
Dream Investigation Results

Official Report by the Minecraft Speedrunning Team

December 11, 2020

1

Contents

I Introduction 3

1 Mechanics 3

2 Motivation 3

3 Objectivity 4

II Data 5

4 Piglin Bartering 5

5 Blaze Rod Drops 6

III Analysis 6

6 Methodology 6

7 The Binomial Distribution 8
7.1 The Intuition . 8
7.2 Generalizing the Binomial Distribution 8
7.3 The Cumulative Distribution Function (CDF) 9

8 Addressing Bias 10
8.1 Accounting for Optional Stopping 10
8.2 Sampling Bias in Stream Selection 11
8.3 Sampling Bias in Runner Selection 12
8.4 P-hacking . 12

9 Code Analysis 14
9.1 Confirming the Probabilities 14
9.2 Setting RNG Seeds . 15
9.3 Linear Congruential Generators 16
9.4 Periodicity . 17
9.5 Bartering . 18
9.6 Blaze Drops . 19

IV Results 20

10 Computation 20
10.1 Naive Estimate . 20
10.2 Full Computation . 21

10.2.1 Pearls . 21
10.2.2 Blaze Rods . 21
10.2.3 Combined Number 22

11 Conclusion 23

A Raw Data 24

B Stopping Rule Computation Algorithm 25

C Probability Computations 27

2

Part I

Introduction
1 Mechanics
Note: This section exists to explain Minecraft 1.16 Random Seed Glitchless speedruns to the
unfamiliar reader. Motivation begins a discussion of why this investigation took place, and is a
suitable starting point for those already familiar with Minecraft speedruns.

Speedrunning is a hobby in which people compete to complete a video game as quickly as possible.
This paper concerns speedruns of Minecraft: Java Edition, and, in particular, speedruns of the
category known as "Any% Random Seed Glitchless" (RSG) performed on version 1.16. A brief
summary of the relevant mechanics and speedrun strategies follows for the unfamiliar reader.

The final boss of Minecraft is located in an alternate dimension known as The End, which can
be accessed using End Portals. An end portal consists of twelve End Portal Frame blocks,
a random number (usually 10-12) of which must be filled with an Eye of Ender in order to
activate the portal. Thus, the runner is required to have up to twelve eyes of ender when they
arrive at the portal to be able to enter The End and complete the game.

In 1.16, the only way to obtain an eye of ender is by crafting it, which requires one Ender
Pearl and one Blaze Powder. Ender pearls can be obtained in several ways, but the fastest is
to use a mechanic known as Bartering. In a barter, the player exchanges a Gold Ingot with a
Piglin (a humanoid creature in the Nether dimension) for a randomly chosen item or group
of items. For each barter, there is about a 5% chance (in 1.16.1) the piglin will give the player
ender pearls.

Blaze powder is crafted out of Blaze Rods, which are dropped by Blazes—a hostile mob.
Upon being killed, each blaze has a 50% chance of dropping one blaze rod.

The main focus during the beginning of a 1.16 RSG speedrun is to obtain (hopefully) 12 eyes
of ender as quickly as possible, by bartering with piglins and killing blazes. These two parts of
the speedrun route are the primary concern of this paper.

2 Motivation
Members of the Minecraft speedrunning communitya reviewed six consecutive livestreams of 1.16
RSG speedrun attempts by Dreamb from early October 2020. The data collected show that 42 of
the 262 piglin barters performed throughout these streams yielded ender pearls, and 211 of the
305 killed blazes dropped blaze rods. These results are exceptional, as the expected proportion
of ender pearl barters and blaze rod drops is much, much lower.

An initially compelling counterclaim is that top-level RSG runners must get reasonably good
luck in order to get a new personal best time in the first place, so, while it is surprising to see
such an unlikely event, it is perhaps not unexpected. However, upon further research, Dream’s
observed drop rates are substantially greater than those of other top-level RSG runners—including,
Illumina, Benex, Sizzler, and Vadikus. If nothing else, the drop rates from Dream’s streams are
so exceptional that they ought to be analyzed for the sake of it, regardless of whether or not any
one individual believes they happened legitimately.

aThe data were originally reported by MinecrAvenger and danhem9.
bhttps://www.twitch.tv/dreamwastaken

3

3 Objectivity
The reader should note that the authors of this document are solely motivated by the presence
of exceptional empirical data, and that any runner—regardless of popularity, following, or skill—
observed experiencing such unlikely events would be held to the same level of scrutiny. The
reader should also note that the data presented are extensively corrected for the existence of any
bias. It would lack rigor and integrity for the conclusions made in this report to substantiate the
moderation team’s decision if they were merely based on a surface-level analysis of the data.
Indeed, these corrections inherently skew the analysis in Dream’s favor. We aim to calculate not
the exact probability that this streak of luck occurred if Dream is innocent, but an upper bound
on the probability; that is, we will arrive at a value which we are certain is greater than the true
probability.

The goal of this document is to present the unbiased, rigorous statistical analysis of the data,
as well as an analysis of the Minecraft source code, to conclusively determine whether or not
such an event could be observed legitimately.

4

Part II

Data
The raw data (and its sources) from which the following graphs were derived can be found in
Appendix A.

4 Piglin Bartering

Figure 1: Dream’s pearl barters, charted alongside various comparisons. The 99.9th percentile
line represents one-in-a-thousand luck, which is already quite unlikely—if not necessarily proof of
anything.

5

5 Blaze Rod Drops

Figure 2: The same for blaze rod drops.

Part III

Analysis
6 Methodology
What follows is a thorough description of every aspect of our investigation in an accessible manner.
We will begin with an introduction to the binomial distribution, and follow with adjustments to
account for sampling bias and other biases lowering the accuracy of the binomial distribution.
Finally, we will analyze Minecraft’s code to justify the assumptions made in our statistical
model. To strengthen our analysis to the skeptical reader, we now preemptively address expected
criticisms and questions.

Why are you not analyzing all of Dream’s runs? Doesn’t that introduce sampling bias?
Yes. There is clearly sampling bias in the data set, but its presence does not invalidate our

analysis. Sampling bias is a common problem in real-world statistical analysis, so if it were
impossible to account for, then every analysis of empirical data would be biased and useless.

Consider flipping a coin 100 times and getting heads 50 of those times (a mostly unremarkable
result). Within those 100 coin flips, however, imagine that 20 of the 50 heads occurred back-to-
back somewhere within the population. Despite the proportion overall being uninteresting, we

6

still would not expect 20 consecutive heads anywhere. Obviously, choosing to investigate the
20 heads introduces sampling bias—since we chose to look at those 20 flips because they were
lucky, we took a biased sample.

However, we can instead discuss the probability that 20 or more back-to-back heads occur at
any point in the 100 flips. We can use that value to place an upper bound on the probability
that the sample we chose could possibly have been found with a fair coin, regardless of how
biased a method was used to choose the sample.

It’s also worth noting that the choice to only consider Dream’s most recent streak of 1.16
streams is the least arbitrary distinction we could have made. The metaphor of "cherry-picking"
usually brings to mind choosing from a wide number of options, but there were at most a small
handful of options meaningfully equivalent to analyzing every stream since Dream’s return to
public streaming. Note the importance of the restriction that we must analyze the entire six
streams as a whole; true cherry-picking would specifically select individual barters to support a
desired conclusion.

How do we know this investigation isn’t biased?
Concerns about the impartiality of the authors of this paper have been raised in discussion

about the investigation. We do not think this is a significant issue; we have made an effort to be
as fair to Dream and thorough as possible in our investigation. Regardless, it is a concern worth
addressing.

This paper has been written to be as accessible as possible to an audience without in-depth
knowledge of statistics or programming. This is primarily so that you do not have to take our
word for its accuracy. By reading the analysis, you should be able to understand at least on a
basic level why the statistical corrections we made account for all the relevant biases.

Additionally, as noted in Section 3: Objectivity, we aimed not to calculate the precise
probability of Dream experiencing these events, but an upper bound on the probability. This
makes it much more difficult for bias to have any effect; if we correct for the largest amount of
bias in the data that there could possibly be, there is little risk our analysis will be skewed due to
our bias causing us to underestimate how much we ought to correct.

We believe that, to the extent any bias exists, these measures should be more than sufficient
to account for it. Additionally, note that we are not the only people capable of analyzing these
events—if any unbiased third party points out a flaw in our statistical analysis or notes a glitch
that could potentially cause these events, they would, of course, be taken seriously.

What if Dream’s luck was balanced out by getting bad luck off stream?
This argument is sort of similar to the gambler’s fallacy. Essentially, what happened to Dream

at any time outside of the streams in question is entirely irrelevant to the calculations we are
doing. Getting bad luck at one point in time does not make good luck at a different point in
time more likely.

We do care about how many times he has streamed, since those are additional opportunities
for Dream to have been noticed getting extremely lucky, and if he had gotten similarly lucky
during one of those streams an investigation still would have occurred. However, what luck
Dream actually got in any other instance is irrelevant to this analysis, as it has absolutely no
bearing on how likely the luck was in this instance.

7

7 The Binomial Distribution
Note: If the reader is equipped with a basic understanding of statistical analysis and the binomial
distribution, they may skip to Section 8: Addressing Bias. Note that the explanations present
here are sufficient for the probability calculations performed throughout the rest of the paper,
but are not exhaustive. Supplemental reading is provided via footnotes where relevant.

7.1 The Intuition

Informally, if the outcome of a particular event can be described as "it either happens or it
doesn’t", then it can be modeled with the binomial distributionc. For example, imagine we
wanted to compute the odds of flipping a fair coind 10 times and having it land on heads exactly
6 of those times. Since a coin either lands on heads or it doesn’t, we can use the formula for the
binomial distributione to determine the chance of this occurring.

Since we flip the coin 10 times, we say = = 10, and since we want exactly 6 of those flips to
be heads, : = 6. The chance of a (fair) coin landing on heads is 50%, so ? = 0.5. If we plug
these values into the binomial distribution formula, we get

P (6; 0.5, 10) =
(
10

6

)
0.56 (1 − 0.5)10−6 ≈ 0.205 (1)

To interpret this value, if we flip a coin 10 times, we can expect to get exactly 6 heads about 20.5%
of the time. To understand why this formula yields the probability of a binomial distribution,
and how to generalize it, we break down each term.

7.2 Generalizing the Binomial Distribution

Generically, the probability of exactly : successes with probability ? occurring in = trials (in our
earlier example, : = 6 heads with probability ? = 0.5 occurring in = = 10 flips) is given by

P (:; ?, =) =
(
=

:

)
?: (1 − ?)=−: (2)

We can deconstruct this formula term-by-term to understand why this represents the probability.
Basically, this formula figures out how many distinct possibilities (known as "permutations" in
this context) meet the criteria, and then sums the probability of each possibilityf.

The notation
(=
:

)
, read as "= choose :", represents the binomial coefficientg, which is the

number of ways we can observe : successes in = trials—the number of ways, with = options for
trials to be successes, you could "choose" : of them. For example, there are two ways to observe
: = 1 heads in = = 2 coin flips. The head could occur on the first flip, or it could occur on the
second flip. Therefore,

(2
1

)
is equivalent to 2. With similar reasoning,

(4
2

)
is equivalent to 6; there

cThe binomial distribution also requires the assumption that we are observing discrete independent random
variables. Since piglin bartering and blaze drops are discrete independent random variables (see Section 9: Code
Analysis), we can safely make this assumption. There are other considerations about stopping rules which will be
addressed in Section 8: Addressing Bias.

dA "fair coin" is defined as one whose probability of landing on heads is exactly the same as its probability
of landing on tails. We are also not considering the probability that the coin lands on its side, which is entirely
negligible for this introductory-level explanation to the binomial distribution.

ehttps://en.wikipedia.org/wiki/Binomial_distribution
fFor an explanation of why this works, see https://www.youtube.com/watch?v=QE2uR6Z-NcU.
ghttps://en.wikipedia.org/wiki/Binomial_coefficient

8

https://www.youtube.com/watch?v=QE2uR6Z-NcU

are 6 unique ways to distribute 2 successes (heads) across 4 trials (coin flips). (These are 1&2,
1&3, 1&4, 2&3, 2&4, and 3&4.)

As the first term represents the number of distinct permutations, the next two terms represent
the probability of any one permutation. To find this probability, we simply take the product of
the probabilities of the events necessary to produce a permutation; that is, the product of the
probability of observing : successes and = − : failures.

Since ? is the probability of a given trial being successful, and there are : successful trials,
we can account for the successful trials with the term ?: (? multiplied by itself : times)h.

Similarly, we account for the failures by raising the probability of a failure to the power of the
number of failures. As the only two possibilities in a given trial are success and failure, and the
probabilities must sum to 1, the probability of a failure is (1 − ?). It follows that, since each trial
that is not a success must be a failure, the number of failures is (= − :). Thus, the final term is
(1 − ?)=−: .

Multiplying all three terms together yields the probability of a binomial distribution with a
given :, ?, and =.

7.3 The Cumulative Distribution Function (CDF)

It would be helpful to have a way to compute the probability of observing : or more successes.
Intuitively, we can expect the probability of observing exactly : successes in = trials to be smaller
than the probability we observe : or more successes in the same = trials.

Referring back to the coin-flipping example, if we wanted to compute the probability of
observing 6 or more heads within 10 trials, then we can simply add together the probabilities of
observing exactly 6 heads, exactly 7 heads, (...), exactly 10 heads, given by

10∑
:=6

(
10

:

)
0.5: (1 − 0.5)10−: ≈ 0.377 (3)

Indeed, this agrees with our intuition; it makes sense that it is more likely to get 6, 7, 8, 9, or 10
heads in 10 flips, than it is to get exactly 6 heads in 10 flips.

The chance of receiving : or more successes is often referred to as a ?-value. More specifically,
?-values are the chance of observing : or more successes given the null hypothesis. While that
nuance is irrelevant if you already know for a fact the coin is fair, it is important to keep in mind
in this scenario—our entire goal is, essentially, to analyze whether or not Dream is using a biased
coin.

Armed with a basic understanding of the binomial distribution, we will now discuss how this
initial calculation must be corrected in order to be applied to Dream’s runs.

hFor an explanation of why this works, see https://www.youtube.com/watch?v=xSc4oLA9e8o.

9

https://www.youtube.com/watch?v=xSc4oLA9e8o

8 Addressing Bias
There are a few assumptions of the binomial distribution that are violated in this sample, some
of which were noted in the document Dream published on October 27. This section accounts for
these violated assumptions, and proves computations that account for these biases.

Note that some of these biases only apply to pearls, as blaze rod drops were examined in the
same streams as pearls due to the pearl odds, which are independent of the blaze rod drop rate.
This eliminates the sampling bias from the decision to investigate the pearl odds based on the
fact that they are particularly lucky.

8.1 Accounting for Optional Stopping

The initial calculation for the ?-value assumed that barters and rod drops within sequences
of streams are binomially distributed, which is not precisely true (although likely a very good
approximation). For the data to be binomially distributed, the stopping rule—the rule by which
you decide when to stop collecting data—must be independent of the contents of the data.

For instance, Dream may be more likely to stop streaming for the day after getting a
particularly good run, which is more likely to happen on a run with good barters and blaze rods.
Indeed, Dream did stop speedrunning 1.16 RSG after achieving a new personal best time. This
will result in the data being at least slightly biased towards showing better luck for Dream, and
thus the data is not perfectly binomial.

To account for the stopping rule, we will correct for the worst possible (most biased) stopping
rule. Imagine that this investigation was being conducted by Shifty Sam, a malicious investigator
who is trying as hard as possible to report misleading data that will frame Dream. Since a lower
?-value is more damning, Shifty Sam computes the cumulative ?-value after every barter or after
every blaze kill, and stops collecting datai once he deems the ?-value "low enough" to make
the strongest case against Dream. This is the worst possible stopping rule, since Shifty Sam will
stop collecting data once the ?-value is arbitrarily low enough (as deemed by him to be most
convincing). It should be abundantly clear that this stopping rule is far worse than whatever
stopping rule Dream actually followed during his runs.

It may not be immediately obvious how we can calculate a ?-value under this stopping rule.
We cannot look directly at the number of success in the data, as that is always going to be
exceptional to this degree. What we can consider, however, is how quickly Shifty Sam reached his
?-value cutoff. Intuitively, we might expect Shifty Sam to spend a long time waiting for the data
to reach his ?-value cutoff. To put it another way, it would certainly be surprising, regardless
of how shifty Sam is, to hear that Dream got 30 successful barters in a row as soon as Shifty
Sam started looking at the data. Knowing that Shifty Sam only decided to show you this data
because it supported his argument would not really make that any less surprising (concerns about
sampling bias aside—those will be addressed later).

Since the data reaching a ?-value this extreme so soon is somewhat surprising even if we
know the data comes from Shifty Sam, we will look at the probability that Shifty Sam stops
collecting data at least as soon as Dream stopped. In other words, if = is the number of trials
in Dream’s data, our corrected ?-value will be the probability that a series of trials will, at any
point on or prior to the =th trial, have a binomial CDF ?-value at least as small as the one for
Dream’s data.

iSince Shifty Sam here is supposed to represent whatever caused Dream to choose to stop running 1.16 RSG,
suppose Shifty Sam is, say, Dream’s manager, and can tell Dream when to stop or continue streaming.

10

Although that value could be computed through brute force, that approach would involve
evaluating the probability and ?-values for well over 2305 different sequences—which is obviously
computationally intractable. As such, we used a method that allowed for dealing with multiple
sequences at once. The exact algorithm is somewhat involved, so a description has been included
in Appendix B for interested readers.

8.2 Sampling Bias in Stream Selection

As mentioned previously, we chose to analyze Dream’s runs from the point that he returned to
streaming rather than all of his runs due to a belief that, if he cheated, it was likely from the point
of his return to streaming rather than from his first run. Although we cannot be entirely certain,
it is also likely that MinecrAvenger decided to investigate Dream’s streams due to noticing that
they were unusually lucky. This, of course, means that the streams investigated are not actually
a true random sample. Even if MinecrAvenger somehow chose streams to investigate at complete
random, we are choosing to investigate these streams due to the fact that they are lucky. Thus,
we cannot treat this as a true random sample.

To account for the maximum possible amount of sampling bias, imagine that Shifty Sam
inspected every speedrun stream done by Dream and reported whatever sequence of consecutive
streams was the most suspicious.j This would produce the strongest possible bias—or at least a
bias much stronger than there actually is—from the choice of these particular Dream streams.

Recall the example of investigating the 20 back-to-back heads within 100 coin flips from
earlier. Much like you could calculate the probability of 20 consecutive heads occurring at any
point in the 100 flips, we can calculate the probability that Dream experienced bartering luck
this unlikely in any series of consecutive streams. This would account for the bias from Shifty
Sam, and thus more than account for the actual bias under consideration.

To calculate the chance that at least one sequence of streams is this lucky, we first calculate
the chance that no sequence is. Assuming independence, we can do this by taking the chance
that a given sequence isn’t sufficiently lucky (1 − ?) to the power of the number of sequences, <.
If an event occurs more than zero times, then it must have occurred at least once, so we can then
subtract (1 − ?)< from one to get the chance that it occurs at least once, giving 1 − (1 − ?)<.

The number of consecutive sequences consisting of at least two streams from a set of =
streams is

(=
2

)
, as you choose two different streams to be the first and last. Adding in the =

sequences consisting of only one stream, which were not included because the first and last
stream are the same stream, you get

(=
2

)
+ = which is equal to =(=+1)

2 .
We can now get an upper bound ?= on the ?-value across = streams, using the ?-value

derived from our sample.

?= ≤ 1 − (1 − ?)
=(=+1)

2 (4)

At this point, let us go back and analyze an earlier assumption we made: that the ?-values
between sequences of streams are independent of one another. This assumption is false—however,
it is not false in a way that could cause ?= to be greater than this upper bound.

Consider the exact way in which the sequences of streams are dependent on one another.
Since they all contain streams from the same set (those from Dream), some of the data in each
sequence will be identical to that in other sequences. This lowers the chance that Shifty Sam

jWe can safely assume the streams reported would be consecutive—it would be extremely obvious that the
streams were cherry-picked if Shifty Sam reported the luck in, say, Dream’s first, seventh, and tenth streams.
Non-consecutive streams could be reported credibly in unusual circumstances, but that possibility is essentially
negligible.

11

could find misleading data, as he has less data to look through for unlikely events. In technical
terms, we can say the ?-values of the sequences of streams are positively dependent upon one
another—they are positively correlated with each other. For this bound to fail, the sequences
would need to be negatively dependent.

8.3 Sampling Bias in Runner Selection

In addition to these particular streams of Dream’s being analyzed due to their high proportion of
pearl barters, Dream was initially analyzed out of all runners due to his experiencing unusually
good luck. Much like we calculated the chance of observing data as unlikely as the data in
question in any sequence of streams, we will analyze the probability of observing data this unlikely
from any runner in the Minecraft speedrunning community, using the same formula for the
chance of something occurring at least once in a series of trials that we used earlier.

This results in the following correction, where ?= is the ?-value corrected for a community
with = runners, and ? is the ?-value for Dream in particular:

?= ≤ 1 − (1 − ?)= (5)

Note that, as we are discussing the ?-value for data this unlikely occurring to a runner within
their entire speedrunning career, the size of their career is not relevant. Although a runner may
be more likely to experience six exceptionally lucky streams if they stream more often, we already
account for the amount they stream when calculating ?—in other words, if someone streams
more than Dream, they would need a luckier sequence of streams to have an equally low ?.

8.4 P-hacking

Perhaps Shifty Sam examined multiple types of random events and only picked the most significant
ones. For instance, there could have been analyses of flint drops or iron golem drops, and only
pearls and rods were reported due to those being the most significant—indeed, some other barter
items, as well as eye of ender breaking rates, actually were recorded.

To correct for this, we take the probability of finding each result at least once among an
upper bound ℎ on the different types of events that could have been analyzed. Unfortunately, the
correction used for selection across individuals and streams will not work here. That correction
requires either independent or positively dependent probabilities; however, there are negatively
dependent probabilities involved here. For instance, the more pearl barters you receive, the less
opportunities there are to receive an obsidian barter: your numbers of pearl and obsidian barters
are negatively correlated.

We can still correct for this, but it will require a much looser upper bound than the ones
we have used previously. Remember that the probability of any one of a number of mutually
exclusive events occurring is the sum of their probabilities—for example, the chance of rolling
either a two or a five on a six-sided die is 1

6 +
1
6 = 2

6 .
However, this is not the case for non-mutually exclusive events. Consider the chance of rolling

either a number less than three or an even number. The chance of rolling a number less than
three (1 or 2) is 2

6 and the chance of rolling an even number (2, 4, or 6) is 3
6 . Adding these

together would produce 5
6 . But this counts rolling a two twice, producing a number higher than

the true probability of 4
6 .

This double-counting problem is the reason why adding together fails for probabilities that
are not mutually exclusive, so it is not a problem that our probabilities are not mutually exclusive:

12

the sum of the probabilities will still work as an upper bound. Thus, we have the followingk,
where ?ℎ is the ?-value corrected for ℎ comparisons, and ? is the initial ?-value:

?ℎ ≤ ?ℎ (6)

We will choose values for these formulas and compute the final results in Part IV. However, to
ensure these computations are not invalid due to unusual behavior of Minecraft’s random number
generation, we will first analyze Minecraft’s code.

kThis is commonly known as the Bonferroni correction.

13

9 Code Analysis
When discussing probabilities this low, concerns about edge-case behavior in Minecraft’s random
number generator (RNG) are relevant. We have been working under the assumption that the
results of piglin bartering and blaze drops are independent random variables, as one would naively
expect if Minecraft’s RNG were truly random. This would mean that the variables cannot affect
one another; that is, past piglin barters and blaze drops tell you precisely nothing about future
ones. However, it may seem possible that, in some edge cases, piglin barters or blaze drops fail
independence in ways which increase the probability of observing Dream’s data. Here, we will
analyze how likely that is by inspecting Minecraft’s code.

Before beginning the analysis, it is worth noting that if Minecraft’s RNG were to fail in such
a way that piglin barters and blaze drops could not be said to be approximately independent, it
would still be astonishingly unlikely for them to fail in exactly the way required to produce the
observed data. The failure(s) would need to (1) occur repeatedly over the course of six separate
play sessions for Dream, (2) only occur to Dream out of all runners, (3) affect both bartering and
blaze drops, and (4) specifically bias the results towards piglins bartering ender pearls and blazes
dropping blaze rods, rather than towards some other barter item or blazes not dropping rods.
Although this may still be more likely than the data occurring without a flaw in Minecraft’s RNG,
even before analyzing the code it appears a priori extremely unlikely.

9.1 Confirming the Probabilities

Though the probabilities we have been using thus far for piglin and blaze drop rates in Minecraft
1.16.1 are publicly available information, it is important to identify exactly where these probabilities
come from. The piglin bartering proportions are determined by the piglin_bartering.json
file found in the 1.16.1 jar filel. As expected, exactly once each barter, the game selects an item
from the following weighted table:

Item Weight
Book 5
Iron Boots 8
Potion 10
Splash Potion 10
Iron Nugget 10
Nether Quartz 20
Glowstone Dust 20
Magma Cream 20

Item Weight
Ender Pearl 20
String 20
Fire Charge 40
Gravel 40
Leather 40
Nether Brick 40
Obsidian 40
Crying Obsidian 40
Soul Sand 40

Table 1: The simplified contents of piglin_bartering.json. Here an item of weight = is =
times more likely than an item of weight one. Additional information regarding enchantments,
stack sizes, and potion effects not shown.

Since the weights sum to 423, and ender pearls have a weight of 20, the probability of an
ender pearl barter is indeed 20

423 as expected (in 1.16.1, the version Dream used).

lTo read these files on Windows, simply rename 1.16.1.jar to 1.16.1.zip and navigate to
data\minecraft\loot_tables.

14

Blaze drops are specified by a file called blaze.json, an excerpt of which is included below:

1 "function": "minecraft:set_count",
2 "count": {
3 "min": 0.0,
4 "max": 1.0,
5 "type": "minecraft:uniform"
6 }

One can see that, when the player’s weapon does not have a looting enchantment, blazes
select between dropping either 0 or 1 rods using a uniform distribution. Thus, a rod drop occurs
with probability 0.5 as expected.

9.2 Setting RNG Seeds

Failures of one of Minecraft’s RNGs to behave randomly are not unheard of—the most famous
examples of these are the RNG manipulation exploits found in versions prior to 1.13. These all
work on the same principle: some part of Minecraft’s code resets an RNG being used by other
parts of the code, causing predictable behavior. For example, in 1.12, loading a chunk runs some
woodland mansion code which resets an RNG also used for mob spawns, allowing them to be
manipulated given controlled conditions. A careful investigation of how and when Minecraft’s
RNGs are seeded is needed to ensure there is no bias that could contribute to the observed data.

Many of Minecraft’s RNGs are initially seeded in a similar manner when they are created,
including the RNGs used for bartering and blaze drops. Two components are used: an RNG called
the "seed uniquifier", and the system time. The seed uniquifier is a linear congruential generator
(LCG) which is seeded at 8682522807148012 when Minecraft is started up, and used (as well as
updated) many of the times an RNG is seeded. (We will describe how LCGs work in the next
sections.) The system time is a value provided by the computer’s operating system which, on
most modern devices, represents the time in nanoseconds since the computer was turned on.

These two components are then combined using an operation referred to as bitwise XOR
to produce a seed. (Normal) XOR, or exclusive or, is an operation which takes two boolean
(TRUE or FALSE) values as inputs and returns TRUE if either but not both of the values are TRUE.
Otherwise, it returns FALSE. Another way of looking at XOR is that it returns TRUE if the input
values are different from each other and FALSE if they are not. Bitwise XOR takes two input
numbers, which it represents as a binary string of bits. It then performs a XOR on the bits of
each input number in a certain place value (interpreting 0 as FALSE and 1 as TRUE) to decide on
that bit for the output number. For example, the bitwise XOR of 1001 (9 in decimal) and 1100
(12) is 0101 (5).

Combining a value with another by bitwise XOR cannot make it less random, provided the two
values are independent. Although system time may not be absolutely independent of the seed
uniquifier, they are clearly not related enough to cause problems. If the "randomness" decreases,
it is not by much. Thus, as long as at least one of the input values is sufficiently random—and
both of them ought to be, for our purposes—this method of setting a seed cannot cause issues.

15

The code implementing this procedure is shown below.

1 private static long seedUniquifier = 8682522807148012L;
2
3 //seed a new Random object randomly
4 public Random () {
5 this(seedUniquifier () ^ System.nanoTime ());
6 }
7
8 //set the seed of a Random object to a predetermined value
9 public Random(long seed) {

10 // implementation not relevant here
11 }
12
13 private static long seedUniquifier () {
14 seedUniquifier = seedUniquifier * 181783497276652981L;
15 return seedUniquifier;
16 }

The RNG used for bartering is known as the "world RNG" since it is attached to the world
object in Minecraft’s code. The world RNG is also used by random ticksm, mob spawning, and
several other miscellaneous features. The fact that many different things utilize this RNG could
cause concern that something might be setting the RNG to a specific state at an improper
time—as it is in 1.12.

However, a careful search of every instance in which Minecraft sets any RNG’s seed or creates
any new RNGs reveals that the "world RNG" is never reset in 1.16. This was confirmed by
noting that the world object is final (final objects in Java cannot be replaced, only modified) and
examining every single call to Random::setSeed in the Minecraft codebase. None of these calls
affected the Nether world RNG. Ultimately, this RNG is only ever set upon world load using the
bitwise XOR between the seed uniquifier and the system time.

The situation for blaze rods is much simpler: every time a blaze is killed it creates an entirely
new RNG for the blaze’s single drop, using the same bitwise XOR procedure.

As no possibility exists that external factors may be setting the seeds of these generators, we
conclude that any failure of randomness must lie with Java Random itself. Having eliminated the
most obvious possible cause of a potential glitch that would result in the observed data, we will
now analyze Java’s RNG closely to see if there are any more subtle causes of bias.

9.3 Linear Congruential Generators

If the reader is unfamiliar with the properties of modular arithmetic, they are encouraged to
read https: // en. wikipedia. org/ wiki/ Modular_ arithmetic for at least a conceptual
understanding.

Nearly all of Minecraft’s randomization is computed through Java’s pseudo-random number
generator (PRNG), which utilizes a linear congruential generatorn. As the name suggests, an

mTick is a term used to refer to each individual update of the program state, often referred to as frames in
other games. In Minecraft, the distinction must be drawn because screen rendering can occur more than once per
tick. 20 ticks occur in one second when there is no lag. Random tick is jargon for a certain type of event that
occurs on, as the name suggests, a random tick.

nhttps://en.wikipedia.org/wiki/Linear_congruential_generator

16

https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Linear_congruential_generator

LCG generates a sequence of numbers through a discontinuous linear equation in which each
term in the sequence is computed by performing operations on the previous term. Each time a
new random value is needed, the LCG seed is updated according to the following equation before
being used to generate an integer (or other kind of variable).

seed=+1 = 0 · seed= + 1 mod < (7)

In the case of Java’s PRNG, the constants 0, 1, and < in the above equation are given by
0 = 25214903917, 1 = 11, and < = 248. Note that these constants are specific to the Java LCG
and will vary depending on the implementation.

seed=+1 = 25214903917 · seed= + 11 mod 248 (8)

LCGs are designed to be fast and memory-efficient rather than cryptographically secure; it
is crucial to appropriately use the sequence so as to not cause unwanted bias. Notably, some
LCGs have bad periodicity in their lower bits, and some fail what is called the spectral testo.
That said, cryptographic security is a much higher standard than required to avoid the kinds of
bias witnessed here. LCGs see frequent use for small Monte Carlo simulations like this one—a
common piece of folklore is that sampling less than the square root of your modulus (in this
case 224, or about 17 million) gives good samples. They are the go-to random number generator
in a number of compilers and languages, notably C++11, Java, and the GCC compiler for C.
Furthermore, as we will soon see, Java Random was specifically designed to mitigate the known
weaknesses of LCGs.

9.4 Periodicity

As the Java Random LCG can only hold 248 different seeds, the sequence of seeds must loop in
at most 248 calls to the randomizer (Java’s values for 0 and 1 were chosen in part to guarantee
it only loops after 248 ≈ 281 trillion calls). This is a problem for large computer simulations, but
this scenario involves a number of RNG calls extremely small compared to the period of 248.
However, the choice of 248 as the modulus also means the LCG still demonstrates periodicity in
its lower bits.

If two numbers are equivalent mod 248, then they must also be equivalent mod 2. This is
intuitively clear if you think of the numbers represented in binary: if the last 48 bits of two
numbers are the same, then each bit within those last 48—including the very last one—must be
the same. Thus, we have:

seed=+1 = 25214903917 · seed= + 11 mod 2

= (25214903917 mod 2) · seed= + (11 mod 2) mod 2

= seed= + 1 mod 2

This makes it clear that seeds must alternate between even and odd. In fact, all bits repeat
in a similar way with different periods. The first (lowest) bit has a period of two, the second
has a period of four, the third has a period of eight, and in general the =th bit has a period of
2=. The advantages of having a large period suddenly break down when making use of the lower

oJava Random and its Seed Uniquifier do not fail the spectral test in any dimensions we care about. In
fact, at least the uniquifier was chosen for its good results on the spectral test http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.99.6553&rep=rep1&type=pdf, suggesting the Java authors were aware of the
issue. The spectral test is also irrelevant here - interference from other game mechanics would remove the problem.

17

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.6553&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.6553&rep=rep1&type=pdf

bits. Fortunately, as this behavior is well known, Java generates random integers in a way that
accounts for this.

nextInt(n)p is the Java method used to generate random integers. When called, it returns
a random non-negative integer less than =. The exact process Java uses to account for the
aforementioned problem differs depending on whether = is a power of two.

• For non-powers of two (such as = = 423, used in bartering), nextInt(n) takes the 31
highest bits of the seed, modulo =. This implies that calls with even bounds will have
some very clear dependence on lower bits of the seed—the lowest relevant one being the
18th, which has a period of 218 ≈ 262 thousand. It does, however, mean the bits with
particularly small periods are entirely irrelevant.

• For powers of two, nextInt(n) simply returns the highest log2 (=) bits of the seed. For
example, nextInt(2), which is used for blaze drops, returns the highest log2 (2) = 1 bit
(the 48th bit) of the seed, which has a period of 248. This is done because it is much
more effective than simply applying the method used for non-powers of two—nextInt(2)
would then return the 18th bit, and have a period of only 218.

9.5 Bartering

As stated earlier, bartering randomization takes place using the world RNG. Thus, periodicity
could conceivably be relevant, depending on precisely how often world RNG is called.

The first time concerns due to periodicity would come into play (recall that = = 423 for
bartering, which is not a power of two) is when the 18th bit loops after 218 calls to the LCG. For
example, when = is evenq, the parity (whether a number is even or odd) of a nextInt(n) call is
always the same as the parity of the 18th bit. If it were possible to call the LCG precisely 218

times per game tick, one could potentially use that fact to guarantee nextInt(n)’s output to
either always be even or always be odd.

This specific attack has seen no use in the RNG manipulation scene so far because of its
stringent requirements, but it is not immediately obvious that 218 LCG calls per tick could not
occur naturally. However, (1) they do not, and (2) it would not matter if they did.

1. Empirical evidence shows that the world RNG is called 6000 to 9000 times per tick in
the Netherr. This value may depend on render distance and what is present in the given
chunks, but it should never come close to 218 (262144) calls in a natural setting. This
means that even in the best possible case you would only expect a period to complete in
around 30 ticks.

2. When = shares no factors with 231, the output of nextInt(n) does not depend on any
one bit of the LCG seed.

Even if one could set the bottom bits of the world RNG to only take on certain values, the
fact that 423 is odd (invertible mod 2:) means that the upper bits would foil almost all bias
introduced—at worst some outputs have just one more seed mapping to them than the others.
Periodicity cannot explain the observed bias in Dream’s pearl trades.

phttps://docs.oracle.com/javase/8/docs/api/java/util/Random.html#nextInt-int-
q= also must not be a power of two.
rReaders who have been following the investigation may have heard about lava holding some relevance to

possible RNG failures. This is because the abundance of lava in the Nether contributes significantly to those 6000
to 9000 RNG calls.

18

https://docs.oracle.com/javase/8/docs/api/java/util/Random.html#nextInt-int-

Before abandoning our discussion of Bartering and world RNG, it is worth noting that the
extra calls to the world random can be viewed as an extra source of randomness. The chaotic
nature of when Minecraft needs numbers, especially taken across both runs and streams, only
adds entropy to the system. To expect all of these factors to conspire to increase the probability
of anything unrelated is absurd—they are far more likely to decrease the probability of some
other RNG failure occurring.

9.6 Blaze Drops

When blazes die, the generic method for all mobs that drop items, LivingEntity.dropLoot(),
is called. However, the Random object used to determine the number of dropped items is not
seeded and is instead left as null (meaning it has no value whatsoever—not even zero).

1 protected void dropLoot(DamageSource source , boolean causedByPlayer) {
2 Identifier identifier = this.getLootTable ();
3 LootTable lootTable = this.world.getServer ().getLootManager ().

getTable(identifier);
4 LootContext.Builder builder = this.getLootContextBuilder(

causedByPlayer , source);
5 lootTable.generateLoot(builder.build(LootContextTypes.ENTITY),

this:: dropStack);
6 }

LootContext.Builder.build() catches the null object and sets it to a new Random instance.
In layman’s terms, it realizes the object has no value and then gives it one using the procedure
described in Section 9.2: Setting RNG Seeds.

1 Random random = this.random;
2
3 if(random == null) {
4 random = new Random ();
5 }

Essentially, both the number of nanoseconds since computer start-up and the result of
a different LCG are used to seed the LCG that decides whether or not to drop a blaze rod.
Furthermore, the state of the Uniquifier when the seeding occurs in turn is dependent on how
many Random objects have been created by Minecraft since it was started (the value persists
across worlds), which adds more entropy to they system.

The code then runs nextInt(2) to determine the number of blaze rods that should be
dropped (0 or 1).

As a thought experiment, one could imagine freezing nanoTime() value through the operating
system, but since nextInt(2) returns the highest bit of the seed, there would still be no visible
dependence; to be informal, the seed uniquifier alone provides enough "randomness". Likewise, if
one were to fix the uniquifier and let nanotime vary normally, the value of nextInt(2) would
change every few microseconds or sos - fast enough that factors such as lag and run length
should be considered a further major source of randomness in blaze drops. Regardless, it is
almost certain both of these components were working as expected, so the Random objects used
for Dream’s blaze drops should not have had unusual correlations.

sThis estimate comes from dividing 247, the desired average size of a change of the seed needed for a change
in value, by the multiplier for Java Random. This estimate is only rough due to the "scrambler" in the Random
constructor, but is easily seen to hold up in practice.

19

Finally, given their vastly different implementations and separate code bases, it is reasonable
to assume that a bug could not simultaneously affect both bartering and blaze rod drops. In fact,
even in the (hilariously unlikely) occurrence of cosmic ray interference, two independent bit flips
would need to occur at bare minimum for it to have an effect on both.

Part IV

Results
10 Computation

10.1 Naive Estimate

The initial computations performed by community members directly applied the binomial distri-
bution without considering the biases present in the data. To reiterate, what follows are naive
estimations operating under faulty assumptions we have spent the entire paper accounting for.
The criticisms of directly applying these computations to this situation are legitimate, but they
are still meaningful and relevant if they are properly interpreted and their inaccuracies are kept in
mind. First, for pearls:

P(-pearls ≥ 42) ≈
262∑
:=42

(
262

:

)
(0.0473): (1 − 0.0473)262−: ≈ 5.65 × 10−12 (9)

This is Shell Guy’s "1 in 40 billion" number often referenced, which more accurately should
be 1 in 177 billion. Then, for rods:

P(-rods ≥ 211) ≈
305∑
:=211

(
305

:

)
(0.5): (1 − 0.5)305−: ≈ 8.79 × 10−12 (10)

For independent discrete random variables, the probability of two events occurring simultaneously
is the product of their individual probabilities. Thus,

P(-pearls ≥ 42 ∩ -rods ≥ 211) ≈ (0.00000000000565319) (0.00000000000879143)
≈ 0.000000000000000000000049699624

≈ 4.9699624 · 10−23

(11)

This is 1 in 20 sextillion. The idea something this unlikely occurred is obviously ridiculous. The
next section actually applies what we have discussed in the previous sections to compute a
statistically rigorous upper bound on the probability.

20

10.2 Full Computation

The code implementing these calculations can be found in Appendix C.

10.2.1 Pearls

Using the method described in Section 8: Addressing Bias, we may compute an upper bound
on the ?-value. It is worth noting that this upper bound is conservative, and using it as if it were
an exact ?-value would result in an analysis that would be extremely biased in Dream’s favor.

First, we examine the pearl odds. Using the stopping rule correction from Section 8.1, we
obtain a value of 1.22 × 10−11. Using this, we can bound the probability of getting this ?-value
or less in a sequence of 11 streams (the number of streams that Dream did), as follows:

1 −
(
1 − 1.22 × 10−11) 11(11+1)

2 = 8.04 × 10−10 (12)

8.04 × 10−10 represents the highest possible probability of Dream ever, while on stream,
getting pearl barter rates as exceptionally good as the ones in the data.

Finally, we account for the chance across one thousand runners, a generous upper bound on
the number of runners who would be examined in a similar way:

1 −
(
1 − 8.04 × 10−10)1000

= 8.04 × 10−7 (13)

8.04 × 10−7 represents the probability that any active runner in the Minecraft speedrun-
ning community would ever experience events as rare as Dream, at some point within
his 11 streams, experiencing luck extreme enough that a malicious investigator would
be able to portray it as being as rare as Dream’s bartering luckt.

This should not be equivocated with the probability that Dream experiences luck as extreme
as he did on any particular occasion, which is far lower. This number describes how surprising it
is for this to ever happen—not how surprising it is for it to happen in a given instance. Although
events with a one in a million probability may occur sometimes, it is almost always when there
are multiple chances for them to occur—this number has already accounted for the multiple
chances for Dream (or anyone else) to experience luck this exceptional.

10.2.2 Blaze Rods

Like with pearls, we again apply the stopping rule correction. This yields a ?-value of 4.72 × 10−11.
Unlike with the pearl drops, this is our final number. As mentioned previously, blaze rods are not
subject to selection bias across streams or runners, as Dream’s blaze rod drops were examined
only because of his pearl rates. Potential selection across RNG types by a malicious investigator
is still a problem, but this will be addressed in the combined ?-value.

tAs we account for p-hacking using the combined p-value rather than each individual p-value, technically you
must include the assumption that the malicious investigator only looks at one type of RNG. This assumption will
be addressed in the final p-value.

21

10.2.3 Combined Number

?-values may be combined by Fisher’s methodu. Fisher’s method involves taking −2 times the
sum of the logs of the ?-values:

I = −2
(
log (?rods) + log

(
?pearls

))
(14)

This value is known to follow a j2 distribution with 4 degrees of freedomv. Hence, we may use
the j2 CDF to get a combined ?-value. Taking j2

:
(I) to mean the CDF of a j2 distribution

with : degrees of freedom at I, we have:

?combined = 1 − j2
4 (I) ≈ 1.472 782 × 10−15 (15)

We may then correct this value for potential investigatory bias as described in Section 8.4. Note
that there are not many obvious RNG targets for a runner to cheat. The two most obvious are
pearls and blaze rods, but beyond that, it becomes less clear. Obsidian is an option, possibly
allowing for nether travel. Another option is string, which runners have recently started hoping
for with the advance of “hypermodern” strats that involve skipping villages—but hypermodern
strats were not well-developed during the time that Dream ran, and Dream did not go for string.
Other potential options include flint rates from gravel, iron amounts from iron golems, and eye
of ender breaks, but these are not as obvious or as advantageous as the other options. As a
generous number, we use 10 for the number of likely targets. We have 10 options for our first
source of RNG, and another 9 for the second (not 10 anymore, as the same source cannot be
used twice), giving us 90 possible options:

?final = ?combined × 90 = 1.325 504 × 10−13 (16)

This is about 1 in 7.5 trillion. As stated earlier, this should not be equivocated to the probability
Dream got this lucky in a given instance, as it already accounts for many other factors beyond
that. This is a loose (i.e., almost certainly an overestimate) upper bound on the chance
that anyone in the Minecraft speedrunning community would ever get luck comparable
to Dream’s (adjusted for how often they stream).

uhttps://en.wikipedia.org/wiki/Fisher’s_method
vFisher, R. A. (1992). Statistical methods for research workers. In Breakthroughs in statistics (pp. 66-70).

Springer, New York, NY.

22

https://en.wikipedia.org/wiki/Fisher's_method

11 Conclusion
In our analysis, we were able to conclude the following statements:

• The events that were observed on Dream’s stream cannot be modeled by any sensible,
conventional probability distribution.

• After accounting for any contributors of bias, the likelihood of this occurring is still
unfathomably small.

• There are no circumstances in a natural setting in which bartering and blaze drops could be
dependent or biased to any notable degree, much less a degree strong enough to produce
this result.

• There is no way to accidentally manipulate these values in real time during an RSG speedrun,
nor any conceivable way to do it intentionally using only conventional methods.

The only sensible conclusion that can be drawn after this analysis is that Dream’s game was
modified in order to manipulate the pearl barter and rod drop rates.

23

A Raw Data

Figure 3: Dream’s pearl barter data. Timestamps and data from other runners at
http://bombch.us/DPPU.

Figure 4: Dream’s blaze drop data. Timestamps and data from other runners at
http://bombch.us/DPPV.

24

http://bombch.us/DPPU
http://bombch.us/DPPV

B Stopping Rule Computation Algorithm
This section will describe the algorithm used to calculate the probability of a sequence of some
number of Bernoulli trials will have at any point had a binomial CDF ?-value below a certain
cutoff. As with the other computations, the code implementing this algorithm can be found in
Appendix C.

The critical observation to understanding the algorithm used is that sequences with the same
number of successes in the first = trials can be treated as essentially equivalent in some ways.
Critically, their ?-value (after the first = trials) will be equal: the binomial CDF calculation only
considers the number of successes and the length of the sequence. Due to these equivalences,
we can calculate these groups of sequences as a package-deal without considering the individual
sequences.

1/1
1/2 1/2
1/4 2/4 1/4
1/8 3/8 3/8 1/8
1/16 4/16 6/16 4/16 1/16
1/32 5/32 10/32 10/32 5/32 1/32

This table depicts the probability masses of various sequences of blaze rod drop trials, grouped
based on how many successes they had in the first few trials of the sequence. Some readers may
recognize a resemblance to Pascal’s triangle, which famously is closely connected to the binomial
coefficient.

Rows in this table, zero-indexed, represent the number = of trials at the start of a sequence
which are being considered, and columns, also zero-indexed, represent the number : of successes
which have occurred in the first = trials. The numbers in a certain row and column are the
probability that, within the first = trials, : successes occur.

As you move down the table, you can imagine each number giving some of its probability
mass to the number directly below it (which represents the next trial being a failure, and thus
not increasing the number of successes) and the number below and to the right (which represents
the next trial being a success, and thus increasing the number of successes by one). Since we
are discussing blazes, it will be split evenly; with bartering, it is split about 95% down and 5%
down-right.

To give a concrete example, the second "3/8" received a probability mass of 2
4 ×

1
2 = 2

8 from
the 2

4 to the up-left and a probability mass of 1
4 ×

1
2 = 1

8 from the 1
4 directly up. This represents

the two ways two successes in three trials can be achieved: having one success in two trials,
followed by an additional success, or having two successes in two trials, followed by a failure. It
should be fairly simple to check by hand that, of the eight possible sequences of three successes or
failures a sequence might begin with, there are indeed three which have exactly two successesw.

Next, consider the bolded 1/32 on the bottom. This passes a ?-value cutoff of ? = 0.05,
which we will use for the purposes of this example due to the actual ?-value being impractically
small. Since all the sequences which have five successes in the first five trials will have met our
?-value cutoff at some point, we will remove these sequences from the table before continuing
and add the entire probability mass of 1

32 to our stopping-rule corrected ?-value before generating
the next line.

wSince the chances of success and failure are equal for blaze rods, each sequence is equally likely. With
bartering, on the other hand, not all sequences are equally likely and this method of checking would not work.

25

1/16 4/16 6/16 4/16 1/16
1/32 5/32 10/32 10/32 5/32 0/32
1/64 6/64 15/64 20/64 15/64 5/64 0/64

Notice how the table no longer follows Pascal’s triangle; the last two fractions no longer
represent the probability of a sequence with five or six successes in the first six trials, but the
probability of such a sequence which also did not have a ?-value over the cutoff at any point in
the past. This is done to prevent double counting. For example, we already added the probability
mass of the sequences beginning with six successes to the adjusted ?-value when we added that
of the sequences beginning with five successes, so we do not need to add that probability mass a
second time.

This process continues until we reach the desired number of trials. An important note is that
you cannot simply look at whether one of the fractions is below the ?-value cutoff: that is not
the probability that : or more successes are gotten in = trials. Instead, we calculate the number
of successes required to get a ?-value below the cutoff for every number of trials before the total
amount, and then compare to the relevant number of successes at each step.

26

C Probability Computations

1 import java.math.BigDecimal;
2 import java.math.RoundingMode;
3 import org.apache.commons.math3.distribution.ChiSquaredDistribution;
4
5 class Corrections {
6
7 static int SCALE = 100;
8 static int NUM_TRIALS , NUM_SUCCESSES;
9 static BigDecimal P_SUCCESS , P_FAIL;

10
11 public static void main(String [] args) {
12 System.out.println("--- ENDER PEARLS ---");
13 double pearlStoppingRule = shiftyInvestigator (262, 42, "0.0473

");
14 System.out.println("Stopping rule: " + pearlStoppingRule);
15 double pearlStreamBias = 1 - Math.exp(Math.log1p(-

pearlStoppingRule) * 66);
16 System.out.println("Stopping rule + stream selection bias: " +

pearlStreamBias);
17 double pearlRunnerBias = 1 - Math.exp(Math.log1p(-

pearlStreamBias) * 1000);
18 System.out.println("Stopping rule + stream selection bias +

runner selection bias: " + pearlRunnerBias + "\n");
19
20 System.out.println("--- BLAZE RODS ---");
21 double rodStoppingRule = shiftyInvestigator (305, 211, "0.5");
22 System.out.println("Stopping rule: " + rodStoppingRule + "\n")

;
23
24 System.out.println("--- FINAL PROBABILITY ---");
25 double fisherMethod = -2 * (Math.log(pearlRunnerBias) + Math.

log(rodStoppingRule));
26 ChiSquaredDistribution csd = new ChiSquaredDistribution (4);
27 double cdf = 1 - csd.cumulativeProbability(fisherMethod);
28 double pHacking = cdf *= 90;
29 System.out.println(pHacking);
30 }
31
32 static double shiftyInvestigator(int trials , int successes , String

p) {
33 Corrections.NUM_TRIALS = trials;
34 Corrections.NUM_SUCCESSES = successes;
35 Corrections.P_SUCCESS = new BigDecimal(p).setScale(SCALE ,

RoundingMode.CEILING);
36 Corrections.P_FAIL = BigDecimal.ONE.subtract(P_SUCCESS).

setScale(SCALE , RoundingMode.CEILING);
37
38 BigDecimal targetP = BigDecimal.ONE.subtract(binomCDF(

NUM_TRIALS , NUM_SUCCESSES - 1));
39

27

40 int[] significantCutoffs = new int[NUM_TRIALS + 1];
41 significantCutoffs [0] = 0;
42 for (int observedTrials = 1; observedTrials <= NUM_TRIALS;

observedTrials ++) {
43 boolean foundCutoff = false;
44 for (int sucTrials = significantCutoffs[observedTrials -

1]; !foundCutoff
45 && sucTrials <= observedTrials; sucTrials ++) {
46 foundCutoff = (BigDecimal.ONE.subtract(binomCDF(

observedTrials , sucTrials - 1))
47 .compareTo(targetP) <= 0);
48 if (foundCutoff)
49 significantCutoffs[observedTrials] = sucTrials;
50 }
51 if (! foundCutoff)
52 significantCutoffs[observedTrials] = observedTrials;
53 }
54
55 BigDecimal [] lastRow = { BigDecimal.ONE , BigDecimal.ZERO };
56 for (int N = 1; N <= NUM_TRIALS; N++) {
57 lastRow = genNthRowOfPascalWithCutoffs(N, lastRow ,

significantCutoffs);
58 }
59
60 BigDecimal total = BigDecimal.ZERO;
61 for (BigDecimal b : lastRow) {
62 total = total.add(b).setScale(SCALE , RoundingMode.CEILING)

;
63 }
64
65 return BigDecimal.ONE.subtract(total).doubleValue ();
66 }
67
68 static BigDecimal nCr(int n, int r) {
69 if (r > n / 2)
70 r = n - r;
71
72 BigDecimal answer = BigDecimal.ONE.setScale(SCALE ,

RoundingMode.CEILING);
73 for (int i = 1; i <= r; i++) {
74 answer = answer.multiply(new BigDecimal(n - r + i).

setScale(SCALE , RoundingMode.CEILING));
75 answer = answer.divide(new BigDecimal(i).setScale(SCALE ,

RoundingMode.CEILING), RoundingMode.CEILING);
76 }
77 return answer;
78 }
79
80 static BigDecimal binomialPDF(int n, int k) {
81 return nCr(n, k).multiply(P_SUCCESS.pow(k)).multiply(P_FAIL.

pow(n - k)).setScale(SCALE , RoundingMode.CEILING);
82 }

28

83
84 static BigDecimal binomCDF(int n, int maxSuccessesInc) {
85 BigDecimal answer = BigDecimal.ZERO.setScale(SCALE ,

RoundingMode.CEILING);
86 for (int i = 0; i <= maxSuccessesInc; i++) {
87 answer = answer.add(binomialPDF(n, i)).setScale(SCALE ,

RoundingMode.CEILING);
88 }
89 return answer;
90 }
91
92 static BigDecimal [] genNthRowOfPascalWithCutoffs(int N, BigDecimal

[] lastRow , int[] significantCutoffs) {
93 BigDecimal [] result = new BigDecimal[N + 2];
94 result [0] = lastRow [0]. multiply(P_FAIL).setScale(SCALE ,

RoundingMode.CEILING);
95 for (int i = 1; i < N + 2; i++) {
96 if (i <= significantCutoffs[N]) {
97 result[i] = lastRow[i - 1]. multiply(P_SUCCESS).add(

lastRow[i]. multiply(P_FAIL)).setScale(SCALE ,
98 RoundingMode.CEILING);
99 } else {

100 result[i] = BigDecimal.ZERO;
101 }
102 }
103 return result;
104 }
105 }

29

