specify ‘accumulate’, then enter your search
criteria, then press back arrow.

Using the search string editor you can specify more complex
searches. For example all checks written to someone after a
certain date. Press 'S, F3 (for search string editor), enter
search criteria, then press back arrow. For example, to
search for checks written to ‘'VISA' after the last day of
February, the search criteria would be:

F7="VISA and N2>84()229.

Generating Checkbook Reports

| have designed two report formats, one for the screen and
one for the printer. Using these basic report formats you will
be able to generate numerous reports simply by changing
the search criteria and header description of the report.
Reports that you might want to generate could include: a
listing of all outstanding transactions; a summary of one or
more expense types for a certain time period; a list of all
checks written to one company.

Refer to the previous MANAGER Column (Vol. 5 issue (01)
for more details on using the Report Generate option.

Reporting to Screen

[designed my 40 column screen report on graph paper to
look like this:

The Transactor

Volume 5, Issue 02

HEADER ZONE

Column#

13 22 32 35

line #1
2

LIST ZONE
line #1
*2
*3
#4
*5
*6

ROYAL CHECKING ACCOUNT#* 504~209-9

REC#:23 BALANCE:$ 250
DATE:849508 AMOLUNT :$ 75

TRAN:CH TYPE < AU

TO :BENDER AUTO PARTS

CAR REPAIR

0S:Y

Print
Area*

W00~ U4 W ho =

Reporting to the Printer

(Print Areas 1-4)
(Print Areas 5-8)

(Print Areas 9-12)
(Print Areas 13-14)

(Print Areas 15)

Data Sub- Text/Title Area Line* Col*
Type script Length

T REC# 5 1 1
R 101 3 1 6
T BALANCE:$ 9 1 13
D 1 9 1 22
T 0S: 3 1 32
F 1] 1 35
T DATE: 5 2 1
F 2 6 2 6
T AMOUNT :$ 9 2 13
F 3 7 2 22
T 4 TRAN 5 3 1
F 4 1 3 6
T TYPE 9 3 13
F 5 2 3 22
T TO : 5 4]
F 7 25 4 6
F 8 38 5]

A sample heading in your header zone might look like this:

ROYAL BANK CHECKING ACCT# 504-209-9
OUTSTANDING TRANSACTIONS

Line 5 of the LIST ZONE has no title_ It is the description of the transaction in field 8. The List Zone has a total of 6 lines and
17 print areas. Here is a summary of relevant entries for the LIST ZONE. Use the defaults for the remaining entries.

| The Transactor

32

Volume 5, Issue 02

Here is a one line LIST ZONE format that includes all fields except description. (TR. = Transaction OS=0OUTSTANDING?)

Column*
6 13 17 23 49 53 58 65
REC* DATE TR. CHK* WRITTEN TO 0S TYPE AMOUNT BALANCE
t t t t t t ¢t t ¢ $
Subscript R101 N2 F4 N6 F7 F1 F5 N3 DI
or source
held

In order to produce the printer report format above, make the following screen entries in the REPORT GENERATE LIST

ZONE.

Print Data Sub-~ Text/Title
Area” Type script

REC*

DATE

TR.

CHK*
WRITTEN TO
05

TYPE
AMOUNT
BALANCE

1 11 *11 11 11 *T1 71 3

|
2
1
6
[
l
9
3
|

(el e R B T R T e

More Complex Possibilities

As you enter more and more transactions into your MAN-
AGER checkbook file, it will take longer and longer to
accumulate the balance. A way around this problem 1is to
create a new status for the OUSTANDINGFIELD for transac-
tions that are on your current bank statement. Instead of
being labeled as ‘Y’ or ‘N’ in the OUTSTANDING field, you
could temporarily label them as 'S', indicating they are on
your current bank statement. In record 1 enter 'S’ for
OUTSTANDING, the Balance Forward from the previous
statement as the ‘Amount’ and ‘D’ for a deposit transaction.
Then change the status of all transactions in your file that
are also on your statement from "Y' to 'S". Now you can do an
‘accumulate’ specifying ‘S’ in field | as your search criteria.
The final balance should be the same as your bank state-
ment, If your balance is off from the statement balance use
the search function to track down transactions by check?®,
amount or outstanding status.

Once you've got your bank statement verified, you can
change records with 'S’ in the OUTSTANDING field to ‘N
Globally update all 'S’ status records to ‘N’ in the outstanding
field. (Press Shift ‘'C' - Prompt:Change Field Number - Enter

-

Area Line* Col* Center * of
Length Dec.
4] 1 N 0
6 1 6 N 0
1] 13 N 0
4] 17 Y 0
25 1 23 N 0
1 1 49 N 0
2] 53 Y 0
7 1 58 Y 2
9 1 65 Y 2

‘1' = Enter ‘N’ in field 1 - Press back arrow - Prompt:
Change Field Number - Press back arrow -~ Prompt: Accu-
mulate - Enter ‘S’ in field 1 as the search criteria - Press F3 -
Press back arrow - see manual p. 15).

If your last bank statement verified correctly, you can now
get your current balance by entering the final balance on
vour bank statement into the amount field in record 1 and
the status as 'Y’ for outstanding. Then do an accumulate
specifying field 1 = 'Y".

This application could be revised to keep track of a credit
card account instead of a bank balance.

DON'T PHONE - WRITE!

[f you have questions regarding this application or you
would like to submit your own “terrific” application, please
write me a legible, coherent letter. If you submit an applica-
tion, send it on disk or at least send screen dumps of the
ENTER/EDIT screen, a hand-drawn report chart and any
math and sample data. | will attempt to answer letters in this
column. Write to: Don Bell, ¢/o The Transactor, 500 Steeles
Ave., Milton, Ontario, Canada, 1.9T 3P7.

 The Transactor 33

Yolume 5, issve 02

MAILPRO 64: A Review

Mailpro is a file management program for use on the C64
and 1541 disk drive. Written by Steve Punter, author of the
WordPro series, Mailpro is ideally suited for keeping mail-
ing lists (as its name suggests), telephone numbers, or
similar lists for home or small business. Mailpro allows such
lists to be created, updated, and printed in any format, and
in any order. Data for a list may be entered using Wordpro,
and Mailpro will read the Wordpro file: a time saving feature
for long lists.

First, the documentation. The manual is packaged in an
attractive and sturdy little vinyl binder like the other PRO-
~LINE software products. My main critisism of the manual is
its lack of a reference section containing a summary of all
single key control functions. Using the package for the first
few times may be a bit frustrating, since you will have to
keep skimming through the text to find out how to access
special functions while outside the main menu. The manual
is, however, reasonably well organized, with separate main
sections dedicated to creating, updating, and printing a file.
The text itself is generally understandable, but muddied in
some sections. | would rate the manual a 6 out of 10.

As for the program itself, it should first be realized what
Mailpro's intended use is. This package does not have the
features and flexibility of a full-blown database manage-
ment system, but it is not designed as such. The documenta-
tion claims Mailpro to be a “"simple to use but sophisticated
mailing list program approaching a full fledged data base in
capability”. It goes on to suggest that name and address lists
are a "natural” application of Mailpra. For this application,

Chris Zamara
Downsview, Ontario

Mailpro lives up to its claims, and certainly does everything
vou could ask from a mailing list program. Mailpro will not,
however, generate complex reports and process data con-
tained within fields, nor will it do any sort of automatic
updates on any records. Mailpro has all of the capabilities
one can expect from a package at its price- around $70.

| told you what it doesn’t do. Now what does it do? The main
menu gives 12 options, including creating a file, entering
records, recalling specific records, and setting up a print
format,

The file create editor allows a record to be set up in the
format that data will be enteréd (this is not necessarily the
output format of the record), This editor is very easy to use,
and works like Wordpro, allowing full cursor control. Labels
up to 12 characters long can be entered, and the position,
length, and type of fields are defined. The label length
limitation is not so bad, since these labels are only used as a
reminder of which field is which when entering the data into
each record.

"Add New Record” mode allows new records to be entered
into the file, using a similar free~form cursor oriented editor
to fill in the fields. A control key submits a record to the file
once you are satisfied with its contents.

In “Recall a Record” mode, a specific record can be searched
for using any “sort” field as a key. The next record or
previous record in alphabetic sequence can be viewed by

pressing control keys, Remrdﬁ can also be deleted and

The Transoctor

Volume 5, Issve 02

updated in this mode. Deleting or updating a record takes a
while, but the slowness probably has more to do with the

speed of the 1541 disk drive than with Mailpro.

The feature | was most impressed with is the "Setup Editor”
mode. The setup editor allows you to custom tailor the
output of the records in a file, and it gives total flexibility. A
setup file is created using a very Wordpro-like editor to
position labels and fields anywhere on the print page. The
screen scrolls left and right with the cursor, allowing text up
to 160 characters wide on a page. All record fields must be
defined as left or right justified, or compressed. Once a field
is defined, scrolling over the field with the cursor will reveal
the field type in a status line at the top of the screen. Very
nifty. A heading of any number of lines to top each page can
be provided, along with a page number, if desired. Record
numbers can also be printed anywhere on a page. Addi-
tional information about the output records, such as width,
height, how many across on a page, etc. can also be supplied
from this mode. Up to ten printer selup files may be slored
along with a file. Overall, the output formatting is the most
flexible and powerful feature in Mailpro.

When actually printing records (by selecting "Output to
Printer” from the main menu), boolean decisions can be
made to selectively print records (inclusive, exclusive, in-
side a range, or outside a range). For example, you could
print all records with the second lield beginning with “2", or
print all records in sequence from "a” to "2". There are
many nice little features incorporated as well, such as giving
a printout of input record formals or setup liles, and the use
of defaull information in entering records. Lots ol lealures,
however, also means remembering lols ol control se-
guences, or frantically scanning through the manual to find
oul how to do something. | suppose though, like any
complele software package, it jusl takes a little more time (o

become lolally familiar,
A Few Miscellaneous Gripes:

1) After certain operations, such as adding records, the drive
error light remains blinking. The manual says this is nor-
mal, but it drives me crazy wondering if it 1s a serious error
and | have lost all of the data | have entered (which
happened to me once).

2) When creating a new file, an old file of the same name will
be replaced without any warning. This could be disastrous!

3) As mentioned previously, the multitude of control fea-
tures in different modes could be confusing, at least at first,
and there is no summary of what does what in which mode.

4) Disk operations can sometimes leave you waiting a long
time. Mailpro adds records to the file in a batch after you
have entered all records (up to 127 at a time), not one at a
time as they are entered. The manual states that writing 127
records to a complex file could take up to 2 hours,

If some of the above gripes sound like nit-picking to vou,
then that’s good. They are the things that bothered me most
about using Mailpro.

Some Exceptionally Good Points Worth Mentioning:

1) The “Setup Editor™ for setting up the output format is
fantastic. It's very easy to use, and allows total flexibility in
formatting your output. The only limitation is a maximum
length of 25 lines for each record, but that shouldn’t be a
problem in most cases. The fact that you can save up to ten
setup files with each file is also a nice feature.

2) Mailpro is designed to be compatible in many ways with
Wordpro, and data from a Wordpro file can be used to fill
mailpro records. Conversely, the output from Mailpro can
be sent to disk instead of printer in a format such that
Wordpro can use the data as variables. Thus, if Mailpro
holds your mailing list, you can print form letters to selective
members of the list with Wordpro. The disk output feature
could also be used to transfer data from one Mailpro file to
another.

3) The “Index™ function gives a list of all Mailpro files on
disk, and nothing else, so you can use a disk with all kinds of
stuff on it and only see what you need to from Mailpro.

Overall, Mailpro is good for keeping track of any household
or small business lisls you might have, and great at generat-
ing lancy selective printouts of the lists. 1t is fairly easy to
use, and if you are lamiliar with Wordpro, it's use is quite
natural. For the price of around $70.00, Mailpro 1s a good
buy, and may gel vou lo finally do all of those things you
wanled to wilth your computer, like store your recipes,
record collection, telephone numbers, . .

The Transactor

Yolume 5, Issue 02

PERSPECTIVE:

To GET Or Not To GET. ..
How Useful A Trick?

INPUT or GET? Each is useful in its own way, Each needs to
be used intelligently, matching the best features of the
command to the task at hand. Much was written about the
horrors of dropping out of INPUT on the PET when vou
strike RETURN. While this feature makes INPUT unsuitable
for many serious applications, it is one of the nicest features
in debugging or in a quick run of a utility program: vou can
get out at any time. Consider the “improved” INPUT in the
VIC or the C64. Unless you carefully code (see article v4 #6
p36, for instance) all possibilities (null entry, escape se-
quence) even for the most trivial, tiny, routine, you're stuck
in the input loop. Forever.

Press RESTORE/STOP you say? Sure. Now the screen is
blinding blue so you type all the nasty POKEs to turn the
blue off. Utilities have disconnected, so vou type all sorts of
code to hook them up again. Your carefully defined charac-
ters are gone, so vou connect them back. The bit-mapped
display setup is gone, so you poke some more. The sprites
you had on the screen are gone, you gotta bring them back,
The interrupt vector you changed is back to normal, so you
change that, An alternate BASIC language yvou connected is
gone, 50 you hook that up. . . some improvements we could
do without.

Lnbreakable input routines are vital in many instances, of
course. Many good ones have been written and are in
circulation. They are needed when the features of INPUT do
not match what you need done. Most INPUT simulators use
GET in some fashion, with a graphic character used for the
missing cursor. A well-designed GET routine is capable of
tracking your typing in all directions. Other routines may
need to prevent the user from typing, say, up or clear-
screen. It all depends on the application. But the key feature
of good routines is that they work.

On the other hand, tricks such as the old POKE 167
(originally introduced, [believe, in the Oshorne's PET

Elizabeth Deal
Malvern, PA

guide, subsequently reported in COMPUTE and most re-
cently in The Transactor v4 *6 p37) pose hazards of which
you may not be aware, Let’s look al il a bil more closely.

POKE 167 was meant to put the cursor on the screen during
a GET-type of input. A little fiddling with this trick shows
that it only works in forward typing. You can't delele/correct
vour input and vou can't go up or down to, perhaps, input
from a different line on the screen. It leaves REVERSE
FOOTPRINTS all over the screen at, seemingly, unpredicla-
ble moments, Useless,

The reason behind the failure of POKE 167 is that Lthere is
much more to the functioning of a cursor than just switching
it on or off. A careful reading of the Butterfield memory
maps, or even a superficial reading of the IRQ service
routine in the computer reveals that enabling a cursor must
be done IN THE RIGHT PLACE and AT THE RIGH'T TIME.
Poke 167 ignores that second, vital, condition.

You may wish to look up an old issue of COMPUTE in which
Timothy Striker addressed this problem and introduced a
wondertul routine which puts the cursor on the screen at the
right time and takes it off at the right time, It's well worth
typing in. There is one typo there, but vou should be able to
fix it after you understand the article.

Last, but not least, don't forget that the old screen and
keyboard inputs can do wonders, The point is to use either
one as a file, as in:

OPEN1,0or OPEN13: INPUT#1,1: CLOSE]

It fits numerous applications quite well and is machine-
independent. It is up to you to decide if you can get away
with that or if vou must go the, more complicated, but
foolproof, GET route.

ey

The Transactor

Yolume 5, Issue 02

All About Commodore
BASIC Abbreviations

Many Commodore owners know that some of their BASIC
keywords can be abbreviated to ease the work of program
entry. Those who know about the abbreviations often don't
use them extensively, because it's hard to find them listed
together in one place. Furthermore, they aren't all con-
structed in the same way, and it's hard to remember the
difference, for instance, between the abbreviations for RE-
STORE and RETURN., This article will end the confusion. It
provides alphabetized tables of all known abbreviations,
including versions for all ROMs and character sets. For folks
just learning about Commaodore abbreviations, it contains a
tutorial on their use,

Except for the familiar question mark used for PRINT, all
Commodore abbreviations consist of one or two unshifted
letters from the keyword, plus one SHIFTed one. Table 1
shows the screen display for keywords and their abbrevia-
tions when the graphics character set is enabled. Tables 2
and 3 show the same display when the ‘lower case’ charac-
ter set is enabled for original PETs and for newer machines.
The keystrokes used to produce each table are exactly the
same; as long as the proper shifted and unshifted keys are
pressed, it doesn't matter what comes up on the screen. We
have printed several tables only to make abbreviating easier
for yvou — use whichever one vou find most convenient.
We've also listed the BASIC 4.0 disk commands separately
in Table 4, to keep things simple for those who do not use
them.

Now look closely at the tables and notice that most abbrevia-
tions consist of keyword's first letter, unshifted, plus its
second letter, shifted. Others have two unshifted letters

Louis F. Sander
Pittsburgh, PA

before the shifted one; this happens where the first two
letters of several keywords are identical, as in STEP and
STOP. Some statements in the tables, (e.g. COS), are fol-
lowed by a double dash. We know of no abbreviations for
these, in spite of having searched diligently for them. (Let us
know if make any discoveries) and look carefully at the
abbreviations for SPC and TAB. They are actually abbrevia-
tions for 'SP(" and "TAB(. If you put tA(20) into a program
line, it will be interpreted as tab((20), and you'll get a
?SYNTAX ERROR when the line is executed.

It's not widely known that many abbreviations also have
longer forms. For these, you can type as much of the
keyword unshifted as you'd like, then shift the next letter
and stop. The computer will recognize vour intent and fill in
the hlanks accordingly. You can verify this for yourself by
entering ‘r-i-shifted-g’ instead of the more familiar
‘r=shifted-i’, and seeing that both forms produce a ‘right$’
when listed. We haven't tested this on every keyword, but
we haven't ever found it to fail.

Now for something ahout using the abbreviations. They
work equally well in direct or program mode, as maost of us
know from our experience with 7" as used for PRINT. Using
them in program lines does NOT save any memory, in spite
of what you may have read elsewhere. It only saves key-
strokes and space on the line originally entered. Enter a
short program with, and then without, abbreviations,
PRINTing FRE(O)) each time to prove it to yourself.

When yvour machine LISTs a program line that was entered
with abbreviations, it spells the keywords out in full. This

The Transactor 37

VYalume 5, Issuve 02

principle should also be familiar to anyone who has used a
question mark as shorthand for PRINT, What may not be
familiar is best illustrated by an example, Enter one 60-80
character program line containing many abbreviations,
such as

10 a=52a7a:7a:7a:7a:7a:7a:7a:7a; . . .

Be sure the line you enter fills most of two screen lines (one
for 8032’s, four for VIC's). Now LIST your program. Surprise!
The long line now fills far more than 80 spaces on the
screen. RUN vyour program and observe that it executes
perfectly, even though it seems to exceed the 80~-character
limit on line length. You can use this idiosyncracy to your
advantage when trving to pack a lot of statements into one
line. If what you want doesn't fit, just abbreviate some of the
statements, so that the abbreviated line fits into 80 spaces or
fewer. When you LIST the line, it will expand enough to
spell out all the statements in full, but it will RUN perfectly,
Do not attempt to edit any of these long lines after they have
been entered. The screen editor will enforce the 80-charac-
ter limit as soon as you use it, and vour line will be truncated
to 80 spaces on the screen. If you fail to allow for this, you'll
find yourself puzzling over vanished parts of vour cleverly-
-squeezed-in program lines.

That's about all there is to know about keyword abbrevia-
tions. Knowing about them has made my programming life
a little bit easier, and my fingers a little less fatigued. | have
fastened a copy of Table 3 to the front panel of my PET,
where it serves as an easy reference to the abbreviations |
haven't committed to memory. If you do the same, you'll
hask in the benefits of using abbreviations.

Editor’'s Note

The abbreviations phenomena is actually the result of a bug!
A quite harmless bug, but a bug just the same. Each
keyword is held in ROM in a ‘table’. The table is simply each
keyword spelled out, one after the other. Naturally, the
interpreter must know where one starts and the next begins,
50 the last letter of each keyword is OR'd with 128 (ie. Bit 7
set).

When you enter a command in its long form, the interpreter
begins comparing letters to those in the table. The inter-
preter continues comparing until a mismatch is found.
Assuming it was spelled correctly, when the interpreter gets
to comparing the last letter, there will be a difference of
exactly 128. A difference of 128 (Bit 7) signals the interpreter
that a complete match has heen made, so go on to the next
slep.

If vou entered the same command in its abbreviated form,
the character you type with the shift key will have a value
exactly 128 greater than the same character ‘un-shifted’. The
interpreter detects the 128 dilference and ‘thinks' it has
come to the end, so go on lo Lthe next step.

Inotherwords, it doesn’t malter which character is responsi-
ble for the 128 difference when the compare is performed.
See Mike Todd’s article, "How BASIC Works™ for more
details on this anomaly.,

The general rule of thumb, though, is the first letter followed
by the shifted second letter, unless this matches something
else first, then it's the shifted third leller. Two character
commands like IF and FN have no abbrevialir_:u.

Recall | said this 'feature’ is actually a bug. Really, the editor
should force you to type the entire keyword (except ? for
PRINT). Try entering a keyword with the LAST character
shifted, Try for example.

10 nexT

Since the last character of 'nexT” will have the same value as
the corresponding character in the table, no match will be
found. The interpreter enters ‘nex’ onlo line 10 as though it
were the beginning of a variable. The shifled “T" is lost
because the editor doesn't allow shilted letlers oulside
quotes (except on REMark lines, another anomaly).

Once you know how the keyword table is constructed, all
kinds of neat (but useless) tricks can be played. In the
keyword table, 'NEXT" is immediately followed by 'DATA’",
Try entering:

10 nexTdaT

The interpreter finds the 128 difference on comparing the
second "T". The string is replaced by the corresponding
token, and LIST will show:

10 next
Try adding:
20 returN
30 gosuD3

Now LIST and see if you can tell what the interpreter has
done.

The Transactar

“‘Uulumﬁl_lnu- 02

Table 1

RBES Hi oI D~ IMFUTH 1/ i e RIGHTS R- THEL T$
AND A/ END E/ THT - UFEHN 0l RND = TAH -
ASC o EXP Ea LEFTS iLF- OR - RUIN R . THIH !
ATH A Fri . LEM - FEEK P SAYE Seé TO -
CHREE C] FOR FI LET L= FOKE F SGH Si USE e
CLOSE CLI™ FRE F_ LIST L FUS - SIMN S, WAL V&
CLR CL GET G~ LoAD Ll PRINT ? SPLK 57 VERIFY V=
CMD O\ GET# - L OG -~ PRINTH P SQR = WAIT ke
CONT O] GOSUB GO MID$ M- mERD R STEP SE
Cos e GOTD G MER o REM e sTOP =i
DATA Do IF. i NEXT M RESTORE RE® STRE -
DEF D~ INPUT —- NOT NI~ RETURN RE 5Y5 S |

Table 2
HES Hb IM D1 INPUTH® In UH Pt RIGHTF H1 THEC Ta
AND fin END En INT - OPEN Op RND Rn TEN -
AsSC Az ExF Ex LEFT® LEf] e RUN Ry THEM Tk
RTH AL FiN R LEN . FEEK Fe SAHYE Sa 10 -
CHR$ Ch O o LET Le POKE Fo SGH 59 USR Us
CLOSE CLo FRE Fr LIST Lt POS - STN S i VAL Va
CLE C1t GET Ge LOAD Lo PRIMT ? SPLC Sp VERIFY Ve
chHEG Cm GET® -- LOG —— FRINT# Pr SR Sq WAIT Wa
CONT Co GOSUE L= MIGS Mt RERD Fe STEF STe
cas - GOTO Go MEW o e REM - STop Ht
DATA Da 1F - MEXT He RESTORE EREs S5TR# STr
CEF e INFUT -~ HOT Mo RETURN REt o271 - Sy

Table 3
abs ab dim dl input# {H omn right$ rl tab¢ tH
and aN e e M int cpemn aF rud i tan -
asc as e ¥p e A iefts leF or o~ rumn U then tH
atn aT fn - len - pesk pE save sA to =
chr® oH for 0 let LE poke pU sq9mn £0 s us
cloagse cl0d fre f i list b i Fas ot £im g1 Wl wiH
clv e L get gE load 10 print ? spc sP werifu wE
< md o qetHh - [§: 3 - srintéd pR sqFr s wait mfl
cont cO gosub gof mid# m I read rE :bLep ctE
oS o gote gl new e Fem stap 7
data dR 17 - next nE restore resS st rT =t R
def dE input —- not n il refurn reT 545 5Y

Table 4
APFEND AT COrY cO071 DSAYE Le agpend af COPFY coP dzave ds
PRCVIUIF Bé DCLOSE - HERDER H™ backup LA dclose d e header kE
DHTHLUL e DIRECTORY DI_ RECORD RE-— catalog cR directory diRE record re
COLILECT CoOlL. DLORD T RENFPMF =] callect ool dioad Al FETIAMS =2 b4
COMCRT -~ DOPEHN o SLCRATCH S~ concat == dapen 40 scvratoh sC

© 1982 Louis F. Sanvse
" The Transacter 39 _ ___ Volume 5, lssue 02

How BASIC Works

Mike Todd is a member of the Independent Commodore
Products User Group of England. This article originally
appeared in the club newsletter some four years ago. Essen-
tially not much has changed since then. Commodore has
added here and taken away there, but the fundamental
operation of all their machines (excluding the B and the new
204) s still the same. You mught consider having your
memory map on hand as you read through this article. As
you become more familiar with your machine you'll find
that writing new and more complex programs becomes
easter and easier. M.Ed.

It was difficult to decide at what level to aim this article, and |
have attempted to keep it fairly simple (and consequently
omit a lot of detail - for which | apologise in advance). The
only requirement is that the reader understand the princi-
ples of machine code programming and have some knowl-
edge of simple terminology such as RAM, byte, stack, hex
notation and so on.

The Inside Story

The first consideration must be to sort out the organisation
of the massive amount of software in ROM, There are three

main divisions.:

1) The Operating System - is the section of ROM dealing
with cassette, keyboard, screen and |IEEE input or output. It
is written specifically to match the hardware.

2) The BASIC Interpreter — written by Microsoft, this is the
program which allows you to write lines of program, edit
them, and execute them. It was originally written in general
terms for use by different computers and is customized by
Commodore for use on their machines. In fact, most of the
interpreter is identical to that in other machines such as the
APPLE.

3) The Machine Language Monitor - although not really part
of the normal operation of the PET, this program provides
facilities for manipulating machine code programs using
hex codes and for saving and loading machine language
programs from disk or tape. On BASIC 1 PETs, this is

Mike Todd
Kent, England

replaced by diagnostic routines which are of very limited
use lo most owners. Therefore, a MLM program had to be
loaded into RAM to obtain this facility. Likewise on the VIC
and 64, however cartridges are available too that contain
this program. |

At the heart of the machines is the microprocessor which at
switch-on starts to execute the ROM software at an address
placed al the end of ROM (8FFFC/D). This routine initializes
all registers, input/output chips, BASIC pointers and vectors
(a veclor is an address held in RAM for future use and which
indicales the entry point of a routine held somewhere in
memory). It clears the screen and checks RAM by writing a
number into every location and confirming that it is read
back correctly. It does this twice for every location and as
soon as it detects an error it assumes that it has run out of
RAM and sets the end of RAM pointer accordingly. The
greeting message is printed using this information to indi-
cale the number of bytes free. Then the READY message is
printed, the cursor is flashed and a holding loop is entered
wailing for you to type something. |

Interrupts

While wailing, the microprocessor is far from idle. Every
1/60th of a second, a pulse is generated and fed to the
Interrupt Request pin (IRQ). When the pulse is received, the
6502 (6510 in the 64) stops whatever it is doing, saves the
status regisler and return address and starts executing code
at the address given in $FFFE/F. This routine saves the
registers, does some housekeeping and then uses the IR()
vector o jump lo the main interrupt routine. Since this
veclor is in RAM, the user can alter it to point to his own
interrupt routine - the only restriction being that it should
end with the same code that the regular interrupt routine
uses. Here the registers are reslored to their previous condi-
tions, followed by a Return from Interrupt instruction (RTI).

‘The hrst task of the main interrupt routine is to execute a
subroutine that updates the T1 clock and sets a llag il the
STOP key is pressed. Bypassing this subrouline (by chang-
ing the IRQ vector to enter the interrupt routine just beyond
this JSR) is one of the ways in which the stop key can be
disabled. However, this also stops the T1 clock,

=

i b U P B L e R R R e R LN B LN e L R R LR R e e~ =

The Transactor

Velume §, Issve 02

—

(RESET)

Initialize
Input/Output
Registers

I

Set up Varnable
Pointers, etc.

———

Test RAM,
Dutput Number
ol Bytes Free

-

Print 'READY.

-

Get character and
put it in buffer

character -
'‘Return’?

How many
characters?

First char
a digit?

YES

Read Line Number

et ™ ™)

The interrupt routine then lovks after the cursor on the
screen: if a cursor is required (flash cursor flag = 0, see your
memory map) a countdown is maintained and on every
20th interrupt, the character under the cursor is inverted,
making the cursor flash 3 times a second. The cassette
buttons are then checked and the motors turned on or off as
required. This is necessary since the motors are totally
under software control and need to be switched on and off to
allow wind or unwind to function correctly.

Finally, and probably the most important interrupt function,
the keyboard is scanned and if a key is pressed, the ASCI
value for the key is found in a table and placed in the
keyboard buffer, This buffer is 10 bytes long (which can be
altered in most models), and a count is kept of the number of
characters in the buffer, If this count goes over 9, the buffer
is full and the interrupt routine stops accepting characters.
By holding characters in this way, the user can type while a
program is executing some task. Then when the program
comes to an INPUT or GET statement (or direct mode), the
keyboard buffer empties its characters onto the screen ready
for use.

This process continues nearly all the time. However, an
instruction is available (SEl) to turn this interrupt off and this
is done now and again whenever time is critical. In addition,
casselte inpul and output uses a different interrupt facility
and keyboard servicing is bypassed altogether.When the
casselte has finished with the interrupt, it restores the
vector. In PET/CBMs the vector is restored to the main
interrupt routine, which means if the user has altered the
IRQ vector it will require “re-altering’’. VIC and 64s restore
the veclor to its previous location even if it was altered by
the user,

Find Line in Text
and Delete it

Any Text
Following Line
Number

Crunch Keywords
to BASIC Tokens

L Insert in Text

L 1
<

Crunch Keywords
to BASIC Tokens

First Byte
a Token?

Perform 'LET Perform Command

The Transoctor

41

~ Volume 5, lssuve 02

Ready and Wailting

Armed with this information we can now rejoin the main
holding loop just after READY has been printed out. The
hirst thing that has to be done is to accept characters from the
keyboard (more precisely, from the keyboard bulfer) and
print them to the screen along with a flashing cursor. When
you press the RETURN key, the characters on the screen are
read one at a time (by the subroutine at $FFCF) and placed
in an 80 character input buffer for analysis. This consists of a
check for a digit at the start of the line which indicates a
BASIC program line - a non~digit at the start would be takern
to mean that the line was a direct command.

If the line is a BASIC program line (and of course that
includes a null line which indicates a line to be deleled from
the program), the number at the start of the line is read and
converted into an integer of two bytes, The remainder of the
line has the keywords identified and converted into single
byte tokens, and then the entire line is inserted into the
BASIC program. In actual fact, BASIC is searched for the line
number given at the start of the line. That line is then
deleted from the program. If only a line number was given
the routine returns to the holding loop. If the line number is
followed by text, it is inserted into the program in RAM as a
BASIC line. Since the remainder of the program must be
“shifted” up or down in memory to accommodale Lhe
alterations, another ROM routine is called that regenerales
the link addresses for the entire BASIC program,

The link address is simply an address that tells the system
where the next line of BASIC text is located, Every line has a
link address. This allows the interpreter to skip over lines,
for example, when a GOTO is encountered. This way the
interpreter can look at the line number, compare it to the
target line number, and jump directly to the next line if they
don't match. Imagine the time consumption if the inter-
preter had to look through the entire line to find the next
line number. Also, when inserting or deleting lines, the
editor can determine immediately how many bytes to open
up or take out. Although these links consume memory, the
advantages are well worth the 2 bytes.

Direct command lines (with no number at the start) also
have keywords changed to tokens; however, the BASIC
program pointer is altered to point to the input buffer
instead of the BASIC program, and the line is then inter-
preted in exactly the same way as a normal program line,

Let's return to the keyword to token conversion; this is quite
a time-consuming task - one reason why it is done when
the line is entered and not during program execution, is the
delay during a run would be intolerable. The other principal

reason 1s one of space saving - a one byte token saves
several bytes over keywords such as “RESTORE"! All these
keywords are held in a table starting near the beginning of
ROM with the last character in each having bit 7 (the most
significant bit) set to 1. The “crunch” routine, as it is
sometimes called, scans the keyword table character by
character for a match with the first. character in the text.
When this is found, successive characters are checked until
a mismatch occurs, and if this mismatch is only bit 7 then a
complete keyword has been found and is replaced in the
text by a token generated from a number giving the table
position of the keyword with bit 7 set. If the mismatch is
other than bit 7 then the process is repeated through each
keyword in the table and if no mateh is found, the next
character in the text is used as the starting point for the next
table scan.

The fact that a mismatch in bit 7 is all that is required to
lerminate the checking sequence gives us a clue as to why
keywords can be shortened. For instance "nE"” can be used
instead ol ‘next’, since the ‘E' is the same 45 ‘e’ but with bit 7
sel and this forces the match to me made. But, of course, the
malch will only be valid for the first match in the table -
thus, ‘next’ occurs before ‘new’ and will be the first match for
k. Similarly, ‘read’ occurs before ‘restore’ and will be
recognised if “rE” is used - restore would have to be
abbreviated to ‘reS’.

The most important direct command which will be inter-
preted is the RUN command, for this is the command that
instructs the interpreter to start execution of the BASIC
program that you have built up. The interpreter checks to
see Il you have given a line number, and if you have,
performs a CLR followed by GOTO the line number speci-
fled. Otherwise it resets all pointers to the start of BASIC text,
aclivates a clear and then returns to the main interpreter
which now has had its pointers reset, and execution starts at
the beginning of the program.

The Interpreter

The core of the interpreter first checks if the stop key is
pressed (in which case it performs the STOP command
automatfically). 1t then handles the BASIC line pointers; it
checks for the end of the program (which is marked by three
conseculive zero byles) and exits if found; it also handles the
occurrence of the end of a line (a single zero byte) by moving
the pointers past the line number and forward pointer of the
next line, The starl of the current statement is saved (if not in
direct mode) so that CONT will know where to pick up from
if execution is stopped lor any reason.

_The Transactor

Volume 5, Issue 02

Pressed?

Perforin ‘STOP' —J

End of
Program?!

(et Next
Line Number

Set Pointer]
to Next Line

Execute Statement

< |

Flowchart Of The Main Execution Loop
Tokens

The statement is then interpreted. Here, the first byte of the
line is checked to see if it is a token (ie. ifbit 7 = 1). Ifitisa
valid command token (and not something like SIN or
THEN), bit 7 is removed, and the resulting number (which is
the position of the keyword in the table) is used to access the
start address of the command routine from a table of
addresses in ROM directly above the keyword table. The
interpreter then jumps to the appropriate routine. If the
keyword is GO, then a check is made for TO (since GOTO is
the only keyword that can be split into two words) and if
found, the GOTO routine is entered. If the first byte is not a
keyword, the interpreter assumes that a ‘LET" operation is
required (since LET can of course be omitted) and the LET
routine is entered. Any invalid start to the line will result in
the interpreter printing the SYNTAX ERROR message, flag-
ging that an error has occurred, and then entering the main
holding loop after printing READY.

Everything else that the machine does is under control of
the keyword command set and consequently some of the
more important commands will be examined in detail.
However, all commands require the ability to retrieve a
character from the BASIC program text and a rouline is
provided specifically for this purpose. Within this routine is

Perform 'ENLY I

a pointer which is incremented as soon as the routine is
entered and then a character is retrieved from that location.
If the character is a colon or a zero~byte (both of which
signify the end of a statement) then the zero (Z) flag is set ~ if
it is not a digit, the carry (C) flag is set. If the character is a
space then the routine ignores it and reads the next non-
~-space character.

Getting Characters

This routine, which starts at $0070 ($0073 in the VIC and
64), is often referred to as the CHRGET routine (pronounced
“char-get”) and, being placed in RAM, is easily maodified to
allow additional commands to be added as in the Program-
mers Toolkit. Other user functions can also be imple-
mented, and a variety of techniques are used to patch into
this important routine.

As well as using the CHRGET routine at $0070, the inter-
preter will often enter at $0076 ($0079 in VIC/64) instead.
This entry (sometimes referred to as the REGET or CHRCOT
routine) does not increment the character pointer and is
used to fetch a character from text that the interpreter
already GOT once and needs to GET again.

Variables

It is also worth examining how BASIC stores its variables.
The simplest are the ordinary numeric variables. These are
stored at the end of BASIC text, each taking seven bytes.
Without describing the complex technique of “offset expo-
nent, normalized hinary floating point” storage, it is worth
pointing out that all numeric operations are performed in
this format. Even integer variables (stored in two byte fixed
point format) are converted back to floating point whenever
they are accessed. There is a floating point accumulator in
RAM consisting of 6 bytes - the first is the exponent, the
next 4 are the mantissa, and the 6th is the sign which is
recovered from the stored form of the number. There are
additional floating point accumulators which are used as
workspace when evaluating expressions. The principal ac-
cumulator (FPACC#*1) stores intermediate results and is also
the accumulator upon which the trigonometric functions
operate.

Numbers in arrays are stored in a similar format (except that
integers use only two bytes instead of seven and floating
point numbers five instead of seven) -~ but there is a header
to each array which contains the array name, the number of
bytes in the array and information about the dimensions of
the array. However, these are stored after ordinary variables
which means that every time a new ordinary variable 1s
deflined, the enlire array table has to be shifted up seven
byles,

. —— ———_— L SR SN TEFR TP T EEETE P T SR ST SEEERREE R T N U EE S EY el

The Transactor

Volume 5, Issue 02

BASIC RAM Memory Allocation

BASIC Tex! Variable Table Arrays Space Empty Space String Space
0 000 j
t t 1 t t t
Start of BASIC Start of Variables Start of Arrays End of Arrays Bottom of Strings Top of Memory
BASIC 4/2: §28,29 $2A2B $2C,2D $2E.2F $30,31 $34,35
VIC/C64: $2B,2C $2D.2F $2F 30 $31,32 $33,34 $37,38
BASIC Text Line Structure
0 |L|H|L[H|linetext [0|L|H|L]|H]|Ilinetext
LA S t
end of previous line line #
—— pointer to next line ——
Variable Contstruction
Floating Point | Integer - String
ININD [[lafnfLofofo sG] [L]ufofo]
name t tmsh—Isht name value unused name T e |
(NN) exponent + 128 (JJ%) (SG$) start address of string
length of string in bytes
Strings
arrays,
Ordinary string variables are also stored in seven bytes,
although only three are actually used for string information. Garbage

These three bytes are called a string descriptor, with the first
byte holding the number of characters in the string and the
other two the address of the first character in the string. If a
string is defined in a program (e.g. A$="TEST STRING"),
the string is already in RAM and the descriptor will point to
the characters within the text area. However, as soon as
strings are manipulated they need to be stored somewhere
else, otherwise a string operation could actually corrupt the
BASIC program text!.

This problem is overcome by using the empty space after
the arrays. But since the arrays are moved up each time a
new variable is defined and of course the end of arrays will
change if a new array is created, strings cannot be placed
immediately after the arrays. If they were, the strings would
have to be moved up as variahles were created, and all
string descriptors modified accordingly - a mammoth task.
Instead, strings are built starting at the end of RAM. A
pointer is set to the end of RAM, and whenever a string is
created this pointer is moved down by the number of
characters in the string and the string stored starting at that
point. Uinfortunately, if another string is defined, this pointer
Is moved down yet again, until it reaches the end of the

When this pointer crashes into the top of the arrays, there
are two alternative solutions. The first is to abort and print
an OUT OF MEMORY error - a defeatist answer!, The other
solution assumes that there will be strings in this area which
are no longer of use - in other words the original descriptor
for that string has been changed because the variable has
been redefined and has therefore been rewritten elsewhere
in the string storage area. Thus the string storage area
contains garbage, and so a routine, referred to as “garbage
collect” is invoked to weed out all those unreferenced
strings. It does so as follows:

A pointer is set to the end of RAM (and so the top of string
space) - all string descriptions are checked (in both ordinary
and array string variables) to find which pointer is closest in
value to this garbage collection pointer. The position of the
final character of the string is calculated by adding its length
to the start of the string and the string is moved up to fill any
unused space - the string descriptor is then updated and the
string space pointer moved down to the start of the string.

All string variables are then checked for the next string

The Transactor

44 Volume 8, Issue 02

descriptor below this pointer and the same process repeated
until all strings have been checked and moved up o lake up
the space occupied by the garbage thereby releasing space
for more strings. Only when the garbage collect routine fails
to release enough space does the OUT OF MEMORY error
OCCUr.

In other words, the string space is scanned [rom top to
botton; all unused strings are deleted and all used strings
moved up to overwrite them.

Minutes or Hours

Unfortunately, il a large number of strings are being used
(especially if a large string array is delined) then the garbage
collect routine has a lot of work to do. For instance, if the
only strings in use are all the elements ol a 100 element
array, then the string space will have 100 strings in it and
there will have (o be 100 searches through all string descrip-
tors — amounting to 10000 descriptor checks! If there are
more than 1000 strings then over a million checks will have
to be dorne as well as 1000 string moves and updates - no
wonder garbage collect can take several minutes (or even
hours!t!), BASIC 4 (which is supplied in the new 4000 and
8000 series PETs and is available as an upgrade for older
PETs) has solved this problem by adding two bytes extra to
each string; these are used by a much improved garbage
collection rouline to an acceptable level.

Input & Output

Belore going on to consider a tew BASIC commands, it 1s
worth considering how the operating system handles input
and output, There are three main types of output routines
directing characters to the screen, the cassettes or the IEEL
bus. All have their own separate routines, but can be
accessed through a single output routine at $FFDZ. This
routine checks the contents of location $B0O ($3A in VIC/64
- often referred to as the CMD output device number) and
uses this to access the appropnate output routine, If set to
device number 3, the screen output routine is used. This
routine handles all ASCII characters (including
clear-screen, cursor movements etc.) and places the charac-
ter on the screen, updating the screen pointers.

IEEE Management

If the CMD output device is greater than 3 then the IEEE
handshake routines are called, while any other value is
assumed to be a cassette operation and the character is
placed in the appropriate cassette buffer. The buffer pointer
is incremented and if it is 192 the entire buffer contents are
written to tape and the buffer reset, It is worth noting that

CHR$(10) - line feed - is ignored when sent o tape o avoid
i interfering with the data when is 1s read back.,

Whenever the $FFD2 oulput routine is called, it is assumed
that not only has $B0 been sel correctly, but that a channel
has been opened (o the casselle or IEEE bus, This ensures
that IEEE or casselte protocols have been observed and the
data 1s sent to a valid device.

Keyboard

in a similar way, there is an input routine at $FFCF which
uses SAF ($99 on VIC/64) to indicate the device number
from which input will be taken. If it is zero, then the
keyboard 1s taken as the inpul device although sinctly
speaking the inpul i1s taken from the screen. As soon as the
routine is entered (and $AF=10), the cursor is set flashing
and the current position of the cursor logged as the start of
the line (thereby avoiding any prompts being accepled as
part of the input). Thereafter characters are read from the
keyboard buffer and placed on the screen until the RETURN
key is hil at which time the routine is left, returning the first
character on the line. Subseguent calls to the routine do not
sel the cursor flashing, nor do they allow turther input to be
accepled. Instead they return successive characters on the
line until the last character is read. The next call of the
routine starts the process over again.

Like the output routine, the input routine assumes that all
necessary protocols have been handled (normally through
the OPEN command). Characters from cassette are read
from the cassette butfer until such time as the butfer pointer
reaches 192 at which time the next data block is read from
tape. Alternatively, the IEEE routine simply handles the
necessary handshaking on the IEEE bus.

Error Messages

Unfortunately, this 1s not the full story, since there are
occasions when output to the screen has to be suppressed. A
flag exists which is used to suppress screen output. This flag
is at $10 ($13 in VIC/64) and contains the logical file
number of the most recently accessed input and output files,
Therefore if $10 is zero, both input and output are normal
and this allows INPUT error messages for instance to be
printed. If either is off normal (1.e. if an INPUT#® or PRINT*
command has just been obeved) then these error messages
are suppressed,

Although mention has been made of the INPUT routine at
SFFCF, there is another routine at $FFE4 which collects a
single character from the specified device. In the case of
cassette or [EEE input this is no different to the usual input

The Transactor

_Volume §, Issue 02

routine. But for keyboard input it has the effect of GET -
where only a single character is fetched from the keyboard
buffer, no cursor is flashed nor are the typed characters
placed on the screen.

LET Command

The first BASIC command to be considered is the LET
command. As already mentioned, this is the only time when
a statement does not need to start with a keyword token.
Although in principle the command routine is very simple,
the evaluation of the expression on the right hand side of
the equal sign is extremely complex and the details cannot
be described fully here. Any standard reference work on
computer compilers will deseribe the technique of evaluat-
ing arithmetic expressions.

The first task of the LET routine is to ascertain which
variable is the target variable on the left of the expression
and then search the variable table or array table for it -
setting $44/5 ($47/8 in VIC/64) to point to the variable. If
not found, then a routine is called which creates a variable
(or array) as required. In addition, a note 15 made at this
point of the variable type.

After confirming that “=" follows the variables, the inter-
preter enters a routine which evaluates the expression alter
it. This routine is made more complex by the need to handle
string expressions as well as numeric expressions.

To evaluate an expression, it can be considered as individ-
ual terms (i.e. a number, a variable or "pi") separated by
operators (such as + -/+etc.). The expression is scanned [or
the highest priority operator - the exponenliation operator -
and the terms either side of il are placed in the two main
floating point accumulators. If one of the lerms is a brack-
eted expression, the evaluation routine is re-entered o
evaluate the expression in brackets. Then the exponentia-
tion routine is called and the intermediale resull saved on
the stack. This is done for all operators working down from
the highest priority to the lowesl priority (addition) which
will result in all operators being assigned their correct order
of precedence.

Experts will point out that this is not precisely what hap-
pens, bul it serves as an example. In fact, the process 1s
significantly more complex than this but the fundamentals
are the same.

String expressions are evalualed rather more simply, with
intermediate string resulls being placed (in descriptor form)
on 4 descriptor stack until a final descriptor is computed.
The resull is passed back as a pointer which points to the
final descriptor,

In the case of numeric results, the linal result will be placed
in the main floating point accumulator. The result is then
converted to the appropriate form for storage (e.g. the
floating point result converted o an integer) and then stored
at the target variable location.

FOR-NEXT

The next command to be examined is the FOR command,
which together with NEXT allows a simple method ol loop
control. As with all other commands, FOR has ils own
routine and its first task is to perform the LET routine on the
FOR variable. This sets the initial condition [or the loop. The
stack is then searched to [ind if there is already a FOR loop
active using the same variable. I there is, then it and all FOR
loops declared after it are deleted from the slack.

Alter checking to see if the slack can hold the FOR entry (if it
cannot, an OUT OF MEMORY error is printed), the text is
scanned [or the start of the next BASIC slalement aller the

- FOR command and the pointer to this statement and line

number are pushed onto the stack. The routine then con-
firms that “TO” is the next loken in the text and the
expression following il is evalualed. The resull (the final
value for the loop) is then pushed onlo the stack. Nexl, the
text 1s checked for the STEP loken and if present, the STEP
expression is evalualed. If STEP is not present the SIEP
value is sel o 1. The sign of the STEP value is then placed on
the stack followed by the absolute value (ABS) of the STEP.
The pointer lo the FOR variable is then pushed onto the
stack and finally the FOR token ($91) is pushed on the stack
as a marker.

The interpreter continues execution of BASIC text until it
reaches a NEX'I' command. If a variable is specified, the
variable table is searched for and the pointer to the variable
compared with the variable pointer of all FOR entries on the
stack. If not found then NEXT WITHOUT FOR is printed, If
found, then the current value of the FOR variable 1s re-
trieved from the variable table, the STEP value is added and
the result compared with the TO value. If greater, the FOR
entry is removed from the stack, together with any GOSUB
or FOR entries that were declared after the current entry and
execution continues normally.

However, if the result is equal or less than the TO value, the
pointer and line number are taken from the FOR entry on
the stack (they point to the first statement following the FOR
command) and execution of the program is resumed at that
point. If the STEP is negative, it is subtracted from the FOR
variable, and the loop terminates if the new value is less
than the TO value.

:

The Tran r

Volume 5, Issue 02

|

‘FOR’ Stack Entry

LO Pointer to first

HI | statement in loop
HI Line number of first

LO | statement in loop
M4

M2 | “TO value

Sign of 'STEP’

M2 | 'STEP value

HI | Pointer to
LO | 'FOR’ variable
$81 | 'FOR’ Token

‘GOSUB’ Stack Entry

HI Pointer to

LO | 'GOSUB’ statement
HI Line Number of
LO | ‘GOSUR' statement
'‘GOSUB’ Token

GOSUB & RETURN

Since it also uses the stack, GOSUB will now be described.
On entry to the GOSUR routine, the stack is checked to see it
it can hold the entry and then the current pointer and line
number are pushed onto the stack, followed by the GOSUB
token ($8D) as a marker. The routine then joins the GOTO
routine which reads the line number, converts it into a two
byte integer, searches for the line number in the text and
then sets all the pointers to continue execution from that

point.

RETURN simply checks the stack for the latest active GO-
SUR entry (deleting any FOR entries on the way!) and resets
the pointers which then point to the middle of the GOSUB

command. The DATA command routine is then entered
which scans to the end of the current statement, updates the
pointers accordingly and resumes execution at that point.

CONTINUE

CONT is another routine which updates the program
pointer (which is the pointer held in $77/8 in the CHRGET
routine). This time, however, the new value is retrieved
from $3A/B (33D/E in VIC/64) where it was stored when
the program was stopped. The contents ol $3B are [irst
checked to see if it 1s zero - if it is then the address pointed to
must be $00xx and the last command must have been a
direct command (if an error occurs $3B is also set (o zero).

If this is the case, the interpreter does not allow the program
to continue. The reason for this is lwolold. The first is that, in
direct mode, the statement is being executed in the inpul
buffer and if the stalement has been slopped, il is possible
that it will have been overwrillen by a new line ol input, in
which case CONT would (ry Lo resume a polentially nonsen-
sical statement. The other reason is thal an error can occur
at any point during the execution ol a slatement and can
leave the BASIC pointers and vectors in an indeterminate
state - therefore, while CONT might rejoin BASIC at the
correct point, there is no guarantee that execution would
continue correctly due to the possible corruption of the
BASIC pointers. If CONT is allowed, the CHRGET pointer
and line number are restored and execulion continues from
that point.

Having mentioned that CONT during direct mode could
cause conflict in the use of the mput bulfer and is conse-
quently disallowed, it is worth adding that this i1s the same
reason why the INPUT or GET commands are not allowed in
direct mode. In both cases, the inpul bulfer is used to hold a
string of characters which would overwrite the direct mode
staternent already in the bulfer and cause great conlusion o
the interpreter!.

Pointers

Before going on to look al the final commands of SAVE and
LOAD, it is worth examining briefly the pointers which
indicale the various sections of memory used by the inter-
preter. The lirst is the starl-of-BASIC pointer (at $28/9,
$2B/C in VIC/64) which is always sel to the start of BASIC
text space. This address varies from machine to machine,
but it always points o the [irst byte of the first lines” header
which contains the pointer to the next line as well as the line
number.

The Transactar

Yolum iIssue 02

The next pointer ($2A/B, $2D/E in VIC/64) indicates the
start of the variable table and normally points to the first
byte following the three consecutive zero bytes indicating
the end of the BASIC program. As well as indicating the start
of the variable table il is also used as an end-of-BASIC
pointer.

The start of the array table is held in $2C/D ($2F/30 in VIC/
64), and the end in $2E/F ($31/2) which is also used to
show the end of RAM usage (working up from the bottom of
RAM). It is this pointer that the strings, which work down
from the top of RAM, must not pass. The lower limit of
strings is held in $30/31 ($33/34) and it is the comparison of
this with $2E/F that instigates the garbage collect routine.

The last pointer is $34/5 ($37/8), which gives the Top of
Memory. This can be lowered to allocate some memory for
assembler routines for example. Note that if this is done, a
CLR instruction should follow the two POKEs.

SAVE

When you use the SAVE command, the limits of RAM to be
saved are indicated by the Start-of~-BASIC pointer and the
Start-of-Variables pointer. If the device is one of the cas-
settes then a header is created with the start and end
addresses included together with the program name. This is
then written to tape followed by the complete program.
However, if an IEEE device is specified, the program name is
sent first (used to open a channel in the device) and the
program is sent byte by byte ~ the first two bytes sent being
the start address of the program.

LOAD

LOAD is rather different, however, and its operation de-
pends on whether or not you are operating from within a
program or in direct mode. If from tape, the header of the
specified program is searched for (if none is specified, the
first program header read is used). This header contains the
start and end addresses of the program and it is the fate of
these which differs from program to direct mode. If an IEEE
LOAD is performed, the program name is sent to the IEEE
bus (to allow the device to find the program - for instance on
the disk unit) and the first two characters received are taken
as the start address of the program. When program LOAD is
complete the IEEE bus signals the fact and the address of the
last byte loaded used as the end address, since this address
is not explicitly saved as part of the program.

The VERIFY command operates identically to LOAD, except
that bytes are compared with those in RAM rather than
being stored.

In direct mode {and that includes a LOAD using the shifted
RUN/STOP key), once the program is loaded, the start-of-
~variables pointers is set to the end address of the loaded
program, In order to avoid problems of trying to read
variables from a now corrupted variable (and array) table, a
CLR is performed (which sets the start of arrays and end of
arrays to the end of program pointer and resets the lower
limit of string storage to the upper limit of RAM). This is
followed by the recalculation of all the link addresses at the
beginning of each line of the BASIC program. Finally, the
main waiting loop is rejoined at the point at which READY is
printed.

In program mode, LOAD operates rather differently. The
actual mechanism remains the same, but the End of BASIC/
Start of variables pointer is left untouched. This allows the
newly loaded program to access the same variables as the
program which loaded it. However, if the loaded program is
longer than the calling program, the variable table will be
over-written by the end of the new program and cause no
end of problems. This is why programs loaded from within a
BASIC program must always be shorter than the calling
program.

Once loaded, BASIC is reset to continue execution at the
beginning, and a partial CLR performed which cleans up the
stack to remove any outstanding GOSUB and FOR entries
and executes the RESTORE command routine. Unlike
LOAD in direct mode, LOAD in a program does not perform
the regeneration of the link addresses.

. . .And Beyond

That then is our look inside BASIC - or at least as much as
time and space will allow. Further investigations can be
made with the use of a simple disassembler (which converts
the machine code back into assembly language, but without
labels or variable names). With the information given
above, and the details given in tables of ROM and work-
space RAM, most readers should be able to delve a little
deeper under the bonnet. Armed with a deeper understand-
ing of the software processes involved in the BASIC inter-
preter, many users have been able to make their
Commodore computers sing and dance far in excess of what
their creators ever imagined!

Valume 5, iasus 02

A AL L Lol e

Messing With The Stack

Sumetimes it would be nice to be able to leave a subroutine by a
GOTO statement rather than the usual RETURN statement. Doing
so is usually eonsidered ‘poor pragramming practice’. However,
there are times when it can be useful (e.g. implementing an ‘escape
key' feature 1n an input subroutine).

The most pressing reason why one should avoid this programming
technique, aside from the fact that it encourages ‘bad program-
ming habits’, is that it does terrible things with the stack

Try the tollowing program,

100 gosub 200

110 print " eureka, it works!”
120 end

200 if 1= 50 then return
2101=14+1

220 printi;” . hereiam again.”

230 goto 100
Program 1.

The program will print out the message "HERE | AM AGAIN."
twenty three times and then stop with an "? OUT OF MEMORY
ERROR IN 200,

In fact there is plenty of memory available. What has happened is
that each time line 100 is executed, 7 bytes are placed on the stack
(5 of these bytes tell the computer where to return to when it
encounters the "RETURN' statement and the other two byles are
placed there for internal reasons).

Since the 'RETURN' statement in line 200 doesn’t get executed
untit 1=50, the stack quickly fills up (the stack can contain a
maximum of 256 bytes, but much of that is used by the operating
system). When it is full the "OUT OF MEMORY” error occurs,

Fortunately there is a simple way out of this problem, simply add
the following line.

Garry G. Kiziak
Burlington, Ont.

220 sys clear : rem where clear= 46610 on 4.0 PETs
and 50583 on 2.0 PETs

This 'SYS' command accesses a ROM routine which is part of the
‘CLR' command and eflectively clears the slack each time il is
called. Now since the stack is no longer allowed to fill up, the
program should run to its conclusion printing ‘HERE | AM AGAIN.
50 times followed by 'EUREKA IT WORKS."

The CLEAR address for the Commeodore 04 1s 42622, and for the
VIC 20 it is H0814, However, as is well known (See The Transaclor
Vol.4 Issue 3 page 26), it no longer works, This is somewhat
puzzling, especially when you look at the disassembled machine
cade on each of the machines and find that they are identical -
except for some address changes which are necessary because the
routines are located in different places on each machine,

Here is the disassembled code on the Conmumodore 64.

01 Sa6b7e 68 clear pla save the 2 bytes most recently
02 $a675 a8 tay pushed onto the stack

03 $a680 68 pla _

04 $abB1 a2 fa ldx *$ta ;place $ta in the stack pointer
05 8a683 Ya lxs

06 Sa6idq 18 pha -restore the two bytes saved
07 $a685 98 tya -above

08 $a686 48 pha

09 $a687 a9 00 Ida #*%00 :do some house cleaning

10 $abBY B Je sta oldtxt + |
11 $a68b 85 10 sta subflg
12 $a68a 60 rts return to the command interpreter

Before [explain how this works, let me recall one important fact
about the 6502 (or 6510) processor, and how it works in conjunc-
tion with the J5SR staternent. Namely, that each time a JSE state-
ment is executed, the processor aulomalically places (wu byles
onto the stack. These two bytes tell the processor where it should
continue executing instructions from when it encounters an RTS
staternent. On executing the RTS statement, these two hytes are

The Transactor

Volume 5, Issue 02

removed from the stack and execution continues from that address
~ actually that address plus one.

Here is how the CLEAR routine works, First it saves the last two
bytes that were pushed anto the stack in the A and Y register (lines
1 to 3). This is necessary because this routine is normally called by
a JSR command in the ‘command interpreter’. These two bytes
therefore tell the processor where to return to. (On a Commodore
64 these two bytes are $AT and $EY so the return address is
$ATEA). Lines 4 to 5 place $FA in the stack pointer, This in effect
clears the stack since this is the value put there by the computer on
power up. Lines 6 to 8 replace the two bytes saved above so that
the RTS in line 12 can return control to the command interpreter,

Since this code is virtually identical on all machines, why doesn't it
work on the Commodore 641 or the VIC 20, Well, the problein
doesn't lie in this routine. Instead it lies in the routine that executes
the "5Y5 command.

An extra feature has been incorporated into the '5YS' command on
the Commodore 64 and the VIC 20, namely the ability to set the A,
X. Y, and status registers before entering the actual machine
language routine. These registers are set by poking values into
locations 780-783 before SYSing to the required routine. In order
to accommodate this extra feature the code that executes the SYS
command must be different. Here's what it looks like on the
Commodore 64.

01 $e12a 20 8a ad jsr frmnum :get address after sys command

(02 $el2d 20 f7 b7 jsr getadr convert it to an integer

03 seld0 a%el Ida *%el :put address Sel47-1

04 $el32 48 pha ;on the stack so rts in

05 %el33a946 Ida *$46 ,user's routine will continue
(06 $e135 48 pha ;execulion at $¢147

07 Se136 ad Of 031da $030f get status register from

08 Sel139 48 pha ‘783 and save on stack

09 Sel3a ad Oc 03 lda $030c¢
10 $el3d ae 0d 03 Idx $030d
11 $e140 ac Oe 03 1dy $030e getl y~register from 782

12 $e143 28 plp el status reg back from stack
13 $el144 6c 14 00 jmp (linnum) ;jump to the user's routine

.get a=register from 780
get x=register from 781

14 $e147 08 php save status register on stack
15 5el48 8d Oc 03 sta $030¢ store a~register in 780
16 $eldb Be Od 03 stx $030d ;store x-register in 781
17 $elde 8¢ Oe 03 sty $030e ;store y-register in 782

18 $e151 68 pla
19 $e152 8d Of 03 sta
20 $e155 60 rts

‘gel slatus register back
store it in 783
‘return to command interpreter

$030f

Notice that the A, X, Y, and status registers are loaded from
locations 780-783 (lines 7 to 12) before the actual machine
language routine is entered (line 13). Alsv nolice that two extra
hytes are pushed onto the stack before entering the M/L routine as
well (lines 3 to 6). These are put onto the stack so that when an RTS
is encountered in the M/L routine, control will return to SE147
where the A, X, Y, and status registers are put back in lncations
780-783 before returning to the command interpreter.

These extra two bytes are the cause of all our problems, For when
the CLEAR routine is called by SYS CLEAR, these two bytes are
saved instead of the two bytes that will return it to the command
interpreter. End result? When the RTS is encountered in the
CLEAR routine, control returns to $E147, and the stack is clear.

Now when the RTS is encountered in $E155 of the SYS routine,
there is no legitimate return address on the stack, so it takes two
meaningless bytes and returns to heaven knows where,

If you understood the above, the solution to the problem is now
quite simple. Instead of SYSing directly to the ROM routine, §YS to
vour own routine where you first remove those two extra bytes
from the stack and then jump to the ROM routine

For the Commodore G4 For the VIC 20

PLA PLA
PLA PLA
JMP? SA6TE IMP $C67E

On the Commodore 64, the following BASIC loader added to the
beginning of Program | will make that program work properly.

10 clear =828 : for k=rclear to clear+ 4 : read j : poke k,j: next k
20 data 104,104,76,126,166

On a VIC 20, replace line 20 with:
20 data 104.104,76,126,198)

Of course you must still include line 225
225 sys clear

Notice that the routine is completely relocatable, so vou can put it
in any (safe) place that you like.

POP For The Commodore 64

The CLEAR routine does its job just fine, However, it may also do
more than you really want. Its purpose is to clear the entire stack -
of RETURN addresses, of FOR ... NEXT loop pointers, and
anything else that may be on the stack. Yet there may be times
when all vou want to do is 'POF’ the last RETURN address off the
stack. The following rouline will do just that on the Commodore
64.

10 pop =828 : for k=pop to pop+ 24 : read j : poke K.} : next K
20 data 104,104,169,255,133,74,32,138,163,154,201,141,240,5
30 data 162,12,76,55,104,104,104,104, 104,104 96

Replace lines 10 and 20 of the program above with these two lines
and replace line 225 with:

225 sys pop

You will see that the program works just as well. This time
however the entire stack is nol cleared, just the last RETURN
address. Also like the normal RETURN statement, any aclive FOR
... NEXT loops within the subroutine will be removed by the POP.
Notice that this routine is also relocatable so it can be placed in any

‘safe’ place.

Velume 5, Issve 02

The Un-Token Twin’s

The purpose of the 'un-token’ twin’s is to supply you with a
unique method to list programs from memory, or from disk.
Normally this task would be considered a rather anti-cli-
matic event, but the programs demonstrate how one can
make use of information already living inside your machine.

Similar programs released in the past have usually kept
their keyword table in a stack of data statements somewhere
within the program. This fact alone has made these pro-
grams quite large in size and fairly painfull to key in. My
program uses the basic ROM table of keywords for its token/
keyword conversion. With this change of direction, a lot of
space has been saved in memory, and a fair bit of time and
trouble trimmed off the keving in procedure. Hopefully, less
code will mean less mistakes,

As a bonus, the link address for the following line is printed
before the line number. If you find this totally useless to you,
simply remove it. . . the link address is held in variable 'C’.

As the program progresses, it does a number things. The
first is to actually get the character to be printed. The value is
checked to see if it is a quote. If so, the program flow will
change direction a tad to avoid any trouble with tokeniza-
tion of capital letters and reverse case characters, If not, the
program will plod ahead to check if the value encountered
was a keyword. If so, 128 is subtracted from the ASCII value,
and an keyword array variable is assigned to it. In this
manner, all of the keywords match up exactly with their
token values.

After this, if the value was not a keyword, but the ‘in quotes’
flag has been set, then the value is OR’d with 64 to get rid of
any strange reverse case characters that might be pretend-
ing to be control characters. Control characters, or pseudo
control characters quite often make a real mess out of the
screen when they are printed. The ‘quick OR with 64" will
reduce the chances of this happening. When all of this has
been performed, the character is finally printed to the
screen, and a test or two is done to keep the flow going,

Notice the line numbers in each version. The disk version
has been written with successive line numbers because it
will probably be alone in memory. The RAM version has
somewhat larger line numbers. Since this program must co-
exist with the program vou wish to un-tokenize, the larger
line numbers were chosen to make room for the other
program. Hopefully it will not have line numbers that will
interfere with ‘un-token memory".

Richard Evers

For now, that is all that is to be said about the ‘un-token
twins'. If vou find further methods in which to make them
even better, please send us a note telling of vour technique.
We are always looking for reader support, and will not
hesitate to print what is sent to us if given the chance.
Whenever you feel creative, please keep us in mind.

10 rem * un-token memory - richard evers

15 rem + will list a basic program in memory

20 rem W e e o e e e e o o s e e e o o e e ol e e e e e

25rem+ 4 0 basicts=45234 :te =45579 : sb = 1025
30 rem + c64 ts=41118:te=41373 : sb=2049
35rem »ts + te = start and end of rom keyword table

40 rem + sb = start of basic
45 rem i o o o e e e o e o s e o e e e e e e e e e o e e e e e

63900 print chr$(147); : clr : t8=45234 : te = 45579
' sbh=1025:ps=sb:rem « 4.0 basic *
set up your variables for your particular machines here

63901 dim kw$H(90) : kw=0:fora=tstote: k=peek(a)
» thearray kw$H{90) will hold all keywords, the loop will
bring them in

63902 if k<128 then kw$(kw) = kwS(kw) + chr$(k) : next
- print chr$(147) : goto63904
« if the value peeked was below 128 ascii, then it is just part
of keyword

63903 k =k~128 : kwS(kw) = kwd(kw) + chrS(k) : print
kwhkw), kw=kw + 1 next: print chr$(147)
« end of token encountered - subtract 128, add to string and
adjust pointers

63904 ¢ =peek(sh) + 256+peek(sh+ 1) : d = peek
(sh+2) + 256+peek(sbh+ 3): fc=0then 63910
+ ‘¢ and 'd’ hold the link address and line* respectively

63905 printc.d; : fore=sb+4 toc-2 : = peek(e)
1% =chr$(f) | if qt then 63907
« print ‘¢ and 'd’, then loop throughout the entire line to
print

63906 if 1> 127 then f$ = kw$(f- 128)

+ if keyword encountered, subtract 128 then assign array
variable ta it

S==Aora Fted

The Transactor

51

VYolume 5, Issuve 02

63907 if gt then f$ = chr$(asc(f$)or64)
* if quote flag set, ‘or’ the value with 64 to get rid of control
characters

63908 print f$; : if f=34 then gt= not gt
* print the string, check if the value was a quote and flip
QT if so

63909 next : print: qt=0:sb=c: goto 63904
+ next the loop, drop a line and re-adjust pointers to
continue on

63910 print : print” program size " sb-ps " bytes" : end
* program complete ! show the size of program and end

10 rem * un—-token disk - richard evers

15 rem * will list most basic programs from disk

20 fem L33 2323 3253 ESEE TS TS

25 rem * 4.0 basic ts =45234 : te =45579 : sb=1025
30 rem * c64 ts=41118 :te=41373 : sbh=2049
35rem * ts + te = start and end of keyword table in rom
40 rem = sb = start of basic

A5 TEIT) # % % % o sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok

50 print chr$(147); : clr : ts=45234 : te =45579
:sb=1025:qgt=0
* this one has been set up for 4.0 basic - re-adjust to suit
your needs

55 dim kw$(90) : kw=0: fora=tsto te : k=peek(a)
* array kw$(90) will hold the basic keywords

60 if k<128then kw$(kw) = kwH(kw) + chr$(k) : next
: goto 70
+ this checks if end of keyword has been encountered

65 k=k-128 : kw$(kw) =kw$(kw) + chrd(k)
- print kwd(kw), : kw =kw + 1 : next
* value is beyond 128 ascii so the end of keyword has come
— act accordingly

70 print chr$(147) + " program file name " ; : input pn$
- if len(pn$)>16 then 70
75 input " drive number " ;d$: if d$3<"0" ord$>"1"
then 75
* routine to get the program name and drive number
- nothing special here

80 print chr$(147); : 0pen5,8,5,"" +d$+ ":" +pn§+ "
* open the file on drive # d$ with file name pn$

85 gosub 140 : ps=asc(a$) : gosub 140
' ps = ps + 256+asc(a$)
* get the low and high bytes of the start address from disk

90 if sb<>ps then print " not a basic program*
. Close 5 : end
* if the address is higher or lower than basic as set, reject
and end

95 gosub 140 : c=asc(a$) : gosub 140
. c=Cc+256=*asc(a$) : if c=0then 150
+ get the low and high bytes of the link address from disk

100 gosub140 : d=asc(a%) : gosub 140
:d=d+256+*asc(a$)
* get the low and high bytes of the line number from disk

105 print c;d;
« print the link address followed by the line number - adjust
to your taste

110 gosub 140 : z=asc(a9) : if gt then 120
* main routine to get the contents of the line - is quote set,
skip ahead

115 if asc(a$)>127 then a$ = kwd(asc(a$)-128)
* obviously out of quotes, is it above 127 ascii 7 - if so, it is
a keyword

120 if gt then a$ =chr$(asc(a$)or64)
* if within quotes, ‘or’ the value with 64 to rid it of control
characters

125 print a$; : if z=34 then gt= not gt
* print the value and flip the quote’s flag if the char was a
quotation mark

130 sb=sb+ 1 :if sb +4<c then 110
* increment the start of basic pointer and go for more is we
haven't hit top

135 print: qt=0:sb=c: goto 95
* drop a line, re-adjust the pointers and continue at the top
again

140 get#5, a$: a$ =Ieft$(a$ + chr$(0),1)
t1f st=0 then return
+ aone line method to get a character from disk and check if
st set

145 close 5 : print : print" program size " sb-ps " bytes "
- end
* close the file, display the size of program and end

The Transactor

Volume 5, Issuve 02

E— [

B e e e e i i e o i e i i e

Merging BASIC Programs

Several Mergig techeigees have been published in the pase, B
Cilen's progeam elinvinates e need for LT ing e prograns (o o
fearier oar ISk fite m ordfer fo prepare o o dlas operalion. - MR

I'm sure mosgt of you have at one ime ar another been faced with
the need to "merge” one or more usetul subroutines inlo a BASIC
program that vou are writing. We all build up a ibrary of routines
over (e vears and lpevitably have W type tie whole routioe i
agnin coch time we wish o use it in a new program. With program
develnpment ime hecoming as expensive as it bas lately, | decided
to write a program which would antamatically "merge™ a program
stored on disk with the one currently held m the computer's
memory = after all, that's what compuless are lor, aren’t they = 1o
take the drudgery out of our lives?

| have supplied hwio merge programs = ane for the B4 and one for
the professional range of Commodore computers (the 4000 and
SIHH) series). To simplify the entry of the merge programs, | have
coded the machine-code pard al the programs in UALTA statements
which are simply "POKEd" into memory by the BASIC section of
the program.

The machine=code merge program resides near the {op of mem-
ory, As the CUM operating svstem also uses this area to store
variables, we will have o protect Lhe merde proatam 1N soame way
Here, the ever-lnendly Commuodore operating systeém comes (o
our ald. By simply changing the value of 2 locations in memaory,
we ran lower the top of momory pointers by howover much we
ke The UBM will then regard the address specified in thess
iocations as the new Top of Memory and ignore any memory
above that address, thus protecting the machine-code merge
progran:. Looking al tee Comunodore 64 program befuw, the bwo
locations are 35 and 6. Location 36 holds the HI-byte addrese of
the top of memary and location 55 haolds the LO-byte. Dan't
waorry, this is nt as complicared as irs sounds By multiplving the
peek’ of location 56 [Hi=bwvte) by 256 and ADDING o it the value
i location 53 (LO-byie), we arrive al the memory localion thal is
the TOP OF MEMORY

Now, fvery time we reduee the value in laeation 86 by ONE, we
lower the top of memory by 250 byles {remember - 56 holds the
Hl=bwyte value), We'll forget about changing location 55 bor the time
Deng - sulfice o say that, by reducing value in 50 by UNLE, the lop
of mwemmory will be lowerad by 1 bvle,

NOTE: THE ACTUAL MEMORY LOCATION SPECIFIED BY
THE ADDRESS IN 55 1S ALSO PROTECTED,

The state ment lowering the Top of Memory pointers should always
o Lhe FIRST slatenmend o vous progrdin and e lwe pokes (st
ne followed by a CLR' command a5 this instrucis the operating
system to bring other memary pointers inle line with the Top of
'l.'h-'nnrj.: [HInrerS

Glen Pearce
Randburg, South Africa

Anyway, hack 1o the merge program. While the machine-code
program in the DATA staternents s bewng POKLED inko memory, &
running iotal of the values being POKEd is kept. Should the total
value of the DATA statements NOT egual tiat o e 140, (he
program will be aboried with the message '"CHECKSUM ERREOR
meaning that you keved in one (or mare) of the dar stitements
inorrectly. i all gones well, a message on how to use the merge
program will be displaved and the BASIC program will be erased
bv the "NEW command in line 170 (30 ensure vou've SAVE (he
program away Delore roooing U The mschine-code e rge
program will remsain avadlable for use until power-down or the wop
of memory pointers are changed.

1o merge two programs together proceed as follows:-
ap LOALY and KUN the Merge program lisled below,

b} LOAD the fikst BASIC program into memary (e the oormal
MAnNTer

¢) Type 5Y5 32000, and press the RETURN key;

d) Tvpe Y
LOADED?

in response 10 the promp IS IS8T PROGREAM

e} [ype in the hlename of the prodgram you wash to merge with the
Ist one vou loaded and press RETURN, 1T yvoudre using & Dual
disk drive, you should specify the drive number on which the
program resides as well (ew, LHPRONAME X

1 The merge will then he performed

I all goees well, the messagge "MERUOLE UK will appear on the screen
once e mweree s completed] and the complete merged prossran
will now reside in the computer's memoery (whereupon vou may
merge further programs into it if vou wish by simply repeating the
st fenmm (B theagh (d) above)

It an ervar 15 detected (eg: file not tound, Head error, otc) the
mressage ‘MERGE ABORTED will be printed on the scieen,

NOTE: An impofant point to remember 5 that any line numbers
which are duplicared In the two programs heing merged will ranse
the Ene in the SECOND program to overwrite the line in the FIRST
Prodram,

A uselul Tealure of e merge prograin is s abiify Wwonense
programs writen on different models of Commadore computer
(this 15 normally impessible as BASIKC programs are saved bam
dittere nr addresses on the differs ne modelss

4 —

I ke

L O A R G G L L N N .

S S O . A 3.

[ErET TR e TT PR R R PR R e

A N b - Fu Bray DR o e

q
B T R e L] g

The Transadlor

Volome 5, lsyvwe 072

100 rem merge 4.0 100 rem merge c64
110 poke 63, 125 poke 52, 0 : clr 110 poke 66, 125 : poke 55, 0 : cir
120 for | = 32000 to 32476 : read x 120 far j=32000 ta 32467 ' read x
130 poke |, x : ch=ch + x : next 130 poke |, x - ch=ch 4 x ; next
140 if ch <> 51230 then print " checksum error" : end 140 if ch <> 51230 then prnint " checksum error" : end
150 print "merge basic programs - basic 4.0 150 print " merge basic programs - commodore 64
160 print "load the firsl program into ram 160 print " Joad the first program into ram
170 print " lype sys 32000 and follow instructions 170 print " type sys 32000 and follow instructions
175 new rem caution - save before running 175 new :rem caution save before running
180 data 169, 0, 133, 209, 169, 147, 32,210 180 dala 169, 0, 133, 183, 169, 147, 32, 210
190 data 255, 162, 0, 32, 79,126, 32,228 190 data 285, 162, 0, 32, 79,126, 32, 228
200 data 255, 201, 89, 240, 7,201, 78,208 200 data 255, 201, 89, 240, 7,201, 78.208
210 data 245, 76, 255, 1/9,162, 73, 32, 79 210 data 245, 76 134, 227,162, 73, 32. 79
220 data 126, 32, 207, 255, 201, 20,240, 18 220 data 126, 32, 207, 255, 201, 20, 240, 18
230 data 201, 13,240, 14,166, 209, 224, 16 230 data 201, 13,240, 14, 166, 183,224, 16
240 data 240, 231, 157, 131, 2,232, 134, 209 240 data 240, 231, 157, 60, 3,232,134, 183
250 data 208, 231, 166, 209, 240, 219, 169, 44 2oU data 208, 231, 166, 183, 240, 219, 169, 44
260 dala 1567, 131, 2,232, 169, 80, 157. 131 260 data 157, 60, 3,232, 169, 80,187, B0
270data 2,232, 134,209, 169, 13, 32,210 270data 3,232,134, 183, 169, 13, 32 210
280 data 255, 169, 13, 133, 210, 133, 211, 169 280 data 255, 169, 13, 133, 184, 133, 185 169
290 data 8,133, 212,169, 2,133, 219, 169 290 data 8,133,186, 169, 3, 133, 188, 169
300 data 131, 133, 218, 32, 99, 245,162, 13 300 data 60, 133, 187, 32,192,255, 162, 13
J10data 32,175,247, 32, 57,126, 32, 57 310 data 32,198, 2bb, 32, 57,126, 32, 57
320 data 126, 32, 228, 255, 208, 24, 32, 228 320 data 126, 32, 228, 255, 208, 24, 32,228
330 data 255, 208, 22,162, 103, 32, 79, 126 330 data 255, 208, 22, 162, 94, 32, 79 176
340 data 169, 13, 32,226, 242, 32, 204, 255 340 data 169, 13, 32,195, 255, 32, 204, 255
350 data 32, 233, 181, 76,255,179, 32, 57 350 data 32, 89, 166, 76, 134, 227, 32, 57
360 data 126, 32, 57,126,133, 17, 32, 57 360 dala 126, 32, 57, 126, 133, 20, 32, 57
370data 126, 133, 18 160, 0, 32, 57,126 370 data 126, 133, 21,160, 0, 32, 57.126
380 data 153, 0, 2,240, 3, 200,208, 245 380 data 163. 0, 2,240, 3,200, 208, 245
390 data 200, 152, 24,105, 4,133, 5 32 390 data 200, 152, 24, 105,- 4,133, 11, 32
400 data 163, 181,144, 68,160, 1,177, 92 400 data 19 166, 144, 68,160, 1,177, 95
410data 133, 32,165, 42,133, 31,165, 93 410 data 133, 35, 165, 45 133, 34, 165, 96
420 data 133, 34, 165, 92.136. 241, 92, 24 420 data 133, 37,165, 95,136,241, 95, 24
430 dala 101, 42,133, 42, 133, 33,165, 43 430 data 101, 45,133, 45,133, 36, 165, 46
440 data 1056, 255, 133, 43,229, 93,170, 56 440 data 105, 255, 133, 46, 229, 96,170, 56
450 data 165, 92,2729, 42 168 176, 3, 232 150 data 165, 95,229, 45 168,176, 3,232
460 data 108, 34, 24 101, 31,144, 3,198 460 data 198, 37, 24, 101, 34,144, 3,198
470 data 32, 24 177, 31,145, 33, 200, 208 470 data 35 24 177, 34,145, 36, 200, 208
480 data 249, 230, 32, 230, 34,202, 208, 242 480 data 249, 230, 35, 230, 37,202, 208, 242
490 data 32, 255, 181, 32,182, 180, 24, 165 490 data 32, 99,166, 32, 51,165, 24,165
o00 data 42,133, 87,101, 5,6 133. 85, 164 500 data 45,133, 90,101, 11,133, 88, 164
010 data 43,132, 88,144, 1,200 132, 86 S10 data 46,132, 91,144, 1,200, 132. 89
020 data 32, 80,179, 165, 17, 164, 18, 141 220 data 32, 184, 163, 165, 20, 164, 21 141
030 dala 254, 1,140,285, 1,165, 46, 164 030 data 254, 1,140,255, 1,165, 49 164
540 data 47,133, 42,132, 43,164, 5, 136 940 dala 50, 133, 45,132, 46,164, 11,136
560 data 185, 262, 1,145, 92,136, 16, 248 9580 data 1858, 252, 1,145, 95 136, 16, 248
560 data 32,255, 181, 32,182,180, 76,113 560 data 32, 99 166, 32, 51,165, 76,113
570 data 125, 32, 228, 255, 166, 150, 240. 13 570 data 125, 32, 228, 255, 166, 144, 240, 13
S80 data 32, 204, 255,162, 114, 32, 79,126 580 data 32, 204, 255, 162, 105, 32, 79, 126
oYU data 104,104, 76, 128, 125, 170, 96, 189 290 data 104, 104, 76, 128, 125,170, 96, 189
GO0 data 91,126, 240, 6. 32, 210, 255, 23?2 bOU data 91,126,240, 6, 32,210, 255, 232
610 data 208, 245, 96, 13. 13, 18, 71, 65 610 data 208, 245, 96, 13, 13, 18, 71, &5
620 data 80, 32, 80, 82. 79, 71. 82 &5 G20data 80, 32, 80. 82, 79, 71, 82 65
630data 77, 32, 77, 69, 82 71, 69, 32 630 dala 77. 32, 77, 69, 82, 71, 69, 32
640 data 45, 32, 71, 65, 32, BU, 69, 65 640 data 45, 32, 71, 65, 32, 80, 6Y, 65
650 data 82, 67, €69, 32, 45 32, 58, 51 650 data 82, 67, 69, 32, 45 32, 56, 51
660 data 48, 53, 50, 50,146, 13, 13, 73 660 data 48, 53, 50, 50,146, 13, 13, 73
670 data B3, 32, 49, 83, 84, 32, 80, 82 670 aata 83, 32, 49, 83, B4, 32, 80, B2
6B0data 79, 71, 82. 65 77, 32, 76, 79 680 data 79, /1, B2, 65 77, 32, 76, 79
680 data ©5, 68, 69, 68, 63 32, 40, 89 G900 data 65, 68, 69, 68, 63, 32, 40, 89
700 data 47, 78, 41, 0, 13, 13. 68 a2 fO0data 47, 78, 41, 0, 13, 13, A0, 78
710data 73, 86, 69, 35 32, 38 32 50 /10 data 68, 32, 80, 82, 79, 71, 82, 65
/20data 78, 68, 32, 80, 82, 79, 71, H2 720 dala 77, 32, 78 65 77. 69, B3, a2
730data 65, 77, 32, 78, 65, 7/, GY, 63 730data 0, 13, 13, 77. B89, 82, 71, 69
740 data 32, 0, 13, 13, 7/, 69, B2, 71 f40data 32, 79 75, 0, 13, 13, 77. 69
780 data 69, 32, 79, /5, 0, 13, 13, 77 760 data 82, 71, €9, 32, 65, 66, 79, 82
feDdata ©9, 82, 71, 69, 32, 65 66, 79 760 data 84, 69, ©8, 0O
//0data 82, 84, 69, 68, 0

| The Transactor 54 Volume 5, issve 02

An Introduction To Tools & Techniques Phil Honsinger

For Machine Language Programming

The special lure of writing machine language programs or
subroutines is the fantastic speed that can be attained in

program execution.

We can do things with machine language programs that
sometimes just cannot be done in BASIC. For example, |
have a digital music synthesizer keyboard hooked up to my
64 through the user port. | am using it for real-time playing
of music, but for the system to react fast enough to my
playing on the keyboard, | had to use machine language.
The BASIC prototype program would miss too many notes if
| played too fast.

Writing in machine language brings with it new problems of
program design and testing. Since we are operating at 2
much more detailed level, we must make sure that we dot
our I's and cross our T's (so to speak) or the programs just
simply will not work. When there is a bug (a mistake) in a
machine language program, it can sometimes be VERY
difficult to find and correct, and the frustration of seeing
dawn appear, and your program STILL not working right, is
unbelievable.

Fear not, oh brave souls! There are many tools and tech-
niques that can be borrowed from the professional program-
mer's arsenal of tricks that will help us write code that is
more accurate from the start, and that will help us to find
and correct our bugs much faster. As a professional pro-
grammer, | have many tricks-of-the-trade. Here are some
that we can use at home:

® reference manuals

* an ASSEMBLER program

* 3 MONITOR program

¢ structured programming and testing techniques
® other programs and programmers

Kitchener, Ont.

Reference Manuals

The 64 uses a 6510 micro-processor chip that is functionally
equivalent to the 6502 chip, and there are lots of books on
the market for 6502 programming in machine language. If
you are an accomplished programmer and have worked
with machine language hefore, the books for you are the
more clinical ‘this is how each instruction works' type of
hook. If you are just starting out, then some of the hooks are
designed as a teaching tool that will step you through the
language and its syntax, with plenty of examples. You could
even steal programs from the books for (dare | mention it)
the APPLE. (6502 chip again). The APPLE programs would
have to have addresses, ete. converted to 64'ese, and this
area is where a good reference book will be priceless. If you
can get the TRANSACTOR's special reference issue (Vol. 4,
Issue 015) - everything you wanted to know, including a list
of Commaodore related programming books.

An ASSEMBLER

An ASSEMBLER is actually another program that allows you
to develop the machine language programs in the symbolic
assembler language. The assembler will then translate the
symbolic program into the executable machine language
code that the 6510 chip understands. This abstractness is
what makes the assembler so valuable. You deal in the
higher level syntax, and this means the programs will be
easier to develop (and understand) and this translates into
faster program development.

[have been using the PROGRAMMER's TOOLBOX {rom
PRO-LINE software. Among other things, thus sollware
package has a very good assembler called PAL. After this
introduction I will go into more detail on Assemblers, or
more specifically, The Two-Pass Assembler.

The Transactor

Yolume §, Issue 02

A MONITOR Program

A MONITOR is another program that you will use for testing
vour machine language programs. It allows you to interrupt
the execution of the machine language program at any point
and examine the 6510s registers, check memory locations
lor proper resulls, and even manipulate data for the express

purposes ol lesting vour applicalion program. | have been
using Jim Bullerlield’s SUPERMON.

Structured Programming and Testing Techniques

This is a very big lopic among dala processing managers.
Programmers who use these lechniques will develop pro-
grams fasler and more accurately than those who don't,

Whalt 1s this mysterious subject, vou ask? Well, simply put, il
Is a way of thinking. You design your programs so Lhal the
more general logic can be written and tested [unclionally
before you get deeper and deeper into the dark details of the
important processing. You can code and lest file opening,
memory location initialization, or even a cursor positioning
routine as units that are somewhat “sland-alone”. Once you
are satisfied that these units are working correctly on their
own, then they can be incorporated into the larger program,
and forgollen aboul until changes are required in Lhese
functional areas. You could then re-lest the unit wilth the
changes on its own, and/or back in the main program.

There are, of course, performance trade-ofls to this kind of
programming. Subroutine calls require processing overhead
by the micro-processor, and you have to decide if the design
is approprate to the application. A real-time, high speed
game would need as little code as possible 10 keep Lhe
program reaction time to data changes as fast as required.

Other Programmers and Programs

Steal as much knowledge and experience as you can. Join
computer clubs, read books and mags (like The Transactor),
and experiment,

Above all don't forget to "SAVE OFTEN", and have fun,

The Two-Pass Assembler

Working directly with machine language code 1s a very
demanding and arduous task. All vou have to work with is
hexadecimal numbers. To assist the programmer in generat-

ing machine language programs, special programs called
ASSEMBLERS have been written,

An assembler is a program that accepts mnemonics and
parameters as input, and generates as output the machine
code program that the mnemonics represent.

The input coding is called the SOURCE code. It is the input
data to the assembler.

The output generated by the assembler is called the ORIECT
code. This i1s the machine language code that will actually be
execuled at some later time. It is the actual machine lan-
guage program that the source code symbolically repre-
sents. There may also be additional output from the
assembler when it generates the object code, such as some-

thing called a SYMBOL TABLE.

Su as not to contradict its own purpose, the assembler is
usudlly another machine language program. Usually an
assembler will have been coded in it's own source code
format, so we can use one version of the assembler to
produce the next version (enhancements).

It i1s interesting to learn how an assembler actually generates
the object code from the source code, and that's the topic of
this part of the article. 1 will describe, in general terms,
something called a Two-Pass Assembler.

A Two-Pass Assembler does exactly that. . . two passes of
the source code. The first pass is used to build something
called the symbol table. The second pass uses the source
code and the symbol table generated in the first pass to
produce the [inal resull. . . your object code.

The object code can be stored in many ways: directly in
memory (at the location that YOU tell it to); as a file on a disk
drive 1o be loaded in memory and executed later; or even
just to the printer for checking. The last option would be
used when you are in the design stage of a project . . . like
LISTing a BASIC program to your printer that you haven’t
aclually RUN vel.

Now lor a quick descripion of what is contained in the
source code, ., .

OPCODES and OPERANDS (LDA #300, for example)
(also called MNEMONICS and

PARAMETERS)

LABELS (lo symbolically represent an
address or the location of an
mstruction)

COMMENTS (same as in BASIC)

And special statements lor the assembler run

The Transactor

Yolume 5, Issue 02

The SYMBOL and INSTRUCTION TABLES are really the key
to the assembler’s success, The SYMBOL TABLE is built
from the source code and the INSTRUCTION TABLE. The
first pass decodes each stalement, and based on the known
length of the machine language instructions being gener-
ated, creates entries in the symbol table with the symbol's
name, and its calculated address where it will appear in the
object code, The second pass of the source code by the
assembler takes any references to symbols (as a label, or in
the parameters) and inserts the corresponding value into the
actual object code generated.

Symbol tables can be printed after the assembly has been
done, and are very useful in debugging a program, which
can be done from the source code, or from the object code
using a monitor (another special purpose program),

Here's a simple example:

100 .0PT P,OO
110 *=3%C000
120 START
130 LDA #00
140 STA POINTER
I50RTS .

160 POINTER =
170 .END

*

$00FB

This would produce a symbol table with 2 entries:

START
POINTER

$C000
$00FB

and would produce the object code as a string of 1's and 0's,
which in hex notation would be:

B50095FB60
Related to addresses, it looks like :

$C000 B500 (LDA #00)
$C002 95FB (STA $00FB)
$C004 60 (RTS)

Running the program would load hex zero into location
$00FB and do a subroutine return.

The object code would be inserted directly into memory
starting at location $C000. The .OPT P,OO is a special
control statement that does not get translated into the object

code. Ditto with START = +, POINTER = $00FB, and the
statements starting with ; (comments only).

Pass one would have generated the SYMBOL TABLE, You
would not normally see anything happening at this time,
Pass two would display a listing of the assembled code, and
the object code,

The listing (or display on the screen) usually contains the
object code address for each of the source code statements,
along with the source code printed right beside its object
code values,

Each assembler will have different control statements and
assembly options, but they will usually all conform to the
same standards for the format of the actual source code

statements. At some point, you can optionally print the
SYMBOL TABLE.

When we are developing programs we will be working with
the source code and testing the object code, but after
development is completed only the object code is used. You
will, of course, keep the source code on file (a diskette,
maybe) so that future changes can be made to the program
just as easily as you created it in the first place.

The object code can be optionally stored on disk, and to run
this machine language program, you would load it, like any
BASIC program, and execute it. The only difference is
instead of 'RUN’ you would enter the '5YS" command fol-
lowed by the program start address in decimal:

SYS 828

.. . tells the computer to begin executing a machine code
program that starts at location 828 decimal. Some Assem-
blers have the facility to combine BASIC and ASSEMBLER
programs in the same source code file. Very handy! The SYS
command could be included with the object code so that
‘RUN" would execute the 5YS' which would execute the
machine code.

| hope this somewhat general article has helped you to
understand how an assembler works. If you are interested in
doing machine language programming, then buy an Assem-
bler, . . you won't be sorry!!

r The Transactor

37

Volume 5, issue 02

e L]

Your BASIC Monitor

This first of 3 parts describes a monitor program, written in
BASIC, that performs most of the functions of a machine
language monitor such as TINYMON. The second part will
implement a disassembler, and the third an assembler. The
programs are written for the Commodore 64. Modifications
for the VIC-20 are given. Changes for other computers
should be relatively minor as odd programming structures
are documented.

Why A Monitor In BASIC?

Many of the students | teach have problems with the
concepts of a low level language. What's a low level lan-
guage you ask? BASIC is considered a ‘high level language
because it is very close to ordinary English. Words like
PRINT, TAB, FOR, NEXT are nice, simple, easy to under-
stand words. Most high level languages (COBOL, LOGO,
FORTRAN) share this property. Some, like APL, don’t, A
high level language does a lot of things for you automati-
cally. PRINT "HITHERE " has the computer figure out what
the word PRINT means, what the quotes mean, set up a loop
and print the characters in order in the next locations on the
screen.

Low level languages (usually referred to as machine lan-
guage (ML) or assembler) bear little resemblance to any
living language. If we work with numbers (A9, FF, 4C), in
base 16 (hexadecimal) we call that machine language or ML.
If we use ‘assembler’ then we get to work with neat words
like LDA, STA, DEC, ROL, ROR which are called mnemon-
ics (noo-mon=iks (Greek for memory aid)).A program that
lets us write machine language in mnemonics is also called
an assembler.

I also find there are problems with the concepts and use of
PEEK and POKE. String handling is not much fun either.
The capper on all this is a monitor written in machine
language. There are monitor programs available for most
computers but the average student has an aversion to them,
This is a program they can't see (because it isn't written in a
language they can read, let alone see), don’t understand and
which crashes for almost no reason at all. The BASIC
Monitor was written to try to solve some of these problems.

Bob Drake
Brantford, Ont.

The program makes heavy use of some simple string tech-
niques and peeks and pokes. A little simple disk and tape
filing is thrown in for good luck and completeness.

The program has several commands which correspond to
the commands as implemented on most monitors for Com-
modore computers. All are accessed by single key presses.
The menu display is one | have used before to keep the
program commands on the screen. Pressing or holding
‘RETURN' will erase the screen and bring back the menu.

Displaying Memory

Pressing ‘M’ for ‘Memory' displays the contents of the
computer's RAM. This is a first look at the inside of a
program and machine language. | usually start teaching this
with something like:

for i= 2048 to 3000 : print peek(i), : next i

and we get a list of numbers. We're ‘peeking’ or looking into
those memory locations to see what's there. My favorite
spots to look begin (on the C64) at 1024 for the screen, 2048
for BASIC, and 58543 for the power up message. We also
type a lot entering that line again and again and again
and. . . so it makes sense to create a small program:

10 input " from ™ ;f
20input "to "t
30 fori=ftot
40 print peek(i),
50 next i

and to clean up the presentation

10 input " from " :f

20 input"to "t
J0fori = ftotstep &
35fors =0to7

40 print peck(i + s);
45 next s

46 print

50 next i

The Transactor

Valume 5, issue 02

Now we get a more or less ‘normal’ display. Not a terribly
neat display since the numbers may be one, two or three
digits long, but normal’. Normal means this is what you
usually get with a Commodore monitor program, eight bytes
or characters.

| also like to show my students what those numbers mean.
So we add a line like:

44 print chr$(peek(i + s));
and better to control the printout,
44 print chr$(34) chr$(peek(i + s)) chr$(34);

CHR$(34) is the quote (") and keeps the display under
control when vou hit a clear screen command or some other
screen command.

If you've followed me to here and tried this out vou probably
have one awful screen display. Nasty things happen too.
Colours change; the screen clears; you get up and down
cursor movements. All sorts of horrible things happen. I've
even broken into the ML monitor on my PET doing this.
VERY nasty.

HEXADECIMAL

Let's clean up that display. First, we'll fix the numbers. As
humans, we use decimal arithmetic, That means we count
from 0 to 9 and then start reusing those symbols to form 10,
11 and s0 on. Probably we use decimal because we have ten
fingers. Most microcomputers use hexadecimal arithmetic
They count from 0 to 15. (I don’t know what that says about
the number of fingers they have.) Now counting from 1 to 10
is easy. How the heck do we count from 0 to 15?7 You may
think all you do is count from () to 15 (I mean didn’t [just do
that?) but the rules of numbering say you can only have one
symbol for each number in the base set. For example zero is
(), oneis 1 and so on but 10 requires a zero and a one. We're
fine till we hit 10 through 15 and then we start rensing our
symbols. Well, to count rom 0 to 15 we need 16 symbols.
Zero through 9 are already okay. Now we only need 6 more.
The symbols usually used are A, B,C, D, E, and F. Ais 10, B
i5s 11 and so on. Fis 15.

The method of converting a number from 17 to 255 from

decimal to hex is simple. Divide by 16. The quotient is the
first digit, the remainder is the second. So. . . 163 becomes:

163/16 = 10 = $A

with a remainder of 3.

Thus 163 = $A3. Usually a dollar sign is written in front of
hex numbers. So 163 = $A3. Sometimes you will see hex
numbers written with an H preceding. So 163 = $A3 -
hA3. To do the conversion from decimal to hex on the
computer, | use a little subroutine.

110 h$ = "0123456789%abcdef "

111 by% = by/16 :rem quotient without decimal
112r = by - by%+16 :rem remainder

113 £$ = mid$(h$,by% + 1,1) :rem first hex digit

114 s =mid$(h$,r+1,1) :rem second digit

115 by$ ={$ + s$:rem 2 digit hex number

Lines 111 to 115 can be condensed to:

7020 by$ = mid$(h$,by/ 16+ 1,1)
+mid$(h$,by-inttby/16)*16+ 1,1)

H$ contains all the symbols for hex. The correct first digit is
found with the MIDS$(H$, BY % + 1,1). BY% includes an INT
function to get rid of the decimal after dividing. You need the
+ 1 because hex numbers start at zero and H$ doesn't have
a zeroeth character but does have a first character, We get
the second character the same way using the remainder,

These subroutines can be called directly from the monitor
by pressing C for Calculator. Enter a number and it is
converted to hex. If the number starts with either $ or h,
then the hex value it represents is converted to decimal.

Memory Display. . . Again

To fix up the string display, we have to remember that
certain peeked numbers will cause trouble. They are:

13 = $0D is a carriage return
20 = $14 is the delete character
34 = $22 is a quote
141 = $8D is a shifted carriage return

You can take care of the peeked values like this.

H50t8=""

160 fors = 0to 7

1170 by =peek(m + §)

1210 if by =13 or by = 20 or by =34 or by = 141 then by =32
: rem convert to Spaces

1220 18 =t$ + chr$(by)

1230 next s

1240 print q$ t$ q$: rem q$ is a quote

TS is a string of eight characters we build out of the peeks. It
is “nulled” or emptied in line 1150. BY is the value pecked.

The Transactor

Volume 3, lssve 02

Notice that 1210 changes the illegal characters to spaces and
1220 appends it to T$. Line 1240 prints the string between
quotes so that all the characters of T$ print.

Registers

The registers are memory locations in the CPU or central
processing unit that the computer uses for addition, count-
ing, and transferring data. They are referred to on the 6500
series of chips as the accumulator (AC), the x register (XR),
the y register (YR) and the status register (SR). Commodore
makes it easy to ook at these in the C64 and VIC 20. Copies
of their values are stored in locations 780 to 783. Just peek
them, convert to hexadecimal and print.

Poking Memory

Poking memory is sort of a first step to writing machine
language. Poking is the reverse of peeking. Instead of
looking at a spot in RAM and seeing what numbers are
there, you decide what numbers you want put into RAM and
poke puts them there. Those numbers can represent in-
structions (like PRINT, only simpler) or data (like "Hi
THERE "). At this level of the program you have to know the
numbers and what each does. You could for example say:

Put a 5 into the accumulator3A9 05 (169 5)
Add 2 $69 02 (105 2)
Stop - return to BASIC $60 (96)

To do this poke 169,5,105,2,96 into 5 memory locations and
then run that program. The BASIC Monitor allows you to
poke the values in hex, the way they are normally listed and
run the program from the monitor. Just press P for POKE,
pick a spol o pul your program ($33C is prelly good) and
enter bytes $AY 05 69 02 60 as your program and fill the rest
of the line with 00 (stop). You can run the program by
pressing G for GO,

Within the program, we can re-use our memeory display lo
see what 1s already in memory. When we poke values we
need them in decimal. The references you find for machine
language are in hex. We musl convert hex to decimal. All we
do is take the [irst digit, multiply by 16 and add the second
digit. This subroutine is a little fancier than that. [t accepts
hex numbers 1, 2, 3, or 4 digits long. To make it work, | force
the hex number to be 4 digits long by adding "0000"
(leading zeros) then taking the four right hand characters.
Line 7440 looks at the number the computer assigns to the
first letter of the hex number. Line 7450 is the fancy line. It
converts this ASCIl value to a number from 0 to 15 and
multiplies by the appropnate power of 16. The
+7#((m1>64))is zero if m1 >04 1s false (1.e. m| represents a

number 0 to 9) and minus one if m1 represents a letter (A to
F).

7410 m$ =right$(" 0000 " + m$,4)

7420 m=()

7430 fori=1t04

7440 m1 = asc{mid$(m$s,i,1))

7450 m=m + (m1-48 + 7+((m1>64)))* 1 64{4-i)
7460 next i

7470 return

SAVING And LOADING

The subroutines at 4000 and 4500 save a range of peeked
values as a tape or disk file. Disk errors are checked in lines
48004870,

GO

RUNning a machine language program from BASIC is easy.
Just type SYS (the same way you would type RUN) and the
dddress (location in memory) where your machine language
program starts. SYS is the ML equivalent of RUN, except
RUN will start with the first line of BASIC unless you specify
another (eg. RUN 100) - SYS will not default to an arbitrary
location, it must have an address specified. That's all the
subroutine at line 5000 does.

PRINTER

| wanted printer dumps of the memory peeks and registers.
The subroutine at 6000 and the PRINT#PR, in the routine at
line 1000 accomplish this in a simple manner. It's not
terribly fast, but it works easily.

That's pretty well it. You might try running this little pro-
gram as well as the one given above. By the way, be sure Lo
check the registers in the one above to make sure you get
seven. Starling at $33C, poke values of 20 44 ES 60. You
should clear Lthe screen on your C64. (Use 20 5F ES 60 on
your VIC 20). Press RETURN (o gel back o the menu.

The program listing lollows. The command menu shows
selections that aren't available yvel. Don't let that throw you.
In the next part of this article, we'll add the Disassembler
and after that the Assembler. Use the line numbers as
shown. If you don't, the additions and changes (o come
won't fall into place. See you then!

The Transactor

Volume 5, Issue 02

100 rem basic monitors copyright 1884 «» r.drakes
free to copy-not to sell

101 rem = lhus program listing includes both the
commaodore 64 and vie 20

102 rem + versions of the basic monitor program

103 rem + the overall program is that for the c64,

104 rem » changes for the vic are carefully notated within
the listing.

105 rem o enter the ¢B84 version, just type in the lisling ignoring

106 rem * lines referenced by vic+

107 rem = 10 enter the vic version, enter the replacement
lines as noted.

108 rem « ine numbers on the first lines of changes
are important,

109 rem = second lines are not. do not enter lines 101-109

110 h$ = "0123456789abcdet

120 qf = chr$(34) : cr§ =chr$(13)

130 open 1,3 : rem screen

140 open 2,4 : rem printer

150 p=1 rem pnnter oft

160 prmt

170 ii “ 'h

180 print

data’
181 rem vicsreplace 170

with 182,183

182 prin 142) * mhﬂm
Ir";

oo B0 BB

190 for i=1 to 40 :rem vicsuse 22 for 40

200 print™ " ", :rem shift—»

210 next |

22018 = "xmrpslg*c”

230 r=len(r$)

240 get a$

2501 a$ = "[@” or a$ = cr$ then goto 160

260 1f ad = mid$(r$.r, 1) then goto 300

270r=r-1

280 if r =0 then goto 230

290 ygolo 260

300 if r<>1 then 360

310 close 1

320 close 2

330 print " [fend "

340 end

350 on r gosub 0,1000,2000,3000,4000,
4140,5000,6000,7500

360 1l=0

370 goto 230

1000 rem memory

1010 print " g@display memory "

1020 print " hold Eshilisl o pause: flrelurr

1021 rem vicreplace line 1020 with line 102

1022 print " hold fgshifiigl to pause etur

1030 gosub 4280

1040 ft< ~fthent=f+7

1050 it +<0 or 1<0 or 65535 or 1265535 then 1260

1060 torm=ftotstep B

1070forpr=1tlop

1080 n=m

1080 gosub 7030:rem convert to hex

1100 print#pr, by ™",

o slop”

to stop”

1110t =~

1120fors = 0107

1130 by = peek{m + 8)

1140 gosub 7000:rem 2 digit hex

1150 print#pr, by$ ™ "

1151 rem vic=replace 1150 wi

1152 if s/2 = ml:{aFQ)ll) ;;.}rirﬂ '

1183 print#pr, by$; "

1160 ifby=13arby= 141 or by = 20 or by = 34 then by =32

1170 1§ = 1§ + chr(by)

1M71ifs<>7 thentd=t5+ °

1180 next s

1190 print#pr, g 13 g¥.rem vicsprint#pr,”
spaces

1200 next pr

1210 if peek(653) then 1210 rem look for shift key

1220 get a§ :if ab<>cr$ then 1250 ;rem look for return key

1230 m =t

1240 goto 1250

1250 next m

1255 il m>tthen get a% : if a%< " " then 1255

1260 return

2000 rem reqgisters

2010 print " flldisplay registers '

2020torpr=1top

2030form=0103

2040 by = peek(m 1 780): rem not available on pet

1152,1153
"l pr=2 then printipr, "

"rem vic=add this line

"gf 1 g% rem 4

2050 gosub 7000

2060 print#prmid$(" ac:xryr:sr: " m+3 + 1,3)by$,
2070 nextm

2080 print#pr

2090 next pr

2100 relurn

3000 rem poke memaory
3010 print” ke memory "
3020 |=0

3030 print

3040 input " from " ;m3

3050 gosub 7120

3060 f=m

J070t=1+7

3080 print

3090 gosub 1060

3100 for k = 7

3110 input " bytle " m$ m vic*use 3 up cursors
3120 printtab(S + k+2 + k), "§@" m$;” ﬁ
3121 rem vic+replace 3120 wath 3122 31 2:3
3122 it ki2<>int(k/2then print *

3123 print tab(5 + k=2);m$;

3130 print :rem vic=print chr$(13);

3140 gosub 7120

3150 poke f+ k.m

3160 next k

3170 input "more y|3 lefts] " :a%

3180 if a$<>"y" then return

3190t=1+8

3200 print”

3210 golo 3

4000 rem save

4010 print 'Eav&'

4020s% = "w"

4030 gosub 4280 : it t=~1 then goto 4130
4040 gosub 4380 . if i3 = " " then golu 4130

The Transactor

4050 open3.dv.2.113

4060 gosub 4460

4070 print#3 f.or$ t.or$:

4080 fori=f1ot

4090 print#3, peek(l) cr$:;

4100 next |

4110 fl=1

4120 gosub 4460

4130 return

4140 rem load

4150 print "'mad "

4160s5="r

4170 gosub 4380

4180 opend.dv.2.i%

4190 gosub 4460

4200 input#3.f 1

4210 fori=ftot

4220 input#d a

4230 poke 1,.a

4240 nexl |

4250 fl =1

4260 gosub 4460

4270 return

4280 rem from-10

4290 input "tfrom " ;m$

4300 gosub 7120

4310 f=m

4320 print " g |

4330 input"to":m$

4340 gosub 7120

4350t=m

4360 if <0 gr 1<0 or 1765535 or 165535 then
print " f@values out of range " f= -1

4370 return

4380 rem file name & device

4390 dv="": input” pe or liclflsk " ovs

44001 = "" dv=1-7+(cdvd="d ") tdvi="" then 4420

4410 input " file name " [i

4420if fig="" then print "aborted " : return

4430 if len(fi§)>16 then fi$ = left$(fi$, 16)

4440 ifdv=8thenfi$="0" +fi%+ "5 +3s%

4450 return

4460 rem disk status

4470 if fi =0 then open 4,8,15

4480 inpul#4,L% b3

4490 print " disk status: " b$

4500 if fl =0 then return

4510 close3

4520 closed

4530 return

4540 slop

5000 rem g

5010 print " jrun ml program °

5020 input " address ".m$

5030 gosub 7120

5040 input " are you sure " ;a$

5050 ifa%$="y" then sys m

5060 print " fldone

5070 return

6000 rem printer

6010 if p=1 then 6050

6020 p=1

6030 print "[ip

nnter off "

6040 goto 6070
6050 p=2
6060 print *[f§
6070 return
7000 rem 2 digit dec to hex
/010 by$ =mid$(h$, by/16 +1,1)

+ mid$hd, by-int(by/16)«16 + 1,1)

printer on”

7020 return
7030 rem 4 digit dec to hex
7040 bys=""

/060fori=1104

7070 n% =n

7080 by$ = by + chr3(n% + 55 + 7+(n%<10))
7090 n=(n n%)+16

7100 next

7110 return

7120 rem hex to dec

7130 m3$ = nght$({ " 0000 " +m$.4)

7140 m=0

7180 fori=1104

7160 m1 =asc(midd(mS,i, 1))

170 m=m+{Mm1-48 + 7+((m1>64)))» 16%(4-)
7180 next |

7190 return

7500 rem calculator

7510 print

7820 input " number " ;n$

7530 if lefth(n$,1) = "$" or left$(n$,1)= "h " then 7580
7540 n =val(n$)

7550 gosub 7030

7960 print "gER" .. "5 by3:rem vics print lab(7) "$" by$
7570 goto 7610

7580 m$ = mid$(n$.,2)

7590 gosub 7120

7600 print " [@",.m :rem vics print tab(8) m
7610 return

The Tramaacton”

Volume 5, lssue 02

FmmrEI R TR, W

Michael Bertrand holds an MA in Mathematics from the
University of Wisconsin. Here he presents a new approach to
that age old puzzier.

Computers have opened up the pnsﬁihili;y of doing experi-
mental mathematics. Suppose, for example, we wish to
know the area of a circle of radius one. Fit the circle snugly
mnside a square of side two (see figure 1). Paste this picture to
the wall and randomly throw darts at it, making sure that
they always fall inside the square (but not necessarily the
circle — a few darts will land in the corners outside the
circle). We expect the proportion of darts landing inside the
circle to equal approximately the ratio of the area of the
circle lo the area of the square. That is:

=

arca of circle
area of square

s falling inside circle _
tolal * of darts thrown

Now the area of the square = 2* = 4, s0:

* of darts falling inside circle
total * of darts thrown

areaof circle = 4 +

Two French mathematicians, the Comte de Buffon
(1707-1788) and Pierre Laplace (1749-1827), were the first
o discuss problems like this. Intrepid experimenters took
up the challenge over the years with mixed results. With a
compuler, however, the physical experiment can be simu-
lated with random numbers. And unless you can throw 90
darts per second, the computer does it faster.

Now the area ol a circle of radius one is pi*1* = pi — in fact
this could serve as the definition of pi. Thus finding the area
of a circle is identical to finding the value of pi.

Programming this experiment is facilitated by concentrating
on the upper right hand quarter of figure 1 — see figure 2.
The analysis for figure 2 is similar to that above, since we
have scaled down both circle and square by a factor of 4.
Thus:

pi = 4 =(area of quarter circle)

_ 4 »20f darts falling in qtr circle

total # of darts tHrown

In our computer experiment the “darts” are of course just
random numbers, If s = an initial seed value hetween O and
I, and n = the number of trials, then the following RASIC
program performs the experiment n times:

Finding PI Experimentally

Michael Bertrand
Madison, WI

100 for i=1ton: gosub200

110ifut2 +vt2< 1 thenc=c+1

120 nexti:end |

200 gosub300 : u=s:gosub300 . v=¢
210 return

3008=197+*s:8=s~inks)

310 return

Subroutine 300-310 is a random number generator — I
don’t trust Commodore’s. Keep in mind that a point {(u,v) in
the unit square is within the quarter circle if and only if u* +
v: < 1 = this is line 110 - and the “hits" are counted by
variable C.

This works fine, but is slow — about 7 trials per second. |
rewrote the program in machine language on the Commo-
dore 8032, improving run time by a factor of 13 (about 90
trials per second). My strategy must be identical to BASIC's,
since the machine language gives the same resull as the
above BASIC program every time, [depend heavily on the
floating point accumulator ROM routines for numerical
operations, as BASIC does. The actual value of pi, correct lo
7 decimal places, is 3.141592. Here are the results of the
program for a seed value of s = 49032371

1,000,000 approximation variance from
of pi actual value
1,000 3.128 -.01309 1] e
10,000 3.1332 - 00839
100,000 3.13572 - 00087
1,000,000 3.140852 -.00074 3 hewrs,

If we knew the radius of the earth and the last value here
were used for pi in the formula;

circumference = 2+pis*radius,

then the value given for the earth's circumference would be
off by less than 6 miles.

Running experiments is not a very efficient way of calculat-
ing pi compared to evaluating power series expansions. My
purpose is rather to present an understandable example of
computer simulation, or what is aptly called the “Monte
Carlo” method. The technique is of great value when alter-

The Transactor

Volume §, Issue 02

‘.;nfrﬂ

!

native analytical methods are unknown or prohibitively
difficult,

Following is a short annotation of the ml program:

$033¢c-0340: floating point work area

0341-0345: temporary storage of (random valuey’

0346-034a: 197 in floating point format: (136,69,0,0,0)
decimal

034b-034f: 1 in floating point format: (129,0,0,0,0) deci-
mal

0350-0352: total # of trials (n) in 3-byte format — ie, base
256

0353-0355: # of “hits” in 3-byte format — ie, base 256

0356-037b: subroutine to put new random value in $033c
and (random valuey in fpacc®1

037¢-03d6: main routine to do comparison n times and

count "hits"

The bit of code at $03cd-03d3 allows interruption of ml
execution by pressing the up arrow ($5e ASCII). [find this
invaluable in debugging ml programs. It doesn’t hurt in the
final version either: additional run time is minimal, and
program execution can be resumed from BASIC with
“goto180" since all necessary values are saved.

This program shows how to put BASIC's floating point ROM
routines to work without BASIC's overhead. Run time is
generally improved by factors of 12 to 15. If this is what you
need for number-crunching applications, then check out
those floating point ROMs.

Figure 1.

£

1= s

e

®,9) e
| T

™

E

b

Ty

i

Figure 2.

i

The Transactor

&%

VYolume 5, Issue 02

TOTOIM #*d st bbb h b b e dh e RN R R e kb kbR kR R bk

15 rem * *
20 rem * * pi program — calculates pi experimentally. *
25 rem # machine language depends heavily on the «
30 rem + floating point accumulator rom routines. *
35 rem ¢ BASIC 4.0 ONLY *
40 rem * + press the up arrow to interrupt ml execution - +
45 rem # execution can be continued with ‘goto1 80", *
50 rem + +
55 rem # + data/prg at $033¢-$03d6 (828-982 dec) +
60 rem * - *
65 rem #* + + + + by michael bertrand + + + + *
70 rem » ¥
TS FRITY ok b o oot o o o oo o o o o o o o o o o o o o o o oo o o oo o o o o o
80 X

90 print "[f§":

100 input " number of trials " ;n : print

102 if n>16777215 then print " # of trials must be < 16777216 " :print:goto100
110 input " seed (between 0 and 1)" ;s : print

112 if s< =0 or s>=1 then print " seed must be between 0 and 1 " :print:goto110
120 m = 828:gosub200 :rem * puts seed, in fp format, into (828,829,. . .)
130 5= 197:m = 838:g0sub200 :rem * puts 197, in fp format, into (838, 839,. .)
140 s=1:m=2843:g0sub200 :rrem * puts 1, in fp format, into (843, 844,. . .
144 nl =n-1:d3=int(n1/65536):n1 = n1-d3+65536:d2 = int(n1/256):d1 =nl1-d2+256
148 poke 848, d3 : poke 849, d2 : poke 850, d1

170 fori=851t0 982 : read x : ch=ch+x

175 poke i, x : next : if ch<>13424 then print " data error " : end

180 sys 892

184 ¢ =65536+peek(851) + 256+peek(852) + peek(853)

188 print " approximation of pi= "4%c/n : print : end

192 :

194 rem + subroutine 200-230 puts real number s,

196 rem + in floating point format, into memory

198 rem + locations [m,m+1,m+2 m+3,m+4]

200 e =int(log(s)/log(2)) : p{0)= 129 +e

210 p=(8/2te=1)*128:p(1)=int(p)r=p~p(1)

220 fori=21t04:p=r+256: p(i}=int(p) : r=p-p(i) : next i

230 fori=0to 4 : poke m+i, p(i): nexti: return

232 :

300data 0, 0, 0,169, 60, 160, 3, 32,6 216,204, 169

310data 70,160, 3, 32, 94, 203, 32, 66,205, 32, 2

320 data 206, 32, 137, 201, 162, 60,160, 3, 32, 10, 205

330 data 169, 60,160, 3, 32, 94,6203, 96, 32, 86, 3

340 data 162, 65,160, 3, 32, 10,205, 32, 86, 3,169

350 data 65, 160, 3, 32, 157,201,169, 75,6160, 3, 32

360 data 145, 205, 201, 255, 208, 19,238, 85 3,173, 85

370data 3,208, 11,6238, 84, 3,173, 84, 3 208, 3

380 data 238, 83, 3,173, 82, 3, 72,206, 82, 3,104

390 data 208, 21,173, 81, 3, 72,6206, 81, 3,104,208

400 data 11,173, 80, 3, 72, 206, 80, 3,104, 208, 1

410 data 96, 32,6 228, 255, 201, 94, 240, 248, 76,124, 3

The Transactor

65 Volume 5, Issue 02

Translating a BASIC Program
Into Machine Language

Did you ever write a nifty and clever game in BASIC, only to
discover that once you added all the features you wanted,
the game was no fun to play because it was too slow? Did
yvou then vow that 'someday’ you'd write that program in
machine language, putting it off indefinitely, because, while
understanding the basics of machine language, you didn't
know where to start? Well, if you are in a similar predica-
ment with any sort of BASIC program, fear not: it can
sometimes be very easy to translate a program into machine
language, or at least use machine language subroutines to
speed things up. Read on and see how the humbile little
BASIC program in Listing 1 went on to become the machine
language program in Listing 3. While you're at it, try typing
the programs in on your Commodore 64. They graphically
illustrate some physical laws of motion, and can be fun to
play around with.

Using the BASIC interpreter built into the C64 is an excellent
way to develop a program. Programs are easy to enter,
maodify, and de-bug. Many programs can he used in their
final form as BASIC code, but for real-time simulations or
similar applications, BASIC just isn’t fast enough. When this
is the case, we have to go to machine language, or at least
use one or more machine language subroutines with the
BASIC cade.

Even if vou plan on using machine language right from the
beginning, it is usually convenient to use BASIC to get the
logic of the program working right, and then ‘translate’ the
BASIC program into machine language. Many people are
familiar with the basic concepts of machine language, but
fear the jump from the world of BASIC, intimidated by
machine language’s lack of floating—point variables, multi-
ply and divide functions, etc. Fortunately, you can usually
get around the above limitations, without using routines
from ROM, and without writing lengthy subroutines. The

Chris Zamara
Downsview, Ont.

kind of program that requires the speed of machine lan-
guage is usually a simple computer model, or simulation, of
some kind (such as a game). Such a program lends itself well
to machine language, and can usually be written using
simple integer operations, or using table-lookups for com-
plex functions.

Rocket Simulator Example Conversion

To illustrate conversion of a BASIC program to machine
language, | will use the relatively short program “ROCKET"
in Listing 1. This program simulates the acceleration of a
rocket (represented by a sprite) under the influence of its
engines (pushing it up), and gravity (pulling it down). When
the program is running, pressing the space bar turns the
rocket's engines on, and releasing it cuts them. The rocket
accelerates as it would under these conditions, neglecting
wind resistance. The rocket’s thrust and the strength of
gravity are variable, Further, this program has a few extras,
allowing you to try to land the craft without erashing (the
minimum crash velocity is also adjustable). To change any
of the three parameters. displayed at the top of the screen
while the program is running, press BREAK, change the
values to whatever you want, then press RETURN. Note that
at faster racket speeds, the sprite’s movement 1s somewhat
jerky. This is because the sprite is moving more than one
line at a time, to make it move faster. To make the sprite
move just as quickly, but only one line at a time for smooth
maotion, we have to go to machine language.

Before we start translating the program to machine lan
guage, an explanation of how it works: First the program
loads sprite definitions for the ship, two types of engine
flames, and the ‘crash’ shape into sprite pages 200-203 (you
can define your own sprites, or type in the program in listing

The Transactor

Volume 5, Issue 02

2 to create the sprile delinition file. If you are the impatient
type, delete line 190 and don't bother with the sprite
definition for now: vour ‘rocket’ will look funny, but the
program will still work). Then some sprite parameters are
POKEd into the VIC Il video chip. The main program loop
begins al line 410. The variable 'VELOCITY" is the speed of
the rockel, and actually indicates how many Y values will be
skipped on each movement of the sprite, Each time through
the loop, 'GRAVITY' is added to this variable, and if the
space bar s pressed, "THRUST (the strength of the rocket's
engines) 1s sublracted from it. GRAVITY AND THRUST
remain constant unless manually changed by first stopping
the program. The rockel’s 'flames’ are also turned on and
flickered if the space bar is pressed: the flame sprite is
enabled, and the two flame shapes alternately selected. The
variable 'VELOCITY' is then added to the Y position of the
sprite, and "Y' is stored in the sprile’s Y register. The flame’s
Y register is also updated (20 units below the rocket).
Additional logic stops the ship al the top and bottom of the
screen, and indicates a crash or good landing. These extra
features will not be incorporated in our machine language
translation, but left as an exercise for the ambitious reader.

Translating the first part of the program, setling up the sprite
parameters (lines 210-280 in Listing 1) is no problem.
POKESs are replaced by LDAs and STAs. This is done in lines
J20-440 in the assembler program of Listing 3. | decided to
add sound effects for the blasting of the rockel’s engine in
the machine language version, so a few SID chip parameters
are set up in lines 460-520. So far, so good, bul now comes
the hard part. How do we deal with the variables?

The main variables used to simulate the rockel’s motion are
THRUST, GRAVITY, VELOCITY, and Y. In the BASIC pro-
gram, these variables are floating point, and assume [rac-
tional values. How do we handle this in machine language?
Well, the easiest thing to do is to use large integers for all
calculations (we can use more than one byte for a single
variable), and then divide Y down by a large amount lu get
the sprite’s Y value, which must be between 0 and 255. Did 1
say divide? In machine language? Egad! Actually, we can
divide by powers of 2 very easily, just by shifting a byte
{using LSR or ROR) right one or more times. Bul if we are
using two bytes to store a value (two bytes is a word), il's
even easier if we want to divide by 256, All we have to do is
use the most significant byte. For example, if 'Y’ (called
‘ROCKY" in the machine language program) is stored as a
word, the first byte in the word is the least significant byte,
and the next byte is the most significant byte. The most
significant byte increases by | when the least significant
byte generates a carry, i.e. it gets bigger than 255. If we use
the most significant byte as the Y value for the sprite, we
have effectively divided the variable ‘ROCKY’ by 256. This is

the way I wrote the original version of the program, using a
word to store the abovementioned variables,

The variables increased so quickly, though, that a very long
delay was needed each time through the loop to keep Lhe
rocket’s speed reasonable. The sprite’s Y value ended up
being increased by more than one unit at a time, so |
decided to use three bvtes per variable. In lines 210-240 of
Listing 3, you can see three bytes allocated to the important
variables. Now, when we use the most significant byte of
‘ROCKY’, we are actually dividing the variable by 65,536!
This gives us very good accuracy, and even at very high
rocket velocities, the sprite only moves one line at a time,

What about negative values? We certainly need negative
values in this program, since the velocity is positive when
the rocket is going down, and negative when rising. Luckily
for us, the 6502 deals with numbers represented in two's
complement form, so that we can represent negative values.
In two's complement, a negative value always has its most
significant bit (M5B) set. Using a single byte variable as an
example, negative 1 is represented by 255, negative 2 by
254, ete. Inverting all bits in a byte and adding 1 will make a
negative number positive, or a positive number negative, In
this way, a byte can hold values from =128 to +127. Two
bytes can store values from -32768 to +32767. and three
bytes, what we are using in this program, can store values
from around minus to plus 8.4 million. Thus, no special
code has to be written to deal with negative values; we can
simply add and subtract numbers freely, regardless of their
sign.

To add or subtract these three byte variables, we have to add
one byte at atime. For example, see lines 640-740 in Listing
3 where gravity is added to velocity. When an addition is
performed in the 6502 via the ADC instruction, the value of
the carry flag is always added to the result (ADC is an
acronym for ADd with Carry). The reason for this will
become apparent. Before adding the least significant bytes
of the variables together, we clear the carry flag with the CLC
instruction. The addition is then performed, in this case
storing the result back into 'VELOCITY". If the result of this
addition causes a carry past the most significant bit, the
carry flag will be set. Thus, when we add the next most
significant byte of the variables (without clearing the carry
llag [irst), the carry will be added in. Likewise for the final,
mosl significant byte. We could add together any number of
byles in this manner, representing huge integer values, or
very accurate floating point values,

Now Lhal the basics of how to handle the main variables
have been delermined, let's translate the actual code. Keep
in mind that this will be a very ‘loose’ translation: the

__The Transactor _

Volume 5, Issue 02 |

sequence of some events may be mixed up, some features
will be added, others dropped. Added will be the rocket
engine sound effects. Dropped will be Y value range check-
ing, so that in the machine language version, the rocket will
come up through the bottom of the screen after it exits the
top, and vice versa.

The main loop in the BASIC program (Listing 1) is in lines
410-520. This translates to the main loop in the assembler
listing (Listing 3), lines 580-1290. The BASIC statement,
VELOCITY = VELOCITY + GRAVITY translates to the code
in lines 640-740 of Listing 3. In line 760, the keyhoard is
checked, and if the F1 key is pressed, the program returns to
BASIC with an RTS. This is so that thrust and gravity values
can be changed if desired. If the space bar is not pressed, the
thrust portion of code is skipped. This is equivalent to line
440 in the BASIC listing,

IF PEEK(KEYBD)<>SPACF THEN 48().

In the BASIC program, three things happen in the thrust
portion of code, which is executed if the space bar is
pressed. First, thrust is subtracted from velocity, then the
flames is flickered by switching it's shape, and finally, the
flame sprite is enabled in line 470. Moving to the assembler
listing, the flame is turned on and flickered in lines 810-86().
The sound for the flame is also turned on by gating voice 1
in lines 870 and 880. Finally, thrust is subtracted from
velocity in lines 900-1000. Note that when subtracting
multi-byte variables, the carry flag is first set with the SEC
instruction. If the space bar is not pressed, the flame is
turned off, the sound disabled, and some time wasted so that
the loop takes the same amount of time whether the space
bar is pressed or not, This latter feature, implemented in
lines 1091 and 1100, is to prevent the rocket from going
slower than it should when the space bar is pressed.

Next in the BASIC program, velocity is added to Y. This is
done in lines 1150-1240 of the assembler listing.

The final code in the BASIC program loop is the Y value
range checking: the rocket is stopped at the lop ol the
screen, and if it hits the bottom, either a crash or a good
landing is indicated. These features are not implemented in
the machine language version, so that you can add them
yourself as an exercise, if you like.

The last thing in the machine language version’s main loop
is a delay. Even though the variable 'ROCKY" has (o reach
65,536 before the sprite moves just one line, the rockel
moves too quickly, even with very low values of gravily and
thrust! This gives an idea of how much speed we gain by
going to machine language. The delay, in lines 1260-1230,

wastes about 1100 cycles, or about 1 ms.

Well, there you have the translated program, written in
assembler. If you wish to see the program in action, you can
type in the source and assemble it, or if you don’t have an
assembler you can enter and RUN the BASIC loader pro-
gram in Listing 4. The new machine language version is
slightly different from the BASIC one, but it handles the
rocket's acceleration in the same way.

What about changing gravity and thrust? Well, if you recall,
pressing the F1 key causes a return to BASIC from the
program. We might as well use BASIC to accept new values,
POKE them into the correct addresses, and re-execute the
machine language program. Since speed isn't critical when
it comes to entering the values, it's better to use BASIC,
since we can more easily change the prompts, and we don't
have to call INPUT routines from machine language. The
short BASIC program in listing 5, when run with the ma-
chine language code in memory (at $CO00), will do the trick
quite nicely. To change thrust and gravity parameters while
you're flying the rocket, just press F1, and reply to the
prompts that appear on the screen. If you later want to
change values again, the original values remain on the
screen to be maodified, kept, or changed entirely.

A few additional tips for converting more complex pro-
grams, while still keeping the machine language fairly
simple:

1) If you need to multiply a variable by a constant, write a
specific purpose multiply routine, eg. a routine that multi-
plies a given variable by 40. A multiply by 40 could be
accomplished quickly by shifting the variable left 5 limes
(with ASL or ROL) to multiply it by 32, then storing thal
value and shifting the orginal variable lefl 3 ltimes to
multiply it by 8. Adding these two resulls will give the
number mulliphed by 40.

2) Complex [unctions, such as SIN, COb, elc. can often be
looked up in a table. A table of 256 SIN values ranging from
~128 o + 127 could be stored in memory belorehand by a
BASIC program, and looked up as needed, This technique
can also be used for multiplication or division by a constant,
where the range ol mullipliers is known, and reasonably
small.

Now that you have a few tricks under your belt, go to it!
Converl Lthal nifty game to machine language and watch it
fly. You might also want to use some of the code from
‘ROCKET" as the basis tor another program: maybe make
the ship rotate, thrust in the X direction, fire, add some
landscape on the bottom of the screen. . .

The Transactor

Yolume 5, Issve 02

Listing 1 Listing 2

100 gota 190
11 #2224 r2rersrssrersntntnitzns
120 = "ROCKET”
130 = simulates a rocket under
140 + influence of thrust and gravity
150 + use space bar to thrust; hreak
160 + program to change parameters
170 +
IB(] EEEEEFEEFEEFXKEEREEREEEEEESEE KSR E
185 rem = delete line 190 if using
186 rem + cassette. 200 read a if a> =0 then print#1, chr${a); : next i
190 fl=not fl - if fl then load " rocket.sprt ™ 8,1 210 close1 : end

rem + load sprite shape definitions + 220 ;
200 230 rem = cassette version starts here «
210 rem+ sprite/variable initialization 240 for 1 =12800 1o 13056
220 vic=13+4096 250 reada: pokei, a: nexti: end

100 rem == create sprites for " rocket”

110 rem == if using a casselle inslead

120 rem =+ of disk drive:

130 rem goto 230

140 rem » aiso, If using cassette, this

150 rem = program must be run betore

160 rem = executing the main rocket program
170 open1.8,12, " O.rockel.spri.pw”

180 print#1, chr3(0)chr${50);

190 fori=0to 1 step @

* ® + ®= # ¥

230 poke vic+ 21, 1 : rem + enable sprite () 100Qadaa 0O, 16, 0, 0, 5, 0
240 poke 2040, 200 : rem * rocket shape 1010data 0O, 56, 0, 0,124, 0O
250 poke vie, 150 : rem « x coordinate 1020data 0,124, 0, 0,124, 0
260 poke vic + 39, | : poke vic+40, | 1030data 0O, 68, 0O, 0,116, 0
270 poke vic+2, 150 : poke vic+3, 255 1040data 0,108, 0, 0.108, 0O
280 poke vic+41,7 ; poke vic+42.8 1060data 0.108, 0, 0.124, 0O
290 kevbd =197 : space =60 1060data 0,124, 0, 0,254, 0
300 bottm =229 : rem + hottom of screen 1070data 1,255, 0, 1,255 0
310 gravity= 5 - thrust=1.4 - crash =5 1080data 1,255, O, 1,215, O
320 - 10890data 1,187, 0, 1. 1. 0O
330 rem » take-off initialization » 1100data 1, 1, 0, 0, 0, O
340 y = bottm ; velocily =0 1110data O, 0O, 0, 0. 0. 10
350 poke vic+ 1.y 1120data 4, 0O, 0, 8 0 8
360 print“hravitym “gravity " : thrust="thrust" 1130data 0, 16, 8, 48 8 8
‘crash= "crash” ¢ cont 1140 data 96, 4, 72,192, 2, 0
370 get g8 if gh<>" "then 370 1150data 2, 1, 0, 4, 0, 1
380 poke 2040, 200 1160 data 241, 24, 3,216, 12, 6
400 . 117/0dala248, 0,247, 0, 0, 246
410 : rem == main loop =» 1180data 0,112, 59, 0, 0, 63
120 velocity = velocity + gravity 1190 data 128, 0,127,192, 16, 251
430 poke vic + 21, 1 : rem = turn off flame 1200 data 198, 49,241,199, 17,225
440 if peek(keyhd)<>space then 480 12100ata238, 0, 0,124, 0, 1
450 : velocity - velocity-thrust 1220 data 255, 0., 3,215, 128,
460 ; fl = not 1 ; poke 2041, 202t 1230 dala 187, 192, 3, 147, 128,
470 ; poke vic+ 21, 3 : rem = turn on flame 1240 data 147, 128, 1,211, 64

480 y =y + velocity

490 if y>hottm then y = bottm ¢ if velocity >0 then 560
500 if y<50 then y =50 - velocity =0

510 poke vic+ 1, v : poke vic+ 3, v+ 20

1250 data 199,

1260 data 199
1270 data 110,
1280 data 109,

2, 199,

2, 71, b4,

0,

020 gotod20

0

0

0

0 L 0,
1290 data 56, 0O, 0, 86, O,

0 0

0 ()

56

3
1
1
0
0
0
0
0
H40) 1300 data 16, 0, 16, 0
500 rem = crash or good landing = 1310 data 16, 0, 0 0
560 poke 198, 0 : rem + clear kbd buifer « 1320 data 0O, . 0D, 0,254, 0
570 poke vic+ 1, bottm 1330 data 1,215, 0, 1,199 128
580 if velocity >crash then poke2040, 201 : goto340 1340 data 1,211, 0, 0.198, 0
- rem * draw explosion + 1350 data 0,206, 0, 0,238, 0
590 print " «xsg00d landing !s»s " 1360 dala 0,120, 0, 0,112, 0
600 for delay = 1 to 800 ; next delay 1370data 0,172, 0, 1,132, 0O
610 print "B " : poke 198, 0 : goto 340 1380data 1, 36, 0 1 98 0O
1390 data 0,144, 0, 0, 16, 0O
1400data 0O, 0O, 0, 0, 0 O
1410data O, 0, 0O, 0O 0O, O
1420data O, 0, 0, O, 64 0

1430 data -1

[TRY PO ¥ ST L E N ISYEE P

The Transactor o 59 VYelume §, Issue 02

Listing 3

100 sys700 ; rem written on pal 64
110 ;

120: "ROCKET"

130 ;simulates a rocket under the
140 ;influence ot thrust and grawvity.
150 ;press space to thrust, f1 1o
160 ;change thrusl and gravily,
170 ;

180 .opt n GO

190 » = $c000

200 jmp start

210 thrust .byte 14,0,0

220 gravity .byte 5,0,0

230 velocity .byte 0.0,0

240 rocky _byte 0,0,100

250 flame .byte 202 :flame shape pointr
260 sprty = $d001

270vic =3d000

280sd =3d400

290 sound = 3d412

300 keybd = 197

310 start =«

320 ;sprite set-up stuff

330 da #1

340 sta
350 Ida
360 Ida
370 Ida
J80 sta
390 Ida
400 Ida
410 lda
420 sta
430 sta
440 sta
450 ;

vic+21 . stavic+39
#7 .slavic+40
#200 : sta 2040
#150

vic :stavic+ 2
#100 . stavic + 1
#120 . stavic+3

#0

vic+ 16 : stavic + 23
vic+ 29 stavic + 28
53281 : sta 53280

460 ;sound set-up stuft

470 Ida
480 lda
490 Ida
500 Ida
510 Ida
520 Ida
530 ;

540 ;

8580 lda
560 sta
570

#15 :stasid + 24

#0 :stasid+ 14

#4 ' stasid+ 156

#9+16+ 10 ' sta sid + 19 :a/d
#1116+ 8 : sta sid+ 20 :s/r
#128 . sta sid + 18 ;ungate

#0 : sta velocity
velocity + 1 @ sta velogity + 2

S8O loop ==+

590 Ida
600 sla

rocky + 2 ;use msd of ship's y
spriy ;pos’n as sprite y coord

610 clc : ade #20

620 sta
630

spriy + 2 ;flame's y co-ord.

640 ;add gravity to velocity

650 clc
660 lda

velocily

670 adc gravity

680 sta
690 Ida

velocity
velocity + 1

700 adc gravity + 1

TEFEErT

710 sta
720 Ida
730 adc
740 sta
750 :
760 lda

T T T T T YT T TT T e

velocity + 1
velocity + 2
gravity + 2

velocity 4 2

Keybd

/70 cmp #4 ;check for t1 key

780 beqg

exit

790 cmp #60 ;check for space

800 bne
810 lda

820 sta

830 |da

840 eor
850 sta

860 sta

870 Ilda

880 ata

890 ;

nospace

#3

vic+21 iturnon "flame”®
flame

#1

flame .make flame flickar
2041

#129

sound ‘turn on sound

8900 ;subtract thrust trom velocity

910 sec
920 lda
930 sbc
940 sta
950 lda
Y960 she
970 sta
980 Ida

990 sbc

1000 sta
1010 ;

1020 imp

velocily
thrust
velneity
velocity + 1
thrust + 1
velocity + 1
velocity + 2
thrust + 2
velocity + 2

spcdone

1030 nospace = =

1040 Ida
1080 sta
1060 Ida
1070 sta

#1

vic + 21 :turn off flame
#128

sound turn off sound

1080 ;waste time to equalize loop time
1080 ;whether space pressed or not

1091 Idy

#10

1100 waste dey ; bne wasle

1110;

1120 spedone =+

1130

1140 ;add veloCity to y position

1150 clc
1160 lda

1170 adc

1180 sta
1190 Ida

1200 adc

1210 sta
1220 lda

1230 adc

1240 sta
1250 ;

rocky
velocity
rocky
rocky + 1
velocity + 1
rocky + 1
rocky + 2
velocily + 2
rocky + 2

1260 ;delay {loop 100 times)

1270 Idy

#100

1280 td dey . nop : nop : nop : bne td
1290 jmp loop

1300 :

1310 exit rts

1320 .end

The Tronsactor

70

Yolume 5, issue 02

A e ax aaan o

Listing 4

100 rem =+ data loader for "ROCKET "

110
120¢cs=0

rem = checksum

130 05 =49152 : rem * object start

140 :

180 read b ' if bh<0 then 180

160cs=cs+Db

170 poke os, b:os=0s+1: goto150

1980 il cs<>>31815 then print ™ » checksum error +°

180 .

200 :

240 end

1000 data 786,
1010 data 5,

1020 data O,
1030 data 141,
1040 dala 169,

16,192, 14, 0O,
g, 0, 0, 0
0, 100, 202, 169,

21,208, 141, 39,
7,141, 40, 208.

1050 data 200, 141,248, 7, 169,

1060 data 141,

0,208 141, 2,

1070 data 169, 100, 141, 1, 208,
1080 data 120, 141, = 3, 208, 169,

1080 data 141,

16, 208, 141, 23,

1100 data 141, 28,208, 141, 28,
1110 data 141, 33, 208§, 141, 32, 208

1120 data 169,

15 141, 24 212,

1130 data 0,141, 14 212, 169,

1140 data 141,

15, 212, 169, 154,

1150 data 19, 212, 169, 1E4+ 141,

1160 dala 212, 169, 128,

1170 data 169,

41, 18,
0, 141, 9 182

{180 data 10, 192, 141, 11, 192,
1190 data 14, 192, 141, 1, 208,

1200 data 105,
1210 data 173,
1220 data 141,
1230 dala 109,
1240 data 173,
1250 data 141,

20,141, 3, 208,
2 192,108, 6,
9, 192,173, 10,
7,192, 141, 10,
11,192 109, B8,

11,192, 1635, 197,

1260 data 4, 240, 110, 201, 60,
12/0 data 52, 169, 3, 141, 21,

1280 data 173,

19, 198, L Eo

1200 data 15,192, 141,249, 7,
1300 data 129, 141, 18, 212, 56,
1310 data 9,192, 237, 3,192
1320 data 9,192,173, 10, 192,
1330 data 4,192,141, 10, 192,
1340 data 11,192,237, 5, 192,
1350 data 11,102, 76, 230, 192,
1360 data 1,141, 21, 208, 169,

1370 data 141,

18,212,160, 10,

1380 data 208, 253, 24,173, 12,

1390 data 109,
1400 data 173,
1410 data 141,
1420 dala 109,

9, 192, 141, 12,
13,192, 109, 10,
13,192,173, 14,
11,192, 141, 14,

0
0
1
208
168
150
208
169
0
208
208

169
4
141
20
212
141
173
24
24
192
192
192
192
201
208
208
141
169
173
141
237
173
141
169
128
136
192
192
192
192
182

1430 data 160, 100, 136, 234, 234 234
1440 data 208, 250, 76, 113, 192, 96

1450 data -1

Listing 5

140 p=49152 : print"S”°

141 rem + for cassette use, delete

142 rem = ine 145 and first run the

143 rem = sprite create program

801)<>>16 then load " rocket.sprt " 8,1
ress space 1o thrust,

160 print " press f1 to change thrust and gravity
170 sys(p)

180 poke 188, 0 : rem « clear kbd butter »

190 nput”
200 inpul " gravily " gr

210 poke p + 3, th and 255 : poke p +4, th/256
220 poke p+ 6, gr and 255 : poke p+ 7, qr/256
230 gota 150

145 il pee
150 print”

hirust ™ ;th

100 rem = basic code for rocket program
110 rem = machine language rocket routine
120 rem « slarts at $c000 (49152)

TR—

Bl e

71

.

Yolume 5, Iu;; 02

A Few Of The Stranger

Richard Evers

6502 Op Codes Explained

For a large percentage of assembly language programmers, most of
the 6502 instruction set is never actually used. Instructions like
LDA, STA, INC, DEC, BEQ, BNE, JMP, JSR are usually all that are
required for most applications. What 1 want to do today is go
beyond these instructions and advance into the lesser known, or
lesser understood op codes to try to shed some light on their
workings

The Carry Flag

Let's start off a little slow. The term CARRY is used quite often
within most machine code programs. ADC - add with carry, SBC -
subtract with carry, SEC - set the carry flag, CLC = clear the carry
flag, BCS = branch on carry flag set, and BCC - branch on carry flag
clear, are all of the instructions that fit into this category.

Carry is a flag that is set to one {(on) when an arithmetic operation
takes place in which the result generated goes beyond the 8 bit
maximum limit. Before an addition, carry has to be cleared with a
CLC, so we can later tell if we have exceeded the 8 bit maximum.
When the carry flag has been set, the op code BCS - branch on
carry sel, will always succeed. On the other hand, the instruction
BCC, branch on carry clear, will always succeed if the arithmetic
aperation has not gone past the 8 bit limit and carry is clear.

Hefore a subtraction operation is performed, the carry flag has to
be set, This is due to the fact that if your resulting value 1s less than
zero, which is beyond the 8 bit realm, the carry flag will be cleared,
and a test can be made of this condition with the BCC - branch on
carry clear, instruction.

Branching

A little note to slip in before we go much further, Confusion seems
to run rampant about how a branch actually works. Below is a very
useless program to demonstrate how a branch instruction caleu-
lates the address to go to when you branch forward or backwards.

(027a here = =

027a b8 clv

(027b 50 03 bve everywhere ;branch forward to
everywhere’

027d there = +

027d b8 cly
027e T0fa bvs here

0280 everywhere = »

‘branch backwards to “here’

0280 b8 clv
0281 50 fa bvcthere ‘branch backwards to here
As you can see from the program above, a branch forward uses the

next address after the branch line as location $00, and increments
the location from there until the hranch destination has heen

reached. A branch backwards works the same only in the opposite
direction. The branch offset itself is considered as location $FF,
and is decremented from that point backwards until the destina-
tion is reached. The maximum branch in any direction is $80
characters, or a full page between the two directions. Beyond this
you must use a JIMPiinstruction.

The Overflow Flag

Our next condition o cover is the overflow flag. In this category
are BVS - branch on overflow flag set, BVC - branch on overflow
flag clear, and CLV - clear averflow flag. The overflow flag will be
set when an arithmetic calculation exceeds 7 bits in magnitude.

During signed bit arithmetic operations within the 6502, posilive
numbers are stored in true binary, with negative numbers stored
in two$ compliment binary. Two's compliment means-that all the
hits but bit zero are reversed. A value of +7 = %0000 0111 where
avalueof-7 = %1111 1001. The high bit is used to signify the sign
of the value, When an addition operation exceeds + 127, the high
bit will be set, thus making it now appear (o be a negative number,
If tested for, overflow would flag that a sign correction routine
should be called. Essentially, the overflow flag works just like the
carry flag except carry is set when a calculation exceeds 255,
overflow is set when a calculation exceeds 127.

The overflow flag can also be set externally from a pin on the
microprocessor chip. It's not an interrupt so you must anticipate
activity on this pin, therefore it's rarely used this way. But it’s very
fast, much faster than an interrupt where you must save your
registers before actually servicing the interrupt. Commodore disk
drives use this pin to signal ‘data ready’ from the read/write head.

The BIT instruction is another one that alters the OVERFLOW flag.
BIT will be covered later in this article.

The Zero Flag

BE(Q) - branch if equal to zero (result true), and BNE ~ branch if not
equal to zero (result false). What do these mean to you? These
instructions use the Z (zero) flag to test if ‘the last operation
performed was equal to zero or not. If you were to load the
accumulator with 255, then compare it to 40, they would not be
equal to each other. In this operation, the Z flag would be set to
zero to signify that the test tailed, or the result was false. The
instruction BEQ would fail where BNE would succeed.

Consider a simple loop routine as shown below. CPX (or CPY if you
had used the Y register) is not required to test for 'Not Equal’. BEQ
and BNE test the result of the last operation performed.

ldx *0

loop inc $8000, x
Inx
bne loop

The Transactar

Volumea 5, Issus 02

No actual comparison was made, but the branch will succeed until
the X register returns to a zero value. As I mentioned earlier, BE()
and BNE test the results of the last operation performed. This can
sometimes give rather unexpected results, so the Compare op
codes do have purpose oo,

The Negative Flag

Two more branches for your contemplation. BPL -~ branch if plus
{negative flag set to zero), and BMI - branch on minus {negative
flag is set to one). Both of these are very handy at times when a tes!
to determine the actual values of characters encountered is re-
quired. Take for example the little bit of code below:

loop jsr §ffed get a character from the keyboard
beq loop if no key pressed, go back to try again

sec

sbe #*48 ascii zero

bmi loop ;was below an ascii one
she #3

bpl loop ;was above an ascii three
+ followed by vour code that uses the value between | and 3 +

In this example, the lesl does a very good job of allowing you to
pick and choose precisely what want from the keyboard.

Decimal Mode

Enough of the branches, lets get into further arithmetic instruc-
tions. SED - set the decimal flag, and CLD - clear the decimal flag,
refer to a mode that will allow you to utilize BCD, hinary coded
decimal form of arithmetic calculations. In this mode, each nybble
of a byte holds a single decimal number, that is U through 9. A full
byte can have a value up to Y9 decimal. ADC, SBC, BCC and BCS
all work in the same way with this mode of operation, with carry
being set if decimal 99 is exceeded. As before, carry has to be set
hetfore subtraction, and cleared befare addition.

This mode of operation s not one in which Commodore have
made great strides in using to any advantage, When your machine
is first powered up, a CLD instruction is executed lo ensure that all
arithmetic calculations are performed in regular binary. On en-
trance into the machine language maonitor, the decimal flag is also
sel to zero, as an added incentive to avoid the BCD blues. As it
stands, not a single DASIC routine takes advantage of BCD.
Perhaps in a luture version of CBM BASIC, BCD will finally be
used.

Stack Operations

The next instructions just crying lor a little explanation are : PHA -
push the accumulator onte the stack, PLA - pull the accumulator
from the stack, PHP - push the processor status onto the stack,
PLP - pull the processor status from the stack, TSX - transfer the
stack pointer to the X register and TXS - transfer the X register to
the stack pointer. Except for TSX and TXS, these instructions are
used to either get characters from the stack, or store characters on
the stack, Quite often, before execution of a machine language
program, the current state of the computer should be saved for
future use. Below is a quick routine to demonstrate a method to
save everything for future retrieval:

php :push the processor status onto the stack

pha ;push the contents of the accumulator onto the stack
tya transfer contents of y reg into the accumulator

pha

txa transfer contents of x reg into the accumulator

pha

tsx :transfer the stack point to the x register

txa transfer contents of X reg into the accumulator

pha

As you probably know, the stack is a 256 byte area in RAM held at
$0100 hex to $01ff. The trick is that it is used for much more than
most can comprehend. That small block of RAM seems to he the
centre of attraction for almost all of the computers functions. Not
only is the stack responsible for holding return addresses for
various functions, but it is also used for most of BASIC's arithmetic
calculations.

Further, hundreds of currently available machine language pro-
grams make use of the stack in some pretty un-orthodox ways.
Some of the most ingenious methods of program protection known
to date make use of the stack as a special hideaway spot for tricky
bits of code to trap the unwary hacker, Unless you are in the mood

for some pretty hairy protection techniques, stay away from this
one. For the balance of masochists in our reading audience, plow

ahead and create your own versions of the spiral of death, as one
particular technique has come to be known, Challenges like this
seem to make lite more interesting.

And now, time for a bit of boolean fun. In our boolean lunchbox
we have . AND - and memory with the accumulator, ORA = or
memory with the accumulator and EOR - do an exclusive or of
memory and the accumulator,

For a lot of the examples in the rest of the article, I will be referring
to values in binary format. The reason for this will soon become

apparent.
AND

The diagram below shows exactly how this instruction operates.

accum. 1001 0110 / 150 decimal
AND 11011101 / 221 decimal

result 1001 0100 / 148 decimal
To AND a value with another, you simply match bits up and
determine which ones matched, The rule is:

AND: result is true if one AND the other

The hits that were ON in bath values remain ON, the balance are
set OFF. In this way, if you wanted to keep a certain calculation
within your boundaries, you would AND the result with the
highest value that you want, The result can be worth less or equal
to the ANDed value, but cannot exceed it

R L R R L L L AR L R A Nt Y

The Transactor

OR

Again, the diagram below will show its operation.

accum. 1001 0110 / 150 decimal
OR 1101 1101 / 221 decimal

result 1101 1111 / 223 decimal
When yvou OR a value with another, every corresponding bit that is
turned ON in either value is left ON in the final result. The rule;

OR: result is true if one OR the other

In this way vou can stop a value from dropping below what you
want. OR the value with the lowest value you want and the result
will always be equal or higher.

For all of you that can remember back a few issues, a couple
articles appeared that mentioned a technique of OR'ing the charac-
ters read from disk files with 64 to help stop the rude temptations
of pseudo control characters. If you were to directly read in the
contents of a program file, and print those contents to your screen,
every now and then a character will sneak in with the sole purpose
in life to make your days on earth difficult. Those characters
attempt to make you believe that they are control characters, and
set out in their task of clearing you screen, setting windows and
doing other equally rotten things. A quick OR with 64 will rob
these imposters of their power and knock them back down into the
ranks of the othess. A pretty long winded way to say how not to let
the value drop below 64 decimal.

EOR

The next, and last, boolean operator is really a mixture of numer-
ous boolean logic circles, and will take a little bit longer to explain,

As before, lets break it down into binary for the explanation

accum. 1001 0110 / 150 decimal
EOR 1101 1101 /7 221 decimal

result 0100 1011 / 75 decimal

(One step further will show that EOR is incredibly powerful to use

0100 1011 / 75 decimal {result from above EOR)
1101 1101 / 221 decimal (previous EOR value)

result
EOR

accum. 1001 0110 / 150 decimal (original accum. content)

As the above diagrams have shown, EOR will perform a bit flip
operation. The rule here is:

EOR: result is true if one OR the other,
but not both

Each pair of bits that do not match are turned ON, pairs that do
match are turned OFF. If a pair contained two 1's or two 0's, then
they would be turned OFF. If the pair contained 1 and 0, or 0 and 1,
the result would be ON. When an EOR is performed again with the
same original value, the bits would be returned to their prior state,
The cursor is a good example of EOR in effect.

One particularly useful method of using EOR is in the encryption
of data within programs. If you wanted to have a password access
system for your program, but didn't want anyone to be able to read
the passwords, EOR them with a known variable before storing
them away. When you read them back, EOR them with the same
value again to un-encrypl them for usage. As long as the EOR
variable is kept secret, the passwords are pretty secure. A little
imagination at this point will help you design a very difficult
encryption system to break. As | said before, EOR is very useful.

Bit Shifters

And now, away from booulean logic and into stranger bit beating for
the enthusiastic programmer. Into this category [include ASL -
shift memory or accumulator one bit to the left, LSR - shift
memory or accumulator one bit to the right, ROL - rotate memory
or accumulator and the carry flag one bit left, and ROR - rotate
memory or accumulator and the carry [lag right one bil. Each a
pretty valuable instruction, and each worthy of some explanation.

ASL: Shift memory or accumulator one bit to the left.
accum. 1001 0110 7 150 decimal

After an ASL, the result would be 0010 1100, or 44 decimal with
the carry flag set. The carry flag being set represents the result
exceeding 255, Therefore the result of this operation = 44 + 256
= 300, or double the original value. Thus we now have a way to
multiply by two from within assembly code.

LSR: Shift memory or accumulator one bit to the right.
accum. 1001 0110 / 150 decimal

After a LSR, the result would be 0100 1011, or 75 decimal with the
carry flag clear. This allows division by ywo in machine code. If bit
zero was originally ON, carry would be set after the operation to
signify that a fraction was encountered. Therefore, if the aceumula-
tor caontent was 01100101 hefore the operation (101 decimal), after
a LSR the bit structure would be 0011 D010 with carry set, which is
equal to 50 plus carry, or 50 with a remainder.

ROL: Rotate memory or accumulator and carry one bit left.

As the name implies, this operation is a rotate, not a shift. ROL
rotates the bits around in a circle in a counter clockwise direction.,

As usual, lets start with the accumulator holding the value below,
but show carry as the left most bit of 9 bits. To start, carry is clear,

Carry Accumulator (Start)
0 1001 0110 = 150 decimal with carry clear

After a ROL, the result would look like this;

Carry Accumulator (result)
1 0010 1100 = 44 decimal with carry set or 300 decimal

As can be seen, ROL is similar to an ASL, but with a difterence. The
most significant bit becomes the current carry status, and the prior
carry status becomes the least significant bit. Used in conjunction
with ASL, some really heavy duty multiplication can be pre-
formed. By ROL'ing everytime ASL generates carry, you could

The Transacror

Yolume 5, Issue 02

double the original value, then repeatedly double the result each
time. By stringing muitiple ROL's together, calculations of unbe-
lievable length can be achieved,

ROR: Rotate memory or accumulator and carry one bit right.

By now you probably know what this one can do for you. As ROL
was similar to ASL, ROR is similar to LSR with the added advan-
tage of rotating the carry bit along with the rest.

As can be expected, ROR will rotate all the bits in a clockwise
direction moving the low bit inta carry, and the carry bit into the
high bit. A binary value of %0110 0101 with carry clear would
become %0011 0010 with carry set after a ROR is executed.

Below is a program lo demonstrale how ROR can be used for
multiplication of two 8 bit numbers to generate a 16 bit result.
Below that is another demonstration program, this time for divi-
sion of a sixteen bit number by an eight bit number generating an
eight bit result. This example uses the ROL instruction to produce
its expected result.

cwen Jet's multiply 87 = 16 #=»

027a a9 57 lda #%01010111
027c B5 fb sta loval

027e a9 10 Ida #*% 00010000
0280 85 fc sta hival

0282 a2 08 lkdx *8

0284 a9 00 Ida * % 00000000
0286 18 cie

‘87 decimal

.16 decimal
Zero

0287 loop = +

0287 Oa ror a
(0288 66 [b ror loval
(28a 90 03 bce spot
028c 18 cle
0284 65 fe ade hival

U281 spot = »

U281 ca dex
0200 10 5 bpl loop
(0292 85 fc sta hival
(1294 &0 rrs

The 10 bit result can be found in locations $fb + $fc { low byte/
high byte)

; vvv divide 31587 by 227 #++
P 31H8T = w0111 1011 0110 0011

027a a¥ 63 Ida *X%01100011 low byte of
027c B85 59 sta loval 116 bil value
027e a9 7b lda *%01111011 :high byte of
(0280 85 5a sta hival ‘16 bit value
0282 a9 e3 ida #227 -divided by

(0284 85 5h sta by
0286 a2 08 ldx *8
U288 a5 5a Ida hival
028a 18 cle

-8 bit value

E]Eﬂh loop = =
028b 26 59 rol loval

028d 2a rol a

0Z28e bl 04 bes spot
0290 ¢5 5b cmpby

(0252 90 03 bee nextspot

E}294 spot =
0294 e5 5b sbe by
0296 38 seg

0297 nextspot = «
0297 ca dex
(0298 d0 f1 bne loop
029a 26 59 rol loval
0289¢ 85 5a sta hival
029¢ 60 s

The 8 bit result can be found in 859 with the remainder in $5a_
Testing Memory and 'Hiding' Code

Our last instruction for today is the BIT instruction. BIT is really
rather strange, to say the least, for it does not alter memory in any
way, it just changes three of the processor register flags.

The three flags involved are the Z - zero flag, V - overflow, and N -
negation. The zero tlag is set if the boolean expression accumula-
tor AND memory fails, or the zero flag is clear il accumulator AND
memoery succeeds, Bit 6 of the memory location of the BIT
operation is transferred into the V flag, and bit 7 of the memary
location is transferred into the N flag. BIT is a pretty good way to
test if bit seven has been set in a specific memory location, or bit
six if that is more to your liking. What ever the case, it really does
have its good points,

There is one more interesting use for BIT, if you are at all interested
in program protection. As lim Butterfield and a host of thousands
have already pointed out, an absolute BIT op code before a LDA
instruction helps hide load instructions quite nicelv. When disas-
sembled, the code might look like.

027a 24 a3 77 bit $77a5
027d 48 pha
027e 20 95 02 jsr $0295

But in reality the code was written with this in mind;

100 »=8027a

110 .byte §24 :bit op code

115 Ida $77 get the low byte of basic from chrget
120 pha

125 jsr SU295 ;and do something else for a while

To enter this code, location $027a is bypassed and location $027b
is chosen instead. This different location of entry will ensure that
the cade is used correctly.

There are probably more instructions that you are unfamiliar with
but, for today, thats all 1 intend o cover, If vou really don't
understand a particular instruction, send us a letter and we'll
attempt to answer it in onc of our future issues. If we receive
maountains of questions, perhaps another article like this one will
hit the pages of Transactor again. “Till later, thanks for allowing me
to climb inside your mind and jiggle your bits about.

P LT T TR FETFIS IS A P PE— S S —_

The Transactor

Volume 5, Issve 02

Getting BASIC
To Communicate

Darren Spruyt
Gravenhurst, Ont.

With Your Machine Code

There are several ways of communicating to your ML
program from BASIC and | wish to outline what [think are
the most common, and best~liked. The first method is by
the USR command, It allows one to pass a single variable
into the floating point accumulator#1. Second is the POKE/
SYS method, in which you POKE values into memory, and
then your code loads the values back from memory. Thirdly,
the SYS/WEDGE method, which allows about 10-15 pa-
rameters to be passed by using the CHRGET pointer. And
finally, the variable/sys method which allows an infinite
(realistically about 5428) amount of parameters to be
passed. | have tried to have information for three machines
- 64/VIC/PET-CBM -~ the information for the 64 is directly
stated, the PET/CBM info is in square brackets ‘[|, while
the VIC info is in backslashes *//".

The POKE Method

The POKE method is quite simple and straight-forward.
There are two options we can use with the POKE format.
One involves a memory location (or several) which we write
data into from BASIC, and later, read back from our assem-
bly code. The other just involves POKES from BASIC.

The first option involves POKEing a value to a location from
BASIC and then retrieving it from ML with a LDA, LDY or
LDX command. e.g POKE 8192,100/LDA $2000. Of course
the hex address used with the LDA, LDX, or LDY command
must match the value given in the POKE command. i.e
$2000 is hex for 8192

This method is simple and easy to use. It has a few draw-
backs: it is code consuming in BASIC if more than one
parameter is to be passed; and to transfer large numbers, the
number must be broken into smaller byte-sized pieces and
is realistically limited to integer values. To transfer a value of
‘X' in two byte unsigned arithmetic (range 0-65535) would
require two pokes:

POKE ADD,INT(X/256):POKE ADD + 1, X~INT(X/256)+256

where ADD =memory location to POKE to and X is the
value to be transferred.

The latter option may be slightly easier to use, but only 3
parameters can be passed with a range of 0-255 and it only
works on the C-64. In the G4 there are three locations in
page 3. These are locations 780, 781 and 782, The first is for
the accumulator, the second for the X-register and the last
for the Y-register,

If we POKE a value of 128 in the location for the accumula-
tor, and zero in the others we can demonstrate the effect.
Code in memory somewhere a BRK command. Location
$4000 is a good place. . . and SYS to it:

poke 780, 128 ; poke 781, 0 ; poke 782, 0
poke 16284, 0 : sys 16384

(You will need a machine language monitor program in-
stalled first, like Supermonb4, to get the proper reaction) lf
we now look at the register display (the info that comes up
when a BRK is executed) we will see that the accumulator
(ac) holds a value of $80 (hex for 128) and both X (xr)and Y
(vr) will be 0. With this we can see that values POKEd into
780, 781, and 782 appear in the respective registers when
control is transferred to an ML program. S0 we have an
easier way to transfer 3 parameters (range of 0-255),

We can also set what the processor status register will be the
instant that control is transferred to our program. We do this
by POKEing 783 with the correct value to set whatever flags
we wish to have set. One note: When our ML program
terminates with a RTS, the values that are in the accumula-
tor, X-reg and Y-reg and the status register are then placed
back into the same memory locations mentioned above so
we can then examine them with a PEEK command.

Volume 5, issus 02

The USR Method

The USR method uses one of BASIC's lesser known and
used commands: USR. An illustration:

A = USR(100)

The value of 100 is placed into the Floating Point Accumula-
tor #1 (FPACC#1-this is a group of 6 bytes in zero page in
which BASIC performs all of its arithmetic operations) for
your program to work on and when an RTS instruction is
encountered from your code, the current value that is in
FPACC#1 is then placed in the variable ‘A’ and control is
returned to BASIC.

Unlike SYS, USR has no starting address indicated in its
format. However, the starting address in specified in the
LSR jmp vector: $0310-784 ($0000-0002) [$0000-0002].
The first byte of each is the jump opcode JMP or $4C. The
next two bytes are the destination in the standard 6502
format, destination lo and hi respectively. Here is an exam-
ple of a computed-GOTO routine;

$2000 jsr S$bTIT [$c92d)/$d7(7/ ;convert FPACC*1 to in-
teger

$2003 jsr $a613 [$b5a3)/$c613/ ;search for line

$2006 bes $200b ;carry set if found

$2008 jmp $a8e3 [$bf00]/$cBe3/ ;undefn’d statement

$200B pla ;remove calling address
put on stack
$200C pla by the ‘USR’ routine

$200D jmp $a8c5 [$b850) $c8c5/ ;cont GOTO routine

Note: This routine does not return FPACC#1 into the varia-
ble because we do not return control to the USR ROM
routine, instead we return control to the GOTO routine.

Before this code can be executed, The USR vector must be
pointed to it. This entails:

poke 785, 0 : poke 786, 32 (poke 1, 0 : poke 2, 32)
[poke 1, 0 : poke 2, 32]

This is just an idea of what can be done with it, however it
can be used to do anything you might require of it eg. data
transfers through user port/RS-232 or many other applica-
tions.

This last and simple program using the USR function just
multiplies the given value by 10.

$2000 jsr $bae2 [$ccl8]/$dae2/;multiply FPACC*1 by
10

$2003 rts -end of routine

We sel the USR destination by using the above POKEs, and
whenever we call it, it will return a value multiplied by 10.
e.g. PRINT USR(115) will result in '1150" being printed.

The Wedge Technique

This technique requires some basic knowledge of the
CHRGET routine. This routine @ $0073 on VIC/64 and @
$0070 on PET/CBM is a routine that is called everytime
BASIC needs the next character in a program to execute.
Inside this routine is a pointer ($7A)64/VIC and
($77)-PET/CBM that points at all times to the most recent
character fetched from BASIC text space.

Consider a program with a line such as ‘10 SYS
49152:GOTO 1000'. As control is transferred to our ML
program, the CHRGET pointer is left pointing to the next
character (o be taken from BASIC code, in this example the
colon 7. The pointer is not changed while our program is
executing, but we can change it by calling some ROM
routines, and being able to do this can be very advantageous
to us.

Maybe you have seen a program with an SYS like this :'SYS
49152, lo,hi’, this program uses the wedge technique for the
ML program to obtain the two parameters that follow the
SYS.

In the example immediately abovee, the CHRGET pointer
will be lell pointing to the comma (). We can test for a
comma by calling ISR SAEFF [$BEF5-PET/CBM]
/$CEFF-VIC/. If the comma is present, control will return to
us and the CHRGET pointer will be increased by 1: other-
wise JSYNTAX ERROR' will result. The next step would be
to call the routine evaluate expression at $AD9E [$BD98)
/CDYE/, this will leave the type of expression in $0D [$07]
/$30D/ . A value of $00 means a numeric result, while a
value of 3FF means it is alphanumeric or string. The
numeric value would be left in FPACC#1, while a string
value would occupy three bytes, pointed to by an indirect
pointer at ($64) [($61)] and /($64)/. The order of these bytes
are; length of the string, the low-byte of the address and the
high-byte of the address of the string.

Once we have copied the information that we needed ie.
string length, destination lo and hi, we must then clean the
descriptor stack.” We do this by the following code: LDA
$64/LDY $65/JSR $B6DB. If we do not do this, we may
eventually have a ‘FORMULA TOO COMPLEX' error. No-

te:this is only needed when working with strings.

Listing 4 shows us how lo retrieve a floating—point variable,
where the syntax for calling this routine is ‘SYS8192;EXP’
where 'EXP' is a numeric expression. Listing 5 is an example
of crunching out an integer value from the expression:

The Transactor

Volume 5, Issue 02

syntax for this one is the same as above, but the allowable
range is 0-65535. Listing 6 retrieves a single byte value
(0-255) and prints it, Listing 7 is a psuedo POKE routine,
where syntax is ‘SYS8192;ADDVAL' where ADD is the
memory location to be POKEd to, and VAL is the value to be
put there (0-255). Finally, Listing 8 will display a string
expression using the wedge technique. If we wanted to
transfer about six variables, we can alternate between the
‘check for comma’' and the ‘evaluate expression’ routines.

The Variable Method

BASIC, in storing variables (simple, not arrays), uses seven
bytes for each variable. The first two are the name and the
next five are used differently for the different types. As more
variables get defined, BASIC keeps adding them to a table
that it keeps in memory, the start of this table is pointed to
by ($2D) [($2A)] /($2D)/ and the end is pointed to by ($2F)
[($2C)] /($2F)/. Lets examine the first two bytes represent-
ing the name,

There are two bytes used, and BASIC only recognizes the
first two characters of a variable. Now you say ‘How does
BASIC then tell a two character string variable from a two
character floating-point variable? e.g. AA$ from AA. We
know that the first character of a variable is a letter and that
the second character can be either a letter or number. BASIC
stores the variables' names using the PETSCIH character
value, but with a twist.

In the PETSCII range that the characters occupy, the MSB
(Most Significant BIT) is never touched since letters occupy
the range of 65-93 ($41-85A; % 01000001 - %01011010)
and numbers occupy 48-57 ($30-$39; %00110000 -
%00111001). In both ranges, the MSB (bit 7) is never
touched. BASIC uses the MSB, in both character positions,
to represent the four types of variables (string,
floating~point, integer and functions). Table 1 represents
this idea.

Table 1
Type MSB-1st char MSB-2nd char
PP 0 0
INT 1 I
STR 0 !
FNCT I 0

One character variables have a zero placed in the second
position, but the MSB is still manipulated accordingly.

Variable Names plus their storage values (hex) (Excluding

functions)

A - $41 and $00, AR - $41 and $42
C$ - 8§43 and $80, CZ% - $43 and $DA

Z% - $DA and $80. D1% - $C4 and $B1

The rest of the 5 bytes remaining in each variable type are
used as follows:

Floating-Point: sign + exponent and four bytes of mantissa.

String: length, string address lo, string address hi,
last two not used.
Integer: value hi, value lo, last three not used.

When the last several bytes are not used (string, integer) the
not used ones are filled with zeros. Question: Why the
unused bytes in the integer and string variables? Answer: to
he able to use a constant seven additive to increase speed
when searching through the variable tables.

A Real Example

A machine language monitor will be needed, so LOAD it
now if you don’t already have one in the computer. Type:

NEW <return> '
10A=100:B§= "DARREN " :C% = 100
RUN

Now enter the monitor with SYS 8 [SYS4, PET/CBM]. Type:
m 002d 002d <return> [$2A on PET/CBM] /$2D on VIC/

The pointer ($2D) [($2A)] /($2D)/ tells us where the simple
variables list starts and ($2F) [$2C] /($2F)/ tells us where
arrays start and variables end. In our example we should
have seen:

:002d 2008 3508 35 0B ed Y7 —b64
-002a 20 04 35 04 35 04 00 80 —PET/CBM
Now type:
m 0820 0835 <return>
Display of :

0820 41 00 87 48 00 00 00 42 —PET/CBM is identical,
-0828 80 06 Of 08 00 00 ¢3 80 but at 30420 - 0435
0830 00 64 00 00 00 00 00 00

Perhaps it is easier il we break into groups of seven from the
beginning.

name s/e manlissa

20820 41 00 87 48 00 00 00
name len lo i unused
SOBZ7 4280 06 0108 00 OU
name hi lo unused

082e ¢3 80 00 64 00 00 00

~1st variable defined
~2nd vanable defined
-3rd variable defined
With this information, we can now write Assembly language

subroulines to access the BASIC variables. Number 11 in the
list of ROM routines, is the routine used to find a BASIC

PR STTPErYY e

The Transactor

variable. Listing 1 is an example of an assembly program to
retrieve a string variable ‘AB%’ from memory, while Listing 2
retrieves an integer variable and finally, listing 3 retrieves a
floating point variable.

Well this 1s the end, and while | hope that everything is
correct, it may not be so. If | find any problems (heaven
forbid), I will try to get them into the Transbloopers section
of the next issue, And finally, I hope that | have presented
everything clearly so that all may be able to use these
new-found procedures. ‘

ROM Routines

In the following list, the values given outright are for the
C-64, while the ones in parenthesis ‘() are for PET/CBMs
(BASIC 4.0) and the ones in square brackets ‘[] are for the
VIC-20.

1. JSR $AEF7 ($BEEF) [$CEFT] - tests next character of
BASIC text for a right bracket).

2. JSR $AEFA ($BEF2) [$CEFA] - tests next character of
BASIC text for a left bracket '('.

3. JSR $AEFD ($BEF5) [$CEFD] - tests next character of
BASIC text for a comma ',

4. JSR SAEFF (SBEF7) [$CEFF] - tests next character of
BASIC text for the indicated character in the accumulator
{(using PETSCII codes).

All of the above routines leave the next BASIC character in
the accumulator and they exit leaving the Y-register at 0
and the X~reg unchanged.

5. JSR $B7IE ($C8D1) [$D79E] - gets a one byte value
(0-255) from BASIC text (through CHRGET) and return it
in the X-reg,

6. JSR $B1BF ($XXXX) [$D1BF] - converts FPACC*1 into a
2-byte signed integer at $64 ($XX) [$64] in the standard
6502 format—low then high values.

7. JSR $B7FT ($C92D) [$D7F7] - converts FPACC*! into a
2~byte unsigned integer at $14 ($11) [$14]

8. JSR $B391 ($C4BC) [$D391] ~ converts the integer in Y
(low value) and A (high value) into a floating point value
in FPACC#1.

9. JSR $BBD7 ($CDOD) [$DBDT] - packs what is in FPACC
“1 into a memory variable at X (low value) and Y (high
value). X and Y point to the data of the variable, not the
name.

10, JSR $BBA2 ($CCD8) [$DBA2] - unpacks memory varia-
ble into FPACC#1 where A is the low byte and Y is the
high byte. X and Y point as mention above (*9), |

11. JSR SBOET ($C187) [$DOE7] ~ find variable given name
in $45 ($42) [$45] first character and $46 ($43) [$46)
second character and returns variables location (start of
the data, not the name) in Y (high value) and A (low

value), also in $47 ($44) [$47] which is to be used an an
indirect index. i.e. LDA ($47)Y (LDA (344),Y) and [LDA
($47).Y]. Indirect address $5F ($5C) [$5F] points to the
start of the name of the variable. It must be remembered
that the high bits of the name must be modified depen-
dant on the type of variable being searched for. e.g. to
find variable "AB%"LDA #3CI1/STA $45/LDA #$C2/
STA $46/JSR $BOET7—I[or the C-64, will leave the above
pointers set to the correct addresses for ‘AB% .

12. J5R FADOE ($BDIY8) [$CDYE] - Evaluate expression
from where the CHRGET pointer was pointed to. Result
type is in $0D-500 means result was numeric and $FF
means result was a string. Il resull was numeric, the
value is in FPACC”¥1, while is a string, $64 (361) [$64] —
as an indirect index — points o a string of three bytes of
which the first is taken to be the length of the string and
the next two are the low-byte and the high-byte of the
location, in memory, of the slring.

13. JSR $ADSA ($BD84) [$CD8BA] - Evaluate numeric ex-
pression. Calls SADYE, bul then tests type of result, and
if not numeric then a "TYPE MISMATCH' error results,
Used if a numeric value is wanted.

14. ISR $BDD7 (SCF8D) [$DDD7] - Prints the number that
is currently in FPACC*1. To insure it to work (on the
C-064), load the Y-reg with 301 belore calling (if not
done, what is printed is the absolute value).

15, JSR $ADSD ($BD87) [$CD8D] - check input was nu-
meric.

16. JSR SADSF ($BD89) [$CD8F] - check input was string.
Both This one and previous are called after Evaluate
Expression (”12) is called.

17. JSR $B6DB ($C811) [SD6DB] - cleans descriptor stack.
LDA %64 and LDY $65 belore calling (64/VIC) or LDA
$61 and LDY $62 (PET/CBM)

18. JSR $B4F4 ($CHYE) [8D4F4] - creates room for new
string with length in accumulator. Location for string is
at ($33)-64/VIC and (35F)-PET/CBM. |

Listings

Before typing in most of the listings, you should have a
machine language monitor installed like Supermon-64. All
of the listings presented here are for the C-64, with the help
of the ROM Routines section above, one should be able to
modify them easily to work on the PET/CBM or VIC.

Listing 1: Assemble at $2000

$2000 Ida #$41 ;first letter/bit 7=0

$2002 sta $45

$2004 1da *$c2 ,second letter/bit 7=1
$20006 sta $46

$2008 jsr $b0e? find variable, given name
$200b Idy *$02

$200d Ida ($5f)y pointer to start of variable/gel lenglh

The Transactor

TTRIEESFOIC CWIFFI P ET g miE R TE N e s e

Volume 5, Issue 02

of string
$200f beq $202h length zero-go
$2011 tax *
$2012 iny .
$2013 Ida ($5f)y .get address lo
$2015sta $14 save it

$2017 iny ;
$2018 Ida (85f)y ;get address hi
$201asta $15 ‘save it

$201c stx $2100 ;save length

$201f Idy #$00 ;zeroy reg

$2021 Ida ($14),y :get a char from string
$2023 jsr 8ffd2 ;print it

$2026 iny in

$2027 cpy $2100 printed all the chars
$2029 bne $2021 :no, get some more
$202B s -end of routine

Now anytime a call to $2000 (SYS 8192) is executed, it will
print the current value of the string 'AB3’

Listing 2: Assemble at $2000

$2000 1da #$c ‘1st char-bit T=1
$2002 sta $45 ‘save value

$2004 lda #$¢2 2nd char-bit 7=1
$2006 sta 346 save value

$2008 jsr $ble?7 ;find variable
$200b Idy #$00 ;y=0

$200d Ida (847),y ;get hi-byte

$200f tax into .x

$2010 iny Wy=y+1

$2011 1da ($47)y et lo-byte

$2013 tay ;into .y

$2014 txa La=.X

$2015 jsr $b391 convert to floating-point vanable in
fpacc®l]

$2018 Idy #801 1y =]
$§201a jsr $bdd7 ;print fpacc®]
§2001d rts end of routine

Now, anytime this routine is called (OYS 81592}, il will print
the current value of the integer vaniable 'AB% . Nole: we
had to change the integer to floating-point value before we
could print it—this is the cause that makes inleger variables
are slower than floating-point. The BASIC in the 64 cannot
handle integer arithmetic, il converls them to F=F's, then
does the operation and then converts the resull back into an
integer.

Listing 3: Assemble at $2000

$2000 lda #$41 ‘1st char-bit 7=0
$2002 sta $45 ‘save value
$2004 Ida *$00 2nd char-bit 7=0

$2006 sta $46 save value

$2008 jsr $bUe7 ;lind variable

$200b jsr $bbald ;transfer from memory to fpacc *1
$200e Idy *$01 y=]

$2010 jsr $bdd7 ;print fpacc 1

$2013 rts .end of routine

Now, anytime this routine is called (5YS 819Z),

[loating-point variable ‘A’ will be printed.
Listing 4: Assemble at $2000;

$2000 Ida *$3b ;chr$($3b)=","

$2002 jsr Saeff test chrget for charin .a
$2000 jsr $adBa ,get numeric value into fpacc® |l
$2008 Idy *$01 ,y—=1

$200a jsr $bdd7 print fpacc *1

$200d rts -end of routine

Listing 5: As Listing 4, but change as follows:

$2008 jsr $bTI7 ,convert to integer
$200b Idx $14 .X=valuein $14
$200d Ida $15 a=—valuein $15
$2001 jsr $bdcd print .a*206+ .x
$2012 rts .end of routine

Listing 6: As Listing 4, but change as follows:

$2005 jst $b79e get 1-byte value
$2008 Ida 7500 ,.a=35%00

$200a jsr Sbdcd print .a+2506+ X
$200d rts .end of routine

Listing 7: As Listing 4, but change as follows:

$2008 jst $b7E7 .convert to integer
$200b jsr $aeld ;check for comma
$200e jsr $b79e get 1-byte value
$2011 txa = X

$2012 Idy *$00 ,.y=3%00

$2014 sta (§14)y ;put value into memory
$2010 rts ;end of routine

Listing 8: Assemble at $2000

$2000 Ida #*$3b ;.a=3$3b

$2002 jsr $aeft ;test chrget for charin .a
$2005 jsr $ad9e evaluate expression
$2008 bit $0d Jindicator for type
$200a bmi $200f if neg then string
$200c jmp $ad99 'type mismatch’

$200f Idy #$00 ;y=500

$2011 Ida (3064)y ;get length of string
$2013 beq $202f ;if length = 0 then go

the

The Transactor

~__Volume 5, Issuve 02

$2015 sta $97
$2017 iny

$2018 Ida (864)y
$201asta $14
$201¢ iny

$201d Ida ($64)y
$201f sta 8§15
32021 nop

$2022 nop
$2023 Idy *$00
$2025 lda ($14)y
$2027 jsr SHd2
$202a iny

$202b cpy 897
$202d bne $2025
$202f rts

save length

y=y+1

get lo of string address
$14=a

y=y+

get hi of string address
$15=.a

.at this point, the string is
at ($14) and its length is in $97
Ly =800

:get a character of the string
print character

Yy =y+1

«compare .y to length

print another character of the string

end of routine

The String Insert Program

This program takes three inputs: position at which to start
the insertion and two strings, the one to be inserted and the
receive the insert. This program is an exercise in retrieving
values using the wedge technique and also the variable
technique. The program resides at $COO0 on a C-b4, but
with modifications could be made to fit anywhere else, The
syntax for using is:

sys 49152:insert position, variable$, string
The result is then left in ‘variable$'. e.g:
a$ = "darren” : sys 49152: 3, a8, "ccc”
will result in A being " darceeren ™

$c000 1da #$3a

$c02a beq $c00b
$c02c ecmp$ls
$c(2e bee $c00h
$c030 beq $c00h
$c032 sta $c200
$c035 iny

$c036 1da ($64)y
$c038 sta $c201
$cOab iny

$c03¢c Ida (364)y
$c03e sta $c202
$cO41 jsr $aeld
$c044 jsr $adSe
$c047 bit 80d
$c049 bpl $cOOb
$cO4b Idy #$00
$cO4d Ida ($64)y
$c04f beq 3c00b
8c051 sta $c203
$c0h4d iny

$c055 1da (364)y
$c057 sta $c204
$c05a iny

$c0bb lda (864)y
$c(5d sta $c205
$c06(Ida $64
$c062 1dy $65
$c064 jsr $bbdh
$c067 clc

$c068 Ida $c200
$c06b ade $c203
$cOfe sta $14
$c070 bee $c075

$c072 jmp $b658

which were taken to be length, string
address 1o and string address hi)
if length is zero then syntax
-compare length with insert location
is it less {insertion impossible)
15 1t equal (use concatenation)
save length

y=y+]

.get string *1 address lo

save i

y=y+l

.get string #1 address hi

save it

‘check for comma

-evaluate expression

‘test type flag

‘numeric then ‘syntax errar’
y=0

:get length of string #2

if length is zero then syntax
:save length

Y=yl

get string *2 address lo

save string #2 lo address
y=y+4 1

.get string #2 hi address

Save it

‘clean des. stac

gel string *1 length
-add string #2 length
save length

.under 255 total length
;'string too long’

$c002 jsr Haeft
$c005 jsr $bh70e
$c008 txa

$c009 bne $c0e
$cO0b jmp $af08
$c00e stx $15
$cO10 jsr $Saeid
$c013 jsr $ad9e
$c016 bit $0d
$c018 bpl $c00b
$cila lda $65
$clile beg $c00b
$cle lda $47
$c020 sta $3f
$c022 Ida $48

-test for character in .a

.get a single byte value (0-255)
;set flags

‘if not zero then fine

USYntax error

‘save the value

-checik for comma

evaluate expression

;test flag for type

Af numeric then syntax

-get lo of address

if zero, then it was not a variable
get lo of address of string
save it

.get hi of address of string

$c075 jsr $bdfq
$cO78 ldx #5050
$c07a Ida $c200.x .

;make room for string

Sc024 sta $40
ScO26 Idy “800
$c028 ida ($64)y

save it

y=0

get length of string *{remember that
($64) pointed to a string of three bytes

$c07d sta $22.x
$cO7f dex

$cO80 bpl $c07a
$c082 Idy #$00
$c084 lda ($23).y
pcOBO sta ($33)y
$c088 iny

$c089 cpy 515
$c08b bne $c084
$c08d tya

$cOBe clc

dcOBE adc $33
$c091 sta $41
$c093 ida $34
$c095 adc *$H00
$cOY7 sta $42

J{ranster pointers to zero page
string *1-len ' $22, pointer ($23)
string *2-len ' $25, pointer ($22)
transter string *1.

until insert length achieved
;increase ($33) by .y

,and leave result in ($41)

1

1

The Transactor

Volums 3, Issve 02

$c099 Idy #3500
$c09b Ida (326)y
$c09d sta (541)y
ScOY ny

;transfer string *2

to memory * ($41)

$c0al cpy $25 dinished?

$c0a2 bne $c09 ;no

$c0ad tya increase ($41) by
$c0ad clc value in .y/.a
$c0ab ade $11 .and leave

$c0al sta $41 '

$cllaa bee $cbhae ;result

$c0ac inc $42 in(%41)

$clae lda 341

«decrease ($41)
$c0b0 sec)
$cObl sbe $15
$c0b3 bes $cOb7
$cObd dec $42
$cObT sta $41
$c0LY Idy $15
$cObb Ida ($23),y

by value in $15

;2el insert position
transfer last half

$cObd sta ($41)y ol string *1
$cObf iny :
$cOcO cpy $22 finished?

$c0c2 bne $cObb ;no
$cOcd Idy #3500
$cOc6 1da $14
BcOcB sta ($310).y
$clca iy

$cOcb 1da $33
dcled sta ($31),y
dcOch iny
$c08Y lda $34
$cO8b sta ($30)y
ScOBd rts

Ly =0
Jtolal length of new string
store in in variable

.get string address lo
;store it in varable

.get string address hi
-store it in variable
Jfinished!!

This lasl program, by Jim Butterfield, uses the vanable
techinigues. Il is a program to return a string of characters
input from the disk. It allows inputs including colons,
commas, and semi-colons which, if used with an INPUT*
statermment in BASIC would cause a ‘extra ignored’ error,
OPEN 1,8,2,"NAME " is needed before this code will work
and [irst variable defined must be a string variable.

$02c0 Idy #3502
$02¢2 Ida ($2d),y .(52d)is start-of-vanables (simple)
$02c4 sta $008Y,y this area is free space

$02c7 iny

$02c¢8 cpy 506
$02ca bne $02C2

1s it G
no, lets get some more

~alter this loop has been executed, the string length is in
$8b, string address in ($8¢) and both $8e and $8f are zero.

$02¢cc Ida "$01

$02ce jsr $fich command file #1 to talk

$02d1 jsr Sffed
$02d4 cmp*$0d
$02d6 beq $02e7
$02d8 Idy $8e
$02da sta ($8c)y
$02dc iny

$02dd sty $8e

$02dF cpy $8b
$02el beq $02e7
$02e3 Ida $90
$02e5 beq $02d1
$02e7 jmp $ffcc

.get a char from file
‘i$ it a return character?

ves!

:get index to string, “ start =0
;store it in the string
;increase index by one

-save new index value
.compare it to actual length of string
they are equal—no room left
:should always be zero

-an always branch

-untalk file and return to basic

BASIC Loader For String Insert

1000 rem string insert

1010 for j = 49152 to 49364 : read x
1020 poke |,x : ch =ch + x : next

1030 if ch<> 25843 then print " checksum error”
1040 rem use sys49152:po.targ$,ins$
1050 data 169, 58, 32,6 255,174, 32,158, 183

1060 data 138, 208,

3, 76, 8,175

134, 21

1070 data 32,253, 174, 32,6158 173, 36, 13
1080 data 16, 241, 165, 101, 240, 237, 165, 71
1090 data 133, 63, 165, 72,133, 64,160, O
1100 data 177, 100, 240, 223, 197, 21, 144, 219

1110 data 240, 217, 141,
1,194, 200,177,100, 141, 2

1120 data 141,

0, 194, 200

177,100

1130 data 194, 32,253,174, 32,158,173, 36

1140 gata 13,

1160 data

1170 data 165, 100, 164, 101,
0, 194, 109,
3, 76, 88,182, 32,244 180
0, 194, 149,

1180 data 173,
1190 data 144,
1200 data 162,

16, 192, 160,
1150 data 186, 141,
4,194, 200,177,100, 141,

5, 189,
1210 data 16, 248, 160,
1220 data 200, 196, 21, 208, 247, 152,
1230 data 51, 133, 65, 165, 52, 105,
1240 data 66, 160,

0,177
3,194, 200,177

32,219
3, 194

0,177, 35

0,177, 38, 145,

1250 data 196, 37, 208, 247, 152, 24

1260 data 133, 65, 144,
1270 data 56, 229, 21, 176,
1280 data 65, 164, 21,177, 35, 145,

2,230, 66

1290 data 196, 34, 208, 247, 160, O

1300 data 145, 63, 200, 165, 51, 145,

1310 data 165, 52, 145, 63, 96

2,198,

, 100, 240
, 100, 141

5, 194
, 182, 24
, 133, 20

34, 202
145 51
24, 101

0, 133
65, 200
101, 65
165, 65
66, 133
65, 200
165, 20
63, 200

cend

The Transactor

Yolume 5, Issve 02

e p—— e A LR 8 W E g

CIA Timers

Timers on the CIA chip are fun to work with. They are
versatile little devices. They can measure time intervals of
several microseconds up to several minutes. They can time
a duration of a signal being in one logic state, they can be
used in continuous, recycling mode, or do a quick count and
quit. They can be given a new time value at any fime, they
can be read reliably, the flags they set can be read correctly,
and they can ring a bell for aftention . . . need | go on? Let
your imagination run wild ~ you can use those clocks for all
sorts of terrific experiments.

They aren’t even all that difficult to use once you get the drift
of the jargon in the book. | find these translations helpful:

CRA/B 1s control register A or B - that is a panel of switches
on top of clock A and clock B. You flip and turn the switches
as you wish (position () to set the alarm, position 1 to set the
clock - this sort of thing).

ICR is interrupt control register — you tell it which (if any)
events should call you (alarm}); it tells you the status of
events (eight bits have come in). It's a neat communication
link. It's two things in one place for two sided talk. The only
tricky thing here is that once you've asked it a question (has
clock B done its's job?) the status, if the answer is yes,
vanishes. Which is wonderful in a way, because it gets ready
for the next event, but you may need to remember the status
if you are looking at more than one thing. | wish VIC chip
was huilt like that.

In any case, | had my share of problems, and this article
discusses just one made of the timers’ operation, TIMING

fairly LONG EVENTS, by computer standards, that is.

Elizabeth Deal
Malvern, PA

| wanted the clocks to participate in a simple SID orchestra.
But | soon discovered that training a clock to be a musician
isn't simple. The clock refused to keep the beat (a contradic-
fion in terms?). At first I thought | coded the whole thing
wrong, but subsequent snooping into the operation of the
timers revealed that there is a problem built into the CIA
chip.

According to the chip description in the Programmer’s
Reference Guide, the timers can be used in, what they call,
‘extended mode’. That's fancy talk meaning timing events
longer than about 1/15th of a second, precisely my goal,
The chip offers two options in how to use the timers: you can
st them and read them in a loop waiting for the elapsed
time to pass, or you can set them and ask that they call you
(interrupt) when the time is up.

The sort of thing | was coding did not need the speed of
attention and the accuracy of the interrupt-generating fea-
ture. And since it's devilishly complicated to set up a whole
alternate interrupt system immune to crashes, | decided to
go the easy way. Let the clock run. | can check it about the
time | think it might be done. | knew | had lots of time to
spare. So | coded something like this:

I set the timers for some duration

2 do other things, then look at the clock -
3 has the clack set its ‘all-done’ flag?

4 if not, waste more time i.e. goto 3

5 all done.

This didn’t always work. Things got stuck. Music sounded
rather odd, being off-beat. Some notes sounded twice as

The Transactar

Volume 3, Issve 02

long as they should, and, (very infrequently), the loop never
ended crashing the computer which just sat there waiting lor
that flag to be set. Thinking | had a coding error, | revised my
approach. But subsequent snooping revealed that while |
may well have coding problems, the chip has problems of its
own which the attached program demonstrates in vivid
colour and noise.

It includes two tests. You can change the timing by changing
variable TM in Basic code. Since | am only interested in
events exceeding 1/15th second, Basic uses only one byle
for time. This value should be greater than zero.

Test 1 puts the timers in the mode [was trying to use - no
interrupt request. When you run it you will hear fairly
regular clicking noises and the colours should be coordi-
nated. At some point (normally within the [irst 5-45 sec-
onds) things fall apart. We miss a click and the colors
hecome unsynchronized. The point of this exercise is (o
show that timing is taking place, that timer B does in fact
count down past zero, but that it sometimes forgets (o tell
the flag register that it's mission is finished. Hence, lo use
this mode, the only reliable way seems to be Lo code around
the problem - to watch the clock itsell and ignore the llag
altogether.

Test 2 does a more difficult thing: it tells timer B not only lo
count but to interrupt the computer when the time is up.
This is a vital mode for critical iming operations, hence we
have to trust its reliability. I once thought that it, too,
mishehaved. But | can’t duplicate the resulls any more
(program changes!). So while [can't be 100% sure it never
fails, I think I found a musician after all.

If any of you feel like running test 2 for a good, long lime,
please share your results with all of us.

References

1. Jim Butterfield, Memory Maps and Machine Language
lessons without which [wouldn't know where lo even begin
doing this sort of thing.

2. R West, Programming the PET/CBM which lalks of

hardware matters in somewhal simpler terms than

3. Commodore64 Programmer's Relerence Guide, hardware
appendix. Great book. The hardware pages are rough read-
ing for people new to this sort of thing, but all the informa-
tion is useful if you can somehow absorb their jargon into
your own thinking.

1000 rBM= === o e e s i et
1010 rem 6526/cia timer-b liz deal
1020 remM=——— e e e e e e
1050 tm =08 . mc=832.b0=176
1052 it peek(mc)=peskimc + 1)<>/6+/5 then

for |=83210 1022 . read v . poke |,v . next
106015~ " prnt” [R
1070 print" <cr;ctrl,wipe + crX> timeout: :intbit ©
1080 input” dotest12 "%
1090 pokebO,tm
1100 onasc(i$+ "0 ")-48goto1120,1130
1110 end
1120 sysmc . goto1060
1130 sysmc + 6 . sysmc + 3 . goto1060
1135 rem source code below can be omitted,
1137 rem data from 5000 on must be entered
1140 remM=——==—=—— e e e e e e e e

1150 sys700 ;pal source code

1160 .opt 00

1170 = =$0340 ;save to $3ff

1180 ;

1190 mp test1

1200 jmp test2

1210 mp nmisw

1220 here .word mynmi

1230

1240 p =17+40+ 28 tor screen

1250 cia2 = $dd00 :non-kb cia
1200 ta2 =cilaz2+4 timer a

1270 tb2 =cla2+6 timer b
1280cra2 =cia2+de clrirega
1290crb2 =cia2+9%f ctriregb
1300 icr2 =claZ2+5%d intctri+flags
1310 cial =3$dc00 the other cia
1320 prb1 =cilal +1 stop key here
1330 col = $d800

1340 mask1 =% 00000010

1350 maskZ =Y%10000010

1360 ctriky = $fb

1370 anynmi =$318
1380 nornmi = $fed’

1390 inex = Bfebc

1400 val = $b0 .goes into th2

1410 0once =val+1

1420 1o =Col+p to always moves
1430 in =col+p+1 .In,noise when
1440 noise =%$d418 timerb sets flg
1450 e e e e

1460 ;tb sometimes fails to set a flag
1470 ;show#1 - not asking for interrupt

1490 test] ==
1500 ida icr2

The Transactor

Volume 5, Issue 02

1510 sei: lga #%01111111 : jsr setup
1520 Ida #mask

1530 wait =+

1540 jsr teststop : beq quit

1550 ; watch timer b reload

1560 jsr watch

1570 ; check timeout flag,loop if O
1580 bit icr2 : beq wait

1590 ; flag worked this time

1600 jsr click : beqg wait ;always more
1610 ; back to basic

1620 quitcli: rts

1640 ;show#2 — asking for an interrupt
1650 ;seems to work most of the time

1680 nmisw =+

1690 : cir flags in hope of surviving
1700 ; what follows

1710 Idaicr2 : ida #%001111111 : sta icr2
1720 ; revector nmi stuff to here

1730 ; this can kill you

1740 lga here : Idx here+ 1 ; jsr setvec
1750 : now tell the icr & clocks

1760 ida #maskz : jsr setup : rts

1770 ;

1780 mynmi = #

1790 pha : lda icr2 : and #2 : beq myi2
1800 txa : pha :tya: pha: isrclick . imp inex
1810 myi2 pla : imp nornmi

1820 ;

1830 test2 = +

1840 ; nothing better to do loop

1850 jsr watch : jsr teststop | bne test2
1860 ; set things back to normal

1870 Ida #0 : sta icr2

1880 ida #<nornmi | ldx #>nornmi
1890 setvec =+

1900 sta anynmi @ stx anynmi+ 1

1910 rts

1920

1930 teststop =+

1940 idx prb1 : cpx #ctriky @ rs

1950 ;

1960 watch =+

1970 ; watches timer b reioad

1980 ; ignore quick reading results
1990 ldx th2 : cpx val : bee watch9
2000 cpx once : beq watchS

2040 click =+ ; & displ flag set
2050 inC In : lax #8 : stx noise

2060 sig1 dex : bne sig1

2070 stx noise . rts ;z=1

2080 :

2090 setup =+

2100 staicr2 :stato:stain:incin
2110 ; init clocks (val+ta)whatevers
2120 lax #%ff : stx ta2 : stx ta2 + 1
2130 inx : stx th2 + 1 : stx once

2140 |dx val : stx th2

2150 ; force load time,tb counts ta
2160 ; timeouts, cont mode,clocks run
2170 ida #%600010001 : sta craz2
2180 ida #%001010001 : sta crb?2
2190 rts

2200 .end

2210 end

5000 data 76, 75, 3, 76,151,
5001 data 3,129, 3,173,
5002 data 127, 32,213, 3,169, 2, 32,175
5003 data 3,240, 13, 32,181, 3, 44, 13
5004 data 221, 240, 243, 32,198, 3, 240, 238
S00S data 88, 96,173, 13,221,168, 127, 141
5006 data 13,221,173, 73, 3,174, 74, 3
o007 data 32,168, 3,169, 130, 32,213, 3
5008 data 96, 72,173, 13,221, 41, 2,6 240
5008 data 10,138, 72, 152, 72, 32,198, 3
5010 gata 76, 188, 254, 104, 76, 71,254, 32
S011data 181, 3, 32,175, 3,6 208, 248, 169
SO12adata 0,141, 13,221,169, 71,162, 254
5013 data141, 24, 3,142, 25, 3, 96,174
5014 data 1,220, 224,251, 96,174, 6, 221
S015 data 228, 176, 144, 7,228,177, 240, 3
5016 data 238, 196, 218, 134, 177, 96, 238, 197
5017 data 218, 162, 8, 142, 24, 212, 202, 208
5018 data 253, 142, 24,212, 96, 141, 13, 221
5019 data 141, 196, 218, 141, 197, 218, 238, 197

3, 76,1006
13,221,120, 169

5020 data 218, 162, 255, 142, 4,221,142, 5
o021 data 221, 232, 142, 7,221,134,177, 166
2022 data 176, 142, 6,221,169, 17,141, 14
5023 data 221, 169, 81, 141, 15 221, 96

2010 incto -cdispl timeout

2020 watch9 stx once ' ris

2030 :

The Yransactor 35 T Wiullll!, Issue 0 |

Commodore 64:

6526 Time Of Day Clock

Sometimes when you need it the most you can't get it. 'm
referring to the time. The Commodore 64's T1$ function can
sometimes cause a little frustration, too. You will often find
that the value for TI$ will be off by a minute or two after
having run for only 2 hours, and il you're using disk access
in a program, you'll find the time will be off by even more.
Therefore it would make a lot of sense to use the 6526's
Time Of Day clock (TOD) inside the C64, so you can keep
track of time more accurately. Ok, here we go!

The Tl string is calculated on an interrupt basis: every time
the interrupt routines are called its value is incremented by
one. T is measured in jiffies. A jiffy is 1/60 of a second and
this is how often the interrupts occur. Sometimes people
walill to disable the stop key or the run/stop restore keys
and in doing this you must reroute the interrupts. Depend-
ing on how you do this you could corrupt the TI$ timing.
Using the TOD clock you can avoid this problem. The 6526
TOD clock does not depend on interrupts to update the
time. The TOD clock is a free-running clock in the 6526
chip. Also if you are using machine language programming
and you need to wedge into the interrupt routines you will
often upset the TIS timing and the time it gives you will be
way off the mark. What is needed is something that is
accurate and invisible to the C64. The TOD clock is about as
invisible as you can get and as for accuracy it’s as good as a
$100 quartz watch. All you need to do is set the clock
running and then you don't have to worry about it again.
You can check the time as often or as little as you like.

Listed after this article is a machine language program that
sets and reads the TOD clock. To use this along with basic
you could have a little program like the following:

10) ifa=0Othena=1:load "clock " 8,1

20 sys 12+4096 + 15+256 + 3

30 input " enter time (hh,mm,ss) " ;b(2), b(1), b(0)
40 for a=0to 2 : poke251 1 a, b(a) : next

50 sys 12+4096 + 15+256

What this program does is the following:

Mike Forani
Burlington, Ont.

10 Load in the machine language routine that sets and reads
the clock. It is located at SCFO0-$CFFF. (52992-53247 in
decimal)

200 Stop the clock if it is already running. (unwedge the
program if it is wedged in)

30 Get the time in a 24 hour format. (eg. 22,14 ,45)

40 Poke the time values into zero page for the machine
language routine to use.

50 Call the machine language program to setup the clock
and wedge into the interrupts so the code that displays
the time will be executed.

This short little program just sets everything up. Once it is
finished the clock will be displaved on the top right hand
corner of the screen until you hit the run/stop restore or
until you turn the clock off by using the ‘sys' in line 20, All
that will be going on at this point is that the time will be
constantly displayed on the screen while the computer
remains on. To get the time into a string incase you needed
to use it for something you could try the following little
routine:

I0a$=""fora=32to 39 : b{a-32)=peek(1024 + a) : next
20fora=0to 7 :a$=a$+chr$(b(a)) : next
30 print a$

This routine does the following:

10 Get the time off the screen and into an array. (it is always
displayed)

200 Turn the numbers in the array into characters and
concatenate them into a string.

30 Print the string. (vou could use it for something else)

In doing this the time can be taken off the screen and you
can build your own TI$, or something like it, when you need
it,

The machine language program has two entry points:
$CFO0 and $CF03. The first entry point sets up and starts the

clock and the second stops it. Here is a description of what
the program does:

The Transactor

___VYolyme 5, Issve 02 |

Setup

1) Reconstruct the inpul, at locations ${b, $c, $id, so it 1s in
the proper form for the 6526 TOD clock.

2) Set the clock values and start it running.

3) Wedge in at the IRQ veclor and sel a toggle flag. IRQ’s
occur 60 times a second and | do not need to update the
clock display that olten. "Toggle' is used so the display is
updated once every N interrupts. N can be changed,
initially it is set to 15. Therelore the display is updated
every 15/60ths of a second, or 4 times per second.

1) Return to BASIC and leave the clock to running.

If the clock is to be turned off the code is simply unwedged
by replacing the wedged-in IRQ vector value with the
normal IRQ vector value.

The interrupt—driven parl ol the machine language code
works as [ollows:

Update

1) See il our toggle is timed down yel. If it isn't, go to the
regular IRQ routines.

2) If the toggle is timed out then put the current character
colour in the colour table in case it is a kernal 2/64 and
the screen was cleared.

3) Get the hours register and check it for the am/pm bit,
then get the minutes and the seconds.

4) Break apart the regislers, so they can be displayed, and
then display them. (ie. the register will read as *$23 and it
must be broken down to #3332 and #*$33 so it can be
displayed.)

o) Go do the regular IRQ roulines.

All of this will be occuring in background interrupts while
you are operating in BASIC or machine language. Also listed
is a BASIC loader lor the machine language program if you

2) Rate of display. If for some reason you need to update and
display the clock more than 4 times a second all you need
to do is change the toggle value. In the machine language
program change the $0f at $cf51 and $cfa to a number
between 1 and 255. For the basic program do the follow-
ing pokes after the program is loaded into memory:

poke 53073, xx : pokeb3098, xx

Where xx is some number between 1 and 255. For the
display rate change | would suggest that you try to keep the
toggle values between 5 and 15. The reason for this is
because you don’t want to update the clock every interrupt
or you will slow down the speed of the C64 and you must do
it at least twice a second so the flash of the " can occur.

The reason for having the program reside at $CF0Q is just so
that it doesn’t get in the way of anything, (I hope).

Enjoy this little program. | hope it helps you in discovering a
little more about the workings of the Commaodore 64, In my
next article we could discuss the way in which to use the
6526 TOD clock to generate interrupts - AN ALARM
CLOCK.

Editor's Note

When [tried Mike's clock display on my 64, the clock
seemed to tick like a dripping faucet - steady for a while then
two quick ones, or two short ones, etc. The problem? An
inaccurate quartz crystal. (That 1 in a thousand had to be
mine) But everything else works just fine and until | get the
urge to write an extremely time sensitive program, | proba-
bly won't bother replacing it. If yours is running a little
rough’ too, and you need the accuracy, your service center
can replace it in about 15 minutes (ie. 24 hours), or you
hackers can wip one in yourself for around 5 bucks.

do not have an assembler program. 100 ;program variables
110 ;
In case you want the clock to be displayed differently, here 120 irg = $eadl normal irq routines
are a couple of modifications you can make: 130 cinv = $0314 iirq vector
140 scrmn = $0400 ‘the screen starts here
1) 12 hour clock. To do this you need to put NOP’s in the 150 colour = $0286 current character colour
machine language program at $ciBe, $cf8l, $cf90. In the value
BASIC program do the following pokes after the program 160 ;
i1$ loaded in: 170 crtab = 3d800 .colour table ram
180 cial = $dc00 :cla number 1 irq's
poke 53134, 234 ; poke 53135, 234 : poke 53136, 234 190 ;
200 secs = $ib seconds
With these changes the clock will only display in a 12 hour 210 mins = $fc minutes
mode. ie. 12:59:59 would roll to 01:00:00 instead of 220 hrs = ${d hours
13:00:00, 2
The Transactor Yolume 5, lssus 02

240 + = $cf00) the program resides at 720 sta toggle .interrupt so use a toggie
$cf00 and up 730 ;

£ 740 chi ;enable the irq again

260 ;set up for set time 750 rts :return to basic

270 ; 760 ;

280 jmp setup ;start the clock 770 kill sei

290 imp kil ;stop the clock 780 lda #<irq ;stop displaying the clock

300 790 sta cinv

310 setup sei ;no interrupts allowed 800 lda *>irq .put irq vector back

320 Idy *2 810 sta cinv+1 to normal value

330 sed ;convert inputs to bed 820 cli

340 setll Ida *0 830 rts .80 back to basic

350 clc 840 ;

360 ldx secsy 850 ;update the clock and display it

370 setlZ dex 860 ;

380 bmi setl3 870 update dec toggle ;decrement the toggle byte

390 adc *| ;adding one in decimal 880 bne noupa 18 it time to display the

400 bee setl2 clock yet

410 setl3 sta secsy ;this way a #23 will be- 890 ~lda #15 .only need to update 4
come a *$23 times a second

420 dey 900 sta toggle :reset the toggle byte

430 bpl setll 910 ida colour

440 Ida hrs 920 idy *7 Af a kernal 2 ¢64 then hx

450 cmp *$13 up the colour

460 bee setld check and seeif pm. flagis 930 loop sta clrtab+ 32y ;table values
to be set 940 dey

470 S€C 950 bpl loop

480 sbc #$12 960 Ida cial+11 hours

490 ora *128 ;set pm. bit 970 bmi tohere .see if am or pm

000 sta hrs 980 cmp *$12

010 990 bne okhere

020 setld cld 1000 ida *0 turned from 235959 to

030 Idy hrs .get registers 000000

540 ldx mins 1010 beq okhere

590 Ida secs 1020 tohere and #*%00011111

060 1030 cmp *$12 if pm then fix the hours

a7l sta cial+9 set the 6520's time of day value
clock 1040 bcs okhere

280 stx cial +10 .a=seconds, x=minutes 1050 sel

o390 sty cial +11 ..y = hours 1060 sed

600 Ida *0 1070 cle

610 sta cial +8 tenths of seconds -~ clock 1080 adc *$12 it must be pm so add 12
starts here hours to value

620 lda cial+15 1090 okhere sta time-+2

630 and "%01111111 ;clock not alarm 1100 cld

640 sta cial +15 1110 cli

650 1120 lda cial +10 ;minutes

660 lda *<update 1130 sta time+ 1

670 sta ciny ;wedge irq so i can 1140 Ida cial +9 ;seconds

680 Ida *>update ;update the clock 1150 sta time

690 sta cinv+1 H160 ;

700 . 1170 Ildx *#2

710 Ida *15 ddon'twanttodoitevery 1180 Idy *#30

The Transactor Volume 5, Issue 02 |

1190 goer lda timex :print the hours then min- 1000 rem cB4 time of day clock display
utes 1010 for j= 52992 10 53239 : read x
1200 sta temp+ | .and then the seconds 1020 poke |.x : Ch=ch + X : next
1210 jsr distim 1030 if ch<> 31858 then print” checksum error " : end
1220 iny 1040 rem
1230 iny 1050 sys 52985
1240 sta scrny 1060 input " enter time (hh,mm,ss) " ;b(2}, b{1), b(0)
1250 lda temp+1 1070 fora=0102 : poke 251 +a, b(a) : next
1260 iny 1080 sys 52992
1270 sta scrn.y 1090 end
1280 dex 1100 data 76, 6,6 207, 76, 87,6207
1290 bpl goer 1110 data 120, 160, 2,248 169, 0
1300 1120 data 24, 182,251,202, 48, 4
1310 Ida cial +8 ‘tod tenths of seconds 1130 data 105, 1, 144, 249, 153, 251
1320 emp #5 -see ifwesshould printa’™ 1140data 0, 136, 16, 238, 165, 253
1330 hes abovh or a ‘' inbetween the 1180 data 201, 19,144, 7. 56,233
1340 lda #58 hours/minutes/and sec- 1160data 18 9, 128, 133, 253, 216
onds 1170 data 164, 253, 166, 252, 165, 251
1350 byt §2¢ 10 ‘hide' next Ida 1180 data 141, 9,220, 142, 10, 220
1360 abovd lda #32 1190 data 140, 11,220, 169, 0, 141
1370 sta scrn+37 1200 data 8,220,173, 15,220, 41
1380 sta scrn+34 1210 data 127, 141, 15, 220, 169, 100
1360 : 1220 data 141, 20, 3,169, 207, 141
1400 noupa imp irq g0 do normal irq stuff 1230 data 21, 3,169, 15, 141, 250
1410 : 1240 data 207, 88, 96, 120, 169, 4%
1420 distim ixa 1250 data 141, 20, 3, 168, 234, 141
1439 pha 1260 data 21, 3, 88, 9g, 206, 250
1440 Ida #0 ;make the value intemp a 1270 data 207, 208, 103, 169, 15, 141
sereen printabie 1280 data 250, 207, 173, 134, 2, 160
1450 sta temp form 1200 data 7, 153, 32 216, 136, 16
1460 ida temp+ 1 1300 data 250, 173, 11,220, 48, 8
1470 ldx #3 take the 12 in one byte 1310deta201, 18, 208, 15,1688, 0O
and pi 1320 data 240, 11, 41, 31,201, 18
1480 disni asl a Hintotwobytes 31 and32 1330data 176, 5, 120,248, 24,105
1490 rol temp 1340 data 18, 141, 253, 207, 216, 88
1500 dex 1350 data 173, 10, 220, 141, 252, 207
1510 bpl disui 1360 data 173, 9 220, 141, 251, 207
1520 Ida temp+ | 1370 cdats 162, 2 160, 30, 189, 251
1530 and *%00001111 {380 dala 207, 141, 249, 207, 32, 211
1540 ora *#$30 1390 gata 207, 200, 200, 1583, 0, 4
1550 sta temp+ | 1400 data 173, 249, 207, 200, 153, O
1560 pla 1410data 4,202, 16,232, 173, 8
1570 tax 1420 cata 220,201, 5,176, 3,169
1580 ida temp 1430 data B8R 44 169, 32 141 37
1500 ora *$30 1440 cala 4, 141, 34, 4. 786, 49
1600 rts 14580 dala 234, 138, 72,160, 0O, 141
1610 1480 data 248, 207, 173, 249, 207, 162
1620 temp * =42 temporary storage 1470 data 3, 10, 48, 248, 207, 202
1630 toggle *=++1 toggle byte 1480 data 16, 249, 173, 249 207 41
1640 time +*=++3 fimes stored here 1480 data 15, 9 48, 141, 249 207
1650 ; 1800 data 104, 170, 173,248, 207, 9
1660 end 1510 daia 48, 68
thetransactor " Volume 5, Issue 03

JOYCURSOR:
A Cheap Mouse

Chris Zamara
Downsview, Ont.

For Your Commodore 64

If you program like me, you probably find that your
fingers spend 90 percent of their time on just three
keys on the keybhoard - the shift, and the two cursor
control keys. Let's face it: when you're staring at an
incorrigible program trving to find out what's wrong
with it, buzzing the cursor around the section of code
you're contemplating seems to help. Also, if you use
POWER, BASIC AID, or another utility that lets you
scroll your program up and down with the cursor
control keys, it's easy to while away the better part of a
cup of coffee by scrolling the program up down up
down up down until your can’t see straight.

While doing this, | found myself wishing that I could
move around the cursor without having to wear out
my hand on those three poorly positioned keys. |
wanted something external, something like the
“mouse” used on some $10,000 + systems. Well,
what’s the equivalent of a mouse on a Commodore
647 Right! The ubiquitous joystick.

Run the loader program shown below. If you get a
checksum erraor, re—check the DATA statement values
and try again. When you get a successful RUN, JOY-
CURSOR will be enabled. With the joystick plugged
into port #¥2, you should be able to move the cursor
around in all directions, including diagonally. You can
change the speed that the cursor moves by POKEIng a

different value in location 49177 (it is originally set to
5)

Use RUN/STOP RESTORE to disable JOYCURSOR,
and SYS 49152 to re—enable it. endOY!

100 rem * data loader for " JOYCURSOR " =
110

120 cs=0 :rem = checksum =

130 0s=49152 : rem * objecl slarl

140 :

150 read b : if b<0 then 180

160cs=cs + b

170 poke os,b: os=0s+ 1. goto150

180 :

180 if cs <> 12839 then print" * checksum error
* " end

200 :

210 sys 49152 :rem * enable "JOYCURSOR”
220 print” == Ok, JOYCURSOR is enabled. ++*~
230 :

240 end

250 data 120, 169, 18,141, 20, 3

260 data 169, 192, 141, 21, 3, 88

270 data 96, 145, 17, 29,6157, 0

280 data238, 17,192,173, 17,192

290 data 201, 6,208, 85,6168, O

300 data 141, 17,192,173, 0,220

310 data 201,127, 240, 73,168, 1

320 data 44, 0,220,208, 6,173

330 data 13,192, 32, 95, 192, 169

340 data 2, 44, 0,220,208, ©

350 data 173, 14,192, 32, 95,192

360 data 169, 4, 44, 0, 220, 208
370data 6,173, 16,192, 32, YO
380 data 192, 169, 8, 44, 0, 220
390 data 208, 6,173, 15,192, 32

400 data 95,192, 76,113, 192,166
410 data 198, 157, 119, 2,230,198
420 data 165, 198, 201, 10, 48, 4
430 data 169, 0,133,198, 96, 76
440 data 49, 234, -1

N e o o AR e A e e e o o e e L e,

Ti;l Transactar

Yolume §, Issue 02

An Executive SX-64 Emulator Jim Butterfield

Can't get an 5X-64, because vou can't allord one or they are out of
stock? And vou say vou need to check out a program or two o see
if it works OK on the SX-64 as well as on your regular 64?

This procedure will convert your Commodore 64 into a logical
SX~6d. It replaces the ROM and a little of the RAM with 5X-64
information, Thus, you can try your hand at running the machine,

Not Much Difference

In fact, the SX-64 is very close to a Commodore 64. The major
differences are: absence of cassette tape; different background/
foreground colors, a redefinition of the RUN/STOF kev, and
reinstatement of easy screen POREs, The screen POKE [ealure,
together with a few minor cleanups, is in all new Commodore 64
units; but if your machine dates back a few months or more, it will
be new for you

Commuodore have very carefully preserved “entry points” in the
computer's logic. Almost anvthing you code - machine language
or BASIC - will still work on the 64. We can all think of system

| features that we would have liked to see changed or added, but
1 - Commodore have staved away from mast of them. As a result,

t’hiei-é-"s*ﬁxcellent compatibility between portable and regular 64,

BASIC is 1dentlcal to that of previous units; in fact, it hasn't
changed since VIC-20 days. Even though BASIC is the same, the
procedire givpn hrif}w Inads it in; that way, future changes may be
accomodated.

How To Write ll |

Obfain access to an 53»—64 Bl'ing along a disk and format it. Now:
enter the following pmgrﬂm

100 data 1024, 2023

110 data 55296, 56295

120 data 40960,48151

130 data 57344,65535
140forj=1to 8

150 read %'t «t+ X

160 next |

170 1327628 then stop
180 restore

1901forj=1104

200 read Xy

210 o0pen 1,83, "0sx ™ +strf()+ " .pw”
220 xUo = x/256.2 = X-xU o+ 250
230 print# 1, chr${z);chri{xYo),
240fork=xtoy

250 print#1 chr¥{peek(k));

260 next k

270 close 1

280 next |

Toronto, Ont.

Be sure to include the semicolons at the end of lines 230 and 250,
When it's ready, RUN the program. It will take some time, but
eventually four program files will be written on your disk. Return
the SX-64 to its owner and take your disk home.

How To Read 1t

Power up your Commodore 64. Important: if possible, disconnect
external devices such as C-Link or Buscard. Enter the following
program:

90 poke 53280,3.poke 532811
100a=a+1ifa=5goto 120
110 1load "sx" +slr¥{a).8,1

120 print chr@(31);

130 poke 1,53

Run the program. When it's finished, vou'll have a pseudo-5X~64.
Check it by commanding, LOAD "ANYTHING " - the computer
will reply DEVICE NOT AVAILABLE. The SX-64 doesn’t have tape.

How It's Done

We write lour blocks. screen, color nybbles, BASIC ROM, and
kernal ROM, We wrile them as program [iles, so the first two bytes
are the load address. By the way, you couldn't save the Kernal
ROM from a typical machine language monitar, since there's no
way you could fit in that last address of 65535 (or $FFFF). In this
case, Dasic seems to have a slight advantage over the monitor. We
must set the screen background and border colors separately, as
well as the cursor color, since they are not stored within any of the
four areas mentioned.

The reading program is elegant, but hard to read if you don't know
the trick. Here it 1s: after BASIC performs a LOAD, it always returns
to the first statement. Thus, there’s really an invisible loop from
line 110 back to 80, When all loads are {inished, variable A equals
5 and we skip ahead to set the cursor color.

Now: we've been reading this ROM information into RAM mem-
ory. But on the b4, we can switch ROM out and let RAM take over.
It we wanted to do this for just BASIC, we'd give POKE 1,54, for
both BASIC and Kernal, we imust say POKE 1,53,

Using the same methods, you can switch logic between various
gonerations of the Commaodore 64,

Conclusion

If you don't have access to an SX--64, there will be a disk in the
TPUG library to do the job for vou.

Now vou have an 5X-64, at least in a logical sense, As | said before,
vou won't lind much difference from the Commeodore 64, But at
least you'll kKnow how it feels. Now, if It only had a handle. . .

Volume 5, Issue 02

Volume 5 Editorial Schedule

he
!mm Issue® Theme Copy Due Printed Release Date
wehMaws Jour ar Camm # Camputars

1 Graphics and Sound Feb 1 Mar 19 April 1

PAYS 2 The Transition to ;‘Inﬂ;:; Code Apr 1 May ELI June 1
3 Software Protection & Piracy Jun 1 Jul 23 August 1
$40 “
9 Hardware and Peripherals Oct 1 Nov 19 December 1

per page for articles 6 Programming Aids & Utilities Dec 1 Jan 19 February 1/85

Business and Education Augl Sep 17 October 1

We're also looking for Volume 6 Editorial Schedule
professionally

drawn cartoons! Communications & Networking Feb 1 Mar 21 April 1/85

Aprl May 20 J 1
Send all material to: Languages pr ay une

Implementing The Sciences Jun 1 Jul 18 August 1

The Editor
Hard & Soltware Interfacin Aug 1 Sep 21 October 1
The Transactor gaobaciabonde ware interfacing Aug P

500 Steeles Avenue Real Life Applications Oct 1 Nov 19 December 1
Milton, Ontario
L9T 3P7

Advertisers and Authors should have material submitted no
later than the ‘Copy Due' date to be included
with the respective issue.

| GRAPH-TERM 64

A GRAPHICS TERMINAL PROGRAM

PRO-LINE

FORTHE COMMODORE-64
-.-l"lSDFTWAnE GRAPH-TERM 64 ia a 100% machine-language
program which
- . - = plots hi-res graphs generated by a mainframe
A CANADIAN COMPANY computerorthe C-64 in standard Tektronix® format
: s s downloads text (36K) or plol files (20K)
ddESIIgr"ng’ « creates instant replays of text or graphs at high
¢ ' ition
in speed, slow motion or stop act
sve ﬂp ,g' s creates hard copies of plots on the Commodore
manufacturing, 1520 Plotter |
. . In addition, the machine language subroutines used
PUbllShlng in GRAPH-TERM 64 are documented s0 you can use
them in your own programs to create tast, compact
a.nd plat files and to drive the plotter at top speed.

distributing

m|crocomPUter Specify disk or lape
Add $4.00 postage and handling for U.S.
software and Canada
Other foreign orders add 20%
Michigan residents add 4% sales tax

o $49.95 U.S. m

B 0 ORDER

DEALER ENQUIRIES WELCOME
AUTHOR'S SUBMISSIONS INVITED

CALL OR WRITE BEN Nﬁ;rETfSHOFTW%RE CO.
- eliowsione uUr.
416) 273-6350 Ann Arbor, M| 48105
ROLINE {(313) 665-4156
EEREINSOFETWARE Dealer inquiries invited
735 THE QUEENSWAY EAST, UNIT & The 1520 plotter and the Commaodore 64 are

MIESSSALUGA . ONTARILD LAY 405

products of Commodore Business Machines.

92

The Intelligent Software Package
For $35, you get all this on one disk:

DATA BASE: A complete fixed recaord-iength datra base.
Sort on any key, select using full logical operalors on any
key or keys, perform numeric manipulation on fialds. All
fields In a record fully customizable, Screen editing for
records. Can be used for accounts-receivable, invantory
control, or as an electronic rolodex. If you use your Com-
modore for nothing else, this program will justify ifs expense.

WORD PROCESSOR: A full-fectured word proceassor: very
fast file commands (including disk file catalog), screen
aditing, string searches, full confrol over margins, spacing.
paging. and justificalion (all commands imbedded in text).
A very powertul, easy-to-learn program. Includes a program
interfacing W/P with DATA BASE fo creale cuslom form lefiers.

SPREADSHEET: Turns your Commodore into a visible
balaonce sheet. Screen editing. Great for financial
forecasling.

HASEBALL MANAGER: Compiles batting statistics for a

baseball or soffball league, Generates reports on a player,
tearn, or the entire league [(including standings).

All programs will load and run on any and every Com-
modore computer having @ minimum of 10k RAM,; all pro-
grams fully support tape, disk, and printer. Any two pro-
grams on cassette, 520, Price includes shipping within USA
and Canada; Calif. residents add 6%. For orders over 10
in guantity, deduct 35%.

Since this ad is the catalog. no respanse 1o inquiries will
e made; however, documentation for any one program
may be purchased separately for 52 postpaid (deductible

from iater order]. Thank you.
Williom Robbins, Box 3745, San Rafael, CA 949412

Why Blank “Cheat” Sheets?
OK. So now you've got thg m They're

bast Cammaodore &4 in -
the wotld, and lols of = |
complex software 1o
nin on it One prob-
lemn. Unless yvou work
with some of these o
programs everyday Se
OI dre « compuler genius, ———
who can I(GEI] ail those commands
straight™ P57 in one prograrmn medans
one thing, and "F5" in another program means
something else. A tew compdniés do offer ¢ solu-
hon a die cut "cheat” sheet that attaches 1o your key:
board with dil the cormmands of one program printed
on it Great ided. unless you need them tor 1) or 20
programs. You could purchase another disk diive for
the same inveslmenl Our solution? Simple. & pack of 2
ined cards die cut to fit your keyboord anal just
waiting to be filled with those problem cormmands you
forget most often. Simple? Yes, but effective. Now you
can have all your program commeands right at yout
hngpr 11[::5 on YOUR VERY OF NN cusiom dEEIHHHJ
cheal” sheels. Order a coupie packs today!
L B & N N N N N N &N & N N N N N N N = 5 B N

650 N. 68th Street
Wauwatosa, Wl 53213

Dwser xlevr Trvcguizaiess Trnwitescl

Bytes&le

Plecase send me the following: Pricae in U.S. saliare ¥
ey, Ilem Price

......... $ots of 12 C-64 Keyboard Cheat Sheets @ 51595 § _

..... 2 Packs (24 Sheete) 101 52495 3

Total for Merchandise Shipping and Handling § 200 y
Coanadian Funds Surchargs s 300

3 2 ToTALENCLoser § . 1

L] Please Charge to. [MasterCard || VISA]

Number . . Expizes _____ i

SHIF TO. Names : IR

R A

Statea/Zip . BRNERSRASE Srt

[

|

4id 7 257-3564

h-n-_n--_u-—-------uﬁﬂuﬂ

INTERNATIONAL CENTRE, TORONTO
NOVEMBER 29 & 30, DECEMBER 1 & 2. 1984
L]

.-EEE-E.wﬂﬁEEEEE-..--.--.-.'-.-- T11]
R LT seagiess
b f b E e PR | 1] HHH R -
- fofddig iii¥!Egi'““""i"':!ﬁ::ﬁﬁ'ﬁiﬁEEEE
e E 'Iiﬂ!l l“ﬂmﬂl?=i=5#¥emm
ﬁﬂﬂ#aﬂﬁiﬂrﬁ-..ﬁtﬂkﬂ:--“' 1 1 71 7 F B AR
ﬁ::ﬁﬁ:ﬁ&ﬁﬂﬁgxg:*ﬂl - Iglﬁuaﬁﬁnﬁﬁ#ﬁﬂﬁ%ﬁ
3 1 llsqz = nums.&wﬂﬂl:ﬁal
R o e e e e
:ggﬁgﬁ:;ﬁgk:Egl===ﬁ!:I==l:=g$gliliimﬂﬁ{ﬁl
amenansbnnsrsnuBRBRRRRRE 5ot n e ae
BEBAFCAFERRE & BRI P e o 5 WG A
lﬂliﬂwlllllwﬁllllilllilﬁkﬁnuanﬁm#mmvaglua
O 02 A 1 2 0 4 3 2 0 011
Il’£Wﬁ£!llIumgI=|-- .qﬁtﬁussh&nihpfnun|d
=Ill=:ﬁn====u:gn=-- :II-:FﬁHHFEH$E;:;::==
-== llEEE;:!!l!gllllll'llgﬁgigsﬁiﬁgigg:qg
: ll!uf#ﬁ##ﬁ#n:lngtii“llli.iﬂuEmE¥EmH;ﬂ
--.--ﬂﬂ."ﬁ‘ﬁ:ﬁ-hﬁ'hEﬂ.ﬁmﬂﬂ..==-==== I Hﬂﬁ“'—‘i‘#ﬂ!pﬁ'ﬁ.
Illlﬁﬁﬁﬁﬁkﬁﬁiﬁﬁﬁﬁiﬁﬁam=l-ll====$§§§§§§§¥=
[] '“ﬂiﬁi‘;i;ﬂﬂg’ﬁ;’;“"‘"""“'""Eﬂiﬁﬁ“":
==I===lhﬁiia§mgzumég lll’llll.ggﬁﬁgﬂﬁnaﬁm
LT PR (- e
A O ! O 1T & T F TR
=========£EE§:5Ei‘lﬁiiiil“lﬂll;ﬂiﬁﬂl
EREREEEEES G Y CEE IIIIII .ll
HEREEERAERT Y REERE IIIII I.ﬁ
FEENERNRE Y S Y AN . i !i!i
LT IIIIIII IIIII IIII g
AEEEEE S s -ll--lill-l-ll- ==='

THE WORLD OF
COMMODORE
I

The Company that had the foresight and imagination
to design and build more computers for home,
business and education than any other will be pre-
senting the most farsighted and imaginative show
t: date with exhibitors from around the World.

The 1983 Canadian World of Commodore Show was
the largest and best attended show in Commodore
International’s history. Larger than any other
Commodore show in the World and this year’s
show will be even larger.

World of Commodore 1l is designed specifically
to appcal to the interests and needs of present
and potential Commodore owners,

Come and explore
the World of Commodore.

R st e

A HUNTER NICHOLS PRESENTATION.
FOR MORE INFORMATION CALL
DEBRIF BANNON
(416) 439-4140

™

STOCK HELPER"

Commodore 684 and VIC-20

Stock HELPER is a tool to maintain a history of stock
prices and market indicators on diskette, to display
charts, and to calculate moving averages. Slock
HELPER was designed and written by a "weekend
investor” for other weekend investors.

Stock HELPER is available on diskette for:

Commodore 64 $£30.00 ($37.00 Canadian)
VIC-20 (16K) $27.00 ($33.25 Canadian)

plus $1.25 shipping ($1.55 Canadian)

The VIC-20 version only charts 26 bi-weekly periods rather than
52 weekly periods.

(M)agreeable software, inc.

5925 Magnolia Lane * Plymouth, MN 55442
(612) 559-1108)

(M)agresable and HELPER are frademarks of (Mjagreeable software, inc.
Commodore 84 and VIC-20 are trademarks of Commadore Electronics Ltd.

The computer language for the
New Professional.

BASM is a unique blend of BASIC and standard 6510
Assembly language. This ingenious combination of
familiarity and flexibility provides an easier transition to
Assembly language while cutting your programming time
by 75%! Your program will then run over 200 times
faster than Commodore BASIC!

BASM-—an entirely new programming enviranment for
the Commodore 64. (Also avallable for Atari)

- TO ORDER WRITE OR PHONE
_)X 10730 White Oak Avenue
COMPUTER Granada Hills, CA. 91344
ALLIANCE (B18) 368-4089

GET CONTROL 0. C64
A/DCONVERTER

* ANALOG T0O DBISITAL CDMVERTER 1& Chapsnel 13 Bde,; G-190 Vol Inputs,;lual

stops with up ro 30 cooverslon per secwnd, Cuntioliled Erom Basic oF
Marhine language

12 BTT DRGITAL TO AMALOG COHYERTER= U=10 sclt outful, 4r7ive Sharti
racoydar, or control che spesd of o D.0 owpluy dibvd,

47 DIGTTAL THPUTS - TIL Compelibie. Munitws Seltihies, Contocks, Fise
smtarne, ar Burglar wierms

10 DIGITAL OUTPUTS- TTL Compuiible. Cuntiwl velare, Motors, EBars cf
plarmna,. Cantral sprinlecs)
W C=pE EFAL TINE CLDCK CALANDER- wiih baliwiy backdp - a¢l LE Omce &nd
rorget 1+, Ramir and machine lunguage progrems poosided Cur eperalion
pntry and ssrenn ancpur. GYHOSTE HEOHES3C

THE DATAONE comed conplece with user’s msoosl and swltwaive dilyer

dpnemE|nd anid reared w FES . O0

Afg &% OO far ahipping USA

GRLRICTRSS

[F ¥Y0U KEED PELIABLITY AKD SPEED shen QUIEDIEE io the answver. QUIERISI
Ld & -.'_ll' ’:li,"l'F'i":I'Iﬂl'I.'f I:F'-FF'T dE sk '.|:|';.l|qb'|- |I|_':li5".<l‘l ‘.‘qlll'-clilll'.' tear the
Cogavdore bé series conputer: i1t 4o part of ehe PEDIEE aeries of floppy
dliak sveicns and 18 optinlizsed to provide sxtramely high osgecd and
seliabie vperation. The QUIKDISE avyatem cenaiata af & shall £isk
cenbioller sodule, a cable namreably, asd a standasrd dlah drfive asdcabay.
The vontraller will dmterface to three dinch; Five uhd SRe Juarter inih,
pdule pluge Lnee Lhe
A5

gr eigbhe Lnch Liak drivea. The Q'—.IT[EI:T canbtrailer &

carteddye alot of the computer and a Flat cibbsn cab coHREsts ta the
dilre,

PIOS puliwace snulates & Coamcders dimk drive By dntersediing LHE disk

cynmgndy fioa the sachione. JUIEDIGE opearetan, however, Bhiy brasaferrisg

dmtn dlrevily fown Lthe disketie 1o the compuber mamory. With & dakn

symunfer swew of 250,000 bite per setond, aver ten Elmes fantetr thun Eh:e
s el bews, QUISDISE pooeiden saulsbios At the fasEnat 'Ffr1ﬂ{h1* ageed. A
Fall wei wl dish wtillltiecsd ave alae avéailahle.

Cuntraller vmcd wiih selimaew § 295,00

¥yde] CAT?=] siugle 3" arsctem S1C95.00

¥odel CH40-1 single 5" sreiem & 595,00

Hodel C340-1 <wal 3.5%" srepies & 595,30
Dbezter inoguirles apcepied

KMIVIM PASCA

EMMNMHE PASCAL lFes Lanpoderya Chi -3 Hilugryd afne AT FPhe aswEral P Ell | |
E"“‘ﬂ.“"i_.""“l ENMMH FASUCAYL & & Efee ...tl‘i'i &F FRARBE i,:..'int-rl-l.-'--c ERrfrfvAE FnAE
f=na F\..:r:i_'n] EeLfeEd. .. FANT! EfALtes | il ke lgF Hnd I'reaeEistarineinden [Walahs
lg & mabealk 5] lefEaen dnd ®BiflkE aeral
A, S L
TeR INFORMATION, JEE YOUR DLALER OR FO RO 10 0 LAMIOMENE PO TUAr « {F1R) IRJ-O0RE

| MICROTECH ' T

The
Reference

Transactor

Coming This Fall!
See News BRK for details

The

MIDNITE

SOFTWARE GAZETTE

DISCOUNTED PRICE C-84, VIC, ATARI, TRS-COLOR
Flve years of service to the PET community, FOR MOST SYST PROGRAMMER'S INSTITUTE

APPLE, ATARI, C-64, ViC 20 FUTUREHOUSE)

BRODERBUND (GAMES)
@ “Edumate Light Pen” $36
Spare Change D 341

“"Playground Software’ t.m.
E.';' 'Iz:ﬂe I ;':: (Uses Light Pen) C-64 & Atari
Sp nil::u Df[: S36 Animal Crackers D $36
- : Computer Crayons [$36
itﬂﬂﬂﬁﬂﬂ Varsion EHIH} Alphabet Arcade D $36
Bank Street Writer D $85 Bedtime Siories D $36
“C.P.A. Complete Personal
INFOCOM Account’” im. C-64, VIC, TRS,
(ADVENTURES) Color,
Witness D 858 Atari
Planetlall D $58
Complete Set (1,2&3)DT $94
SYNAPSE (ATAR! & C-64, Flnance /11D T $36
GAMES) Finance #2D T $38
users of Commodore brand computers, J§ e M=o7 e o
5 EDITORS: Jim and Ellen Strasma ’;L‘:;’fpm . o
ampile . r
B ssue [ree on rlql.llll, from: SIRIUS (BAMES — Art on yolr screen
for masi)
635 MAPLE O MT. ZION, IL 62549 USA Snake Byte D $36 VICTORY SOFTWARE
Bandits D $41 20/64 Dual Packs
Type Attac D 347 cassettes (T) or Disks (D)
Squish'em C APPLE $48
D C-64 $41 GAMES
“—I SMA (SYSTEMS MGT. Metamorphosis T D $30
ASSOC.) Creators Revenge T D $30
8 Documate-template G-64 §16 | ahyrinth of Creator T D $30
7 Code pro-64 - Tlgunai for 370 @alactic Conquest T D $30
I
54 FLERIMAC ROAD. WEST HILL. ONTARIO M1E 4A9 CANADA :f:;;";‘: e :::21“ :‘”‘“Mﬂ ¥ ¥ . ;gﬂ
TELEPHONE: (416] 262-1532 ‘ oY o]
THE 64 SOFTWARE HOUSE Annihilator T D $30
Adventure Pack |
' COMM™ DATA
ENTERTAINMENT : (4 Frog) 1 D $30
AS BRODERBUND' [39 95 COULRTIRIL (Rea k-t Adventure Pack i
SPARE CHANGE ' 0 39 95 Toddler Tulor s (3Prog) TD $30
OPERARON WHRLWIND | ' < U a0 '-.f:- \ Hﬂilnt]l' Hunter ‘ ﬁdﬂ TD $30
FAXEON SYNAPSE D a4 08 Primary Math Tutor $34 Grave Robbors-Graphic
E;HM;HJE::{E : bt } '? ig g; Math Tutor $34 (Adv} T D b $24
SHAMULS CA5% X e e Y ; English Invaders Games §34 .
SORCERE| ANFOC I D 59 95 - 84, exlri
FLGHT SMULATOR ' :.aLnrsL.riwz;;] 0 50 95 Goicha Math Ear;IEi s34 (Diskversion: 34. exira)
SAMMY LIGHTFOOT (SFRRA) D 33 95 Dealer inguiries foy:
PAINT BRUSH _HES) < 23.95 Programmer’s Institute PRECISION DO TR
ARUCE LEE B (DATA SOFT) Cio 3996 Kiwisoft (SILICOM INT'L)
CASTLE WOLFLNGTEN EMUGE] '*' 9. 79 : super Base 64 Dala Management
Viclory Software System D $117
BUSINESS Comm" Data ety
HOME ACCOUNIAN (GONT] D 76,95 SMA Galc Result (Easy) 3108
VIP FERMINAL | O 55,95 -alc Result (Advanced) $202
ELECTRONSC CHECKBOOK (TIMEWORKS T 37,95 (C) Cartridge (T) Tape (D) Diskelte
BANK STREETWRITER 0 72.95 - N
Please call for info on your computer model, availability and specitic price.
SPECIALS Send cortitied cheque, money ordar ar call and use your visa or Master-
KOIALA PAD AND PAINTED & r.arr_l Parsonal f:h&qg&s require two or three weeks to clear, All prices
SLICK STICK (IOYSTICK) 09 95 subject o change without notice. Please include $2.00 per order for
WHIZ K0S INTRO TO AASC [29 95 postage and handling. Wuebec residents anly add P s T
SR POKEFRN) A0 95
STAR MAZT) 38,95
INTRCOUCING THE RITEMAN ca" TD" Free 1 “(800)361 '0 847
PEINTER
DREN. | s maipmane oo except Western Canada, Nfid. and
ONIARIO RESIDENTS ADD /% SALES 1AKX Montreal area (514) call collect
ST N S e A & i DASE RD R R CALL COLLECT (514) 325-6203
AN 52 .50 FOR SHIPPING AND HANDL NG . botweon B a.m. and 5 p.m. Eastern time
ALL ITEMS SUBJECT TC AVARLABILITY PRICES SUBJECT 10 CHANGE WITHOUT NOTICE, .
T COR AL RERIES 1.4 iS i or send arder to: 66864 JARRY EAST, MONTREAL, QUE. H1P 3C1

d

9%

Kelly M. George

Advertising Manager
416 876 4741

COMMODORE OWNERS
WE’'LL FIX YOUR FILES WITH

FANTASTIC FILER"

The all purpose Data Base management
All this for only

system that provides:
1.) Menu driven subsections
2.) Logical key functions
3.) Average of 1000 records per disk

$29.%

COMMODORE OWNERS
WE'LL cnncxxou ou'r

Mr Tester TM

Is your Commodore 64 TH
Disk Drivn, Printer, Memory,
Joystick, Monitor and Sound

Chip operating correctly?

You may naver know
for sura. Mr. Tester is a
complete diagnostic that
tasis:

1.) Full joystick operation
in all axis .

2.) Continuous or standard
comprehensive memory
test.

3.) Commodorer™ S8ID chip
test for sound analysis.

4.) Screon alignment and
color test.

5.) Complete read/write Disk
Track and Block Test.

S ok Flonoye, analysisto] wait! Don't do iti!
7.) Completle printer test.
8. Complete keyboard test. °rder from

9.) Cassette read/write test. M _W Dist, Inc.

All this for only 1342B ll:%ut(#fo g
Butler, N.J.
$29%° 201.8389027

4.) Fast record access time }&Q
5.) Search for records by record number or by specific
search criteria -
6.) Easy to edit, delete or update records PTm:Iable from:..
7.) Interface with FANTISTIC FORMS ™ to print mail | Micro-W. D.L

ing labels or columnar reports
8.) Complete reference manual

9.) Technical support available to answer questions
10.) Up to 255 characters per record and up to 15 fields

P.O. Box113 Sin |
(ji Butler, N.J. 07405 3" | |
" ~(201) 838-9027——

215

==

Telecommuni
with a difference!

Unexcelled communications power and
compatibility, especially for professionals and
serious computer users. Look us over; SuperTerm
isn't just "another’’ terminal program. Like our
famous Terminal-40, it's the one others will be
judged by.
« EMULATION - Most popular termmal protecols:
cursor addressing, clear, home, etc,
- EDITING — Full-screen editing of Receive Buffer
» UP/DOWNLOAD FORMATS CBM, Xon-Xoff,
ACK-NAK, CompuServe, etc.
+ FLEXIBILITY —Select haud, duplex, parity, Stopbits,
etc. Even work off-line, then upload 10 System!
« DISPLAY MODES 40 column; 80/132 with
side-scrolling
« FUNCTION KEYS--8 standard, 572 user-cdefinecd
« BUFFERS - Receive, Transimit, Program, and Screen
« PRINTING - Continuous printing with Smart ASCIH
interface and parallel printer; buffered printing
otherwise
« DISK SUPPORT — Directory, Copy, Rename, Scratch

Options are selected by menus and EXEC hle. Software
on disk with special cartridge module. Compatible with

CBM and HES Automodems; select ORIG/ANS mode,
manual or autodial,

Write for the full story on SuperTerm; or, If you
already want that difference, order todayl

Requires: Commogore &4 or VIC-20, disk drive or Datasette, s
compaticde modem, VIC version reguires 16k memory expansion. Flease
specity VIC or 64 when ordering

Smart ASCH Plus ... $59%

"-".Fﬂt"ill"'l{]
with

The only interface which supports streaming -
characters simultaneously to the screen and printer
SuperTerm.

Also great {or use with your own programs or most
application programs, (€., word processors. Frint modes:

CBM Graphics (w/many dot-adar printers), TRANSLATE,
DaisyTRANSLATE, CBM /True ASCII, and PIPELINE.

Complete with printer cable and manual. On disk or cassette.

VIG 20 and Coxvmnoddore 6 am trademarks of Commodons Electronics, Lid.

L ‘Bnﬂﬂhi' llm brochure
m%ﬂﬁﬂtmnﬂwmw

(816) 3337200

handling (S350 for COD); ViSaMastercar

sk B 825 sale tax, Fﬂﬂﬂl‘iﬂﬂ'ﬁﬂ!ﬁﬂﬂlﬂa

M’CRO INC, yss us. mmwmﬂﬂm

311 WEST 72nd ST. « KANSAS CITY » MO 64114

a7

COMMODORE

-USER WRITTEN SOFTWARE-

Supporting all COMMODORE computers
Written by users, for users
% GAMES % UTILITIES % EDUCATIONAL *

VIC 20™

Vie 20 caollections #1,

2, 3,4, 5 06

over 70 programs per collection-Tape/Disk - $10.0L
Vic 20 callections #7. 8
over 50 programs per collection - Tape/Disk -$10.00

COMMODORE 64™

64 collections #1,

2.3,4,5 86, /7

over 25 nrograms per collection - Tape/Disk - $10.00

PET® / CBM®
22 collections - Tape/Disk - $310.00

DINSET": Reset Swilch

Waorks an Vie 20 or Commodore 64 — $5.00

SERIAL CABLES
10Ft.—$10.00 j 15Ft-—%15.00
LOC-LITE™
Operation Status Indicator Assembled & Tested
$20.00

All prices include shipping and handling.
CHECK, MONEY ORDERS,
VISA and MASTERCARD accepted.
For A Free Catalog Write:

Public Domain, Inc.

5025 S. Rangeline Rd.,

W. Milton, OH 45383

10:00 a.m. - 500 p.m. EST -« Mon thru Fn.
(513) 698-5638 or (513) 339-1725

WIE 203 CasE® pan [sl Bd T pre Teaonmeres & O ammodions Flecemnas |t
PET in & Bageutared Traceman of Commadore Busimess Machimes I

THE BANNER MACHINE™

Menu-drniven program works ke a
word processor. Great for busk
nesses, schools, or organizations.
Produces large signs up to 137 tall
by any length. Make borders of

widths up to 3" Eight sizes of |et-
ters from #" to B" high. Propor-
tional spacing, automatic center-

ing, right and left justification. Use
with Gemini 10 or 10X; Epson MX
with Grafttrax, or the KX or £X; Lom
modare 1525& or MPS 801, and the
Banana. Four extra fonts available
(519.95 gach). Tape or disk $49.95

Menu Driven Disk Operating System
Execute disk commands by reading
the menu and pressing just one
key: LOAD, SAYE, mitialize disk,
validate, scratCh, rename, COFPY,
auto list, renumber, search,
replace, and more! Disk $99.95

Flex File 2.1 By michae! Riley, Save
up to 1500 typical records on a
1541 disk drive. Print informabtion
on labels or in report format, Select
recards @ ways. Sort on up to 3
keys. Caiculate report columns.
1541 ' 40402037 Disk $59.95

CTRL-64 Permits listing of (64
programs on non-Commodore

printers. Lists control symbols in
readable form. Disk $24 95

Screendump Print a copy of the
C-64 screen simply by pressing just
two keys. This machine-language
pragram is compatible with most
software. 51Y.95

Chessmate 64 Analyze your own
qames, master games, book games,
end openings. Save, print, and
watch your games in a unigque
"chess movie " Memarize any
board position and recall it after
you have played through vyana-
tlons. isk 54995

Formulator A formula sclentific
calculator for tasks which require
repetitive arithmetic computations.
Save formuias and numenc express
sions. ldeal for chemistry, engineer-
ing, or physics students. Tape or
clisk 539.95

Space Raider An amazing arcade
simulation, Your mission s to
destroy the enemy ships. $19.95

Order Toll Freé: B00-TH6R-5645
Information: T03-401-6500
HOURS: 10 a.m, 1S 4 §.m. MON->4aT

Cardinal Software

14648 Jef! Davis My,
Woodbridge, WA 2819

Catalogs avaiiable
Specify: Educational,
Business Ltililves, or
ames ' Simulations.

Commodore &4 15 a registered trademark of Commodore Electronics Lid

(LR TE S TS Tiwimmwr

wweocs< [The DRIVIN

o matter which direction you wish ro ravel In, experience
the advantage of computer cormmunications with The / v
SMART 64 Terminal. Discover the program that puts you
onthe Ri%:r Road ro: Public-Access Networks, University
Systerns, Private Company Compurers and Financial Services.
The SMART 64 Terminal designed with Quality-Bred features, 5
Affordable Pricing. . . And Service. A

uggesed
S0 why not travel the communications highways the SMART way! $39.95

Accessories included: Retuil
(] Selective Storage of Received User-Defined Funcrion Keys, [Formantedlines

Dara Screen Colors, Printer and [] Review, Rearrange, Frins Files.
(] Alarm Timer. Modem Serring. [] Sends‘Receives Programs and

40 or 80 Col. Operarion*.] >creen Print. Fifes of ANY SIZE.
L1 Avfo-Dial. [1 Disk Wedge Builr-in!

(] Adjusrable ransmitireceive rables allow custom requirements. These and orher fearures make The SMART 64 Terminaf
the best choice for grond touring telecommunications

W ommmoriore &4 Lt sterect fracesman M ID QCI TECHN'C#
‘,';J WL E;;u{j-juw H:'-_bz' fu:_;f;hll'w:'h I Dealer A\'ﬂil'ﬂb““ﬁ‘ ‘ﬁ"'- .'«'-"_'\\ 0 l U T l O Fl 0% -
by D00 20 Comonstion © Call {203) 389-8383 {:_\"l P. D, BOX 2940, New Haven, Ci. D¢51 5

L SR -

Froes are n U dollars

JOIN THE

COMPUTER
REVOLUTION
WITH A MASTERY
OF THE KEYBOARD!

In the age of the computer, everyone
from the school child to the Chairman of
the Board should be at home at the
computer keyboard. Soon there will be

IFR m .278.>
(FLIGHT '

SIMULATOR)
CARTRIDGE

FOR THE VIC 20
$39.95

; COMMODORE 64
a computer terminal on every desk and 3 of - TAPE OR DISC :
in every home. Learn how to use it right ACADEMY $29.95 ACADERW
...and have some fun at the same time! JOYSTICK REQUIRED
Rated THE BEST educational program for the VIC 20™ Put yourself in the pilot’'s seat! A very challenging
by Creative Computing Magazine realistic simulation of instrument flying In a light
plane. Take off, navigate over difficult terrain, and
TYPING TUTQR PLUS WORD INVADERS land at ane of the 4 airporta. Artificial horizon, ILS,
The proven way to learn touch typing. and olher working instruments on screen. Full air-

craft features. Healigtic aircratt performance —

COMMODORE64 Tape $21.95 COMMODOREG64 Disk $24.95 sialwsping, elc. Transporl yoursell o a real-time

VIC 20 (unexpanded) Tape $21.95 adventure in the sky Flight tested by professional

Typing Tutor pius Word Invaders makes fearning the keyboard easy and fun! PHOIS and judged “terrific ! -
Typing Tutor teaches the keyboard in easy steps. Word Invaders makes typing Shipping and handiing $1.00 per “
practice an enterfaining game. Highly praised by customears order. CA residents add 6% tax. =

“Tvping Tutor is great!"', "Fantastic"', "Excellent’, High quality ", ""Our children

(ages 7-15) iterally wait in line to use it. " "Evenmy little sister likes it 'Word In u
vaders is sensational! " =
Customer comment says it all . . . e

" .. it was everything you advertised it wouid be In three weeks, my 13 year old » .
son, who had never typed before, was typing 35 w.p.m. [had improved my (yping
spe-ed 5 wpm and my husf:rand was able to keep up with his collage typing
class by practicing at home." P.O. Bﬂ! ﬂ4ﬂ3 San Rafael, CA 94912 (415) 499-”35‘:‘

Programmers: Write to our New Program Manager conceming any exceptional VIC 20T™ or Commodore 64T™ game or other program you have daveloped.

sa

e bl b b L el e L L L U e it |

I B D [T AL
... sR_ & a °F
e e, e mEEggw g

MICROCOMPUTER
== SUPPLIES &

Call us for all your C-64 Software

Memorex SS/DD $33.00/10
ECtype SS/DD 25.00/10
Single Superdrive 650.00
Dual Superdrive 1050.00

Gﬂmes on Di’ﬁ.kit*tittitiitt R R R E R R RN
Spy’s Demise
Pensate

Thunder Bombs
J-Bird (Best Arcade)
Flight Simulator

39.95
39.95
39.95
49.95
37.95
BUEi"EEEﬂn DiSktittt*t*i#tttttitt*t*it
Personal Accountant (Best) 49.95
Multiplan 124.95
Data Manager 31.95
Electronic Checkbook 31.95
Money Manager 31.95
Bank Street Writer 87.95

To order: Send maney order, certified cheque, parsonal chegques must clear

our bank, ViSA or MASTERCARD, {Include card # and expiry date &
signature) Add 5% for shipping and handling. Minimum $3.00 per order
Quebec residants add 8% P.5.T,

INTERNATIONAL MARKETING
SERVICES

P.Q. Box 522, Boucherville, Quebec, J4B 6Y2

Dealers & Distributors

Inqmrma Invited
Prics

(514) 655-0232

Disk Soitware for the Commodore 64 ™

JOT-A-WORD”

A computerized version of the old five letter word
game. Simply pick a secret five letter word (one of the
nlmnqt ‘3080 words contained on the disk) and then
play against the Jot-A-Word Genie or simply play a
solitaire version. Start by typing in a five letter word.
The Genie responds by telling you how many lelters
your guess and the secrel work have in common. Don't
try o cheat, because the Genie is too smart and it will
not accept non-words or continue a game that you have
given it wrong scores. This is a simple but stimulating
game for ages 9 to senior citizen. A real challenge to
your intellect, reasoning powers, logic and deduction
skills. It's simply hard to beat; as a fun and educational
experience! Graphics and music add to the enjoyment.

Micro-W. D.L
1342B RT. 23
BUTLER, N.]. 07405

201-838-9027

are in LIS dodlars

99

PROVINCIAL
PAYROLL

A complete Canadian Payroll System for Smaill
Business.

¢ 50 Employees per disk (1541) o
Calculate and Print Journals @ Print
(Cheques # Calculate submissions
summary for Revenue Canada
Accumulates data and prints T-4s e Also
available for 4032 and 8032 Commodore
Computers.

Available from your Commodore Dealer.

[Msarimuned ty

ICROCOMPUTER
SOLUTIONS
1262 DON MILLS RD. STE. 4

DON MILLS, ONTARIO M3B 2WwW7
TEL: (416) 447.4811

ki
F

——m

ror s

“The Genie is hard to beat!”

|||||||

| USED TO LAuH WIHEN
HE TOLOD ME HE PRACTICED
AT HOME OGN HIS COMPUTER

Here is your chance to play golf on a championship course without all the
headaches of getting a tee time, waiting for that slow foursome ahead of you,
losing balls, getting rained out or spoiling a good handicap. This game may be
played in the privacy of your home or in a clubhouse lounge for the enjoyment of
many members. A challenge to even the best players, this game requires a high
degree of practice, expertise and accuracy to attain a good score.

PRO GOLF Features :

« A full range of golf clubs (driveway, fairway wood,
wedge and irons 2-9)

* Realistic shot distances depending on club and
swing

¢ The ability to hook or slice a shot

« Upto 4 players in one game

* Detailed, colourtul screen layouts of 18 different
holes (tee, trees, sandtraps, rough, water, out of
bounds)

» Simulated ball reaction to course hazards (e.g. ball
bounces off trees)

¢ Hole distances, par, yards to green,strokes taken
on hole, total strokes per round and player totals
displayed

« A full screen enlargement of greens for putting

e Accurate putting simulation for angle and distance

» Practice of real golf skills — club selection, type of
shot (normal, hook, slice), length of swing, special
shot strategy (e.g. chipping, getting around or over
irees, water, sandtraps)

100

PRO GOLF .
For The Commodore 64
$34.95

(diskette only)

written by George Adams
available from your local retalier
distributed by
FACO klectronics Ltd.
20 Steelcase Rd. W.
Markham. ON.
L3R 1B2
416-475-0740

Dealer Inguiries Invited

Name o _
Address -

Prov/State Postal/Zip Code

COMoney Order [OVISA OMasterCard [JCheque
Acc#H g Expiry

Please include numbers above name

Add 52 00 tor shipping & handling
Ointario residents add 796 sales tax.

"
jl LU T oy B 2T IR EYTE TS, TP T S TSGR XY

HIS MASTERS DISKS

E"':I‘!-."m

WE'LL BACK YOU UP!

ATTENTION COMMODORE 64 OWNERS

you own a disk drive then you’ll need "The

o D

11

Clone Machine”. Take control of your 1541 drive.
NEW IMPROVED WITH UNGUARD."

Package includes:

.) Complete and thorough users manual
) Copy with one or two drives
)

g In'l"lltl{lutl and back-up many "PROTECTED" disks

Copy all file types

) including relative ¢
) Edit and view trn:h.‘hla:k in Hex or H.EEE

.) Display ull contents of directory and print

J Chﬂ:ﬂg l‘frﬂgﬂlm noOmes, l:lddoq;ltli es with single keystroke
)

)

initialization

1
2
3
4.
5.
6
7
8.
9. Euppurtl up to four drives

P =
34995 ;

*UNGUARD Now allows you to read. write and verify bad sectors and errors on
your disk making it easy to back-up most protected software.

Dealers & Distributors Micro-W. D.L
Inquiries Invited 1342 B Rt. 23

CALL (201) 838-9027

"Shnuld ve muda a huck-up w1th the

Butler, N.]. 07405

Clone Machine.”

COMMODORE COMPUTER |/BUSSter" § e —aos)
PRINTER ADAPTERS [BUSSter™y) COMPUTER INTERFACES —

addressable-switch selectable upperf

lower, lawerfupper casc.

works with BASIC, WORDPRO),
VISICALC and other software,
It EE card edge connector for con-
necting disks and other peripherals

The BUSSter line of analog and dlpn!al
products was designed to ¢ ollect data and
to output signals to laboratory and industri-
al eguipment in conjunction with a

to the PET. microcomputer svstem_ These powerful
—power tram printer unless atherwise self-containerd modules reduce a comput
noted, er's workload by providing read or write

RS-232 SERIAL ADAPTER —

baud rates to 3600 power supply
included.
MO L

ADA 1a5la . . £1458.00

CENTRONICS/NEC PARALLEL
ADAPTER ~— Centronics 36 pin
ribbhan connector — handles graphics.
MODEL ADA 1800 $129.00

COMMUNICATIONS ADAPTER-
serial & parallel ports true ASCII
COMNVEs SIOn baud rates to 9600 —
half or full duplex X-ON, X-OFF -

operations lo exlemnal devices. They are
controlled as slave interfaces ta real-world
physical applications. Control is over
an |EEE 488 (GPIB) bus or R5-232 port,

BUSSter modules are available in several digital and analag configurations. The internal
bufter and timer provide itexihility by allowing the BLSSter to collect data while the host

compiter is busy with other tasks.

BUSSter AG4-—64 channol digital input module
o read 64 digitat signals.

UHt-in
buffer $495.00

BUSSter BE4—64 channel digital output
module 10 send 64 digital signais $495.00

BUSSter C64~84 channel digital input'output
module to read 32 and write 32 digtal signals
Built-in bufter 95.00

BUSSter E16— 16 channel version of the

Ed $695.00
Add the suffix -G for IEEE-488 (GPIB} ar -R for
RS-232
All prices are LUSA only. Prices and spacifica-
tinrts subject to change without notice.

30 DAY TRIAL—
Purchase a BUSSter product, use it, and if you

. : are not completely satislied, return it withvn 30
selectable carriage return delt.u' - 32 BUSSter D16 16 channel analog input days and mﬂuwt full refund.
character buffer — centronics com- module to read up to 16 analog signals with B US Dollars Quoted
patible. [bit resolution {14%) Built-in butfer $495.00 $10.00 Shipping & Handhing
MODEL SADY ., | $205.00 | . MASTERCARD! VISA

BUSSter DI2—32 channel version of ’[I‘FIE-5 06
COMMODORE 64 to RS-232 e o m‘
CABLE ADAPTER BUSSter E4—4 channel analog outputmodule Cannecticut microComputer, Inc.
MODIL ADA 6310 . C£79.00 tn' Hiﬁﬂqﬁﬂﬂiﬂg signals with 12 bit fﬂﬂllguﬁtlgg INSTRUMENT DIVISION
(.06%) ‘ 36 Del Mar Drive
BUSSter EB—8& channel varsion of the Brookfieid, C1. 06804
S ERLL e < e i T T B

101

IS PROGRAMMING
TURNING YOU INTO

Write Advanced Programs Quickly!

Tired of writing reams of code? Take a quantum jump into the
future! Tommorrow's programmers are using software devel-
opment tools such as THE TOOL. THE TOOL lets you make
use of powerful machine language subroutines. Your pro-
grams will execute fast using less code. Input/output routines
and professional looking screens are easily created.

Features of THE TOOL include :

Screen Design functions which allow controlled input and
output

High Resolution Graphics with alpha/numeric display
Screen Save and Load functions (for hi-res and text screens)
Structured BASIC instructions , e.q. IF THEN ELSE

Programming Aids (e.g. auto, renumber, delete, find, trace,
hardcopy)

2 keystroke disk commands (DOS support extensions)
Game Design Instructions (joy, scroll, screen, colour)
A 50 page user manual

Name

i,
S THE TOOL

For The Commodore 64 ™™

$65.00
(diskeite only)

deveioped by Micro Application
avaiable from your local retader

distribuled by

PACQO Electronics Lid.
20 Steelcase Rd. W
Markham, ON.
L3R 182
416-475-0740

Cealer Inquiries invited

Address

Prov/State

Order
Acc#

Postal/Zip Code

CIVISA CIMasterCard
Expiry

Please include numbers above name

Add $2.00 for shipping & handling
Ontano residents add 7% sales tax.

CCheque

R—— e e T o
?ki.*ﬁu TEELE L LTITiaeRrtle LAAREIT -..:'.a:.%;.:.'-...i:-m- = -’--:.‘- ;
. P VISIT US AT THE A £
PERSONAL AND BUSINESS o &) = = =
COMPUTER SHOWPLACE, H | B B
APRIL 6 10 8/84 1 5'.'-::-:f=. =
C.N.E. TORONTO - & -
i JI f‘:
1P e rw- T l'-'-HEu%rr' rERCh L ek ra l'- *-:"--'r'-'rlﬂl.h
g TSI EH R R e ;u.:.i.ufi.k.'-.:....5.5_.._5_5_._5_-._35..'.5_’__'.5_51-
CANADIAN DOLLARS
WHIC INTR
= ul‘ | ." 11 || o 1
TN 1 ICH)
f AL }1]
|Tn’|' 3= FFE A5 r_|||'_.
n,‘l.ﬁ, . .|[r| 18 U6
Pl 2 H . s Cacken) tAG G5
B CEEMIMN i-'. [heyr BRSO i i oy I TE R
13985 N F| A |_."'- A
U IS U £ O e X T [T e .'3_.5_ A 1,
anvh NG J d --Z'Z - " et 0] ":-'_.'-' G
4.3 e e 15 e e 1 | A0 snrs DN b Ll
GG O Tini) I"l!'_'I Z' 'i'l
1) BIE i [P RLE
v LLOES W% E" AL _FEDl_
FOR ORDER OR FREE CATALOGUE WRITE OR PHONE CANADIAN SOFTWARE SOURCE
BOX 340" STATION "W", TORONTO, ONTARIO M&M SB9 (416) 491-2942
! - Oedaaric e |r_’nr!rr.1'1 il T aales bax, Send certified checue o mmorey orcler, Viso Add 52.50 for shipping and hondling. Al #erns sublject to availability. Prices : -
w: arg Mogtar Corg E-' BoEe INCIute COrd MUMmDer, ity o' and sgnanra. Sublact 10 Eh{}r'-gl'} without nohce, @
] *Coaliwmry v PR wilhtinn 3 clewes of ceclesr cleoda § stockend by noal suoobbers, '

ka0 e o A A AN e [l

CANADIAN SOFTWARE SOURCE

gl el Ny -l Pl ol ol T e T I T A = i T I T W I S I T iy ST S T I LN PN N S et LAy

COMPUTERWARE CATALOGUE SHOPPING

GREAT SAVINGS
FAST'
FRIENDLY
SERVICE

I |

COMMODORE OWNERS

Join the world’s largest, active Commodore
Owners Association.

Access to thousands of public domain programs
on tape and disk for your Commodore 64, VIC 20

and PET/CBM,

Monthly Club Magazine
Annual Convention
Member Bulletin Board
Lacal Chapter Meetings

Send $1.00 for Program Information Catalogue.
(Free with membership).

$20 Can.
$20 U.S.
$30 U.S.

Canada
U.S.A.
Overseas

Membership
Fees for
12 Months

1.P.U.G.. Inc.
Department 'M"
1912A Avenue Road, Suite 1
Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE *

103

COMMODORE 64™ COMAL
ADDS:

40 Graphics Statements

10 Sprite Statements
TLOGO™ TURTLE GRAPHICS
[RUN-TIME COMPILER

FAST program execution
auto line numbering

line renumbering

program structures
merging program segments
long variable names
named procedures
parameter passing

local and global variables
random access disk files
stop key disable

End Of File detection

What does this and more? COMAL
What is the cost? Only $19,95

All this and much. much more on disk with many sample :
programs. ONLY 519 .95 Also available: COMAL HANDBOO,

2 1H.95. BEGINNING COMAL . $19 95 STRUCTURED
PROGRAMMING WITH COMAL, $§24.05, FOUNDATIONS N
COMPLITER STUDIES WITH COMAL, $19.08 CAPTAIN COMAL
CETS ORGANIZED. $19.95. COMAL TODAY nawsletter, $14.0%
2end check or Money Order in US Dollars pius $¢2 handling to.
COMAL Users Group, U.S.A ., Lum:tvct 5501 Groveland Ter.,
Madison, WE 53710 phone: 608-222-4432. COMMODORE 64 s
trademark of Commodore £Jmtmmrw Ltd. CAPTAIN COMAL Is
trademark of COMAL Users Group, 1S A |

& & & & & * & ® & ® " @

[e tecd

Advertising Index

SOﬂ,'WﬂI'E Issue* / Page
Advertiser N 4 05 06 01 02 Product Name (Description) Manutan:turelr
Academy Software T3 77T 78 89 8B VIC20/C64 Soliware
Bennett Software Co. 82 Graph-Term 64
Bostun Educational Computing fi4 Educational Software
Canadian Software Source 79 48] 1083 B4 Sollware
Cass-A-Tapes B8 Commodore software
Cardinal Sollware 72 (2 B 897 VIC20/064 Games, Utilities, Edu,
COMAL Users Group 65 82 103 C64 COMAL
(‘omputer Alliance 84 BASM {language for the 64)
Dexterity Soltware H2 CH4/VIC 20 games
Dyadic Resources Corp. 88 SuperPET information
Fastern House B Bl Tl MAE Assembler
Info Mag lnc. 79 85 Commodore software
Input Systems [ne. a8 81 71 Typro {(wordprocessor)
Isis Hathar IBC IBC IBC IBC Laser Strike
King Microware 76 87T 2 VIC/BA/PET soltware
Magreeable Software B6 75 T4 Bl B4 Stock Helper
Microcamputer Solutions &1 71 86 99 C64 Provinclal Payroli
Micro-Fax 5 b4 Software
MicroSpec T 68 9 Ce4/VIC 20 Business Software
Micratechnic Solutions 77 78 89 p8 (64 Terminal software
Micro W.D.I. 75 74 B9 ChH4 JOT-A-WUORD
82 65 82 101 (64 Disk Utility
96 Mr. Tester (diagnostic prog.)
96 Fantastic Filer
Midwest Micro Inc, 69 VIC20/C04 Graphics Ukl
83 73 B0 97 VIC20/C64 SuperTerm
PACO Electronics Lid. T 72 Wy W2 The TOOL (programming aid) Micro Application
76 68 84 100 ProGoll
Performance Micro Products 64 65 C6i4 Forth
P.F. Commmunications RE J Butterheld video tutor
Pro Line Software W T3 72 62 2 IFC Commodore software
79 73 72 62 &3 PAL 64 {assembler)
™" 69 74 77 85 POWER 64 (programming aid)
4 7B 64 &6 MailPro
76 66 83 T3 &0 92 general
Psycom Software [nt'] B T4 (‘64 soltware
Public Domain inc, 8 97 Cummodore software
Silieom International [SuperBase 64 (data base) Precision Softwane
William Rubbins Software 74 7% T4 8Bl 93 VIC/64/PET Software
Hardware Jssue* / Page
Advertiser mi 4 05 o6 01 02 Product Name (Description) Manufacturey
Apropos Technology TS 67 VIC20/C64 Printer, Exp board
cgrs Microtech 84 ASD Converter, Quikdisk
Connecticut microComputer 64 TR B4 B6 101 Analog/Dhgital 14O
Fastern House il Trap 65
68 VIC Rabbit
it Eprom Programmer
68 Communications Bd
George M. Drake & Associales BC BC BC BC BC Colour Monitors Ardek
Micro W.D 1, 70 Tape Interface
70 VIC20 RAM Expand
Micre World Electronix 65 74 77 & VIC20/C64 Printer Interface
Midwest Micro e, 4 87 Smart ASCH Plus
Midwest Peripherals 4 72 62 83 VIC20 Expander
Precision Technaology 79 73 VIC20/C64 Expander Boards
Riclivale Telecormunications IFC IFC IFC IFC IFC C64 Link JEEE adapter) + software
Zanim Systems 84 70 Home control hardware
Accessories e £ Page
03 04 05 06 01 02 Product Name (Descriptinn) Manutacturer

......

Rytes & Pieces Inc.

The Book Company

The Code Works

Hurnter Nichaol

Fent'] Marketing Services
Midnight Software Gazelte
Toronta PET Users Group
Lanim Systems

93 C64 Cheat Sheets’
a1 Software revicw/ cschange
'CLURSOR', C64 Tape Magazine
83 World Of Commodore 1l show
By 79 T9 99 Disk printers, misc,
T2 71 66 85 Subscriber Info
15 74 77 B85 103 Membership info
| 1 CAD/CAM Tutorial

69 78 64

The Transactor

104

Volume §, Issue 02

Laser Skite

for-thecrcommodore-64

challenge the asteroid field,
maneuver the caves of ice,
experience the thrill,
play laser strike.

Laser strike, written in full machine language for the Commodore 64.

Commodore 64 is a registered trademark
of Commodore Business Machines Inc.

Visa/MC/Check/Money Order accepted

inU.S. in UK,
l:n‘:la:kuﬂa $24.95 Cassette £ 9.00 VAT included

$29.95 _ /N Disk £19.95 VAT included
Isis Hathor Digital Productions

Isis Hathor U.K.
6184 Verdura Ave. ” . Andrew Barrow
Goleta, CA 93117

Royden, Perkslane
(805) 964-6335 a Prestwood, Gt. Missenden
Add $2.00 postage and handling y Bucks, England HP16 OJD
California residents add 6% sales tax

You will be billed
* Ask about Laser strike posters I, I s “ n T“ 0 R for pnnt::: i::ld IE:-:H:::

DIGITAL PRODUCTIONS

COMPATIBLE > NEW 2 YEAR WARRANTY!
COLOR-I

(See detans al doaler)

AN u\
"'l.,\"«"h"'-\\\'\\\'\.\\“\'\.\“'\'h.'h‘u\'\\‘h“"h.\"-.‘h\-.'\ \\\\\\\\

The popular choice
for popular computers
. « «» @t a popular price.

The Color-l Monitor is designed to perform superbly B Quality 260(H) x 300(V) line resolution.
with your Apple Il, Atari or VIC Commodore personal

computer and others. Highly styled cabinet. It accepts B Built-in speaker and audio amplifier.

a composite video signal to produce vivid, richly col- B Front mounted controls for easy adjustment.
ored graphic and sharp text displays. Very reasonably

priced, the Color-l is a giant step above home TV sets B Interface cables avallable tor Atari and

and other monitors. VIC Commodore computers

Just write, or call to receive complete specifications B FCC/UL approved.

on the Amdek Color-| Monitor.
2201 Lively Blvd. = Elk Grove Village, IL 60007

AMDEK =70
(312) 364-1180 TLX: 25-4786 ~aaman eI

REGIONAL OFFICES: Calif. (714) 662-3949 * Texas(817) 4982334
Amdek . . . your guide to innovative computing!

