An algebra¹ **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where A is a nonempty set and F is a family of finitary operations on A. The set A is called the universe of \mathbf{A} , and the elements $f^{\mathbf{A}} \in F$ are called the fundamental operations of \mathbf{A} . (In practice we prefer to write f for $f^{\mathbf{A}}$ when this doesn't cause ambiguity.²) The arity of an operation is the number of operands upon which it acts, and we say that $f \in F$ is an *n*-ary operation on A if f maps A^n into A. An operation $f \in F$ is called a nullary operation (or constant) if its arity is zero. Unary, binary, and ternary operations have arity 1, 2, and 3, respectively. An algebra \mathbf{A} is called unary if all of its operations are unary. An algebra \mathbf{A} is a finite if |A| is finite and trivial if |A| = 1. Given two algebras \mathbf{A} and \mathbf{B} , we say that \mathbf{B} is a reduct of \mathbf{A} if both algebras have the same universe and \mathbf{A} is obtained from \mathbf{B} by simply adding more operations.

0.1 Examples

groupoid $\mathbf{A} = \langle A, \cdot \rangle$

An algebra with a single binary operation is called a *groupoid*. This operation is usually denoted by + or \cdot , and we write a + b or $a \cdot b$ (or just ab) for the image of $\langle a, b \rangle$ under this operation, and call it the sum or product of a and b, respectively.

semigroup $\mathbf{A} = \langle A, \cdot \rangle$

A groupoid for which the binary operation is associative is called a *semigroup*. That is, a semigroup is a groupoid with binary operation satisfying $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in A$.

monoid $\mathbf{A} = \langle A, \cdot, e \rangle$

A monoid is a semigroup along with a multiplicative identity e. That is, $\langle A, \cdot \rangle$ is a semigroup and e is a constant (nullary operation) satisfying $e \cdot a = a \cdot e = a$, for all $a \in A$.

group $\mathbf{A} = \langle A, \cdot, ^{-1}, e \rangle$

A group is a monoid along with a unary operation $^{-1}$ called *multiplicative inverse*. That is, the reduct $\langle A, \cdot, e \rangle$ is a monoid and $^{-1}$ satisfies $a \cdot a^{-1} = a^{-1} \cdot a = e$, for all $a \in A$. An Abelian group is a group with a commutative binary operation, which we usually denote by + instead of \cdot . In this case, we write 0 instead of e to denote the *additive identity*, and - instead of $^{-1}$ to denote the *additive inverse*. Thus, an Abelian group is a group $\mathbf{A} = \langle A, +, -, 0 \rangle$ such that a + b = b + a for all $a, b \in A$.

William DeMeo <williamdemeo@gmail.com>

 $^{^{1}}$ N.B. In this first paragraph, not all of the definitions are entirely precise. Rather, my goal here is to state them in a way that seems intuitive and heuristically useful.

²This convention creates an ambiguity when discussing, for example, homomorphisms from one algebra, **A**, to another, **B**; in such cases we will adhere to the more precise notation $f^{\mathbf{A}}$ and $f^{\mathbf{B}}$, for operations on A and B, respectively.

ring $\mathbf{A} = \langle A, +, \cdot, -, 0 \rangle$ A *ring* is an algebra $\mathbf{A} = \langle A, +, \cdot, -, 0 \rangle$ such that

- R1. $\langle A, +, -, 0 \rangle$ is an Abelian group,
- R2. $\langle A, \cdot \rangle$ is a semigroup, and

R3. for all $a, b, c \in A$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

A ring with unity (or unital ring) is an algebra $\mathbf{A} = \langle A, +, \cdot, -, 0, 1 \rangle$, where the reduct $\langle A, +, \cdot, -, 0 \rangle$ is a ring, and where 1 is a multiplicative identity; i.e. $a \cdot 1 = 1 \cdot a = a$, for all $a \in A$.

field If $\mathbf{A} = \langle A, +, \cdot, -, 0, 1 \rangle$ is a ring with unity, an element $r \in A$ is called a *unit* if it has a multiplicative inverse. That is, $r \in A$ is a unit provided there exists $r^{-1} \in A$ with $r \cdot r^{-1} = r^{-1} \cdot r = 1$. A *division ring* is a ring in which every non-zero element is a unit, and a *field* is a division ring in which multiplication is commutative.

0.2 Vector Spaces, Modules, and Bilinear Algebras

module Let $\mathbf{R} = \langle R, +, \cdot, -, 0, 1 \rangle$ be a ring with unit. An *R*-module (sometimes called a *left unitary* R-module) is an algebra $\mathbf{M} = \langle M, +, -, 0, f_r \rangle_{r \in R}$ with an Abelian group reduct $\langle M, +, -, 0 \rangle$, and with unary operations $(f_r)_{r \in R}$ which satisfy the following four conditions for all $r, s \in R$ and $x, y \in M$:

M1. $f_r(x+y) = f_r(x) + f_r(y)$ M2. $f_{r+s}(x) = f_r(x) + f_s(x)$ M3. $f_r(f_s(x)) = f_{rs}(x)$ M4. $f_1(x) = x$.

If the ring R happens to be a field, an R-module is typically called a vector space over R.

Note that condition M1 says that each f_r is an endomorphism of the Abelian group $\langle M, +, -, 0 \rangle$. Conditions M2–M4 say: (1) the collection of endomorphisms $(f_r)_{r \in R}$ is itself a ring with unit, where the function composition described in (M3) is the binary multiplication operation, and (2) the map $r \mapsto f_r$ is a ring epimorphism from **R** onto $(f_r)_{r \in R}$.

Part of the importance of modules lies in the fact that every ring is, up to isomorphism, a ring of endomorphisms of some Abelian group. This fact is analogous to the more familiar theorem of Cayley stating that every group is isomorphic to a group of permutations of some set.

bilinear algebra Let $\mathbf{F} = \langle F, +, \cdot, -, 0, 1 \rangle$ be a field. An algebra $\mathbf{A} = \langle A, +, \cdot, -, 0, f_r \rangle_{r \in F}$ is a bilinear algebra over \mathbf{F} provided $\langle A, +, \cdot, -, 0, f_r \rangle_{r \in F}$ is a vector space over \mathbf{F} and for all $a, b, c \in A$ and all $r \in F$,

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$
$$c \cdot (a+b) = (c \cdot a) + (c \cdot b)$$
$$a \cdot f_r(b) = f_r(a \cdot b) = f_r(a) \cdot b$$

If, in addition, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in A$, then **A** is called an *associative algebra over* **F**. Thus an associative algebra over a field has both a vector space reduct and a ring reduct. An example of an associative algebra is the space of linear transformations (endomorphisms) of any vector space into itself.

0.3 Congruence Relations and Homomorphisms

Let A be a set. A binary relation θ on A is a subset of $A^2 = A \times A$. If $\langle a, b \rangle \in \theta$ we sometimes write $a \theta b$. The diagonal relation on A is the set $\Delta_A = \{\langle a, a \rangle : a \in A\}$ and the all relation is the set $\nabla_A = A^2$. (We write Δ and ∇ when the underlying set is apparent.)

equivalence A binary relation θ on a set A is an equivalence relation on A if, for any $a, b, c \in A$, it satisfies:

E1. $\langle a, a \rangle \in \theta$,

E2. $\langle a, b \rangle \in \theta$ implies $\langle b, a \rangle \in \theta$, and

E3. $\langle a, b \rangle \in \theta$ and $\langle b, c \rangle \in \theta$ imply $\langle a, c \rangle \in \theta$.

We denote the set of all equivalence relations on A by Eq(A).

If $\theta \in Eq(A)$ is an equivalence relation on A and $\langle x, y \rangle \in \theta$, we say that x and y are equivalent modulo θ . The set of all $y \in A$ that are equivalent to x modulo θ is denoted by $x/\theta = \{y \in A : \langle x, y \rangle \in \theta\}$ and we call x/θ the equivalence class (or coset) of x modulo θ . The set $\{x/\theta : x \in A\}$ of all equivalence classes of A modulo θ is denote by A/θ . Clearly equivalence classes form a partion of A, which simply means that $A = \bigcup_{x \in A} x/\theta$ and $x/\theta \cap y/\theta = \emptyset$ if $x/\theta \neq y/\theta$.

Example: Let $f : A \to B$ be any map. We define the relation $\ker(f) \subseteq A \times A$ as follows: for all $a_0, a_1 \in A$,

$$\langle a_0, a_1 \rangle \in \ker(f) \quad \Leftrightarrow \quad f(a_0) = f(a_1).$$

It is an easy exercise to verify that ker(f) is an equivalence relation.

Consider two algebras **A** and **B** of the same type and let f be an *n*-ary operation symbol, so that $f^{\mathbf{A}}$ is an *n*-ary operation of **A**, and $f^{\mathbf{B}}$ is the corresponding *n*-ary operation of **B**. We say that a function $h: A \to B$ respects the interpretation of f if and only if for all $a_1, \ldots, a_n \in A$

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n)) = f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

References

 Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor. Algebras, Lattices, Varieties, volume I. Wadsworth, Belmont, 1987.