
Implementing STV by Meek’s method

I.D. Hill
d.hill928@btinternet.com

1 Introduction

At the time of the original implementation of STV
by Meek’s method [1] we were feeling our way.
Later thought has shown that, in some respects, the
details can be improved while keeping the overall
plan. Thus my own later implementation, as part of
a suite of programs to deal with the whole election
process rather than just the vote counting, and to in-
clude other versions of STV as well as the Meek
version, made some changes from that original im-
plementation. The aim of this paper is to describe
those changes and the reasons for them.

My program is written in the Pascal computer lan-
guage. While designed to be used under the MS-
DOS operating system, it can also be easily accessed
from Windows XP.

In [1] Woodall gave mathematical proof that the
Meek formulation has a unique solution for any
given voting pattern, and that the method necessar-
ily converges upon that solution. Strictly speaking
that proof assumes infinite mathematical precision.
In this paper I refer to that proof even though my
implementation has only finite precision. Provided
that the degree of precision is adequate, the approx-
imation to Woodall’s proof will be close enough for
practical purposes.

2 Terminology

In [1] we used the term ‘weight’ for the fraction, of
each vote or part of a vote received, that a candidate
retains. This has now become known as the can-
didate’s ‘keep value’, to be in accordance with the
traditional term ‘transfer value’.

We also used ‘excess’ for the amount of vote re-
maining after all candidates mentioned in the voter’s
preferences have received their shares. The more
traditional, but longer, term ‘non-transferable’ is
now used for this.

3 Arithmetic

In [1] the numbers of votes and the keep values
were declared as ‘real’ variables in the computer
sense. These would be represented in the computer
in floating-point form, which is necessarily only ap-
proximate and there is no guarantee that exactly the
same approximations will be used on different com-
puter systems. Given the robustness of the Meek
method, it is highly improbable that a different can-
didate would ever be elected because of this, except
perhaps in the case of a tie, but it is thought wise to
avoid even the possibility.

It is therefore better to make sure that the numbers
are so represented that, although still approximate
because only a finite number of decimal places is
used, the results are necessarily identical on all com-
puters. To achieve this, floating-point methods are
avoided altogether, each ‘real’ number being repre-
sented by a pair of integers, integer arithmetic on
computers being exact.

Assuming 32-bit integers to be available, the
maximum allowable integer is 2147483647 so to al-
low 9 decimal places for the fractional part is safe
and convenient. Thus a number such as 123.456, for
example, is represented as a pair of integers with 123
as the value of its integral part and 456000000 as
its fractional part. Adding or subtracting such num-
bers is simple enough, the integral parts are added
or subtracted, and the fractional parts are added
or subtracted. If the resulting fractional part ex-
ceeds 999999999, then 1000000000 is subtracted
from it and 1 is added to the integral part. Simi-
larly, if the resulting fractional part is negative, then
1000000000 is added to it and 1 is subtracted from
the integral part. There is no need to worry about
the whole number, rather than just its fractional part,
ever being negative; that never happens within the
Meek method.

Multiplication and division are not so simple, and
special routines are necessary to enable them to be
performed with no risk of overflow.

In principle, a fixed number of significant figures

7



Hill: Implementing STV by Meek’s method

might be preferable to a fixed number of decimal
places, but all that really matters is that the preci-
sion should be great enough as to ensure that the use
of more precision would be virtually certain not to
change the outcome. The fixed 9 decimal places un-
doubtedly satisfies this and is convenient.

4 Quota definition

Meek’s formulation [2] used the integral part of
1+T/(s+1), whereT is the total number of active
votes ands is the number of seats to be filled. He
obviously intended that the initial 1 of this formula
should be replaced by 1 in the last decimal place
used, when not working solely in integers. An al-
ternative approach is that of the second edition of
Newland and Britton [3] in ignoring the initial 1 al-
together if the calculation comes out exactly, while
adding extra rules to ensure that no more thans can-
didates can be elected even in exceptional cases. In
[1] we adopted the Newland and Britton approach
(with the necessary extra rules) because the number
of decimal places that would be used by a floating-
point implementation was unknown.

When working solely in integers, or to only 2 dec-
imal places as in Newland and Britton rules, there
are advantages in their formulation, but those advan-
tages are minimal where greater precision is used.
For my implementation, therefore, I have included
the addition of 0.000000001 to the quota, so that no
extra rules are needed, while it is very hard to be-
lieve that such a tiny increment will ever cause any
disadvantage.

5 Output

In [1], mainly because we were still feeling our way
at that time, more output was given than now seems
sensible, producing two tables at each stage of the it-
eration, one to say, in effect, “Where are we now?”,
the other to say “What are we going to do about it?”
There is really no need for any output for those iter-
ations that do not elect or exclude any candidate, so
immediate output has been cut down to just show-
ing the names of candidates elected or excluded as
those events occur, with storage in computer files of
enough information to allow various forms of table
to be easily produced when wanted.

There is also provision for an animated form of
output, showing coloured lines on the screen per-
forming the transfers of votes. This is deliberately
slowed down to make it easy to watch.

6 Ties

In the event of a tie, where a candidate must be
excluded and two or more are exactly equal in last
place, [1] gave only a pseudo-random choice as the
solution. In my implementation, I was persuaded
by ERS Technical Committee to include the tradi-
tional ‘ahead at first difference’ criterion as a first
tie-breaker, with a pseudo-random choice only if
that did not solve it.

Strictly speaking this is contrary to Meek’s stated
principles on which his method is based, and was
somewhat against my will, but it is unreasonable to
expect to win every argument, and it does no real
harm, particularly as ties hardly ever occur in real
elections.

The pseudo-random method used is similar ex-
cept that [1] calculated random numbers only if and
when required. I have found it more convenient to
assign such numbers to the candidates in the first
instance and thus to have them already available if
wanted. However I change the assigned numbers at
each stage so that, if A is randomly preferred to B
on the odd stages, then B is preferred to A on the
even stages.

7 Election

In [1] candidates were not deemed elected until the
end of an iteration. The keep values having con-
verged, it was then considered whether any addi-
tional candidate had achieved the quota. Further
thought has shown that it is absolutely safe to elect
as soon as a candidate reaches the quota during the
iterations and at once to start adjusting that candi-
date’s keep value, along with those of any others al-
ready elected. This follows from Woodall’s proof,
given as part of [1], that if there is a feasible vec-
tor, then there is a unique solution vector — see that
proof for the definitions of those terms.

8 Convergence

Both in [1] and my present implementation, the
overall plan consists of iterations within iterations,
the outer iterations being the operations up to and
including the exclusion of a candidate, the inner iter-
ations being the successive adjustments of keep val-
ues.

In [1] the inner iterations were taken as having
converged when each elected candidate’s votes were
individually close enough to the current quota. This

8 Voting matters, Issue 22



Hill: Implementing STV by Meek’s method

has been simplified to saying that the sum of the cur-
rent surpluses of all the elected candidates must be
no greater than 0.0001. It is almost certain in any
case that, if such a small sum of all surpluses is ever
reached, the lowest candidates are tied and further
iterations would not separate them. Because of the
short-cut exclusion rule mentioned below, however,
it hardly ever happens that iterations need to proceed
so far.

9 Short-cut exclusion rule

During the iterations, if it is found that the lowest
candidate’s current votes plus the total surplus of the
elected candidates is less than the current votes of
the next lowest candidate, it is certain that, if the it-
erations were continued all the way to convergence,
that lowest candidate would necessarily still be the
lowest and would have to be excluded. It is there-
fore safe to exclude the candidate at once. The next
iterations will then start from a different point than
would otherwise have been the case, but it follows
from Woodall’s proof that the next solution vector
will still be the same, so the eventual result must be
unchanged.

To see that, in these circumstances, the lowest
candidate cannot catch up, it should be noted that
the total number of votes remains unchanged and the
effect of reducing the keep values of elected candi-
dates is to pass their surplus votes to other candi-
dates or, possibly, to non-transferable. If all the sur-
pluses are passed to the lowest candidate, that candi-
date would necessarily, given the conditions, remain
the lowest. If some are passed to other candidates
that is even worse for the lowest, even if some of
those candidates become elected.

The only point that needs more thought is to
consider what happens if some surplus becomes
non-transferable, resulting in a reduction of the
quota. Ifn votes become non-transferable, the ex-
tra surplus created thereby ismn/(s + 1) wherem
is the number of elected candidates so far, ands is
the number of seats. We know thatm is less thans,
because otherwise all seats are filled and the whole
election is over. Thereforemn/(s+1) is less thann,
which shows that the amount that could have gone
to the lowest candidate has been reduced.

Similar arguments show that, if two or more low-
est candidates have a total number of votes that, to-
gether with the current surplus, is less than the votes
of the candidate next above, it is safe to exclude
them all at once, provided that enough would remain
to fill all seats. I have not implemented this (except

in the special case where several lowest candidates
have zero votes) believing it to be simpler to explain
what is going on if only one at a time is excluded.

With traditional style STV it is important that
rules are firmly laid down as to whether or not multi-
ple exclusions are to be made, because it can change
the result. Thus, for example, Newland and Brit-
ton rules [3] insist that multiple exclusions must be
made when possible, whereas Church of England
rules [4] insist on only one at a time. With Meek
rules, however, it is optional, as the result is neces-
sarily the same either way. The fact that I exclude
only one at a time is not intended to suggest that
there is anything wrong, within a Meek system, with
multiple exclusions if others wish to use them.

10 Equality of preference

Meek [2] suggested allowing voters to express
equality of preference where desired. In [1] this op-
tion was not included. My program does include
the option but there are some difficulties involved,
as explained in detail in [5]. I continue to hold the
conclusion expressed there that “the complications
may be too many to be worth it ... [but] the facility
is strongly valued by a significant number of elec-
tors”.

11 Constraints

Not proposed by Meek, the program also allows
constraints, whereby a maximum number, or a min-
imum number, may be laid down for certain cat-
egories among those elected. I dislike such con-
straints in principle [6], but they are necessary in
certain circumstances in the Church of England [4]
and, if the Church ever wished to update its proce-
dures to use Meek-style STV, it would be necessary
to demonstrate that it could cope with this additional
complication.

At present the main thing for which constraints
may be wanted is the filling of casual vacancies,
where this is done by recounting the original votes
with the late occupier of the vacant seat withdrawn.
The constraint that is then necessary is to disallow
exclusion of any existing seat holder.

12 STV in New Zealand

Those working on the introduction of STV for cer-
tain elections in New Zealand, having decided that
the Meek rules were what they wanted, had my im-
plementation available to them, and most of its de-

Voting matters, Issue 22 9



Hill: Implementing STV by Meek’s method

tails given above, such as the 9-decimal place work-
ing, and the figure of 0.0001 for the total surplus to
indicate convergence, have been incorporated into
their Act of Parliament [7].

There is, of course, no objection to these details
having been used, but I hope that it will not become
‘folklore’ that they must be used and that Meek has
not been properly implemented otherwise.

13 Acknowledgements

I thank both the editor and the referee for sugges-
tions that led to substantial improvements in this pa-
per.

14 References

[1] I.D. Hill, B.A. Wichmann and D.R. Woodall.
Algorithm 123 – Single Transferable Vote by
Meek’s method.Computer Journal, 30,
277-281, 1987.

[2] B.L. Meek. A new approach to the Single
Transferable Vote.Voting matters, Issue 1,
1-11, 1994.

[3] R.A. Newland and F.S. Britton. How to
conduct an election by the Single Transferable
Vote, 2nd edition. Electoral Reform Society,
1976.

[4] GS1327: General Synod. Single Transferable
Vote regulations 1998.

[5] I.D. Hill. Difficulties with equality of
preference.Voting matters, issue 13, 8-9,
2001.

[6] I.D. Hill. STV with constraints.Voting
matters, issue 9, 2-4, 1998.

[7] New Zealand Government. Local Electoral
Regulations 2001. Schedule 1A.

Editorial Postscript

I (Brian Wichmann) also have an implementation of
the Meek algorithm, written in Ada 95. I have not
made this generally available for several reasons:
firstly, it lacks any system for preparing the data and
even any adequate diagnostics on incorrect data (and
hence is just a counting program); secondly the pro-
gram has a number of extensions written to aid some
investigations (typically reported inVoting matters);
thirdly the program does not perform the arithmetic
exactly correctly. There are a number of small dif-
ferences between my Ada 95 version and the version
in this paper; ties are broken differently and I will
exclude several candidates together having the same
number of votes provided it is safe to do so.

In 2000, I did perform a check of the Meek imple-
mentation described in this paper against the origi-
nal version published in 1987 [1]. The report of this
validation can now be found on the McDougall web-
site. One interesting finding was that a test (M135)
was actually a tie between two candidates for exclu-
sion. However, both programs performed slightly
different calculations in approximating the solution
in such a way that neither reported a tie and the dif-
ferences in the rounding resulted in a different ex-
clusion. This is not considered a fault as, where
there is really a tie, either result is acceptable.

10 Voting matters, Issue 22


