
The 10th Edition Raster Graphics System

Tom Duff

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The current (late 1989) state of generating and displaying raster graphics in Research UNIX
is described.

1. Introduction

The Research UNIX system contains a number
of commands to capture, manipulate, display and
record monochrome and full-color raster images.
Three groups of commands may be identified:
interactive programs that operate on a frame buffer,
commands that operate on images stored in picture
files (see picfile(5)), and programs that interface to
various graphical I/O devices: video cameras,
scanners, paper plotters, film cameras and video tape
recorders.

2. Video Facilities

No discussion of our raster graphics software
can ignore the hardware on which it runs. The
hardware available at different sites will, of course,
vary. For definiteness, and to provide help for the
local audience, this section will discuss the hardware
available in Center 1127’s graphics and image pro-
cessing laboratory (MH 2C-524) and its neighbor-
hood. Most other environments will have hardware
that is similar in spirit if different in detail.

There are seven work stations in 2C-528. On
the day this was written, four of them had TTY
5620 terminals, two had Gnot terminals and one had
a SUN-3 workstation computer. Eventually, most of
the 5620’s will be replaced with Gnots. Each work
station also has a Sony GDM-1901-12 video monitor
that displays high-resolution video signals.

The room contains other video displays and
recorders, including a Barco video projector in the
ceiling, a 35-inch Mitsubishi monitor at the front of
the room, a 19-inch Barco monitor at work station 6,
two small Sony monitors in the video rack next to
the audio console, two Panasonic Super-VHS record-
ers, a Sony 3/4-inch (U-MATIC) video player, a

multi-standard (SECAM, NTSC, PAL) VHS player,
a Sony BVH-2500 1-inch (SMPTE-C) video tape
recorder and a Sony video camera.

The video equipment supports at least three
incompatible video formats. High-resolution RGB
video has 1024 scan lines, a 60 hz non-interlaced
vertical scan rate, and transmits red, green and blue
information on separate cables with synchronization
pulses superimposed on the green channel. Low-
resolution RGB video has between 480 and 488 scan
lines, 30hz interlaced vertical scan, and separate
RGB with sync on green. NTSC (National Televi-
sion Standards Committee) video has the same tim-
ing characteristics as low-resolution RGB video, but
encodes red, green, blue and sync into a single sig-
nal. NTSC is the encoding used by American,
Canadian and Japanese television broadcasters, and
by almost all video recording and playback equip-
ment in those countries.

Various computer terminals generate video in
other formats that our equipment handles with only
limited success. Gnots, 630s, 5620s, Sun terminals,
IBM-compatible PCs and Macintoshes all generate
mutually incompatible video. Their vertical and hor-
izontal scan-rates differ. The voltages and
impedances of the signals they produce differ. Their
color encodings differ. Monitors that can display
video from all of these sources are rare, let alone
hardware to convert from one format to another.
For example, the only reliable way to record a signal
from any of these sources is to place a camera in
front of a monitor. The quality of the resulting
recordings is often bad. It is a black art to adjust
our Barco video projector to handle non-standard
signals, but with a few days notice it can often be
done. Again, the results are not often as good as
one might like − the projector does not focus as
tightly as a monitor and its brightness is limited. As

Research Tenth Edition 483

The 10th Edition Raster Graphics System raster

_ ___
Equipment High-res Low-res NTSC Gnot IBM PAL/SECAM

RGB RGB_ __ ___
workstation monitors •_ ___
Barco projector • • • • maybe maybe_ ___
35-inch Mitsubishi • • •_ ___
Barco at work station 6 • •_ ___
Sony rack monitors •_ ___
Super-VHS recorders •_ ___
U-MATIC player •_ ___
1-inch recorder •_ ___
multi-standard player • •_ ___
camera • •_ ___
Metheus frame buffers •_ ___
ITI frame buffer •_ ___
Pixel Machine • •_ ___

Table 1. Video devices

better video displays become available our situation
will improve. Table 1 summarizes the equipment
available and the video formats that each supports.

We have several Metheus 3610 frame buffers
(seven on pipe, one on arend, one on encke)
and an Imaging Technology, Inc. (ITI) RGB-512.
All of our frame buffers store 32 bits at each pixel,
one byte each for red, green blue and alpha. The
3610’s generate high-resolution (1280×1024) video.
The ITI generates low-resolution (512×480) video
that may be recorded on video tape after conversion
to NTSC. Connected to pyxis, a four CPU SGI
4D-240, is an AT&T Pixel Machine with 58 proces-
sors. It can generate either high- or low-resolution
video under software control; the Pixel Machine
documentation can tell you how.

Each piece of video equipment may be con-
nected to any other via a video patch bay in 2C-538
(the alice room.) Alternating rows of the patch
bay present video outputs and inputs. If an output
and the input immediately below it are not plugged
into anything, an internal connection routes one to
the other. The patch bay has been layed out so that
the most useful configurations require no patch
cords. The patch bay is carefully labelled so that its
proper use ought to be obvious.

The Sony BVH-2500 video recorder produces
very high quality recordings on 1" video tape. Since
it can overwrite arbitrary single frames of the tape, it
is an ideal machine on which to record animation.

Before using a new tape, you must record
(‘‘grind’’) time-code on it, numbering each frame of

the tape. Time-code values are usually denoted by
values of the form hh.mm.ss.ff (like
02.43.17.15). The 2500’s monitor output, avail-
able on the video patch bay, displays time-code
superimposed on the 2500’s output signal.

To grind time-code, use the patch bay to con-
nect the color bar generator to the 2500’s input,
thread up a tape, and manually set the 2500 to
record by pushing its REC and PLAY buttons simul-
taneously. Let it go until the tape runs out.

The 2500 command operates the recorder,
reading instructions from its standard input. Its
instruction set is moderately complicated; for most
uses the following subset is adequate:

cue hh.mm.ss.ff
Cue the tape to the given time code. The
time-code displayed on the 2500’s monitor
output may be a few frames off, but the
recorder will be cued to the correct point.

still mode on
Put the recorder in single-frame record
mode.

still mode off
Put the recorder out of single-frame record
mode.

snap [n]
Record n frames (default 1) at the current
cue point, and advance the cue point by n
frames. The recorder must be in single
frame mode.

play Start playing back from the current cue
point.

484 UNIX Papers

raster The 10th Edition Raster Graphics System

stop Stop the recorder.

!unix-command
Run the given unix-command using
/bin/sh.

We currently have only two sources of digital
video that may be recorded on video tape. These
are the Pixel Machine and the ITI frame buffer
attached to kwee. To use either one, you must
patch its output to the NTSC color encoder, and
patch the encoder’s output to the video recorder.
The ITI frame buffer is also useful as a frame-
grabber, capturing its video input in its memory
whence it may be saved in a picture file or otherwise
manipulated.

The ITI is served by an ancient software
regime whose commands all begin with the letters
iti.

itifbinit [-x]
Re-initialize the ITI to the state expected
by the rest of the software. The ITI is
often unused for days at at time, during
which its health often decays.
itifbinit is its restorative. The -x
flag causes its output signal to be syn-
chronized to the sync pulses of its input,
instead of running from its internal clock.
This is always a good idea.

itigamma
Load the ITI’s color map to correct inten-
sities for display on CRT monitors.

itigrab [-gs]
Run the frame-grabber. The -g flag starts
the frame-grabber running. The displayed
image will track the ITI’s input video. -s
stops the frame-grabber, freezing the
image. Unadorned by flags, grab starts
the frame-grabber and stops it one frame
later.

itigit picture-file
Copy the image stored in picture-file into
the ITI.

itisiv picture-file
Save the image in the ITI in picture-file.

3. Other output devices

Many modern laser printers and typesetters
read data in the PostScript format.

pic2ps [-h height] [picture]
converts a picture file into encapsulated

PostScript, suitable for inclusion in any
PostScript document. The -h option
specifies the height, in inches, of the out-
put image. It is not often required, as
document processors usually insert
PostScript illustrations in a scale-
independent manner.

The alice room contains an Imagitex
scanner that can be used to convert photographs to
digital form. To use it, place the image to be
scanned under the hold-down leaves, slide the leaves
to make a window around the section you wish to
scan, and use the imscan command.

imscan [-sscale] [-llens] file
The -l option causes the scanner to use a
lens of focal length lens inches. The pos-
sibilities are 5 (754 dots per inch) and 8
(480 dots per inch); 8 is the default. The
-s option sets the sub-sampling scale,
which can vary from 1 to 9. One pixel in
each scale by scale square will be stored.
The default is 4. In conjunction with the
default 8-inch lens, this causes scans to be
stored at 120 dot-per-inch resolution.

There is a high-resolution one-bit-per-pixel
Canon document scanner at the back of the graphics
lab accessed through the cscan command.

cscan [-fx,y] [-fL] [-sseconds] [-v]
[file ...]
scans pages into the given files (default,
one page onto standard output.) The -f
option sets the size of the scan in pixels
(400 to the inch); -fL sets double-letter
size (11 by 17 inches, the largest possible.)
The -s option sets the number of seconds
to wait before scanning each page after the
first.

In the Alice room is a Matrix Instruments
QCR digital film recorder. It will record color or
black-and-white images in a variety of photographic
formats, include 8x10 Polaroid, 4x5 and 35mm. The
qsnap(1) command will output an image to film.

4. Frame buffer commands

A frame buffer is a large memory organized as
a two-dimensional array of pixels. Our Metheus
3610 frame buffers have 1024 scan lines of 1280
pixels each. The ITI frame buffer has 480 lines of
512 pixels. The coordinate system has (0,0) in the
upper left-hand corner, with x increasing to the right,
and y increasing down. This apparent weirdness is

Research Tenth Edition 485

The 10th Edition Raster Graphics System raster

fairly standard, since it makes video output happen
in row-major order.

Here we will mostly discuss commands for the
Metheus displays. The corresponding ITI commands
have the same names, but prefixed with the string
iti.

There are seven Metheus frame buffers
attached to pipe, named /dev/om[0-6]. All of
the commands discussed below determine which one
to use by examining the environment variable FB. It
is often hard to tell what frame buffer is displayed
on which monitor because of connections in the
patch bay. The fbi (frame buffer identification)
command displays each frame buffer’s name in it.

Our frame buffers all have 32 bits per pixel,
divided into four 8-bit channels. The channel values
are normally thought of as fractions ranging from 0
to 1, although frame buffer commands perversely
refer to them as integers between 0 and 255. Three
of the channels specify the red, green and blue color
components of the image. The fourth channel,
called alpha, is used to indicate whether or not the
image covers the pixel, and is not normally
displayed. Alpha is used to control image composit-
ing operations [2]. Fractional values of alpha
describe pixels that the image partly or translucently
covers, and facilitate anti-aliased compositing.

Each frame buffer contains three 256 entry
look-up tables that specify mappings from the values
stored in the red, green and blue channels to the vol-
tages supplied at the frame buffers’ video outputs.
A couple of commands manipulate these mappings.

gamma [power]
command loads these tables with a func-
tion that inverts the power-law relation
between voltage and luminous flux nor-
mally encountered in CRT displays. Thus,
pixel values normally correspond directly
to displayed intensities. Power is the
exponent of the power-law. The default of
2.3 is adequate for all our displays.

getmap file [...]
command, whose arguments are a list of
files containing color maps. On the ITI,
the argument ‘%’ refers to the current con-
tent of the frame buffer’s color map. (The
Metheuses’ color maps are write-only.)
The functional composition of the specified
color maps is loaded into the frame
buffer’s color map. Getmap searches for
files in ., then /fb/cmap, then

/usr/td/2d/cmap/lib. A color map
file contains 256 records of 3 bytes each,
specifying the output values for the
corresponding red, green and blue input
values.

ranmap
command loads random values into the
color map.

The zoom and movie commands support
magnification and animation of images.

zoom [amount [x y]]
magnifies part of the image. With three
arguments, zoom magnifies by amount,
mapping the point (x,y) (default (0,0)) to
the upper left-hand corner of the screen.
With no arguments, amount defaults to 1.
The Metheuses can magnify by any
integral factor from 1 to 16. The ITI can
magnify only by 1 or 2.

movie xsize ysize nx ny [delay]
views an array of images in sequence by
zooming and panning. The arguments are
the size of the individual frames, the
number of frames in the array in each
direction, and optionally the number of
60ths of a second to delay between frames.
The frames must be arranged boustro-
phedonically, with alternate rows proceed-
ing from left to right and right to left.
(This is because neither Metheus nor ITI
frame buffers can pan in x and y simul-
taneously without glitching.)

There are a number of commands to load sim-
ple patterns into the frame buffer:

clr [-w x0 y0 x1 y1] [r [g b [alpha]]]
sets all pixels to the given value. If only r
is given, g and b are set to r. If alpha is
not given, it is set to 255 (completely
opaque.) The -w flag restricts attention to
pixels inside the window whose upper-left
corner is (x0,y0) and with (x1,y1) just diag-
onally outside the lower-right corner.

cbars displays a color-bars test pattern. The 8
bars at the top exercise all combinations of
the 3 primary colors. The 9 patches at the
bottom are a logarithmic (perceptually uni-
form) grey scale.

ramp [-w x0 y0 x1 y1] [-v] [[c0] c1]
displays a horizontal ramp whose color is
c0 at the left and c1 at the right. Colors
are specified as for clr (green and blue

486 UNIX Papers

raster The 10th Edition Raster Graphics System

default equal to red, alpha defaults to 255).
C0 defaults to 0 0 0 255. -w restricts
ramp to the given window. -v gives a
vertical ramp with c0 at the top and c1 at
the bottom.

colors [-gfr]
displays a 16 by 16 array of grey-colored
(equal red, green and blue) squares in the
middle of the screen with red, green and
blue ramps at the top. This is mostly use-
ful for examining color maps. The flags
modify the display in small ways. -r
suppresses the ramps. -g suppresses the
gaps between the squares. -f expands the
display to fill the full screen, making the
patches non-square and suppressing the
ramps.

The xhair command can be used to examine
the contents of the frame buffer. It is named after
the cross-hair that it draws on the screen. Single
character commands manipulate the cross-hair, mag-
nify the video and print pixel values. The com-
mands are
h print the help message
lrud move left, right, up or down 1 pixel
LRUD move left, right, up or down 16 pixels
0 move to center of screen (x=256, y=240)
1-8 magnify ×1– 8
9 magnify ×16
p print current coordinates and pixel value
P print pixel after each command (toggle)
m type coordinates to move to
x type x coordinate to move to
y type y coordinate to move to
c change the crosshair display to a rectangle
s manipulate other corner of rectangle
ˆD,q exit xhair and run command
Q exit xhair, don’t demagnify or run command
X exit and don’t run command

If xhair is given arguments, they represent a
command to be executed before exiting, after mak-
ing substitutions for any argument whose first char-
acter is %. The substitutions made are:
%r the current rectangle
%w the current rectangle
%p the upper-left corner of the rectangle
%o the upper-left corner of the rectangle
%c the lower-right corner of the rectangle
%x the x coordinate of the upper-left corner
%y the y coordinate of the upper-left corner
%X the x coordinate of the lower-right corner
%Y the y coordinate of the lower-right corner

The mplot command is a version of the stan-
dard UNIX plot(1) filter that produces output in a
Metheus frame buffer.

5. Picture file commands

Most of our raster graphics commands require
no special hardware. They synthesize images in pic-
ture files from textual or other descriptions, they
modify images in picture files, producing results in
picture files, or they combine the contents of several
picture files to produce composite images, again
storing the result in a picture file.

The pcp command takes two names of picture
files or frame buffers and copies the first onto the
second. As with all picture file commands, the spe-
cial names IN and OUT refer to standard input and
standard output. Frame buffers are designated by
names that begin with %:
%0 Metheus frame buffer #0.
...
%9 Metheus frame buffer #9.

Pcp has a number of options that alter the
copied picture:

-o x y Add (x,y) to the picture’s window coordi-
nates.

-w x0 y0 x1 y1
Clip the input picture’s window to the
given coordinates. If -o and -w are both
given, the window is clipped before being
offset.

-t type The output picture will have TYPE= type.

-c channels
The output picture will be assembled from
the given channels of the input picture. In
many cases, a request for a channel not
found in the input picture will be satisfied
by standard conversions. For example, if
channels includes m, but the input picture
has only rgb, a monochrome channel is
synthesized by computing NTSC lumi-
nance (m=.299r+.587g+.114b). Con-
versely, rgb will be synthesized from m
by lookup in the input’s color map, if it
has one, or by r=g=b otherwise. If
channels mentions a and the input has
none, 255 is used. If channels mentions
z... and the input has none, 1.0 (float-
ing point) is used. Any other channel
missing in the input is set to zero.

-C channels
Put CHAN=channels in the output’s header.

Research Tenth Edition 487

The 10th Edition Raster Graphics System raster

Without this option, the output’s CHAN
attribute is taken from the -c option, or
failing that from the input’s CHAN attri-
bute. -C is useful, for example, to create
a monochrome (CHAN=m) image from the
red channel of a color image using pcp
-cr -Cm.

The lam command combines any number of
images, writing a picture file whose window is large
enough to contain all the windows of its inputs. The
input files are combined with pixels of later images
overwriting earlier ones. This is only really useful if
the windows of the input images differ. -o file
specifies the output file name (standard output by
default). All input images must have the same
NCHAN.

The posit and 3matte commands combine
images using the two- and three-dimensional compo-
siting operations described in [2] and [1]. Each
takes a list of picture file names as arguments, pro-
ducing a composite on standard output. The -a
option will cause either program to output only the
rgb channels, suppressing a (and z... in the case
of 3matte).

There is an army of commands to read an
image and, under the control of a few parameters,
write a modified image on standard output. Those
that read a single picture file by default use standard
input, so they are usable in a pipeline. They
include:

lum [picture]
File picture (default standard input) con-
tains a color image or a monochrome
image with a color map. A gray-level
image is written on standard output, using
the NTSC luminance formula.

clip [-o x y] x0 y0 x1 y1 [picture]
Clip an image to have WINDOW=x0 y0 x1
y1. A picture that does not fill out the
window is filled with black pixels.

xpand [-s] [picture] [lo hi [inlo inhi]]
The input picture has its dynamic range
adjusted so that pixels in the range inlo to
inhi are mapped to the range lo to hi
(default 0 to 255). The default values for
inlo and inhi are determined per channel
by examining the input picture. The -s
option causes all channels to be examined
together. Lo, hi, inlo and inhi may have
any values whatsoever. If hi is smaller
than lo, pixel values will be inverted, pro-
ducing a negative image. Any output pixel

that would be mapped outside the range
0– 255 is set to 0 or 255.

dither [picture]
Convert a full-color (3 channel) picture to
one channel with a color map by dithering.

floyd [picture]
Convert an 8-bit gray-scale picture to one
bit per pixel using a version of the Floyd-
Steinberg error-diffusion method.

halftone screen [picture]
Convert an 8-bit gray-scale picture to one
bit using a given half-tone screen. A
description of the screen is read from a file
in /usr/td/lib/screens. The avail-
able screens include (among others)

ALLEBACH Allebach’s ordered-dither
BAYER Standard ordered-dither
BLUENOISE A pebble-screen pattern
CLASSIC A 3-pixel-wide dot screen
CLASSIC2 Another 3-pixel-wide dot screen
CLASSIC3 A 4-pixel-wide dot screen
CLASSIC4 An 8-pixel-wide dot screen
DIAMOND Rao and Arce’s ordered-dither
LINE Ulichney’s line screen
RING A concentric ring screen
TILT18 A tilted dot screen

he [picture]
Histogram equalization: the intensity histo-
gram of the input image is measured. The
output image has its contrast altered for
maximum use of the output range, equaliz-
ing the histogram as much as possible.

hysteresis low high [picture]
Pixel values of picture below low are
mapped to zero. Those above high are
mapped to 255. If low and high are not
equal, any region below high that has any
8-connected neighbors below low is
mapped to zero.

picaverage weight picture1 picture2
The output picture is a weighted average
of picture1 and picture2. Weight deter-
mines the fraction of the average contri-
buted by picture1.

piccat picture ...
The input pictures are concatenated one
atop another. The output has the width of
the widest input.

picjoin picture ...
The input pictures are concatenated side by

488 UNIX Papers

raster The 10th Edition Raster Graphics System

side. The output has the height of the
highest input.

adapt [picture]
Adaptive contrast enhancement: a 7 by 7
neighborhood around each pixel is exam-
ined for its minimum and maximum
values. The center pixel is remapped
linearly in a way that would send the
neighborhood’s maximum to 255 and its
minimum to 0. That is,
cen=255*(cen-min)/(max-min).

ahe [picture]
Adaptive histogram equalization: each
pixel of the output image is the
histogram-equalized value of the center of
a 17×17 pixel window surrounding it in
the input image.

clean [picture]
Bayer-Powell noise removal filter. If the
center pixel of each 3×3 window in the
input differs from the average of the other
8 pixels by more than 64, it is replaced by
the periphery-average. This has the effect
of flattening isolated noise pixels.

crispen [picture]
3×3 linear crispening filter. Convolves the
input image with the kernel

-1 -1 -1
-1 9 -1
-1 -1 -1

This is a mild high-pass filter.

edge [picture]
3×3 linear edge-detection filter. Convolves
the input image with the kernel

-1 -1 -1
-1 8 -1
-1 -1 -1

This is just the difference between the ori-
ginal image and the output of crispen.

edge2 [picture]
3×3 non-linear edge-detection (Sobel
operator) filter.

extremum [picture]
3×3 extremum filter. Replaces the center
pixel of each by the value in the 3×3 win-
dow surrounding it that most differs from
it.

laplace [picture]
3×3 Laplacian filter. Convolves the input
image with the kernel

0 -1 0
-1 5 -1
0 -1 0

This is a fairly extreme high-pass filter.

median [picture]
3×3 median filter. Each pixel is replaced
by the median of the 3×3 window sur-
rounding it.

smooth [picture]
3×3 Bartlett filter. Convolves the input
image with the kernel

1/16 2/16 1/16
2/16 4/16 2/16
1/16 2/16 1/16

This is a moderately strong low-pass filter.

3to1 [-e] colormap [picture]
Converts the input picture from full-color
(rgb) to a single channel mapping each
pixel to the closest entry of colormap.

mcut [picture]
Reads a picture, and writes a color map on
standard output suitable for use by 3to1.
Mcut uses Heckbert’s median-cut algorithm
to pick a color map that matches picture’s
colors pretty well.

improve colormap [picture]
Given a color map and a picture file, this
outputs a new color map that better
represents the colors of the picture. The
algorithm is to output the centroid of
those pixel values that are closest to each
input color map entry. Running improve
several times may produce better and
better color maps.

quantize [picture]
Convert a full-color picture to an 8-bit pic-
ture with color map. This is just a com-
mand file that calls mcut, improve and
3to1. It does a much better job than
dither.

remap colormap [picture]
The input picture should be full color
(CHAN=rgb). The output will have its
pixel values will be altered so that when
mapped through the given colormap they
will be as close as possible to the input’s
pixel values.

resample width [picture] [B C]
Resample the input image to be width pix-
els wide. The default filter used in resam-
pling minimizes both pre- and post-

Research Tenth Edition 489

The 10th Edition Raster Graphics System raster

aliasing. Numeric parameters B and C
(both default to 1/3) pick the resampling
kernel from a Mitchell and Netravali’s
two-parameter family of piecewise cubic
kernels.

transpose [-vhadrlui] [-o x y] [picture]
Transpose the input picture. This is useful
in conjunction with commands that operate
on scan-lines, like resample, to perform
operations on columns instead of rows.
Under control of its options, transpose can
perform any symmetry operation of the
integer lattice. The -v option reflects
through a vertical line. The -h option
reflects through a horizontal line. The -a
option reflects through an ascending diago-
nal line. The -d option reflects through a
descending diagonal line (the default).
The -r option rotates right (clockwise 90
degrees). The -l option rotates left (coun-
terclockwise 90 degrees). The -u option
flips the image upside down (180 degree
rotation.) For completeness, the -i option
does the identity transformation. The -o
option translates the picture, adding (x,y) to
all coordinates. Without this option, the
upper-left corner of the image’s window
does not change.

shear angle [picture]
Rotate the input image by the given angle
(in degrees). It’s called shear because it
operates by shearing the image 3 times
(horizontally, then vertically, then horizon-
tally).

lx [-ofile] [-Aaspect] [-a] [-sscale] [-
rrot] [-xxscale] [-yyscale] [pic-
ture] Perform a linear transformation on
the input image. The -o option specifies
the output file name. The default is stan-
dard output. The -A option specifies the
aspect ratio of the pixels. The default is 1.
The ITI frame-grabber produces images
whose pixel aspect-ratio is 1.25. The -a
option suppresses the writing of an alpha
channel. Normally an alpha channel is
computed even for input images that don’t
have one, since the output picture is often
rotated and thus doesn’t completely cover
its window.

The transformation is specified by a
sequence of options. The specified

transformations are combined in the order
given to yield a composite transformation.
The relevant options are:
-sscale scale by scale.
-rrot rotate by rot degrees clockwise.
-xxscale scale in x by xscale.
-yyscale scale in y by yscale.

There are several commands to generate
images from three-dimensional geometric descrip-
tions of various sorts. Most of these produce
CHAN=rgbaz... images that may be combined
using 3matte. In their output files, points at the near
clipping plane will be mapped to points having z=0,
and points at the far clipping plane will have z=1.

ncpr [-a aspect] [-w x0 y0 x1 y1] [-c
rgbaz] input [output]
New Cheezy Polygon Renderer. Output
(default standard output) is the name of the
picture file that will contain the rendered
version of the scene described in input, a
text file specifying a polygonal scene. The
-a option sets the pixel aspect-ratio
(default 1.) The -w option sets the win-
dow of the output picture. The -c option
specifies which channels should be written
to the output picture.

The input file contains a sequence of
single-letter commands, each with several
numeric parameters. The commands are:

v fov near far ex ey ez lx ly lz ux uy uz
Set viewing parameters. Fov is the angle
subtended vertically by the screen at the
eye point. Points whose distance from the
eye is not between near and far will be
clipped away before drawing. However
tempted, do not set near to zero, lest
underflow or divide-check occur.
(ex,ey,ez) is the coordinate of the eye, the
point from which the scene is viewed and
the center of perspective. (lx,ly,lz) is a
vector pointing from the eye toward the
center of the scene. The point
(lx+ex,ly+ey,lz+ez) is mapped into the
center of the screen. (ux,uy,uz) is the up
vector, the direction of the zenith. The
point (lx+ux,ly+uy,lz+uz) is mapped into a
point somewhere above the center of the
screen.

l x y z
Set the direction of the light source to
(x,y,z). The light source is ‘‘at infinity’’ in
the given direction.

490 UNIX Papers

raster The 10th Edition Raster Graphics System

b red green blue alpha Clear the screen to
the given color. Red, green, blue and
alpha should all be between 0 and 255.

c index red green blue alpha Set a color
table entry. Indices into the color table are
used to specify the colors of polygons (see
below.) The table has 500 entries. Unless
reloaded by the c command, the first 256
entries contain the 256 shades of gray, the
following 12 entries (256-267) are set to
12 logarithmically spaced (perceptually
equal) gray shades, and the next 20 entries
(268-287) to 20 logarithmically spaced
gray shades.

t x0 y0 z0 x1 y1 z1 x2 y2 z2 c0 c1
Render a triangle with vertices (x0,y0,z0),
(x1,y1,z1) and (x2,y2,z2). The side the
normal (calculated using the right hand
rule) out of has color c0, on the other it is
c1. If c0 or c1 is positive, the polygon’s
color is found in the corresponding color
table entry. If negative, the color is found
by modifying the color table entry as
though the surface were illuminated by a
light source whose direction was specified
by the l command.

p c0 c1 x0 y0 z0 x1 y1 z1 ... xn yn zn ;
Render a polygon whose color is c0 on
one side and c1 on the other. The
polygon’s vertices are (x0,y0,z0),
(x1,y1,z1), ..., (xn,yn,zn).

quad [-a] [-z] [-w x0 y0 x1 y1] in out
Compute an image of a quadric surface.
The -a option suppresses writing out the
alpha channel. The -z option suppresses
writing out the z channel. The -w option
specifies the output window. The input
file should contain 34 floating point
numbers. The first ten numbers are the
upper triangle of the symmetric matrix
describing the quadratic form (in screen
coordinates.) The next 16 numbers are a
matrix that converts screen-space coordi-
nates into world-space normals for illumi-
nation computations. The next three
numbers are the direction of the light
source. The next four numbers are the red,
green, blue and alpha of the surface’s
color. The last number is the amount of
ambient light in the environment.

terrain in out ex ey ez lx ly fov near far
Render a terrain image. The input file is a

2-channel picture file containing 16-bit
elevation data on a regular grid. (ex,ey,ez)
is the eye position. (lx,ly,0) is a vector
pointing from the eye to the center of the
scene. The up direction is (0,0,1). Fov is
the vertical field-of-view angle. Near and
far are the distances from the eye to the
near and far clipping planes.

bg r0 g0 b0 r1 g1 b1 out
Generate a background card whose color
varies smoothly from (r0,g0,b0) at the top
to (r1,g1,b1) at the top. Its z coordinate is
set to 2, which is beyond the far clipping
plane.

aplot [-t type] [-r range] [-w x0 y0 x1 y1]
input Produces an anti-aliased isometric
plot of a square array of binary data, read
from its input file. The -r option
specifies the maximum absolute value of
the data. This may be adjusted to affect
the height of the highest peaks in the plot.
By default, the input is examined to find
its range. The -w option specifies the
window in which the plot will be drawn.
The data file is just a binary dump of a
square array. It has no header, and in par-
ticular is not a picture file. The -t option
(default -tf) specifies the type of data in
the array.

_ _____________________
option type_ ______________________ _____________________
-tf float
-ts short int
-ti int
-tl long int
-td double
-tc char
-tu unsigned char_ _____________________

6. Animation

To use a command-based raster graphics sys-
tem as described here to for animation requires writ-
ing command files to create and record long
sequences of images. Typical command files con-
tain long sequences of repeated commands with
slowly changing numeric parameters. Several
sequences starting and ending at different times may
be interleaved to describe overlapping motion. They
are at best tedious and at worst tricky to generate by
hand or using the usual tools.

Moto is a command generator tailored for an
animator’s needs. Its input is a concise description

Research Tenth Edition 491

The 10th Edition Raster Graphics System raster

of the animation to be performed; its output is a
command file suitable for input to sh, rc or some
other command interpreter. Its arguments are an
optional file name containing a moto program
(default standard input) and list of numeric parame-
ters that are made available to the program.

A moto program consists of a list of groups of
commands. Each block is guarded by a range of
frames. Here is an example:

1,5: pcp this %0
pcp %0 that

This generates

pcp this %0
pcp %0 that
pcp this %0
pcp %0 that
pcp this %0
pcp %0 that
pcp this %0
pcp %0 that
pcp this %0
pcp %0 that

The command group is repeated for each of frames
1 to 5.

Groups may contain parameter ranges enclosed
in brackets []:

1,5: pcp frame.[1,5] %0
echo snap|2500

This generates:

pcp frame.1 %0
echo snap|2500
pcp frame.2 %0
echo snap|2500
pcp frame.3 %0
echo snap|2500
pcp frame.4 %0
echo snap|2500
pcp frame.5 %0
echo snap|2500

Programs may have multiple groups, each
guarded by a separate range of frames. For each
frame, moto checks each group and processes those
whose guards include the current frame number.

Two special guards, BEGIN and END, specify
actions to be taken before an after processing
frames:

BEGIN: clr
1,5: pcp section[1,5] %0
END: pcp %0 composite

This generates

clr
pcp section1 %0
pcp section2 %0
pcp section3 %0
pcp section4 %0
pcp section5 %0
pcp %0 composite

Moto allows complex computations inside parameter
brackets:

1,10: clr [127.5*(1-cos([0,360]))]

This generates

clr 0
clr 29.82933350233
clr 105.35985734747
clr 191.25
clr 247.3108091502
clr 247.3108091502
clr 191.25
clr 105.35985734747
clr 29.82933350233
clr 0

Expressions may include constants and vari-
ables. All values are double-precision floating point
numbers. The operators =, /, +, - (both unary and
binary), <, >, <=, >=, ==, !=, ? : and !, all with
their meanings as in C, except that all results are
coerced to double. The result of a%b is
a-b*(int)(a/b). The result of a && b is
a?b:a . The result of a || b is a?a:b . The
exponentiation operator is ˆ, also written **. The
expression [a,b] varies from a to b, linearly as
the frame number varies between the guards of the
group containing the expression. The expression
a[b,c] has the value a*b+(1-a)*c. Its value
varies from b to c as a varies from 0 to 1. The
expression $i has the value of the i’th parameter
following the file name on moto’s command line.

The precedence of operators is, from lowest to
highest:

=
? :
||
&&
< <= == != > >=
+ -
* / %
[]
ˆ **
- (unary) ! $

Expressions may be parenthesized to alter pre-
cedence.

492 UNIX Papers

raster The 10th Edition Raster Graphics System

The following math functions are available:

acos besy0 exp log10
asin besy1 fabs sin
atan besyn floor sinh
besj0 ceil gamma sqrt
besj1 cos hypot tan
besjn cosh log tanh

All math functions are as described in the C library,
except that angles are measured in degrees rather
than radians for the trig and inverse trig functions.
In addition hypot may have two or three arguments,
atan may take two arguments instead of one, and
may also be spelled atan2.

For parameterization, and to allow even more
complex computations, moto has variables, assign-
ment and computation groups. A computation group
is distinguished from a command group by having a
double colon separating its guard from the expres-
sions to be computed:

BEGIN:: n=5
1,n:: x=512*sin([0,90])
1,n: pcp -w 0 0 [x] 488 pic.[1,n] %0

This generates

pcp -w 0 0 0 488 pic.1 %0
pcp -w 0 0 195.93391737093 488 pic.2 %0
pcp -w 0 0 362.03867196751 488 pic.3 %0
pcp -w 0 0 473.02632064578 488 pic.4 %0
pcp -w 0 0 512 488 pic.5 %0

Upon occasion it is useful to split moto’s out-
put into several files, under program control. A
group that is separated from its guards by an at-sign
@ instead of a colon names a file into which subse-
quent output is to be written. For example,

1,5@ file.[1,5]
1,5: This is file.[1,5].

creates 5 files, with names file.1,...,file.5.
Each file’s contents will announce its name.

As is true for all sufficiently large programs,
moto has a shell escape. A group separated from its
guards by an exclamation point ! instead of a colon
has its result text interpreted by a subshell.

Finally, Figure 1 shows an example taken
from a real application. This moto program compo-
sites the frames of a short movie showing two flying
saucers, flying in formation, chased by a third, rac-
ing over New Jersey. The flying saucer images
(files run.* and chase.*) and the background
(file bg) have been computed in advance. In the
composite, the run.* images are re-used, stag-
gered in time, to do the first two saucers.

7. References

1. Duff, T. Compositing 3D rendered images.
Computer Graphics 19, 3 (1985), 41-44. (1985
Siggraph Proceedings).

2. Porter, T. and Duff, T. Compositing digital
images. Computer Graphics 18, 3 (1984),
253-258. (1984 Siggraph Proceedings).

BEGIN:: nchase=108
nrun=195
d1=12
d2=32
end=nrun+d2
chase=end-nchase+1

1,end: inputs= # empty the input list
1,nrun: inputs="$inputs run.[1,nrun]" # add the first saucer to the input list
1+d1,nrun+d1:

inp="$inputs run.[1,nrun]" # add the second saucer
chase,end:

inp="$inputs chase.[1,nchase]" # add the chasing saucer
1,end:

3matte -a $inp bg frame.[1,end] # create the composite

Figure 1. Flying saucer script

Research Tenth Edition 493

The 10th Edition Raster Graphics System raster

photo page

494 UNIX Papers

raster The 10th Edition Raster Graphics System

divider with title

Implementation and Maintenance

Research Tenth Edition 495

