SYSTEMPlus NSU

REVERSE COSTING® – STRUCTURAL, PROCESS & COST REPORT

STMicroelectronics SiC Models Tesla Model 3 Inverter Power Semiconductor report by Elena Barbarini

Power Semiconductor report by Elena Barbarini June 2018 – version 1

22 Bd Benoni Goullin 44200 NANTES - FRANCE

+33 2 40 18 09 16

info@systemplus.fr

www.systemplus.fr

SUMMARY

Overview / I	Introduction	4	Cost Analysis	91
0	Executive Summary		 Synthesis of the cost analysis 	
0	Reverse Costing Methodology		 Yields Explanation & Hypotheses 	
Company Profile		9	o MOSFET die	
0	STMicroelectronics		✓ MOSFET Front-End Cost	
Physical Analysis		18	✓ MOSFET Die Probe Test, Thinning & Dicir	ng
0	Synthesis of the Physical Analysis		 ✓ MOSFET Wafer Cost ✓ MOSFET Die Cost 	
0	Package analysis		WIGST ET DIE COSt	
	✓ Package opening✓ Package Cross-Section		 o Complete Module ✓ Packaging Cost 	
 MOSFET Die ✓ MOSFET Die View & Dimensions ✓ MOSFET Die Process ✓ MOSFET Die Cross-Section ✓ MOSFET Die Process Characteristic 		 ✓ Final Test Cost ✓ Component Cost 		
		Price Analysis o Estimation of selling price	106	
Manufactur	ing Process	81	Comparison	109
0	MOSFET Die Front-End Process		 Comparison with Mitsubishi J-Series TP-M power 	r module
0	MOSFET Die Fabrication Unit		Feedbacks	112
0	Final Test & Packaging Fabrication unit		Company services	114
			c	AMPLE

Executive Summary

Overview / Introduction

- Executive Summary
- o Market
- Reverse Costing Methodology

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

<u>Comparison</u>

<u>Feedback</u>

About System Plus

Pushed by aggressive legislation, CO2 reduction is one of the key challenges in the 21st century. The best solution currently available to the automotive industry is the electrification of vehicles, with different levels of electrification depending on the strategies of different car manufacturers. 780,000 battery electric vehicles were shipped in 2017, a number expected to grow to almost 2.8M by 2022. Standard inverter power modules integrate silicon IGBTs, but in electric vehicles the available space in the engine compartment is often so limited that it is difficult to accommodate a power control unit (PCU). Thus, it is necessary that the PCU, which controls electric vehicles' traction motors, has a higher power density and therefore is smaller. Thanks to higher thermal and electrical performance, SiC is the new competitor to silicon at high voltages. Nevertheless, high power densities need high thermal dissipation and thus new packages are needed to improve device performance. To achieve these targets, manufacturers have developed different solutions, such as limiting wire bonding or using overmolded structures to efficiently cool the power semiconductor chips.

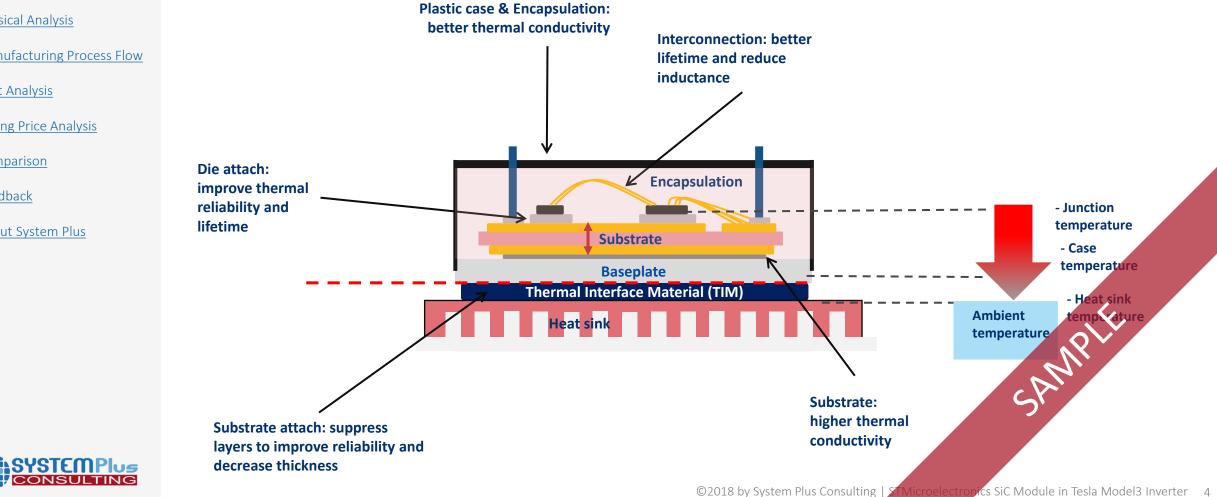
Tesla is the first high-class car manufacturer to integrate a full SiC power module, in its Model 3. Thanks to its collaboration with STMicroelectronics the Tesla inverter is composed of 24 1-in-1 power modules assembled on a pin-fin heatsink.

The module contains two SiC MOSFETs with an innovative die attach solution and connected directly on the terminals with copper clips and thermally dissipated by copper baseplates.

The SiC MOSFET is manufactured with the latest STMicroelectronics technology design, which allows reduction of conduction losses and switching losses. Based on a complete teardown analysis, the report also provides an estimation of the production cost of the SiC MOSFET and package.

Moreover, the report includes a technical and cost comparison with the Mitsubishi J-Series TP-M power module. It highlights the differences in design of the packaging and the material solutions adopted by the two companies.

Power Module Issues


- Executive Summary
- Market
- **Reverse** Costing Methodology

- Comparison
- Feedback
- About System Plus

In Si modules, mismatching CTE (coefficient of thermal expansion) makes layers detach from one another.

With the introduction of SiC this problem is much more highligted; in fact the main problem of SiC is thermal dissipation because of material density; thus an adapted package and system integration is needed.

ST SiC products

Overview / Introduction

<u>Company Profile & Supply</u> <u>Chain</u>

- o STMicroelectronics Profile
- **STMicroelectronics** Product

Physical Analysis

- Manufacturing Process Flow
- Cost Analysis
- Selling Price Analysis
- <u>Comparison</u>
- Feedback
- About System Plus

• ST's 650 V and 1200 V silicon carbide (SiC) MOSFETs feature very low RDS(on)*area combined with excellent switching performance, translating into more efficient and compact systems. Compared with silicon MOSFETs, SiC MOSFETs exhibit low on-state resistance*area even at high temperatures and excellent switching performances versus the best-in-class IGBTs in all temperature ranges, simplifying the thermal design of power electronic systems.

Part Number	VDSS	Drain Current (Dc) (A)	P _{TOT} (W)	Package	RDS(on) (Ω) (@VGS=20V)
SCT10N120	1200	12	150	HiP247 IN LINE	0.69
SCT20N120	1200	20	175	HiP247 IN LINE	0.239
SCT30N120	1200	45	270	HiP247 IN LINE	0.1
SCT50N120	1200	65	318	HiP247 IN LINE	0.069
SCTWA50N120	1200	65	318	HIP247 LONG LEADS	0.069
SCTW100N65G2AG	650	100	390	HiP247 IN LINE	-

★ Similar to analysed device

SAMPLE

Heatsink

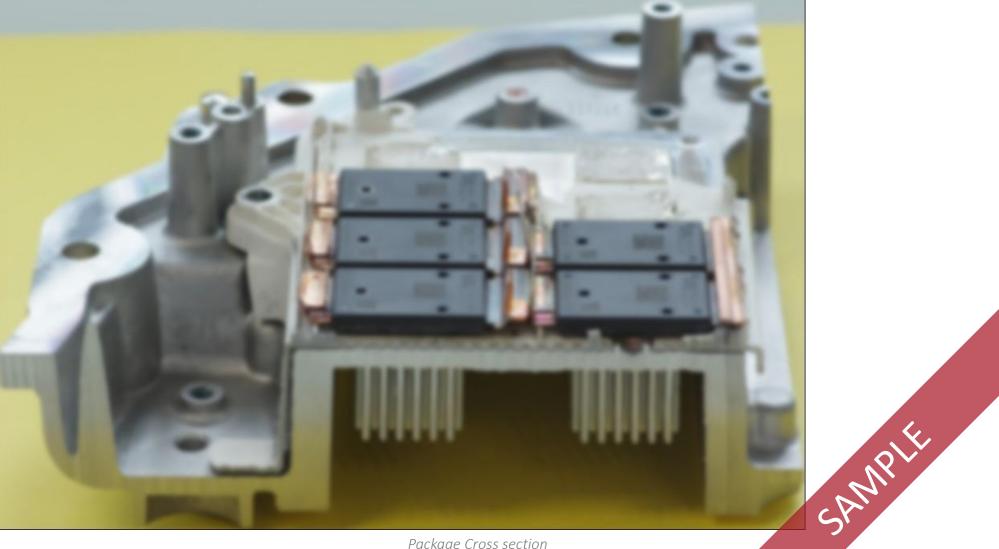
Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

- o Synthesis
- Package
- o Die design
- o Die Cross-Section

Manufacturing Process Flow


Cost Analysis

Selling Price Analysis

Comparison

Feedback

About System Plus

Package Cross section

Heatsink

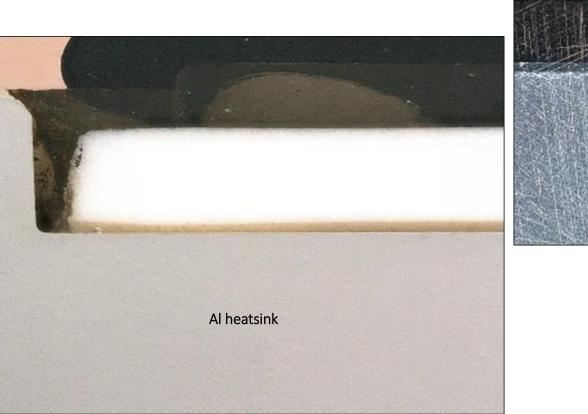
Overview / Introduction

<u>Company Profile & Supply</u> <u>Chain</u>

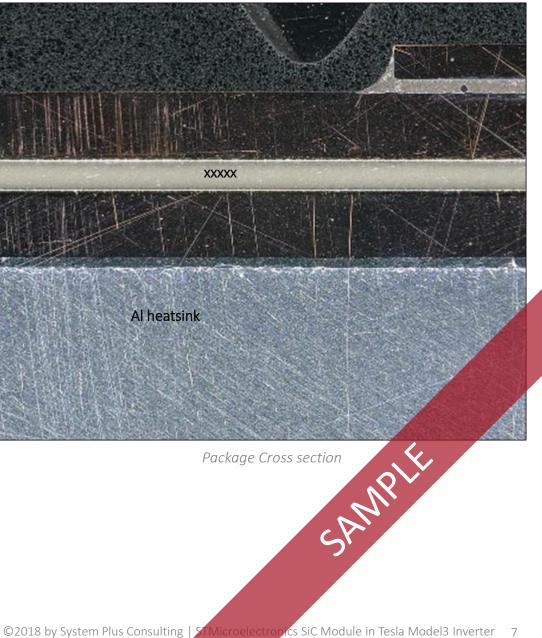
Physical Analysis

- o Synthesis
- Package
- Die design
- o Die Cross-Section

Manufacturing Process Flow

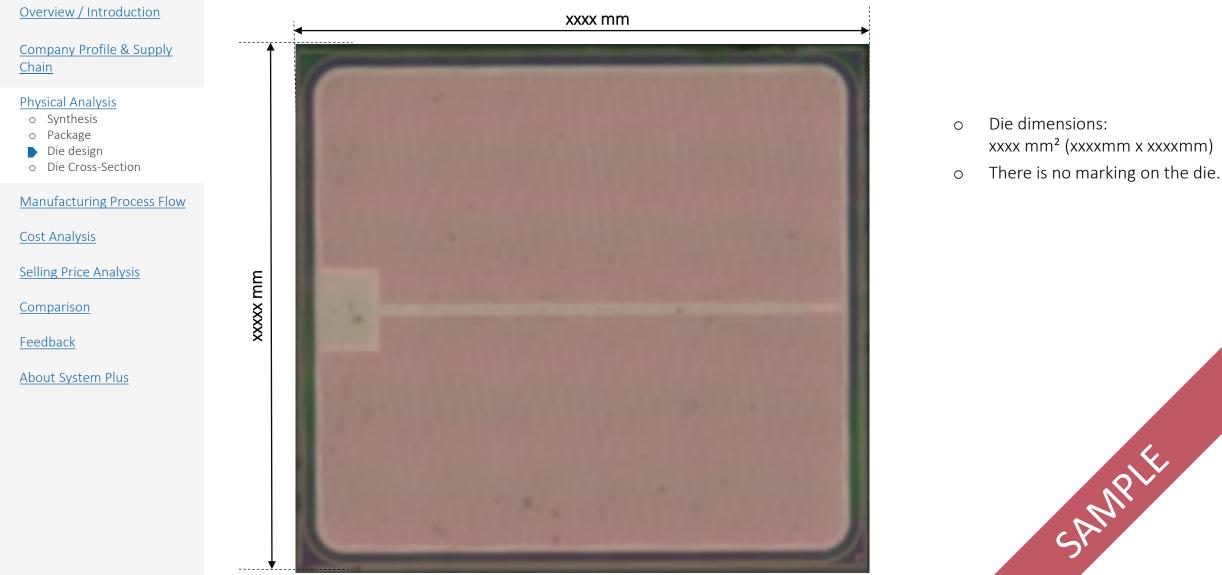

Cost Analysis

Selling Price Analysis


Comparison

Feedback

About System Plus



Package Cross section

MOSFET die dimensions

Die cross section

Overview / Introduction

o Substrate thickness: xxxx μm

<u>Company Profile & Supply</u> <u>Chain</u>

Physical Analysis

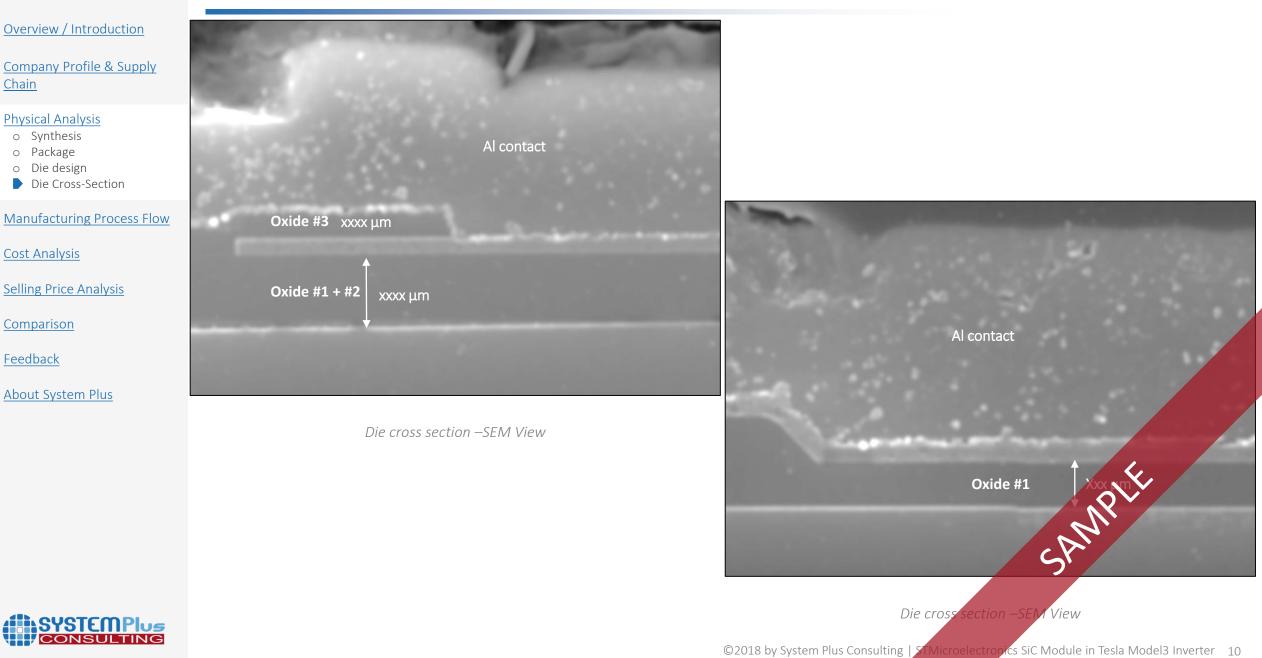
- o Synthesis
- o Package
- o Die design
- Die Cross-Section

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Comparison


Feedback

About System Plus

Die cross section

Die cross section

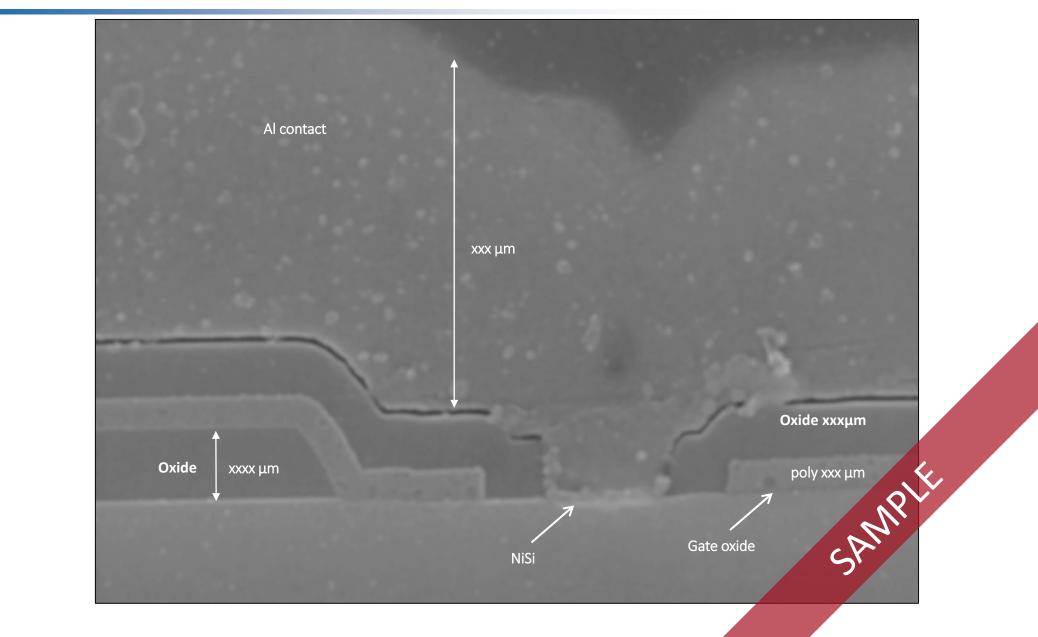
Overview / Introduction

<u>Company Profile & Supply</u> <u>Chain</u>

Physical Analysis

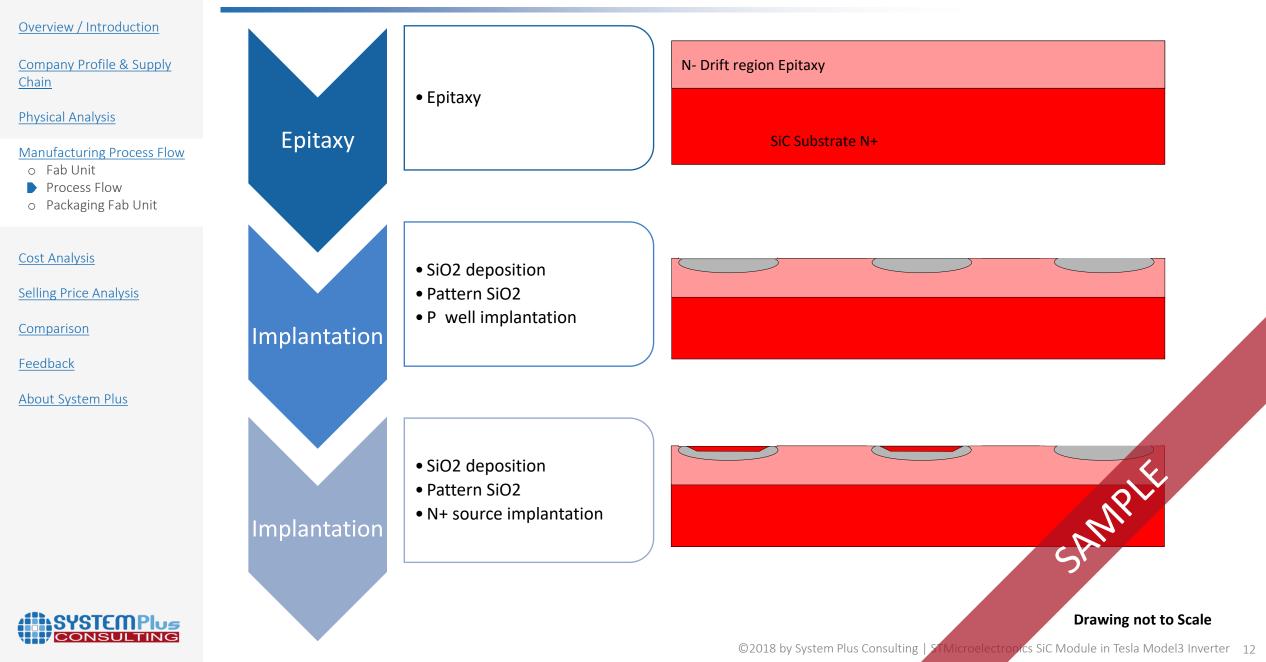
- o Synthesis
- o Package
- o Die design
- Die Cross-Section

Manufacturing Process Flow

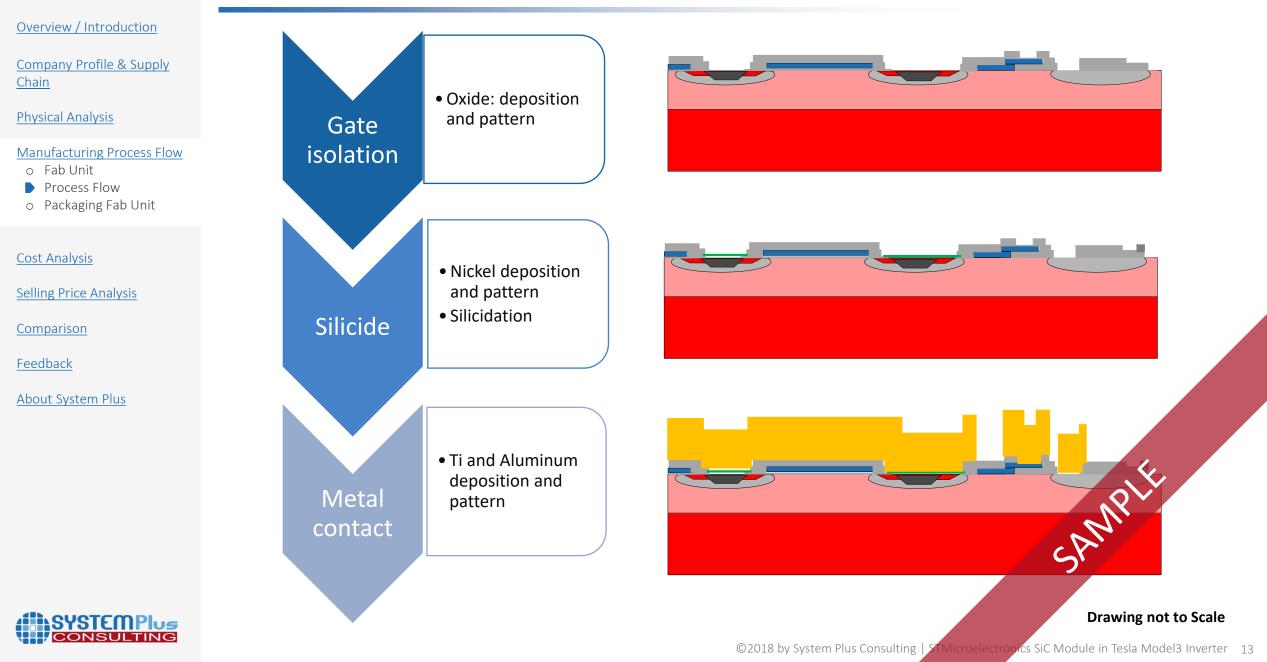

Cost Analysis

Selling Price Analysis

Comparison


Feedback

About System Plus



MOSFET Process Flow (1/4)

MOSFET Process Flow (3/4)

MOSFET Front-End Cost

Overview / Introduction

<u>Company Profile & Supply</u> <u>Chain</u>

Physical Analysis

Manufacturing Process Flow

Cost Analysis

- Synthesis
- o Die Cost
- o Packaging Cost
- o Component Cost

Selling Price Analysis

Comparison

Feedback

About System Plus

The front-end cost ranges from \$xxxx to \$xxx according to years.

The main part of the wafer cost in 2018 is due to the xxxx (xxx%).

MOSFET Die Cost

Overview / Introduction			
Company Profile & Supply Chain			
Physical Analysis			
Manufacturing Process Flow			
Cost Analysis ○ Synthesis Die Cost ○ Packaging Cost ○ Component Cost			
Selling Price Analysis			

Comparison

Feedback

About System Plus

The MOSFET die cost ranges from \$xxxx to \$xxxx according to years.

The Front-end manufacturing represents xxxx of the component cost in 2018.

Probe test, dicing and scrap account for xxxx of the component cost.

Final Module Cost

Overview / Introduction

<u>Company Profile & Supply</u> <u>Chain</u>

Physical Analysis

Manufacturing Process Flow

Cost Analysis

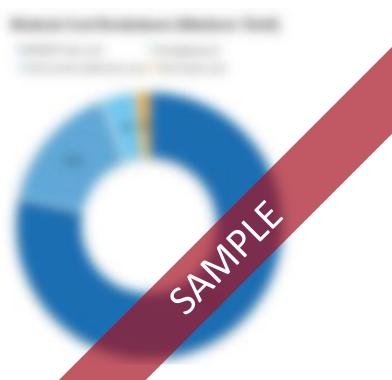
- o Synthesis
- o Die Cost
- o Packaging Cost
- Component Cost

Selling Price Analysis

Comparison

<u>Feedback</u>

About System Plus



The module cost ranges from \$xxx to \$xxxx according to years.

The SiC MOSFET dies manufacturing represents xxx% of the component cost.

The packaging represents xx% of the component cost.

Final test and yield losses account for x% of the component cost.

Estimated Manufacturer Price

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Comparison

Feedback

About System Plus

Module cost Manufacturer Gross Profit Module price

STMicroe	electronics
Gross Margin	39.0%

The module manufacturing cost ranges from \$xxx to \$xxx according to years.

By taking into account a gross margin of 39% for ST (2017 results), the module manufacturer price is estimated to range from \$xxxx to \$xxxxx according to years.

Related Reports

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

<u>Comparison</u>

Feedback

About System Plus

o Company services

- Related reports
- o Contact
- o Legal

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

Power Semiconductors & Compound

- Infineon FS600R07A2E3 HybridPACK2 100KW 3-phase
- Infineon EconoPACK4™ 1200V IGBT4 Module
- <u>Semikron SKiM306GD12E4</u>
- <u>ROHM 1200V Trench SiC MOSFET</u>
- Infineon CooliR²Die[™] Power Module
- <u>Toyota Prius Power Modules</u>

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

Power Electronics & Compound Semiconductors

- Power Electronics for EV/HEV 2018
- <u>Power Module Packaging: Material Market and Technology</u> Trends 2017
- Power SiC 2017: Materials, Devices, Modules, and Applications

SAMPLE

COMPANY SERVICES CONSULTING

SAMPLE

Business Models Fields of Expertise

Overview / Introduction

Contact

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Comparison

Feedback

About System Plus

o Company services

- o Related reports
- Contact
- o Legal

Headquarters

21 rue La Noue Bras de Fer 44200 Nantes FRANCE +33 2 40 18 09 16 sales@systemplus.fr

www.systemplus.fr

Europe Sales Office

Lizzie LEVENEZ
 Frankfurt am Main
 GERMANY
 +49 151 23 54 41 82
 Ilevenez@systemplus.fr

America Sales Office Steve LAFERRIERE Eastern USA laferriere@yole.fr

Troy BLANCHETTE Western USA blanchette@yole.fr Asia Sales Office Takashi ONOZAWA Tokyo JAPAN onozawa@yole.fr Mavis WANG GREATEC INA wang Over E.fr

