An algebra ${ }^{1} \mathbf{A}$ is an ordered pair $\mathbf{A}=\langle A, F\rangle$ where A is a nonempty set and F is a family of finitary operations on A. The set A is called the universe of \mathbf{A}, and the elements $f^{\mathbf{A}} \in F$ are called the fundamental operations of \mathbf{A}. (In practice we prefer to write f for $f^{\mathbf{A}}$ when this doesn't cause ambiguity. ${ }^{2}$) The arity of an operation is the number of operands upon which it acts, and we say that $f \in F$ is an n-ary operation on A if f maps A^{n} into A. An operation $f \in F$ is called a nullary operation (or constant) if its arity is zero. Unary, binary, and ternary operations have arity 1, 2 , and 3 , respectively. An algebra \mathbf{A} is called unary if all of its operations are unary. An algebra \mathbf{A} is finite if $|A|$ is finite and trivial if $|A|=1$. Given two algebras \mathbf{A} and \mathbf{B}, we say that \mathbf{B} is a reduct of \mathbf{A} if both algebras have the same universe and \mathbf{A} is obtained from \mathbf{B} by simply adding more operations.

0.1 Examples

groupoid $\mathbf{A}=\langle A, \cdot\rangle$
An algebra with a single binary operation is called a groupoid. This operation is usually denoted by + or \cdot, and we write $a+b$ or $a \cdot b$ (or just $a b$) for the image of $\langle a, b\rangle$ under this operation, and call it the sum or product of a and b, respectively.
semigroup $\mathbf{A}=\langle A, \cdot\rangle$
A groupoid for which the binary operation is associative is called a semigroup. That is, a semigroup is a groupoid with binary operation satisfying $(a \cdot b) \cdot c=a \cdot(b \cdot c)$, for all $a, b, c \in A$.
monoid $\mathbf{A}=\langle A, \cdot, e\rangle$
A monoid is a semigroup along with a multiplicative identity e. That is, $\langle A, \cdot\rangle$ is a semigroup and e is a constant (nullary operation) satisfying $e \cdot a=a \cdot e=a$, for all $a \in A$.
group $\mathbf{A}=\left\langle A, \cdot,,^{-1}, e\right\rangle$
A group is a monoid along with a unary operation ${ }^{-1}$ called multiplicative inverse. That is, the reduct $\langle A, \cdot, e\rangle$ is a monoid and ${ }^{-1}$ satisfies $a \cdot a^{-1}=a^{-1} \cdot a=e$, for all $a \in A$. An Abelian group is a group with a commutative binary operation, which we usually denote by + instead of \cdot. In this case, we write 0 instead of e to denote the additive identity, and - instead of -1 to denote the additive inverse. Thus, an Abelian group is a group $\mathbf{A}=\langle A,+,-, 0\rangle$ such that $a+b=b+a$ for all $a, b \in A$.

[^0]$\operatorname{ring} \mathbf{A}=\langle A,+, \cdot,-, 0\rangle$
A ring is an algebra $\mathbf{A}=\langle A,+, \cdot,-, 0\rangle$ such that
R1. $\langle A,+,-, 0\rangle$ is an Abelian group,
$\mathrm{R} 2 .\langle A, \cdot\rangle$ is a semigroup, and
R3. for all $a, b, c \in A, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
A ring with unity (or unital ring) is an algebra $\mathbf{A}=\langle A,+, \cdot,-, 0,1\rangle$, where the reduct $\langle A,+, \cdot,-, 0\rangle$ is a ring, and where 1 is a multiplicative identity; i.e. $a \cdot 1=1 \cdot a=a$, for all $a \in A$.
field If $\mathbf{A}=\langle A,+, \cdot,-, 0,1\rangle$ is a ring with unity, an element $r \in A$ is called a unit if it has a multiplicative inverse. That is, $r \in A$ is a unit provided there exists $r^{-1} \in A$ with $r \cdot r^{-1}=$ $r^{-1} \cdot r=1$. A division ring is a ring in which every non-zero element is a unit, and a field is a division ring in which multiplication is commutative.

0.2 Vector Spaces, Modules, and Bilinear Algebras

module Let $\mathbf{R}=\langle R,+, \cdot,-, 0,1\rangle$ be a ring with unit. An R-module (sometimes called a left unitary R-module) is an algebra $\mathbf{M}=\left\langle M,+,-, 0, f_{r}\right\rangle_{r \in R}$ with an Abelian group reduct $\langle M,+,-, 0\rangle$, and with unary operations $\left(f_{r}\right)_{r \in R}$ which satisfy the following four conditions for all $r, s \in R$ and $x, y \in M$:

M1. $f_{r}(x+y)=f_{r}(x)+f_{r}(y)$
M2. $f_{r+s}(x)=f_{r}(x)+f_{s}(x)$
M3. $f_{r}\left(f_{s}(x)\right)=f_{r s}(x)$
M4. $f_{1}(x)=x$.
If the ring R happens to be a field, an R-module is typically called a vector space over R.
Note that condition M1 says that each f_{r} is an endomorphism of the Abelian group $\langle M,+,-, 0\rangle$. Conditions M2-M4 say: (1) the collection of endomorphisms $\left(f_{r}\right)_{r \in R}$ is itself a ring with unit, where the function composition described in (M3) is the binary multiplication operation, and (2) the map $r \mapsto f_{r}$ is a ring epimorphism from \mathbf{R} onto $\left(f_{r}\right)_{r \in R}$.

Part of the importance of modules lies in the fact that every ring is, up to isomorphism, a ring of endomorphisms of some Abelian group. This fact is analogous to the more familiar theorem of Cayley stating that every group is isomorphic to a group of permutations of some set.
bilinear algebra Let $\mathbf{F}=\langle F,+, \cdot,-, 0,1\rangle$ be a field. An algebra $\mathbf{A}=\left\langle A,+, \cdot,-, 0, f_{r}\right\rangle_{r \in F}$ is a bilinear algebra over \mathbf{F} provided $\left\langle A,+, \cdot,-, 0, f_{r}\right\rangle_{r \in F}$ is a vector space over \mathbf{F} and for all $a, b, c \in A$ and all $r \in F$,

$$
\begin{aligned}
(a+b) \cdot c & =(a \cdot c)+(b \cdot c) \\
c \cdot(a+b) & =(c \cdot a)+(c \cdot b) \\
a \cdot f_{r}(b) & =f_{r}(a \cdot b)=f_{r}(a) \cdot b
\end{aligned}
$$

If, in addition, $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in A$, then \mathbf{A} is called an associative algebra over F. Thus an associative algebra over a field has both a vector space reduct and a ring reduct. An example of an associative algebra is the space of linear transformations (endomorphisms) of any vector space into itself.

0.3 Congruence Relations and Homomorphisms

Let A be a set. A binary relation θ on A is a subset of $A^{2}=A \times A$. If $\langle a, b\rangle \in \theta$ we sometimes write $a \theta b$. The diagonal relation on A is the set $\Delta_{A}=\{\langle a, a\rangle: a \in A\}$ and the all relation is the set $\nabla_{A}=A^{2}$. (We write Δ and ∇ when the underlying set is apparent.)
equivalence A binary relation θ on a set A is an equivalence relation on A if, for any $a, b, c \in A$, it satisfies:
E1. $\langle a, a\rangle \in \theta$,
E2. $\langle a, b\rangle \in \theta$ implies $\langle b, a\rangle \in \theta$, and
E3. $\langle a, b\rangle \in \theta$ and $\langle b, c\rangle \in \theta$ imply $\langle a, c\rangle \in \theta$.
We denote the set of all equivalence relations on A by $\operatorname{Eq}(A)$.
If $\theta \in \operatorname{Eq}(A)$ is an equivalence relation on A and $\langle x, y\rangle \in \theta$, we say that x and y are equivalent modulo θ. The set of all $y \in A$ that are equivalent to x modulo θ is denoted by $x / \theta=\{y \in A:\langle x, y\rangle \in \theta\}$ and we call x / θ the equivalence class (or coset) of x modulo θ. The set $\{x / \theta: x \in A\}$ of all equivalence classes of A modulo θ is denote by A / θ. Clearly equivalence classes form a partion of A, which simply means that $A=\cup_{x \in A} x / \theta$ and $x / \theta \cap y / \theta=\emptyset$ if $x / \theta \neq y / \theta$.

Example: Let $f: A \rightarrow B$ be any map. We define the relation $\operatorname{ker}(f) \subseteq A \times A$ as follows: for all $a_{0}, a_{1} \in A$,

$$
\left\langle a_{0}, a_{1}\right\rangle \in \operatorname{ker}(f) \quad \Leftrightarrow \quad f\left(a_{0}\right)=f\left(a_{1}\right)
$$

It is an easy exercise to verify that $\operatorname{ker}(f)$ is an equivalence relation.

Consider two algebras \mathbf{A} and \mathbf{B} of the same type and let f be an n-ary operation symbol, so that $f^{\mathbf{A}}$ is an n-ary operation of \mathbf{A}, and $f^{\mathbf{B}}$ is the corresponding n-ary operation of \mathbf{B}. We say that a function $h: A \rightarrow B$ respects the interpretation of f if and only if for all $a_{1}, \ldots, a_{n} \in A$

$$
h\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) .
$$

References

[1] Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor. Algebras, Lattices, Varieties, volume I. Wadsworth, Belmont, 1987.

[^0]: William DeMeo williamdemeo@gmail.com
 ${ }^{1}$ N.B. In this first paragraph, not all of the definitions are entirely precise. Rather, my goal here is to state them in a way that seems intuitive and heuristically useful.
 ${ }^{2}$ This convention creates an ambiguity when discussing, for example, homomorphisms from one algebra, \mathbf{A}, to another, \mathbf{B}; in such cases we will adhere to the more precise notation $f^{\mathbf{A}}$ and $f^{\mathbf{B}}$, for operations on A and B, respectively.

