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An algebra1 A is an ordered pair A = 〈A,F 〉 where A is a nonempty set and F is a family of

finitary operations on A. The set A is called the universe of A, and the elements fA ∈ F are called

the fundamental operations of A. (In practice we prefer to write f for fA when this doesn’t cause

ambiguity.2) The arity of an operation is the number of operands upon which it acts, and we say

that f ∈ F is an n-ary operation on A if f maps An into A. An operation f ∈ F is called a nullary

operation (or constant) if its arity is zero. Unary, binary, and ternary operations have arity 1, 2,

and 3, respectively. An algebra A is called unary if all of its operations are unary. An algebra A is

finite if |A| is finite and trivial if |A| = 1. Given two algebras A and B, we say that B is a reduct

of A if both algebras have the same universe and A is obtained from B by simply adding more

operations.

0.1 Examples

groupoid A = 〈A, ·〉
An algebra with a single binary operation is called a groupoid. This operation is usually

denoted by + or ·, and we write a + b or a · b (or just ab) for the image of 〈a, b〉 under this

operation, and call it the sum or product of a and b, respectively.

semigroup A = 〈A, ·〉
A groupoid for which the binary operation is associative is called a semigroup. That is, a

semigroup is a groupoid with binary operation satisfying (a ·b) ·c = a · (b ·c), for all a, b, c ∈ A.

monoid A = 〈A, ·, e〉
A monoid is a semigroup along with a multiplicative identity e. That is, 〈A, ·〉 is a semigroup

and e is a constant (nullary operation) satisfying e · a = a · e = a, for all a ∈ A.

group A = 〈A, ·,−1 , e〉
A group is a monoid along with a unary operation −1 called multiplicative inverse. That is,

the reduct 〈A, ·, e〉 is a monoid and −1 satisfies a ·a−1 = a−1 ·a = e, for all a ∈ A. An Abelian

group is a group with a commutative binary operation, which we usually denote by + instead

of ·. In this case, we write 0 instead of e to denote the additive identity, and − instead of −1

to denote the additive inverse. Thus, an Abelian group is a group A = 〈A,+,−, 0〉 such that

a+ b = b+ a for all a, b ∈ A.
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1N.B. In this first paragraph, not all of the definitions are entirely precise. Rather, my goal here is to state them

in a way that seems intuitive and heuristically useful.
2This convention creates an ambiguity when discussing, for example, homomorphisms from one algebra, A, to
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respectively.
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ring A = 〈A,+, ·,−, 0〉
A ring is an algebra A = 〈A,+, ·,−, 0〉 such that

R1. 〈A,+,−, 0〉 is an Abelian group,

R2. 〈A, ·〉 is a semigroup, and

R3. for all a, b, c ∈ A, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

A ring with unity (or unital ring) is an algebra A = 〈A,+, ·,−, 0, 1〉, where the reduct

〈A,+, ·,−, 0〉 is a ring, and where 1 is a multiplicative identity; i.e. a · 1 = 1 · a = a, for all

a ∈ A.

field If A = 〈A,+, ·,−, 0, 1〉 is a ring with unity, an element r ∈ A is called a unit if it has a

multiplicative inverse. That is, r ∈ A is a unit provided there exists r−1 ∈ A with r · r−1 =

r−1 · r = 1. A division ring is a ring in which every non-zero element is a unit, and a field is

a division ring in which multiplication is commutative.

0.2 Vector Spaces, Modules, and Bilinear Algebras

module Let R = 〈R,+, ·,−, 0, 1〉 be a ring with unit. An R-module (sometimes called a left unitary

R-module) is an algebra M = 〈M,+,−, 0, fr〉r∈R with an Abelian group reduct 〈M,+,−, 0〉,
and with unary operations (fr)r∈R which satisfy the following four conditions for all r, s ∈ R
and x, y ∈M :

M1. fr(x+ y) = fr(x) + fr(y)

M2. fr+s(x) = fr(x) + fs(x)

M3. fr(fs(x)) = frs(x)

M4. f1(x) = x.

If the ring R happens to be a field, an R-module is typically called a vector space over R.

Note that condition M1 says that each fr is an endomorphism of the Abelian group 〈M,+,−, 0〉.
Conditions M2–M4 say: (1) the collection of endomorphisms (fr)r∈R is itself a ring with unit,

where the function composition described in (M3) is the binary multiplication operation, and

(2) the map r 7→ fr is a ring epimorphism from R onto (fr)r∈R.

Part of the importance of modules lies in the fact that every ring is, up to isomorphism, a

ring of endomorphisms of some Abelian group. This fact is analogous to the more familiar

theorem of Cayley stating that every group is isomorphic to a group of permutations of some

set.
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bilinear algebra Let F = 〈F,+, ·,−, 0, 1〉 be a field. An algebra A = 〈A,+, ·,−, 0, fr〉r∈F is a bilinear algebra

over F provided 〈A,+, ·,−, 0, fr〉r∈F is a vector space over F and for all a, b, c ∈ A and all

r ∈ F ,

(a+ b) · c = (a · c) + (b · c)

c · (a+ b) = (c · a) + (c · b)

a · fr(b) = fr(a · b) = fr(a) · b

If, in addition, (a ·b) ·c = a ·(b ·c) for all a, b, c ∈ A, then A is called an associative algebra over

F. Thus an associative algebra over a field has both a vector space reduct and a ring reduct.

An example of an associative algebra is the space of linear transformations (endomorphisms)

of any vector space into itself.

0.3 Congruence Relations and Homomorphisms

Let A be a set. A binary relation θ on A is a subset of A2 = A × A. If 〈a, b〉 ∈ θ we sometimes

write a θ b. The diagonal relation on A is the set ∆A = {〈a, a〉 : a ∈ A} and the all relation is the

set ∇A = A2. (We write ∆ and ∇ when the underlying set is apparent.)

equivalence A binary relation θ on a set A is an equivalence relation on A if, for any a, b, c ∈ A, it satisfies:

E1. 〈a, a〉 ∈ θ,

E2. 〈a, b〉 ∈ θ implies 〈b, a〉 ∈ θ, and

E3. 〈a, b〉 ∈ θ and 〈b, c〉 ∈ θ imply 〈a, c〉 ∈ θ.

We denote the set of all equivalence relations on A by Eq(A).

If θ ∈ Eq(A) is an equivalence relation on A and 〈x, y〉 ∈ θ, we say that x and y are

equivalent modulo θ. The set of all y ∈ A that are equivalent to x modulo θ is denoted by

x/θ = {y ∈ A : 〈x, y〉 ∈ θ} and we call x/θ the equivalence class (or coset) of x modulo θ. The

set {x/θ : x ∈ A} of all equivalence classes ofAmodulo θ is denote byA/θ. Clearly equivalence

classes form a partion of A, which simply means that A = ∪x∈Ax/θ and x/θ ∩ y/θ = ∅ if

x/θ 6= y/θ.

Example: Let f : A→ B be any map. We define the relation ker(f) ⊆ A× A as follows: for

all a0, a1 ∈ A,

〈a0, a1〉 ∈ ker(f) ⇔ f(a0) = f(a1).

It is an easy exercise to verify that ker(f) is an equivalence relation.
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Consider two algebras A and B of the same type and let f be an n-ary operation symbol, so that

fA is an n-ary operation of A, and fB is the corresponding n-ary operation of B. We say that a

function h : A→ B respects the interpretation of f if and only if for all a1, . . . , an ∈ A

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).
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