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Abstract The performance of several state-of-the-art cli-

mate model ensembles, including two multi-model ensem-

bles (MMEs) and four structurally different (perturbed

parameter) single model ensembles (SMEs), are investi-

gated for the first time using the rank histogram approach.

In this method, the reliability of a model ensemble is

evaluated from the point of view of whether the observa-

tions can be regarded as being sampled from the ensemble.

Our analysis reveals that, in the MMEs, the climate vari-

ables we investigated are broadly reliable on the global

scale, with a tendency towards overdispersion. On the other

hand, in the SMEs, the reliability differs depending on the

ensemble and variable field considered. In general, the

mean state and historical trend of surface air temperature,

and mean state of precipitation are reliable in the SMEs.

However, variables such as sea level pressure or top-of-

atmosphere clear-sky shortwave radiation do not cover a

sufficiently wide range in some. It is not possible to assess

whether this is a fundamental feature of SMEs generated

with particular model, or a consequence of the algorithm

used to select and perturb the values of the parameters. As

under-dispersion is a potentially more serious issue when

using ensembles to make projections, we recommend the

application of rank histograms to assess reliability when

designing and running perturbed physics SMEs.
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1 Introduction

In order for society to efficiently mitigate and adapt to

climate change, it is necessary to have climate projections

accompanied by assessments of the uncertainty in the

projections. Ensembles of climate models, sampling

uncertainties in model formulation, are commonly used as

the basis for generation of probabilistic projections. It is,

therefore, very important to evaluate the performance of

these ensembles.

There are a large number of methods one could adopt to

evaluate the performance of model ensembles and there are

many examples in the literature. These methods generally

use one of two paradigms. One paradigm, sometimes called

the truth centred paradigm (Knutti et al. 2010b), assumes

that the truth should be close to the centre of the ensemble

members (i.e. close to the ensemble mean). Knutti et al.

(2010a) investigated the behaviour of the state-of-the-art

climate model ensemble created by the World Climate
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Research Programme’s Coupled Model Intercomparison

Project Phase 3 (CMIP3, Meehl et al. 2007), and found that

the truth centred paradigm is incompatible with the CMIP3

ensemble: the ensemble mean does not converge to

observations as the number of ensemble members increa-

ses, and the pairwise correlation of model errors (the dif-

ferences between model and observation) between two

ensemble members does not average to zero (Knutti et al.

2010a; Annan and Hargreaves 2010; hereafter AH10).

An alternative paradigm is to consider the truth as being

drawn from the distribution sampled by the ensemble. In

this case, the model ensemble can be regarded as perfect if

the ensemble members and the truth are ‘‘statistically

indistinguishable’’. In this case, the truth is not necessarily

at the centre of the ensemble. Predictions made with such a

model ensemble are regarded as ‘‘reliable’’ in the technical

sense that the natural probabilistic interpretation (based on

counting ensemble members) matches the frequency of

occurrence of predicted events evaluated over multiple

verifications. This idea of a ‘‘statistically indistinguishable’’

ensemble is common in the field of weather forecasting and

other ensemble prediction fields, and under this paradigm

the reliability of model ensembles can be evaluated through

the rank histogram approach (Anderson 1996) whereby the

distribution of the observed occurrence of an event in the

prediction ensembles is evaluated. Such an analysis can

reveal if prediction ensembles are too narrow, too broad, or

biased. In the present paper, we analyse the reliability of

model ensembles in statistical terms. We discuss the con-

cept of ‘‘reliability’’ in more detail in Sect. 2.3.

AH10 applied the rank histogram method to the evalua-

tion of spatial fields of time-averaged present-day variables

from climate models and concluded that the CMIP3

ensemble appears reasonably reliable on large scales.

However, AH10 only investigated the CMIP3 ensemble, and

the three most commonly investigated climate variables

[surface air temperature (SAT), sea level pressure (SLP), and

precipitation (PRCP)]. They did not consider those variables

which play an important role in determining the range of

climate responses to increasing greenhouse gases, such as

radiation and/or cloud effects at the top of atmosphere

(TOA). Here we extend the evaluation to those variables and

analyse several ensembles; two multi-model ensembles

(MMEs) from CMIP3 and four structurally different single

model ensembles (SMEs, sometimes also referred to a per-

turbed physics or perturbed parameter ensembles) with dif-

ferent ranges of climate sensitivity. We investigate the

relationship between climate sensitivity and the reliability of

the present-day climate simulation. We also check the

validity of the rank histogram approach by comparing the

model-data difference with the ensemble spread through

calculating the root mean square model-data difference

(RMSE), and the standard deviation of the ensemble (SD).

In Sect. 2, we describe the model ensembles and the

application of the rank histogram approach, including a

description of the statistical method used to define the

reliability of model ensembles from the rank histogram,

and a method for handling uncertainties in the observa-

tions. In Sect. 3, the results from the rank histogram

analyses are described. In this study, we primarily inves-

tigate the reliability of the climatology (long-term mean of

model simulation) of large-scale features of climate model

ensembles, but we also consider the trend for surface air

temperature where transient simulations are available (that

is, for the coupled ocean–atmosphere models). Our main

result is to show that, under this analysis, the performance

of the MME is qualitatively different from, and superior to,

the SMEs. A conventional analysis of RMSE and SD is

also presented in Sect. 3, which supports our results and

analysis using rank histograms. Finally, in Sect. 4, we

present our conclusions.

2 Model ensembles and methods of analysis

2.1 Methods for the generation of ensembles

There are two qualitatively distinct methods in widespread

use which aim to sample uncertainties arising from model

parameterisations (Murphy et al. 2007).

One approach is to use an MME, which consists of

simulations contributed by different models of climate

research institutes from around the world, often referred to

as an ‘‘ensemble of opportunity’’. Each model may be

considered a social construct which embodies the beliefs of

those modellers who created it as how best to represent the

climate system, within the computational and technological

constraints at the time. Thus the whole ensemble may be

interpreted (at least potentially) as sampling our collective

beliefs and uncertainties regarding the climate system,

although the ad-hoc and uncoordinated nature of the

model-building process around the world may raise some

doubts as to the plausibility of such an assumption. The

current MME of state-of-the-art global climate models is

the CMIP3 ensemble (Meehl et al. 2007). While this

ensemble samples uncertainties in model structure, each

model has one parameter set and a fixed model structure.

Some members of the MME may be different resolution

versions of the same model structure (albeit with resolu-

tion-dependent parameters adjusted) and some others may

share common components.

The other commonly-used approach is to choose a range

of different parameter values in a single model, to form an

SME. While uncertainties within a single model can be

more systematically investigated in SMEs, and parameter

values may be set to rather extreme values (compared to
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those used in the MME) so as to generate a wide range of

responses, major uncertainties in model structure cannot be

sampled other than switching between existing alternative

parameterisation subroutines. Furthermore, different SMEs

may use different strategies for varying parameters values

such that, even using the same single model structure,

different ensembles can show quite different behaviour

(Collins et al. 2010, hereafter C10, Yokohata et al. 2010,

hereafter Y10). It is therefore not clear a priori to what

extent either the ad-hoc multi-model ‘‘ensemble of oppor-

tunity’’, or the more explicitly designed (but structurally

limited) single model ensembles, can be considered to

provide a realistic probabilistic range of future climate

change, and methods to evaluate the performance of these

ensembles are not yet well developed.

Some comparisons of features between the CMIP3

MME and SMEs have already been performed. Webb et al.

2006 showed that the spread of cloud feedback of the

CMIP3 MME overlaps with that of an SME of the Hadley

Centre atmosphere-slab ocean coupled model HadSM3

(Pope et al. 2000). A recent study by C10 analysed a

number of different climate variables in a set of SMEs of

HadCM3 (Gordon et al. 2000, atmosphere–ocean coupled

version of HadSM3) from the point of view of global-scale

model errors and climate change forcings and feedbacks,

and compared them with variables derived from the CMIP3

MME. Knutti et al. (2006) examined another SME based

on the HadSM3 model, and found a strong relationship

between the magnitude of the seasonal cycle and climate

sensitivity, which was not reproduced in the CMIP3

ensemble.

However, comparisons of SMEs based on different

underlying models have not yet been examined so exten-

sively. This may be partly because outputs from SMEs

have not, to date, been archived in open databases like the

CMIP3 MME. Since a single model is used for construct-

ing an SME, the results depend on the model used and on

the parameter sampling strategy. For example, climate

sensitivity (equilibrium surface air temperature change due

to CO2 doubling) of different model SMEs differs sub-

stantially. The range of climate sensitivity obtained by a

HadSM3 SME is similar to that of the CMIP3 MME, at

about 2–5 K (Webb et al. 2006, Randall et al. 2007), while

that of another SME, using MIROC (K-1 Model Devel-

opers 2004) is relatively high (about 4–10 K, Annan et al.

2005a), and that of NCAR CAM (Collins et al. 2006b) is

relatively low (about 2–3 K, Jackson et al. 2008; Sanderson

2011). Even ensembles produced with the same model but

with different sampling strategies can produce different

distributions of climate sensitivity (Murphy et al. 2004;

Stainforth et al. 2005).

Recently Y10 investigated the physical processes

involved in determining the climate sensitivity of the

structurally different SMEs of HadSM3 and MIROC3, and

found that while shortwave (SW) cloud feedback plays an

important role for the difference in the ensemble mean and

the spread of climate sensitivity in the two SMEs, the

mechanisms which determine the spread in shortwave

cloud feedback might be different between the two SMEs.

However, Y10 and other studies so far have not directly

evaluated the reliability of structurally different SMEs

compared to the MME.

2.2 Model ensembles

For the MMEs, we use results from CMIP3 (Meehl et al.

2007), obtained from the Program for Climate Model

Diagnosis and Intercomparison (PCMDI) data archive. In

the present study, we analyse two MMEs, made from two

subsets of the CMIP3 database. One is the CMIP3 MME of

the twentieth century experiments using coupled atmo-

sphere–ocean climate models (CMIP3-AO). The climate

variables from CMIP3-AO are averaged over the period

during which observational data are available (details of

the observations are presented in Sect. 2.3). In CMIP3-AO

we use only one ensemble member from each model, in

order not to give special weight to particular models where

more than one initial-condition ensemble member exists

(Knutti et al. 2010b). The other MME consists of the

control experiments (the boundary conditions of the model

are held fixed at values comparable to the present climate

state) from the atmosphere-slab ocean coupled climate

models (CMIP3-AS). In an atmosphere-slab ocean coupled

model, the ocean heat transport in the slab ocean (which is

the representation of the mixed layer ocean with depths

around 50 m) is diagnosed from a calibration phase with

imposed observed sea surface temperature and sea ice

distributions. We use the last 20 years average of the

control simulation of the CMIP3-AS. The climate models

used in the analysis are summarised in Table 1.

We use four SMEs constructed using structurally dif-

ferent climate models. The experimental settings and the

number of parameters that were varied in the four SMEs

are summarised in Table 2. Two of the SMEs used for

analysis were generated by varying atmospheric parame-

ters in the closely related models, HadCM3 (Gordon et al.

2000) and HadSM3 (Pope et al. 2000). We denote these

HadCM3-AO and HadSM-AS, respectively. The atmo-

spheric components of HadCM3 and HadSM3 are identi-

cal, and have a resolution of 2.5 latitudinal degrees by 3.75

longitudinal degrees with 19 vertical levels. The ocean

component of HadCM3 has a resolution of 1.25 9 1.25

degrees with 20 levels. In HadSM3, a motionless 50 m slab

ocean is coupled to the atmospheric model and ocean heat

transport is diagnosed as described above for each member.

The HadCM3-AO and HadSM-AS SMEs were generated
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by the Quantifying Uncertainty in Model Predictions

(QUMP) project.

HadSM-AS is made up of the pre-industrial control

experiments of the 128 ensemble members used in Webb

et al. 2006 and Y10, which is the same as ‘‘S-PPE-M’’ in

C10. In HadSM-AS, 31 atmospheric parameters are per-

turbed at the same time. Originally the number of ensem-

bles was 129, but one ensemble member is excluded

because of the unrealistic cooling drift, caused by the

interaction between negative SST anomalies and low

cloud cover which is known to sometimes occur in models

of this type (e.g. Stainforth et al. 2005, supplementary

information).

HadCM3-AO has 17 members and we utilise the results

from the twentieth century experiments forced by both

natural and anthropogenic factors. This is the same

Table 1 List of the CMIP3 multi-model ensemble (MME) used for analysis

Model CMIP3-

AO

CMIP3-

AS

References

A R A R

CCSM3 s s s s Collins et al. (2006b), Smith and Gent (2004)

CGCM3.1-T47 s s s s McFarlane et al. (1992), Flato (2005)

CGCM3.1-T63 s s s s

CNRM-CM3 s s Salas-Melia et al. (unpublished data)

CSIRO-Mk3.0 s Gordon et al. (2002)

ECHAM5/MPI-OM s s s s Roeckner et al. (2003), Marsland et al. (2003), Haak et al. (2003)

ECHO-G s s s Roeckner et al. (1996), Legutke and Maier-Reimer (1999), Min et al. (2005)

FGOALS-g1.0 s s s Yu et al. (2002, 2004)

GFDL-CM2.0 s s s s Delworth et al. (2006), Gnanadesikan et al. (2006), Wittenberg et al. (2006), Stouffer et al. (2006)

GFDL-CM2.1 s s s s

GISS-EH s Schmidt et al. (2006), Hansen et al. (2007)

GISS-ER s

INM-CM3.0 s Galin et al. (2003), Diansky et al. (2002)

IPSL-CM4 s s Marti et al. (2006)

MIROC3-HiRes s s s s K-1 Model Developers (2004)

MIROC3-MedRes s s s s

MRI-CGCM s s s s Shibata et al. (1999), Yukimoto et al. (2001)

PCM s s Washington et al. (2000)

UKMO-HadCM3 s s Gordon et al. (2000), Pope et al. (2000)

UKMO-HadGEM1 s s s s Martin et al. (2004), Roberts (2004)

‘‘CMIP3-AO’’ denotes twentieth century experiment by atmosphere–ocean coupled general circulation model (GCM), and ‘‘CMIP3-AS’’ denotes

control experiment by atmosphere-slab ocean coupled GCM. ‘‘R’’ denotes climate variables related to radiation, such as SW and LW full-sky

radiation, cloud radiative forcing, and clear-sky radiation. The circle indicates that the climate variable of each model member is available.

Number of models used for analysis is different between model ensembles and climate variables

Table 2 List of the single model ensembles (or perturbed physics ensembles) used for analysis

Ensemble Experiment Number of parameter

perturbed

Number of ensemble

members

References

HadCM3-

AO

Twentieth century by

AOGCM

31 128 Murphy et al. (2007), Collins et al.

(2006a)

HadSM3-

AS

Control by ASGCM 31 17 Webb et al. (2006), Yokohata et al.

(2010)

MIROC3-

AS

Control by ASGCM 13 32 Annan et al. (2005a), Yokohata et al.

(2010),

NCAR-A Control by AGCM 15 100 Jackson (2009)

Left column is the name of ensembles, and in the second left column, ‘‘AOGCM’’ denotes atmosphere–ocean coupled GCM, and ‘‘ASGCM’’

denotes atmosphere-slab ocean coupled GCM. Number of parameters perturbed and ensemble members are shown in the third and fourth

column, details of which are described in the ‘‘Reference’’ column
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ensemble as ‘‘AO-PPE-A’’ in C10 in which 31 atmospheric

parameters in HadCM3 are simultaneously perturbed. In

order to sample a range of climate sensitivity while

ensuring that each ensemble member simulates the present

climate state reasonably well, the parameter settings of 17

model ensemble members were chosen based on analysis

of the HadSM-AS runs (see Webb et al. 2006 and C10).

The parameters that were varied in the creation of these

two SMEs are described in Murphy et al. 2004 and Y10.

The third SME analysed is the ensemble produced using

MIROC3.2 (K-1 Model Developers 2004) which we refer

to as MIROC3-AS. The atmospheric component of MI-

ROC3.2 used for the ensembles has reduced resolution

compared to the standard T42 resolution, of 5.6 longitu-

dinal degree by 5.6 latitudinal degree (T21) with 20 ver-

tical levels. This is coupled to a motionless 50 m depth slab

ocean. Ocean heat transport is calculated with the slab-

ocean calibration procedure described above.

The MIROC3-AS SME is generated using an Ensemble

Kalman Filter (EnKF) method for parameter estimation

(Annan et al. 2005b). The EnKF is used to assimilate

seasonally averaged observational data into the model,

thereby generating an ensemble of runs with a range of

values for the uncertain parameters, all reasonably com-

patible with present-day climatology. The number of

parameters perturbed is 13. See Annan et al. (2005a) and

Y10 for further details of the application of the EnKF to

MIROC. The number of ensemble members generated was

40, but some ensemble members that exhibit a persistent

warming drift and do not reach steady states during their

doubled CO2 experiment are excluded from the analysis in

the same way as Y10. We use 32 members without the

warming drift for the analysis. The numerical experiments

are performed within the Japan Uncertainty Modelling

Project (JUMP).

The fourth SME is constructed from the atmospheric

GCM, NCAR CAM3.1 (Collins et al. 2006b, NCAR-A

hereafter). It was generated by varying 15 model parame-

ters important to clouds, convection, and radiation. One

hundred samples from a 2,276-member ensemble were

selected to represent observational constraints on the

model’s parametric uncertainties.

This implementation of CAM3.1 has a resolution of 2.8

degree longitude by 2.8 degree latitude (T42) with 26 ver-

tical levels. The acceptable model parameter settings are

chosen using Bayesian inference and Multiple Very Fast

Simulated Annealing (Jackson et al. 2004). The experi-

mental design follows Jackson et al. (2008) with some

differences relating to shorter model experiments (4 years

instead of 11 years), an expanded list of uncertain model

parameters, and a revised cost function. The updated cost

function is based on quantities, observations, and regions

that are currently being used evaluate the development of

CAM through a set of Taylor diagram diagnostics within the

Atmosphere Model Diagnostic Package (http://www.cgd.

ucar.edu/cms/diagnostics/). These metrics emphasise fields

between 30S and 30N including 2 m air temperature

(Willmott and Matsuura 2000), vertically averaged air

temperature (ERA40, Uppala et al. 2005), latent heat fluxes

of the ocean (Yu et al. 2008), zonal winds at 300 mb

(ERA40, Uppala et al. 2005), longwave and shortwave

cloud forcing (CERES2, Loeb et al. 2009), precipitation

over land and ocean (GPCP, Adler et al. 2003), sea level

pressure (ERA40, Uppala et al. 2005), vertically averaged

relative humidity (ERA40, Uppala et al. 2005). Other

quantities include Pacific Ocean wind stress between 5S and

5N (ERS-2, CERSAT 1996) and the global mean annual

mean radiative balance.

Note that one of the key features of an SME is control

over the experimental design of the ensemble via the

algorithm used to perturb the parameters. For example,

C10 show results from different experimental approaches

involving perturbing model parameters one-at-a-time,

incorporating information from observations to produce

members which evaluate well against observations and

exploring parameter space comprehensively in order to fit

statistical emulators. Hence the behaviour of the SME can,

to a certain extent, be controlled by experimental design.

Different sections of code controlling the same process can

even be switched in and out. One might envisage per-

turbing parameters in a way to maximise the ‘‘reliability’’

defined in this study. However, suffice to say that none of

the SMEs analysed here have been designed in that way

and all use different approaches to choose and perturb

parameters with the general goal of generating reasonable

climate states while representing parametric uncertainties.

2.3 Reliability and rank histogram analysis

The term ‘‘reliability’’ is used here in the technical sense

analogous to how it is commonly used in numerical

weather prediction (NWP). In principle, a probabilistic

prediction is termed reliable when the frequency of

occurrence (over a large set of predictions) matches the

predicted probability (Toth et al. 2003). In NWP applica-

tions, forecasts are typically evaluated over a data set with

both spatial and temporal dimensions. For example, Jolliffe

and Primo (2008) (hereafter JP08) used a data set which

they estimated, after adjusting for temporal and spatial

correlations, to have approximately 17 temporal and 25

spatial degrees of freedom. In our current context of cli-

mate model evaluation, we are only using the climatolog-

ical mean state (as is widespread in the evaluation of

climate model ensembles, e.g. Knutti et al. 2010a) and the

long-term trend pattern, and therefore there is no temporal

dimension to our data set. Investigations using other epochs
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to look at climatic changes in response to external forcing

will be reported elsewhere (Hargreaves et al. submitted to

Climate of the Past). Furthermore, since the data are his-

torical, the analysis here is essentially that of a hindcast,

and it is debatable to what extent the data can be consid-

ered to provide truly independent validation of the models.

The relationship between current performance and true

forecasting (such as prediction of climate change over the

twenty-first century) remains unclear. Model performance

in comparison to historical or current data is often

assumed, or asserted, to give some guide to future perfor-

mance. Results robustly demonstrating this, however, even

in the limited context of cross-validation within the multi-

model ensemble, are relatively rare. Hall and Qu (2006)

provide one example where there does appear to be a

strong relationship between current performance and future

climate change across the multi-model ensemble, but

contrasting results exist. For example in the case of Knutti

et al. (2006), a strong relationship between current

behaviour and equilibrium climate sensitivity, that is found

to hold across a single model ensemble, has no skill in

predicting the climate sensitivity of the members of the

CMIP3 ensemble. Thus, reliability over a hindcast interval

is not necessarily a sufficient condition to demonstrate that

the model forecasts are probabilistically valid. On the other

hand, to the extent that such reliability can be demonstrated

(even in a hindcast situation), it must be considered a

positive indication in judging whether the range of uncer-

tainty sampled by an ensemble provides a plausible range

of depictions of the climate system. Conversely, where an

ensemble is not reliable in this sense (and especially when

it is strongly biased such that reality lies outside its range),

it must raise some doubts as to how credible it is (at least in

raw form) as a representation of these uncertainties.

The reliability of the gridded mean climatic state of the

model ensembles was investigated for the modern climate

with respect to the observational data sets of various

variables by calculating rank histograms, using the same

method described in AH10. The nine climate variables

analysed were surface air temperature (SAT), sea level

pressure (SLP), precipitation (PRCP), the TOA shortwave

(SW) and longwave (LW) full-sky radiation, clear-sky

radiation (CLR, radiative flux where clouds do not exists),

and cloud radiative forcing (CRF, radiative effect by clouds

diagnosed from the difference between full-sky and clear-

sky radiation, Cess et al. 1990). In this study, we consider

uncertainties in observation by using two independent

dataset as shown in Table 3. As for the mean states of SAT,

PRCP and SLP, we used 20-year climatology (1980–1999)

obtained from the standard datasets such as HadCRU3

(Brohan et al. 2006), ERA40 (Uppala et al. 2005), GPCP

(Adler et al. 2003), CMAP (Xie and Arkin 1997), and

HadSLP2 (Allan and Ansell 2006). As for the TOA

radiation, we used ERBE-S9 (Harrison et al. 1990) and

ISCCP-FD (Zhang et al. 2004) dataset, which are the

standard dataset often used for the validation of model

radiative properties (Trenberth et al. 2007). Because of the

availability of ERBE-S9, we used 5-year climatology

(1985–1989) for the evaluation of TOA radiation.

In addition to the mean climate states, we evaluated the

long-term trend in the twentieth century experiments by

CMIP3-AO and HadCM3-AO. Due to its robust attribution

to external forcing, we evaluate the long-term trend of SAT

over the last 40 years (1960–1999). In the present study,

we do not investigate the twentieth century trend of PRCP,

SLP, or TOA radiations. This is partly because the inter-

annual to decadal variability is generally large in these

variables, and partly because there are large uncertainties

and sometimes an artificial trend in observations owing to

the difficulty in measurement of these climate variables

(Trenberth et al. 2007). As for the SAT trend, we also

performed the same calculations after removing the natural

variability using a method proposed by Thompson et al.

2008, but the difference between with and without

removing natural variability is very small (not shown).

Therefore, we believe that our results of SAT trend are

robust.

The methodology of the rank histogram calculation was

as follows. First, the model data and observational data

were interpolated onto a common grid (resolution of T42 in

CMIP3-AO and HadCM3-AO, and T21 for the other model

ensembles). Second, we perturb the model ensemble to

account for the observational uncertainties, as described

below in Sect. 2.4. Then, at each grid point, we compared

the value of the observation with the ensemble of model

values at each grid point, evaluating the rank of the

observation in the ordered set of ensemble values and

observed value. Here a rank of one corresponds to the case

where the value of observation is larger than all the

ensemble members. We generate a global map of the rank

of observation, R(l, m), where l and m denote the index of

latitudinal and longitudinal grid point, for each variable

and each ensemble. Using the global map of rank of

observation, R(l, m), the rank histogram, h(i) is the histo-

gram of the ranks, weighted by the fractional area of each

grid box (the average weight will be 1/ngrid, where ngrid is

number of grid point), over the whole grid. Note that in the

present study we performed an univariate analysis where

only one variable is used for the calculation of one rank

histogram. A multivariate analysis where multiple vari-

ables are used for one rank histogram is an important future

work.

The features of the rank histogram can be interpreted as

follows. If a model ensemble is perfect, that is, if the true

climatic variable can be regarded as indistinguishable from

a sample of the model ensemble, then the rank of the
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observation lies with equal probability anywhere in the

model ensemble (after accounting for observational error),

and thus the rank histogram should have a uniform distri-

bution. On the other hand, if the distribution of a model

ensemble is relatively narrow, then the observed values

will lie towards the edge or outside the range of the model

ensemble, and then the rank histogram will form a V- or

even U-shaped distribution with large end bins depending

on the severity of this error. An ensemble with a persistent

bias, either too high or too low, may either have a trend

across the bins, or a strong peak in one end bin if the bias is

sufficiently large. If the histogram has a domed shape with

highest values towards the centre, then this implies that the

ensemble is overly broad compared to a statistically

indistinguishable one.

While a uniform rank histogram is a necessary condition

for an ensemble to be reliable, it is not in itself a sufficient

one (Hamill 2001). The rank histogram approach, as

applied here over spatial fields of nine time-averaged cli-

mate variables and one trend, represents a leading-order

diagnostic of the behaviour of an ensemble. It does not

replace detailed investigation of model errors in the mean

and in the natural variability and their causes, nor (as

discussed in Sect. 2.3) does it necessarily imply that future

projections made using these ensembles will have the same

reliability characteristics. We regard it simply as another

tool in the armoury of those who develop and those who

use climate models in research and in decision-making.

The implications for future projections are discussed in the

Conclusions. We also note that in focussing on reliability

we are only considering one aspect of ensemble perfor-

mance. For example, another property of ensembles that is

generally of interest is sharpness, or in other words the

narrowness of the ensemble spread. Subject to it being

reliable, a sharper ensemble will be more informative than

a broader one, but in practice there is often a tension

between these two properties since narrowing an ensemble

will generally increase the risk of reality falling outside its

range.

2.4 Uncertainties in the observations

As mentioned above, here we incorporate consideration of

the observational uncertainty into the rank histogram cal-

culation. Uncertainty due to instrument error or analysis

errors has often been ignored in ensemble evaluation, but

has been identified as a potentially important factor (Knutti

et al. 2010b). A simple technique to account for observa-

tional error is to add perturbations of equivalent size to the

model outputs (e.g. Anderson 1996). In this way, the

sampling distributions of the observations and perturbed

model data will be the same if the underlying sampling

distributions of reality and models coincide. The lack of

formal estimates of observational uncertainty is a hin-

drance, however. We estimate the observational errors by

using two different observational data sets for each climatic

variable in the rank histogram analyses (see Table 3). For

each grid point, the observational value Xobs, which is

compared to the model ensembles and is used for the cal-

culation of rank of observation, is calculated as the mean of

the two observations, Xobs1 and Xobs2,

Xobs ¼ ðXobs1 þ Xobs2Þ=2 ð1Þ

The standard deviation of the mean of two observations,

robs, is estimated as follows.

robs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðXobs1 � XobsÞ2 þ ðXobs2 � XobsÞ2
h i

r

ð2Þ

Both Xobs and robs are calculated at each grid point. Given

the limited data with which they were estimated, it may in

principle be better to spatially smooth the uncertainties in

some way but we did not attempt this here. There are some

strong spatial patterns in the uncertainties so a simple

global average would probably not be appropriate. Using

randomly sampled values from a normalised Gaussian

distribution, Z, we add observational uncertainty to the

model ensemble variables by

X0model ¼ Xmodel þ robsZ ð3Þ

Table 3 List of observations used for analysis. In each variable, we use two independent observations (observation 1 and 2), and consider their

uncertainties as explained in Sect. 2.4

Variables Observation 1 Observation 2

Data Reference Data Reference

Surface air temperature mean state, 40-years trend (1960–1999) HadCRU3 Brohan et al. (2006) ERA40 Uppala et al. (2005)

Precipitation GPCP Adler et al. (2003) CMAP Xie and Arkin

(1997)

Sea level pressure HadSLP2 Allan and Ansell

(2006)

ERA40 Uppala et al. (2005)

SW and LW full-sky and clear-sky radiation, and cloud radiative

forcing

ERBE-S9 Harrison et al. (1990) ISCCP-

FD

Zhang et al. (2004)
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where Xmodel is the values of each model ensembles at each

grid point. Although, in principle, this approach introduces

a degree of sampling error into our analysis, in practice the

number of grid points (and therefore random deviates) is

sufficiently large that the results are robust under replica-

tion. By considering uncertainties in observation, the

spread of the model ensembles becomes somewhat wider

compared to the case without considering them. However,

the effect is small except where the observational uncer-

tainty is comparable to the ensemble spread. Our approach

to estimating observational uncertainty likely underesti-

mates the true error, as some sources of error may be

common to the different data sets used. However, we

consider that this approach is certainly more defensible

than the common practice of ignoring observational error

entirely. In theory sampling the random deviates from a

t-distribution would be preferable to the Gaussian which

we used, but it is not clear how best to estimate the number

of degrees of freedom of this distribution. Our results are

robust even to the use of a t-distribution with a few as 5

degrees of freedom, which is surely an underestimate given

the significant spatial coherence of observational errors.

More credible and detailed statistical models of observa-

tional uncertainty would be valuable in undertaking more

precise evaluations of climate models.

2.5 Statistical analysis by goodness-of-fit test

Since a model ensemble can be regarded as unreliable if

the rank histogram of observations is significantly non-

uniform, we performed a statistical test for uniformity.

While the Chi-square test of goodness of fit is a standard

technique for the test of uniformity, it is not sensitive to the

order of the distribution and thus it is not well suited for our

purposes, having low power in detecting typical failure

modes (JP08). Therefore, we use the technique introduced

by JP08 and decompose the Chi-square statistics into

components relating to ‘‘bias’’ (the trend across the rank

histogram), ‘‘V-shape’’ (peak or trough towards the centre),

‘‘ends’’ (both left and right end bins are high or low), and

‘‘left-ends’’ or ‘‘right-ends’’ (the left or right end bin is high

or low).

Using the rank histogram, h(i) defined in Sect. 2.3, the

Chi-square statistics can be described as

T ¼
X

k

i¼1

nobshðiÞ � ei½ �2

ei
; ð4Þ

where k is the maximum rank and i is the rank of the

observation, nobs is ‘‘the number of observation’’ in JP08,

and ei = nobs/k corresponds to the expected bin value for

a uniform distribution. The number nobs is also referred

to as the ‘‘effective degrees of freedom of the data’’ in

AH10 and JP08. Since values of neighbouring grid

points are highly correlated, as discussed in AH10, their

ranks of observation cannot be considered as independent

of each other. The effective degree of freedom of the

data, nobs, which also corresponds to the independent

number of ranks of observation in the global map of

R(l, m), is not entirely clear. AH10 followed JP08 in

using a value of 40, which corresponds to the effective

degree of freedom of synoptic climate fields. However,

in that work, calibrating the statistical test through per-

mutation testing (i.e, taking each model in turn as the

target to be predicted by the remaining ensemble mem-

bers) suggested that a value of around 5 degrees of

freedom might be more appropriate. In a recent study,

Annan and Hargreaves 2011 also estimated via EOF

analysis that nobs ranges from 4 to 11 for SAT, SLP and

PPT. Permutation testing and EOF analysis of the

ensembles used here (not shown) support a similar range

of values, so we use 10 here as an approximate (but

perhaps slightly high) estimate. This number must be

considered as somewhat uncertain, but our results are

qualitatively insensitive to the exact value used. The

appropriate value to use may differ across variables, but

data for estimating this are limited. A higher value

implies a test with more power, making the test for

reliability more stringent, and meaning that more rank

histograms would be detected as significantly non-uni-

form at a given threshold.

As described in JP08, under the null hypothesis of a

uniform underlying distribution, the Chi-square statistic for

the full distribution is sampled from approximately a Chi-

square distribution of with (k - 1) degrees of freedom.

Using a table of the Chi-square distribution and the value

of T in Eq. 4, we can calculate the p-value and reject the

hypothesis of uniform distribution if the p value is smaller

than the level of significance. Similarly, each of the com-

ponents such as bias, V-shape, ends, left-ends, and right-

ends calculated by the formulation of JP08, should have an

approximate Chi-square distribution with one degree of

freedom. We can also estimate the p-value of these com-

ponents and test the hypothesis of a uniform distribution.

The Chi-square approximation is accurate in the case of a

large data set. Here we only have 10 degrees of freedom,

and the bin contents are fractional. Therefore, these sta-

tistics are somewhat imprecise. However, the bootstrapping

(leave-one-out) analysis of AH10, which we also per-

formed on this data set, lends support to the p \ 0.05

threshold used here independent of the Chi-square

approximation. That is, this threshold used also leads to

rejection of around 5% of the ensemble members

themselves.
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3 Results and discussions

3.1 Rank histogram

The rank histograms for all the ensembles are calculated

(Fig. 1) and analysed using the goodness of fit tests

described in Sect. 2.5. The number of ensemble members

for which data are available varies between variables, par-

ticularly in the CMIP3 database, with the minimum

ensemble size being 10. The shape of the rank histogram

derived from a larger ensemble will be more clearly defined

than that of a smaller one. Thus, here we treat all the

ensembles as if they were the same size as the minimum

CMIP3 ensemble, and re-bin the rank histograms to 11 bins.

Table 4 shows the minimum of the p-value among the

total Chi-square statistics and its five components (bias,

v-shape, ends, left-ends, and right-ends) according to JP08.

Numbers with p-values less than 0.05 are shown in bold

type, which means that this rank histogram is non-uniform

at the 5% significance level from the null hypothesis. We

also show the number of variables with p-value less than

0.05 for each ensemble in Table 4.

The rank histograms of the multi-model CMIP3

ensembles are shown in Fig. 1a (twentieth century exper-

iments by CMIP3-AO) and Fig. 1b (control experiments by

CMIP3-AS). The analysis of SAT, SLP, and PRCP in

Fig. 1a is similar to that of AH10. The differences are that

in the present study we include the uncertainty in the

observations as described in Sect. 2.4 and there are also

small differences due to the different number of model runs

used. The results for these variables are consistent with

those earlier results. Considering all the variables, in gen-

eral, the rank histograms of the CMIP3 MMEs are not

U-shaped or L-shaped, but close to flat or dome-shaped.
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SAT (Solid) SAT Trend (Dotted) SW Net (Solid) SW CRF (Dotted) SW CLR (Dashed)

Rain SLP LW Net (Solid) LW CRF (Dotted) LW CLR (Dashed)

Fig. 1 Rank histogram of climate variables in the a twentieth century

experiments by CMIP3-AO, b the control experiments by CMIP3-AS,

c the twentieth century experiments by HadCM3-AO, d the control

experiments by HadSM3-AS, e the control experiments by MIROC3-

AS, f the control experiments by NCAR-AS. The horizontal axis

indicates rank. Rank histogram of the climate variables of surface air

temperature (red solid), surface temperature trend from 1960 to 1999

(red dashed), precipitation (blue), sea level pressure (green), the top

of the atmosphere SW full-sky net downward radiation, cloud

radiative forcing, and clear-sky radiation (orange solid, dotted, and

solid), and their LW component (aqua solid, dotted, and dashed). In

the figures of (c)–(f), the maximum values are more than 0.4 (0.9,

0.55, 0.6, 0.6, respectively), but the ranges are fixed to 0.4
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This suggests that the distributions of the climate variables

in the CMIP3 MMEs are reliable or their model spread may

be a little too broad. However, as shown in Table 4, for

CMIP3-AO and CMIP3-AS, the rank histograms of all but

one variable for one ensemble are not significantly differ-

ent from the uniform distribution (Only in SAT of CMIP3-

AS, the p value for bias is about 0.04, significant at the 5%

level). This does not necessarily imply there is a problem

with the ensemble since when analysing so many ensem-

bles and variables it would be expected for some variables

to fail the statistical test by chance.

In contrast, the shapes of the rank histograms of the

SMEs differ depending on the ensemble and variable field

considered. The results are show in Fig. 1c–f and Table 4.

Apart from NCAR-A, all of the SAT, PRCP, and SAT

trend results of the SMEs are reliable at the 5% level. Since

predictions of these variables are very important for the

future mitigation and adaptation to global warming, this

result is encouraging. However, the climate variables SLP

and SW-CLR are not reliable for any of the SMEs. This

may be partly because the SMEs were constructed by

perturbing uncertain physical parameters thought to affect

climate sensitivity which are mainly related to clouds. As

SLP and SW-CLR are determined by processes not related

to cloud, such as the dynamical processes in the model, this

may explain why the model ensembles do not cover a wide

range of these variables. (SW-CLR is related to the dis-

tribution of atmospheric water vapour and aerosol which

has a close link to the model dynamical processes). As

shown in Fig. 1c–f, the rank histograms of SLP and SW-

CLR in the SMEs are U-shaped (peaks in highest and

lowest rank) or L-shape (peaks in highest or lowest rank)

distribution, which means that, for much of the globe, the

observations are outside the whole range of the ensembles.

Among the SMEs examined here, the SMEs of Had-

CM3-AO and HadSM-AS perform better. For those

ensembles only two (SLP and SW-CLR in HadCM3-AO)

or three (SLP, SW-CLR, and LW-CRF in HadSM3-AS) are

unreliable as shown in Table 4. On the other hand, the

SMEs by MIROC3-AS and NCAR-A fail the reliability test

of a number of variables (six and eight, respectively): in

addition to SLP and SW-CLR, SW, SW-CRF, LW, and

LW-CRF are not reliable in both SMEs and PRCP is

additionally not reliable in NCAR-A. It is of interest to

note that the more reliable climate model ensembles

(CMIP3-AO, CMIP3-AS, HadCM3-AO, and HadSM-AS)

have a wide range of climate sensitivity centred on the

canonical range (CMIP3: 2.5–4.5 K for 5–95% range,

Randall et al. 2007, HadSM3: 1.3–5.2 K for 2-sigma, Y10).

On the other hand, the SMEs with relatively narrow dis-

tribution, such as the MIROC3-AS and NCAR-A tend to

have climate sensitivity that is either relatively high (MI-

ROC3.2: 3.7–9.8 K for 2-sigma, Y10), or relatively low

(NCAR CAM3: 2.2–3.2 K, Sanderson 2011).

In addition, both SW- and LW-CRF, and LW-CLR in

CMIP3-AO, CMIP3-AS, HadSM3-AO, and HadCM3-AS

are reliable in general (Table 4, LW-CRF in HadSM3 is

not reliable), and their climate sensitivities with relatively

wide range are determined by the feedback due to the

changes in SW- and LW-CRF, and LW-CLR (i.e. SW and

LW cloud feedback and water vapour feedback, Soden and

Held 2006, Yokohata et al. 2008). On the contrary, SW-

CRF in the MIROC3-AS and NCAR-A are not reliable

(Table 4), and the changes in SW-CRF is responsible for

relatively high climate sensitivity in the MIROC3.2 SME

(Y10) and relatively low climate sensitivity in the standard

NCAR CAM3 (e.g. Yokohata et al. 2008). Although it is

reported that there are some relationships between the

Table 4 P values of Chi-square statistics calculated from rank histogram of the six climate model ensembles

Value CMIP3-AO CMIP3-AS HadCM3-AO HadSM3-AS JUMP-AS NCAR-A

T2 0.0576 0.0375* 0.3367 0.0876 0.0609 0.0003*

Rain 0.3830 0.3749 0.0506 0.1729 0.5696 0.0000*

SLP 0.1440 0.1735 0.0000* 0.0002* 0.0000* 0.0000*

SW Net 0.1822 0.2424 0.7258 0.7281 0.0000* 0.0069*

LW Net 0.3110 0.2623 0.4401 0.2353 0.0015* 0.0006*

SW CRF 0.3796 0.3211 0.7349 0.7027 0.0000* 0.0004*

LW CRF 0.2823 0.3020 0.3455 0.0227* 0.0131* 0.0008*

SW CLR 0.2890 0.0515 0.0000* 0.0000* 0.0000* 0.0000*

LW CLR 0.1083 0.1228 0.2276 0.4235 0.5806 0.3233

T2 trend 0.4961 NA 0.4875 NA NA NA

# of p \ 0.05 0 1 2 3 6 8

First column indicate variables, and from second to seventh column indicates the minimum values of p values formulated by Jolliffe and Primo

(2008). P values lower than 0.05 are shown in bold type with *. In the lowest row, numbers of variables with p values lower than 0.05 are shown
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present states of cloud (e.g. Williams and Webb 2008,

Yokohata et al. 2010) or water vapour (Sherwood et al.

2010) and climate feedback processes, it is not straight-

forward to relate the reliability of the present behavior and

the climate sensitivity as discussed in Sect. 2.3. In the

future, therefore, it is very important to investigate the

reliability of present climate states and that of the climate

sensitivity.

Another major difference between the SMEs considered

here, however, is the number of parameters perturbed.

While 31 parameters are varied in the HadCM3-AO and

HadSM3-AS ensembles, 13 and 15 parameters are varied

in the MIROC3-AS and NCAR-A ensembles respectively.

The relatively reliable climate state, and wide range of CS

in the HadSM3-AS may also, therefore, be as a result of a

larger number of parameters having been varied in these

ensembles, or other factors relating to the design of the

ensembles.

Another issue to consider is that all of these ensembles

have already been tuned to some extent to match obser-

vational data. In the case of the SMEs this is explicit in

their construction. In each case, a ‘‘prior’’ ensemble (with

parameters selected widely from prior distributions) has

been narrowed down to ‘‘posterior’’ ensembles through

comparison with observations, although the details of this

process differ for each ensemble and at least in the case of

the Hadley Centre ensembles, there was also an explicit

goal of sampling widely in parameter space subject to

observational constraints. In the case of the MME, this

tuning process was probably more ad-hoc and subjective.

Where ensembles have been tuned to data, it is reasonable

to expect that these data will be closer to the 50th per-

centile in the resulting posterior ensemble than they were in

the prior. We illustrate this principle for the idealised case

of a single observation and Gaussian uncertainties. Given

an ensemble of models from which an observable variable

takes the mean value m1 = 0 (without loss of generality)

and standard deviation s1, and an observation of this vari-

able which takes the value m2 with associated uncertainty

s2, the observation is initially at a normalised distance

m2/s1 from the ensemble mean. When the ensemble is

optimally updated in the light of this observation (i.e. tuned

to the data), a direct application of Bayes Theorem gives the

well-known result that the ensemble will have mean m2 �
s2

1=ðs2
1 þ s2

2Þ and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1 � s2

2=ðs2
1 þ s2

2Þ
p

for

this observable. Thus the observation is now at a normalised

distance of m2=s1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
2ðs2

1 þ s2
2Þ

p

\m2=s1, and so has

moved closer to the ensemble mean.

Thus if the ensembles were reliable prior to any tuning

to observations, we may expect that the rank histograms of

the ensembles to be somewhat domed if they have been

carefully tuned, although it is unlikely that the ensembles

have been optimally tuned (and certainly not to all the data

considered here) given the impracticality of this operation.

3.2 Root mean square error and standard deviation

of model ensembles

In order to validate our approach and also investigate the

distance between the observation and model ensemble

mean, we calculate the root mean square error (RMSE)

between the model ensemble and the data, and the standard

deviation (SD) of the ensemble, as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

m

i¼1

XemðiÞ � XobsðiÞ½ �2
s

ð5Þ

where i = 1, 2, …, m is the index of grid point, Xem(i) is

ensemble means of model value, Xobs(i) is observed values

at the ith grid point;

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

1

m� 1

X

m

j¼1

½Xmodelði; jÞ � Xemði; jÞ�2
v

u

u

t ð6Þ

where j = 1, 2, …, n is the index of number of model

ensembles, Xmdl(i, j) is model value of the jth members at

the ith grid point.

As shown in Fig. 2, in the relatively reliable model

ensembles such as CMIP3-AO, CMIP3-AS, HadCM3-AO,

and HadSM3-AS, the value of RMSE is comparable to that

of the SD. This means that the distance between model

ensemble mean and observation (RMSE) and the spread of

model ensembles (SD) is close, or the former is smaller

than the latter in some cases. This is a necessary (although

not sufficient) condition for an ensemble to be reliable,

enabling the model ensemble to reasonably cover the

observation (truth). On the other hand, for the model

ensembles of MIROC-AS and NCAR-A, the value of the

RMSE is larger than the SD in general. This means that

model ensemble means are far away from the observation

compared to the ensemble spread, and therefore the model

ensembles cannot cover the observations. This may be

either due to the relatively small spread of the ensemble, or

a relatively large error in the mean. These results are

consistent with the calculation of rank histogram shown in

the previous sections.

We note in particular for SLP and SW-CLR, the SMEs

of HadSM3-AS, HadCM3-AO, MIROC3-AS and NCAR-

A, have narrower distributions than CMIP3. The narrow-

ness supports the suggestion in Sect. 3.1 that the right

parameters were not varied in the SMEs (or perhaps, that

more substantial structural changes are required to generate

a greater range of results). In addition, for the SW- and

LW- Net and CRF, which are important variables deter-

mining climate sensitivity, MIROC3-AS and NCAR-A are
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heavily biased and have slightly narrow distributions

compared to the results from CMIP3. These results support

our suggestion that the climate sensitivities of these

ensembles may also be biased.

3.3 Global map of observed rank among model

ensembles

In order to illustrate the typical features and patterns of the

biases in the different model ensembles and variable, the

spatial maps of the rank of each ensemble and a selection

of the variables are shown in Figs. 3, 4, 5, 6, and 7.

Figure 3 shows the rank of SAT observation in the

present climate for each ensemble. The spatial patterns of

rank highlight the areas where the ensembles are biased;

the size of the patterns appears consistent with there being

of order 10 degrees of freedom across the globe. Apart

from HadCM3-AO, the model ensembles tend to under-

estimate the SAT over the ocean.

The rank of observed PRCP in the present climate

among model ensembles is shown in Fig. 4. Some features

are common across model ensembles. In all the ensembles,

model ensembles overestimate the precipitation over the

Central Pacific (north and south of the inter-tropical con-

vergence zone, ITCZ), North America, North Asia, and

some part in the Southern Ocean. These are the regions

with less precipitation, and thus model ensembles may not

have good performance in the dry regions. As discussed in

Sect. 3.1, PRCP in the MMEs and SMEs are reliable apart

from NCAR-A.

Figures 5 and 6 show the rank for SW and LW CRF at

the TOA, respectively. As for the other variables, there are

some similarities between the ensembles in the patterns of

rank shown for each variable. There also appears to be a

Fig. 2 Root mean square error

(RMSE, circle) and standard

deviation (SD, half of error bar)

of climate variables of the six

model ensembles, CMIP3-AO

(red), CMIP3-AS (magenta),

HadCM3-AO (blue), HadSM3-

AS (light blue), MIROC3-AS

(green), and NCAR-A (light
green), respectively. Model

ensembles with p value less than

0.005 are shown with thick
error bars. As for SAT trend,

only results of CMIP3-AO and

HadCM3-AO are shown

because the SAT trend can be

calculated in the twentieth

century experiment by

atmosphere–ocean coupled

general circulation models

(AOGCMs)
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roughly inverse relationship between the ranks of two

variables. These effects are particularly obvious for the first

four ensembles, which are the ones found to be statistically

reliable in general (the CMIP3-AO/AS and HadCM3-AO/

HadSM3-AS). As shown in Fig. 3, the ensembles overes-

timate the magnitude of SW CRF (too much SW reflection

by clouds) over the Central Pacific, north and south of

the ITCZ. On the other hand, the model ensembles

underestimate the magnitude of SW CRF, especially over

the eastern coast of Pacific where thick stratocumulus is

available (Williams and Webb 2008). The other two SMEs,

MIROC3-AS and NCAR-A, have large areas where all the

(a) (b) (c)

(f)(e)(d)

Fig. 3 Global map of rank of surface air temperature (SAT) observation among the MMEs and SMEs. Blue color indicates model

underestimation and red color indicates model overestimation. Term of observation used for average is 1990–1999

(a) (b) (c)

(f)(e)(d)

Fig. 4 Same as Fig. 3 but for rank of observation for precipitation (1990–1999) among the climate model ensembles
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model ensembles overestimate the magnitude of the SW

CRF, and large areas where all the model ensembles

overestimate the LW CRF.

Figure 7 shows the SW CLR at the TOA among the climate

model ensembles. As discussed in the previous section, only

the two CMIP3 MMEs are reliable for SW CLR (Table 4).

This may be because it has been mostly parameters related to

cloud processes that have been varied in the creation of SMEs,

and SW CLR is not determined by these processes. The pat-

terns of the rank do, however, look rather similar between all

the ensembles, being low over land, and the Southern Ocean,

and high over much of the rest of the ocean.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Same as Fig. 3 but for rank of observation for SW cloud radiative forcing (CRF) at the top of the atmosphere (1986–1990) among the

climate model ensembles

(a) (b) (c)

(d) (e) (f)

Fig. 6 Same as Fig. 3 but for rank of observation for LW CRF at the top of the atmosphere (1986–1990) among the climate model ensembles
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Figure 8 shows the rank of observed SAT trend over the

last 40 years. Since SAT trend should be calculated from

twentieth century experiment, only the results of CMIP3-

AO and HadCM3-AO are shown. Interestingly, global map

of rank of observation is quite similar between the two

ensembles. Both the CMIP3-AO and HadCM3-AO over-

estimate the twentieth century SAT trend over the Pacific

Ocean and South America. These features must be a

common bias in the current climate models.

4 Conclusions

In the present study, simulations of the present-day climate

by two kinds of climate model ensembles, multi-model

ensembles (MMEs) of CMIP3 and single model ensembles

(SMEs) of structurally different climate models, HadSM3/

CM3, MIROC3.2, and NCAR CAM3.1, are investigated

through the rank histogram approach. The reliability of

various climate variables of these model ensembles are

assessed by performing a goodness-of-fit test for the uni-

formity of the rank histogram.

Our analysis reveals that in the CMIP3 MMEs (both

ensembles by AOGCM and ASGCM), all the climate

variables we investigated (SAT, PRCP, SLP, TOA SW and

LW radiation, cloud radiative forcing, clear-sky radiation)

are reliable, with one marginally significant exception

found out of the large number of statistical tests (SAT for

the ASGCM). On the other hand, in the SMEs, the reli-

ability varies between climate variables and model

ensembles. For the mean state of SAT and PRCP, and the

last 40-years trend of SAT, SMEs are mostly reliable.

(a) (b) (c)

(d) (e) (f)

Fig. 7 Same as Fig. 3 but for rank of observation for clear-sky SW radiation at the top of the atmosphere (1986–1990) among the climate model

ensembles

(a) (b)Fig. 8 Same as Fig. 3 but for

rank of observation for SAT

trend (1986–1990) among the

climate model ensembles. Only

the results of CMIP3-AO and

HadCM3-AO are shown

because data are not available in

other ensembles
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Since these variables are very important for future climate

prediction, these results are quite encouraging. Overall,

however, the SMEs are less reliable than the MMEs. The

two climate variables which are mainly determined by

dynamical process, SLP and SW-CLR (determined by the

distribution of water vapour), do not cover sufficiently

wide ranges in any of the SMEs. We hypothesise that part

of the reason for this may be because these SMEs were

originally designed to investigate climate sensitivity, and

so the focus was not on varying parameters which affect

dynamical processes.

As well as the rank histogram, we also inspected the

distribution of the rank of observation. Global map of rank

of observation can reveal the typical features of biases in

climate model ensembles. All the MMEs and SMEs tend to

underestimate precipitation over the dry region, and to

overestimate the cloud reflection over the Pacific Ocean.

Analyses such as these should be useful for future climate

model development as they indicate the robust biases found

in the state-of-the art climate model ensembles.

We also find an interesting relationship between the

reliability of present climate states and spread of climate

sensitivity. In general, spread in climate sensitivity is

mainly determined through the SW and LW cloud feed-

back, which is the change of SW and LW cloud radiative

forcing under global warming. Our analysis reveals that in

the CMIP3 MMEs and SMEs which have sufficient spread

in climate sensitivity, or a spread which is consistent with

studies published in the literature (about 2–5 K), both SW

and LW cloud radiative forcing are reliable. On the other

hand, in the SMEs with relatively high climate sensitivity

(about 4–10 K), or the SMEs with relatively low climate

sensitivity (about 2–3 K) compared to the studies in the

literature, SW and LW radiation and cloud radiative forc-

ing are not reliable.

The relationship between reliability of the present cli-

mate simulation and uncertainty in future climate predic-

tion is very important because one of our goals of assessing

the ability of climate model ensembles is to utilise its

information for constraining uncertainties in climate pre-

diction. The type of analysis presented here cannot show

that the projections by reliable model ensembles will

continue to form a reliable prediction into the future, but

the results are at least encouraging in that they reveal no

strong evidence of unreliability or other major biases or

limitations in the CMIP3 ensemble, contrary to analyses

based on the paradigm of a truth-centred ensemble. While

it would appear to be a challenge to create an SME that is

as reliable even for the present-day climate, the evidence

here is that those ensembles (HadCM3-AO and HadSM3-

AS) in which a large number of parameters are varied come

closer to fulfilling the criteria. Thus careful experimental

design and large computational resource may make this

possible. In addition, it should be remembered that SMEs

are of great value as a tool for understanding uncertainty in

the model space. Thus, using various kinds of climate

model ensembles including both MMEs and SMEs, we

may expect to reduce uncertainties in climate prediction in

the future.
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