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ENRICHMENT BENEATH OROGENIC 
BELTS? A GRENVILLIAN EXAMPLE

Although subduction-related arc magmatism 
and resulting collisional orogenesis are well 
documented in the crust of orogenic belts, the 
impact on the underlying lithospheric mantle is 

relatively little known. Because orogenesis is 
preceded by the subduction of altered oceanic 
crust and sediment, and the ascent of derived 
magmas and volatiles, long-lived subduction 
events should leave a permanent geochemical 
and isotopic signature in the lithospheric mantle 

and lower crust of the overriding plate. How-
ever, can such enrichment infl uence the geo-
chemistry of melts generated millions of years 
later over broad areas beneath the continents?

The Grenville orogen, one of the world’s larg-
est Precambrian (ca. 1.0–1.3 Ga) orogenic belts, 
extends from Baltica through the Canadian Mari-
times, along the spine of the Appalachians, into 
Mexico and beyond. Originally defi ned in Can-
ada (Fig. 1A) by the K-Ar studies of Stockwell 
(1968), rocks of the Grenville Province have been 
variably affected by several orogenic events pre-
ceding the Grenvillian orogeny (Rivers, 2008). 
This orogeny followed one of the Earth’s major 
episodes of crustal growth (Condie, 1998), and 
led to the fi nal assembly of Rodinia. Hanmer et 
al. (2000) and Rivers and Corrigan (2000) argued 
for the development of an Andean-type margin 
in the Ontario-Quebec-Adirondack segment of 
the orogen that formed along the leading edge of 
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ABSTRACT
Geochemical and Nd isotopic data from mafi c and newly discovered ultramafi c rocks in the 

Adirondack Lowlands suggest widespread enrichment of the lithospheric mantle under the 
Grenville Province. Incompatible element abundances and previously published Hf TDM (zircon) 
(depleted mantle model age) and Nd TDM ages from rocks of the anorthosite-mangerite-
charnockite-granite suite in the Adirondack Highlands document similar enrichment in the 
lower crust and its strong infl uence on subsequent magmatic events throughout the Ontario-
Quebec-Adirondack segment of the Grenville Province. Likely the consequence of long-lived 
(ca. 1.4–1.2 Ga) northwest-directed subduction along the southeast edge of Laurentia (previ-
ously proposed Andean margin), this enrichment is similar to that associated with the vast 
(>240,000 km2) ultrapotassic province of the western Churchill Province. Enrichment of the 
lithospheric mantle beneath orogenic belts is a predictable and important differentiation pro-
cess that has operated on Earth for at least the past 3 b.y. 
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Figure 1. A: General location and subdivisions of Grenville Province (after McLelland et al., 1996). AH—Adirondack Highlands; AL—Adiron-
dack Lowlands; BCS—Baie Comeau segment; CGB—Central Gneiss Belt; CGT—Central Granulite terrane; CMB—Central Metasedimentary 
Belt; EGP—Eastern Grenville Province; GFTZ—Grenville Front tectonic zone; PT—Pinware terrane. B: Neodymium TDM (depleted mantle 
model) ages across part of the Grenville orogen including Frontenac terrane (FT), AL, and AH. PC—location of Pyrites Complex; Tc—Time 
of crystallization. Nd TDM model ages and time of crystallization are given for AH (circles 1–11; Daly and McLelland, 1991) and AL (circles 
12–15; McLelland et al. 1993). Data (diamonds) within Frontenac terrane are from Marcantonio et al. (1990). Checkered pattern—massif an-
orthosite bodies. Average Hf TDM age from zircons of anorthosite-mangerite-charnockite-granite suite of 1400 Ma is shown in box (Bickford 
et al., 2008). Carthage Colton mylonite zone is shown as a dashed line. C: Enlarged (2.5×) inset (circles A–J) shows new data from mafi c and 
ultramafi c rocks in AL (this study). CCMZ—Carthage Colton mylonite zone; UM—ultramafi c. 
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Laurentia from ca. 1400 to 1200 Ma. If so, the 
underlying lithospheric mantle and lower crust of 
this area should be strongly infl uenced by sub-
duction-related metasomatic processes.

We report Nd (TDM) (depleted mantle model 
ages) and trace element geochemistry for mafi c 
and previously unrecognized ultramafi c rocks 
from the Adirondack Lowlands. While model 
ages determined from mafi c-ultramafi c rocks 
are generally not well constrained because 
of their low slope on Nd evolution diagrams 
(Dickin and McNutt, 2007), these rocks have 
geochemical traits and Nd evolution pathways 
similar to granitic rocks previously analyzed in 
the Adirondacks (Daly and McLelland, 1991; 
McLelland et al., 1993). They provide direct 
evidence of a widespread event or events that 
have infl uenced the isotopic systematics and 
trace element geochemistry of igneous rock 
suites subsequently intruded throughout the 
area, including the voluminous anorthosite-
mangerite-charnockite-granite (AMCG) suite. 
Thus, these rocks offer a window into enrich-
ment processes in the upper lithospheric mantle 
and lower crust that infl uenced the composition 
of subsequent intrusive events for ~300 m.y. 

ULTRAMAFIC ROCKS IN THE 
ADIRONDACK LOWLANDS

The Adirondack Mountains are ~100 × 
150 km domical uplift of the Grenville base-
ment rocks in northern New York (Fig. 1). Sepa-
rated into the Adirondack Lowlands and High-
lands along the Carthage Colton mylonite zone, 
they are respectively equivalent to the Central 
Metasedimentary Belt and Central Granulite 
terrane, primarily exposed in eastern Ontario 
and Quebec. The area, and the Central Granu-
lite terrane in particular, is extensively intruded 
by rocks of the 1150–1170 Ma AMCG and 
younger granitoids (McLelland et al., 1996).

The Adirondack Lowlands consist of a highly 
deformed supracrustal sequence dominated by 
shallow-water pure and siliceous marbles and 
pelitic gneisses metamorphosed and intruded by 
a variety of igneous rocks during the Shawin-
igan orogeny (Heumann et al., 2006). Although 
ultramafi c rocks are exceedingly rare, several 
dismembered and highly intruded amphibo-
lite belts occur. At Pyrites, New York, a small 
(~1 km2) exposure of cumulate ultramafi c rocks 
occurs within a ~15-km-long belt of amphibolite 
and hornblendite (Pyrites Complex; Fig. 1C). 
The amphibolite at Pyrites is in structural con-
tact with marbles and pyritic pelitic gneisses. 
Elsewhere in the Adirondack Lowlands these 
supracrustal rocks are crosscut by igneous rocks 
that have been dated at ca. 1210 Ma (Wasteneys 
et al., 1999), and therefore must be older.

Within the ultramafi c rocks at Pyrites decime-
ter to meter-scale compositional (pyroxenite and 
peridotite) and textural layering is at an angle to 
steep foliation trends in enveloping supracrustal 
rocks. A coarse-grained (to 3 cm) phlogopite-
rich lamprophyre dike, as much as 1.5 m wide, 
cuts sharply across the aforementioned cumu-
late layering. The ultramafi c rocks, with the 
exception of remnant augite and chromite, are 
composed of hydrous, secondary magnesium-
rich silicates including talc, tremolite, phlogo-
pite, chlorite, and serpentine.

Ultramafi c and associated mafi c rocks from 
Pyrites contain 33.7–52.1 wt% SiO2 and have 
MgO concentrations of 12.4–33.3 wt% (see 
Table DR2 in the GSA Data Repository 1). 
Chromium and Ni concentrations are typical of 
mantle rocks, with concentrations to 5440 and 
1588 ppm, respectively. When normalized to 
primitive mantle, large ion lithophile element 
(LILE) concentrations, including Cs, Rb, Ba, 
Th, U, Pb, and the light rare earth elements 
are considerably elevated (Fig. 2). In contrast, 
high fi eld strength elements such as Nb, Ta, P, 
and Ti exhibit pronounced negative anomalies. 

This geochemical signature is shared by all 
members of the suite, including the crosscut-
ting lamprophyre dike.

A suite of dismembered amphibolites and 
metagabbros from throughout the Adirondack 
Lowlands (Lowlands mafi c rocks) is geochem-
ically similar, but has fl atter and higher rare 
earth element concentrations and lacks a pro-
nounced Ti anomaly (Fig. 2). Their relation-
ship to ultramafi c rocks of the Pyrites Complex 
is unknown; however, they most likely rep-
resent highly disrupted fragments of oceanic 
crust derived from enriched mantle like that 
exposed at Pyrites.

NEODYMIUM SYSTEMATICS OF 
LOWLANDS ULTRAMAFIC AND 
MAFIC ROCKS

Samples from the Pyrites Complex and 
from mafi c rocks (amphibolites and metagab-
bros) throughout the Adirondack Lowlands, 
including one Highlands sample (Dana Hill 
metagabbro) have εNd at 1210 or 1365 Ma val-
ues that range from +0.0 to +5.5 (inset, Fig. 1C; 
Table DR3). Neodymium TDM ages range from 
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1GSA Data Repository item 2010030, Tables DR1–DR4, is available online at www.geosociety.org/pubs/ft2010.htm, or on request from editing@geosociety.org or 
Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 2. Primitive 
mantle normalized (Sun 
and McDonough, 1989) 
incompatible element 
abundances of Adiron-
dack metaigneous suites 
mentioned in this study. 
Upper diagram shows 
Pyrites Complex, gran-
itoids of West Canada 
Creek (R. Price, 2008, 
personal commun.) and 
Piseco Lake areas (Chi-
arenzelli’s data, and D. 
Valentino, 2008, personal 
commun), and granites 
of western Adirondack 
anorthosite-mangerite-
charnockite-granite (W-A 
AMCG) suite (Whitney, 
1992). Middle diagram 
shows Pyrites Complex, 
Adirondack Lowlands 
amphibolites and gab-
bros, and granitoids of 
Antwerp-Rossie suite 
(Regan’s data). Lower 
diagram shows minettes 
of the Rae-Hearne craton 
(Cousens et al., 2001) 
and the Pyrites Complex. 
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1366 to 1735 Ma (average 1510 Ma), with the 
exception of altered lamprophyre and metagab-
bro samples that yield unrealistically old ages 
(2260 and 2620 Ma) and have shallow slopes. 
Excluding disturbed samples (PLAMP and 
PGAB), rocks from the Pyrites Complex yield 
a Sm-Nd isochron of 1442 ± 120 Ma, and indi-
vidual TDM ages fall within error of this age. 
Similarly, a Sm-Nd isochron (Fig. 3) including 
amphibolites and metagabbros (Lowlands mafi c 
rocks) and rocks of the Pyrites Complex yields 
an age of 1443 ± 170 Ma and is constrained 
between the arrays of Quebecia (ca. 1530 Ma; 
Dickin and Higgins, 1992) and the juvenile 
crust of Ontario’s Central Metasedimentary 
Belt (ca. 1270 Ma; Dickin and McNutt, 2007). 
The crystallization age of the Pyrites Complex 
is assumed to be 1365 Ma, the oldest reported 
igneous age (juvenile tonalites) in the Adiron-
dacks (McLelland and Chiarenzelli, 1990). 
Three samples of Balmat mafi c rocks crosscut 
supracrustal rocks and are likely part of the 
1210 Ma Antwerp-Rossie suite (Wasteneys et 
al., 1999). They are shown separately for com-
parison (Figs. 3 and 4). 

The Nd isotopic evolution paths for the Pyrites 
Complex and Lowlands mafi c rocks show sub-
stantial overlap (Fig. 4). At the time of crystal-
lization, εNd values for the Lowlands mafi c rocks 
are below the depleted mantle curve of DePaolo 
(1981), suggesting derivation from an enriched 
mantle source or crustal contamination. Primi-
tive compositions, incompatible element trends, 
lack of systematic variation in εNd or TDM rela-
tive to SiO2 content, inferred oceanic origin, and 
positive εNd values suggest that the Pyrites Com-
plex is likely a sample of this mantle.

ENRICHMENT OF YOUNGER IGNEOUS 
ROCK SUITES

Numerous granitic intrusive suites ranging in 
age from 1050 to 1350 Ma occur in the Adiron-
dacks (McLelland et al., 1988). Primitive man-
tle normalized incompatible element concen-
trations from granitic rocks in the Adirondack 
Highlands (Whitney, 1992; ca. 1150–1170 Ma 
AMCG suite), and calc-alkaline arc rocks in the 
Lowlands (Wasteneys et al., 1999; ca. 1210 Ma) 
have been plotted for comparative purposes 
(Fig. 2). They are remarkably similar to those of 
the Pyrites Complex and Lowlands mafi c rocks 
both in scale and pattern with enriched LILEs 
and negative Nb, Ta, P, and Ti anomalies. Sev-
eral studies have been conducted on the Nd iso-
topic systematics of a variety of felsic igneous 
rock suites ranging in age from 1075 to 1366 Ma 
in the Adirondack Highlands and Lowlands 
and adjacent areas of the Frontenac terrane in 
Ontario (Fig. 1A; Marcantonio et al., 1990; Daly 
and McLelland, 1991; McLelland et al., 1993). 
With few exceptions, these rocks have positive 
εNd values (average +3), Nd TDM ages of 1302–
1576 Ma (average 1381–1412 Ma), and show 
no correspondence between SiO2 content (~55–
75 wt%) and Nd TDM ages (Fig. 1B; Tables DR1 
and DR4). These parameters limit the amount of 
older continental crust that was involved in the 
generation of these melts, as local supracrustal 
gneisses have εNd values of −2.5 to −6.1 and TDM 
of ca. 1790−2075 Ma (Marcantonio et al., 1990; 
Daly and McLelland, 1991).

Work by Bickford et al. (2008) on the Lu-Hf 
ratios of zircon separated from AMCG rocks 
(McLelland et al., 1988) yields similar Hf model 
ages (TDM) of ca. 1400 Ma, consistent with Nd 
model ages (Daly and McLelland, 1991). Any 

model for the origin of these rocks must take 
into account their arc-like geochemical anoma-
lies, enriched Nd and Hf isotopic systematics, 
and nearly identical and restricted range of Hf 
and Nd TDM model ages of mafi c and felsic 
metaigneous rocks of wide compositional range 
in Adirondacks (Table DR4).

The geochemistry and isotopic systemat-
ics of felsic and mafi c metaigneous rocks in 
the Adirondack Highlands and Lowlands are 
similar to those derived from enriched mantle 
above subduction zones. The concentrations 
of incompatible elements and Nd isotopes in 
Adirondack felsic rocks are consistent with der-
ivation, in part, from enriched mantle material 
like that exposed at Pyrites (Fig. 2). However, 
mantle, enriched or not, cannot have produced 
the vast volume of felsic melt associated with 
1150–1170 Ma AMCG suite. McLelland et al. 
(1993) proposed, on the basis of Nd systemat-
ics, that juvenile tonalitic lower crust (ca. 1300–
1365 Ma) like that exposed in the southern and 
eastern Adirondacks (εNd = +5 at 1365 Ma), or 
more widely as the Dysart–Mount Holly granit-
oids (Rivers and Corrigan, 2000), was the source 
of AMCG rocks. Other potential sources include 
1400–1500 Ma crust of the mid-continent gran-
ite-rhyolite province, and 1370–1450 Ma arc 
plutons exposed near Mauricie, Quebec (Rivers 
and Corrigan, 2000; Hanmer et al., 2000).

We consider that enrichment of depleted man-
tle began in the Grenville Province after 1.45 Ga, 
consistent with the age of Andean-type arc mag-
matism (1.4–1.2 Ga) proposed by Hanmer et al. 
(2000). Subsequently both the geochemistry and 
Nd and Hf systematics of mafi c and felsic melts 
over ~300 m.y. was infl uenced by enriched man-
tle and juvenile lower crust underlying much of 
the Ontario-Quebec-Adirondack segment of the 
Grenville Province. Rocks of the widespread 
AMCG suite (ca. 1.15 Ga), formed by staging 
of vast volumes of basaltic magma that melted 
the base of the crust, refl ect the geochemical 
and isotopic characteristics of their source(s). 
If so, how extensive is this area of enriched 
lithosphere? It likely includes the entire Cen-
tral Granulite terrane with its massive volume 
of AMCG plutons. To the northwest, AMCG 
rocks of the appropriate age, Nd model ages, 
and geochemical trends extend across 350 km 
from the western boundary of the Frontenac ter-
rane (Fig. 1A; Marcantonio et al., 1990) to the 
Adirondack Highlands. Similar geochemical 
trends are apparent in AMCG rocks farther to 
the south in the Hudson Highlands (M.L. Gor-
ring, 2009, personal commun.).

ORIGIN OF THE ENRICHMENT
One mechanism for enriching the mantle 

and overlying lower crust is the widespread 
permeation of subduction-derived melts over 
prolonged periods or episodes of enhanced 
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Figure 3. Sm-Nd isochron plot showing 
whole-rock samples of Pyrites Complex (fi lled 
diamonds) and Adirondack Lowlands mafi c 
rocks (open diamonds), Quebecia (Dickin and 
Higgins, 1992), Ontario juvenile crust (Dickin 
and McNutt, 2007), and mafi c rocks cutting 
the Adirondack Lowlands supracrustal se-
quence near Balmat (this study). Regression 
lines that correspond to calculated isochron 
ages are shown for reference. 

Figure 4. Nd isotopic evolution paths for 
mafi c and ultramafi c rocks of the Adiron-
dack Lowlands. Two samples of the Pyrites 
Complex (PLAMP and PGAB) with extensive 
alteration have unrealistically old model 
ages and shallow slopes; one sample of 
amphibolite at Antwerp (ANT) shares similar 
slope. Circles (open—LMR; fi lled—PC) show 
individual crossing points at estimated ages 
1210 and 1365 Ma. PC—Pyrites Complex; 
BG—Balmat Gabbros; LMR—Lowlands 
mafi c rocks; DM—depleted mantle. 
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 subduction (Condie, 1998). In Figure 2, the 
range in incompatible element concentrations 
(normalized to primitive mantle) of the Pyrites 
Complex is plotted against that of Paleopro-
terozoic (Tc = 1830 Ma) ultrapotassic rocks of 
the Christopher Island Formation in the west-
ern Churchill Province, subarctic Canada, from 
Cousens et al. (2001). These minette dikes 
and fl ows range from 41 to 72 wt% SiO2 and, 
despite their range in SiO2 content, they have a 
remarkable uniformity in Nd systematics (εNd 
at 1830 Ma = –9 to –7; TDM = 2.67–3.15 Ga). 
They are derived from an enriched mantle res-
ervoir developed via fl at subduction under a 
broad area of the western Churchill Province 
(>240,000 km2) between the Rae and Hearn 
domains during the Neoarchean (Cousens et 
al., 2001). Several sets of older dikes and fl ows 
within the same Nd isotopic envelope attest to 
the long-lived infl uence of the enriched mantle 
on magmatism that spans nearly a billion years 
and a wide compositional spectrum.

The Grenville orogenic cycle resulted in the 
fi nal assembly of Rodinia, one of the world’s 
supercontinents; preceding this, a vast volume of 
oceanic crust was subducted beneath the leading 
edge of Laurentia from ca. 1400 to 1200 Ma. 
This event left a profound geochemical over-
print on the overlying lithospheric mantle and 
lower crust that served as source material for 
subsequent igneous events ranging from mafi c 
to felsic, including the voluminous AMCG 
suite. A similar enrichment event is recognized 
in ca. 3.0 Ga igneous rocks of the Pilbara craton 
of Western Australia (Smithies et al., 2004), in 
the western Churchill Province in Arctic Canada 
(Cousens et al., 2001), the Jurassic dolerites of 
the Ferrar Group (Morrison and Reay, 1995), 
and in Miocene–Pliocene igneous rocks in the 
Sierra Nevada (Cousens et al., 2008). The per-
vasive geochemical modifi cation of the litho-
spheric mantle and lower crust appears to be a 
signifi cant differentiation process operative in 
orogenic belts over at least the past 3 b.y. This 
enrichment has infl uenced the chemistry and 
isotopic systematics of subsequent magmatism 
in orogenic belts regardless of composition, tec-
tonic origin, or ultimate source of the igneous 
rocks over hundreds of millions of years.
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