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ABSTRACT 

Intrahepatic cholestasis of pregnancy and drug induced cholestasis are two clinically important 

forms of acquired cholestatic liver disease. The understanding of the underlying mechanisms of 

acquired cholestasis has recently made considerable progress by the identification of canalicular 

ATP-binding cassette (ABC) transporters as likely targets for these forms of cholestasis. 

Cholestasis of pregnancy is linked to estrogen and progesterone metabolites. These metabolites 

have been shown to impair the bile salt export pump BSEP function by an indirect mechanism. In 

addition, genetic variants (as well as mutants) of the genes coding for the phosphatidylcholine 

translocator MDR3 and BSEP and for the farnesoid X receptor, which is critical in the 

transcriptional activation of MDR3 and BSEP have been associated with intrahepatic cholestasis 

of pregnancy. The pathogenesis of drug induced liver injury encompasses a wide spectrum of 

mechanisms, some of which are still poorly understood. BSEP is now known to be subject to 

drug inhibition in susceptible patients. Information on genetic factors rendering individuals 

susceptible to inhibition of BSEP by drugs or their metabolites is still scarce. Besides rare 

mutations that have been linked to drug induced cholestasis, the common p.V444A 

polymorphism of BSEP has been identified as a potential risk factor. This review summarizes 

key concepts of physiology of bile formation, diagnostic principles to indentify these forms of 

acquired cholestasis as well as pathogenetic mechanisms leading to intrahepatic cholestasis of 

pregnancy or drug induced cholestasis. Furthermore, it summarizes the current knowledge on 

genetic susceptibility factors for these two forms of cholestasis. 
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PHYSIOLOGY OF BILE FORMATION  

The liver is instrumental for maintaining enterohepatic circulation of bile salts. Bile salts are 

synthesized in a multistep cascade consisting of 16 enzymes catalyzing 17 reactions in 

hepatocytes 1 and secreted into the canaliculi, from were they enter the biliary tree 2-4. In the 

biliary tree, the composition of bile with bile salts is modified and drained to the gall bladder, 

from where it enters the duodenum. In the duodenum, bile salts promote the digestion of fat and 

absorption of lipids and fat soluble vitamins 5,6. Bile salts are reclaimed to more than 90 % in the 

small intestine and transported back to the liver via the portal circulation. In the liver, bile salts 

are taken up again from the sinusoidal blood plasma and their journey to the intestine restarts 7. 

For efficient transport of bile salts from the sinusoids into the canaliculi as well as for controlling 

this process, hepatocytes are equipped with an elaborate array of transporters and regulatory 

mechanisms. Regulation of bile salt flow across hepatocytes is crucial, as bile salts are 

amphipathic molecules and display detergent properties. Hence, any surplus of bile salts within 

hepatocyte can become cytotoxic or even lethal to the cells. 

In the basolateral plasma membrane, bile salts are taken up predominantly in a sodium dependent 

manner and to a minor portion via sodium independent processes. The sodium dependent uptake 

of bile salts is mediated by the sodium-taurocholate cotransporting polypeptide NTCP 

(SLC10A1) and shows a preference for conjugated bile salts 7,8. Sodium independent uptake of 

bile salts is fostered by organic anion transporting polypeptides or OATPs (SLCOs), namely 

OATP1B1 and OATP1B3 2,9. A third OATP, OATP2B1 is also expressed in hepatocytes but does 

not mediate transport of conjugated bile salts 2,10. OATPs are also mediators of hepatocellular 

drug and xenobiotic uptake whereby OATP1B1 and OATP1B3 exhibit considerable overlap in 

their substrate specificity. Both, NTCP and OATPs are subject to considerable interindividual 

differences in their hepatocellular expression levels. Knowledge on intracellular transport of bile 
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salts from the basolateral to the apical plasma membrane is still scarce, but it is assumed that 

binding proteins are involved. Canalicular export occurs against a steep concentration gradient 

and is mediated by a member of the ATP-binding cassette (ABC) transporter family: the bile salt 

export pump BSEP (ABCB11) 7,11,12. The rate limiting step in the overall transport from the 

portal blood into bile is located to the canalicular membrane of hepatocytes 2,13. Hence, proper 

functioning of BSEP is essential for keeping the potentially cytotoxic bile salts at a low 

intracellular level in hepatocytes. Consequently, mutations leading to a non-functional BSEP 

protein were associated with familial cholestatic syndromes, the so called progressive familial 

intrahepatic cholestasis type 2 4. Furthermore, as bile formation is an isoosmotic process, bile 

salts are a major driving force for the generation of canalicular bile flow. In addition to bile salts, 

canalicular bile contains lipids. Phosphatidylcholine is the major lipid constituent and its release 

from the extracellular leaflet of the canalicular membrane into bile is mediated by MDR3 or 

ABCB4. This ABC transporter acts as a phosphatidylcholine translocator supplying 

phosphatidylcholine to the outer hemileaflet of the canalicular membrane 14. From there, 

phosphatidylcholine is released into bile by the detergent action of bile salts 15. Mutations in the 

gene coding for MDR3 lead to progressive familial intrahepatic cholestasis type 3 16. In primary 

bile, phosphatidylcholine and bile salts form mixed micelles, which act as acceptors for poorly 

water soluble substances, such as cholesterol 15. The release of cholesterol from the canalicular 

membrane into bile is facilitated by the heterodimeric transporter ABCG5/ABCG8 17. 

A reduction of bile flow represents a pathophysiologic situation and is called cholestasis. 

Metabolism of bile salts within hepatocytes leads to sulfated and glucuronidated bile salts, 

particularly in cholestatic conditions 18,19. Such bile salt derivatives are excreted into bile via the 

multidrug resistance protein MRP2 (ABCC2) 20, or back into the sinusoids by MRP3 and MRP4 

21, two salvage systems which help to reduce the concentration of potentially cytotoxic 
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intracellular bile salts in hepatocytes. In addition, the heterodimeric organic solute transporter 

OSTα-OSTβ is also expressed in the basolateral membrane and might act as an additional 

salvage system 22. The relative contribution of these three adaptive efflux systems is at the 

moment not fully understood and needs to be worked out in detail. 

NTCP has a rather restricted substrate specificity and transports in addition to bile salts sulfated 

compounds such as bromosulfophthalein and sulfated steroid metabolites 7,8,23,24. Furthermore, in 

heterologoues expression systems NTCP transports bile salt-drug conjugates and sulfated 

thyroxin. Taken together, NTCP acts as the key hepatocellular bile salt uptake system, but may 

also contribute to hepatocellular handling of additional compounds and even drugs (see below). 

NTCP transports one bile salt molecule together with two sodium ions and is therefore 

electrogenic 25. Consequently, it can take up bile salts against a concentration gradient into 

hepatocytes. 

OATPs transport a large variety of endogenous substrates, metabolic end products as well as 

xenobiotics, such as for example bile salts, estrogen metabolites, drugs and toxins 10,26,27. In 

hepatocytes, OATP1B1 and OATP1B3 are the two key uptake transporters for unconjugated and 

conjugated bile salts and for hydrophobic, anionic xenobiotics, while OATP2B1 is so far 

considered to be mainly a transporter for bromosulfophthalein and steroid sulfates. OATP1B1 

and OATP1B3 have a large overlap in their substrate specificity. It is therefore difficult to predict 

the individual contribution of either of the two transporters for the uptake of a given bile salt or a 

given drug. For example, in heterologous expression systems all hepatocytes OATPs mediate 

transport of rosuvastatin 28. Most interestingly, in a recent genome wide SNP association study 

with patients on a high dose simvastatin treatment only OATP1B1 variants were identified as a 

risk factor for myopathy 29. This can be taken as evidence that OATP1B1 is the functionally 
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relevant simvastatin (and most likely also other statin) uptake system in hepatocytes. The 

transport mechanism of OATPs is not known in detail, but they are believed to act as organic 

anion exchangers. Glutathione, glutathione-conjugates, oxidized glutathione as well as 

bicarbonate have been demonstrated to act as counteranions 30-33. In a recent study, evidence was 

presented that many OATPs indeed exchange bicarbonate for anions during the transport step and 

that most OATPs show higher transport rates at low extracellular pH 34. Elucidation of the exact 

transport mechanism of the OATPs is however important as this will allow to predict, whether 

OATPs have the potential to transport drugs against a concentration gradient into hepatocytes. 

Such a mechanism would certainly contribute to drug toxicity in hepatocytes. In this context, 

coadministration of the OATP inhibitor rifampicin with glibenclamide in healthy volunteers leads 

to an increase of the AUC and of Cmax of glibenclamide 35. In rat studies, glibenclamide was 

found to be 50 times higher concentrated in the liver as compared to the serum, suggesting a 

concentrative uptake mechanism into hepatocytes 36. 

BSEP has a narrow substrate specificity and transports mainly monanionic, conjugated bile salts 

11,12. There is a variation in its substrate pattern between species, as for example human BSEP, 

but not rat Bsep transports the bile salt metabolite taurolithocholate-3-sulfate 37,38. Bsep 

transports barely any unconjugated bile acids 39. This in vitro finding is supported in vivo by the 

observation that patients with a defect in bile acid conjugation have very little unconjugated bile 

acids in their bile 40. BSEP is an electrogenic transporter and requires hydrolysis of ATP for 

transport activity 11,41. BSEP is the sole transporter for monoanionic bile salts across the 

canalicular membrane. This becomes evident in patients with mutations in the BSEP gene. Such 

patients develop progressive familial intrahepatic cholestasis or BSEP deficiency syndrome type 

2 and have less than 1 % of primary bile salts in their bile 4,42,43. Furthermore, a comparison of rat 

Bsep and Mrp2 revealed no overlap in substrate specificities 37. These findings suggest that 
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inhibition of BSEP, e.g. by drugs, should lead to reduced bile salt secretion and their retention 

within hepatocytes and consequently lead to cholestasis. Several drugs have been implicated in 

drug induced cholestasis and examples of such drugs like cyclosporine, rifampicin, rifamycin, 

glibenclamide or bosentan have been found to be competitive inhibitors of BSEP 37,44,45. The list 

of BSEP inhibitors is continuously growing 46. The estradiol metabolite estradiol-17β-

glucuronide induces acute cholestasis in rats. It was therefore also tested for its inhibitory 

potential of rat Bsep. Interestingly, estradiol-17β-glucuronide does not inhibit Bsep expressed in 

Sf9 cells. If however Mrp2 is coexpressed with Bsep in Sf9 cells, estradiol-17β-glucuronide leads 

to a concentration and time dependent inhibition of Bsep 37. This finding was confirmed and 

extended to sulfated progesterone metabolites 47,48. In addition, Mrp2 could also interact directly 

with Bsep in the canalicular membrane in the presence of estradiol-17β-glucuronide and thereby 

inhibit Bsep 49. 

 

INCIDENCE AND DIAGNOSTIC CRITERIA OF CHOLESTASIS OF PREGNANCY  

Intrahepatic cholestasis of pregnancy (ICP) is an acquired form of cholestasis, which is observed 

in otherwise healthy pregnant women with a normal medical history. It usually occurs in the 

second and third trimester of pregnancy, when serum concentrations of estrogens and 

progesterone reach their peak 50,51 and is characterized by pruritus, elevated concentrations of bile 

salts, transaminases and rarely also of bilirubin in serum 52-55. The suggested pathogenic key role 

of female sex hormones is further supported by the rapid cessation of cholestatic symptoms after 

delivery 56, the higher incidence of ICP in twin pregnancies 50 and the increased susceptibility of 

affected patients to develop intrahepatic cholestasis under oral contraception 57. 
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The incidence of ICP varies widely, originally ranging from 0.05 to >20% between different 

ethnic groups and geographical locations, with highest incidence rates reported for women with 

Araucanian Indian descent in Chile (for review see 54). In Caucasian populations of the United 

States and Europe, incidence rates vary between 0.5 and 1.5%, with highest rates observed in 

Sweden and the Baltic countries. Since 1980 the incidence of ICP in Chile has declined, which 

has mainly been attributed to changes in environmental factors. The importance of environmental 

factors in the pathogenesis of ICP is also supported by the higher disease prevalence during the 

winter months in Chile, Finland and Sweden.  

Data collected in different geographic locations including Europe, North and South America and 

Australia, have reached consensus about the catalogue of clinical and laboratory criteria essential 

to the diagnosis of ICP (reviewed in: 58-60). The onset of ICP is typically indicated by the 

development of pruritus starting in late pregnancy in the absence of a past medical history, 

physical or ultrasonographic signs of liver disease or biochemical, virological or autoimmune 

abnormalities that could reveal acute or chronic liver disease. Pruritus may precede laboratory 

abnormalities and shows a characteristic distribution pattern, starting in the palms and soles 

before generalizing to other zones of the body surface.  

Elevation of fasting serum total bile acid concentrations > 10mol/L may be the first and only 

laboratory abnormality in ICP 61,62. Specifically, serum cholic acid becomes the primary bile acid 

in ICP women in contrast to normal pregnant women and nonpregnant women, in whom its 

proportion is almost similar to chenodeoxycholic acid. This results in a marked elevation of the 

cholic/chenodeoxycholic acid ratio compared to pregnant women without ICP 63-65. Other 

laboratory findings reflecting cholestasis include variable elevations in the serum concentrations 

of alkaline phosphatase, 5' nucleotidase, total and direct bilirubin and transaminases. Elevation of 

alkaline phosphatase levels is not specific of cholestasis during pregnancy due to the placenta 
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isoenzyme, and the extent of transaminases elevation varies between 2-fold to 10-fold the upper 

limit of normal 58. 

Surprisingly, the serum concentrations of gamma glutamyl transpeptidase (GGT) are normal or 

only modestly elevated in most patients with ICP and might allow conclusions about the 

underlying defect in bile acid transport. Specifically, there is indication that elevated GGT levels 

indicate an impairment of MDR3 function, while GGT is normal in BSEP-related forms of 

estrogen-associated cholestasis 66. Therefore, GGT might be useful to clinically distinguish 

between MDR3 and BSEP-related forms of estrogen-related cholestasis, as it is already done for 

progressive forms of inherited familial intrahepatic cholestasis 42,67. 

 

PATHOPHYSIOLOGY OF STEROID INDUCED CHOLESTASIS  

Clinical evidence based on serum levels of estrogens during pregnancy linked steroid hormones 

with intrahepatic cholestasis of pregnancy 68,69. Progesterone and its metabolites could in addition 

contribute to the pathogenesis of cholestasis of pregnancy 51,64,70. Alternately, oral contraceptives 

can also lead to cholestasis 71 69. In animal experiments, the steroid metabolites estradiol-17β-

glucuronide and progesterone sulfate have been demonstrated to lead to acute cholestasis 

immediately after application 48,72. 

From studies with rats treated for 5 days with high (usually 50 mg/kg body weight) 

ethinylestradiol, a model for estrogen-induced cholestasis, the following pathophysiologic picture 

emerged: Sodium-dependent uptake of taurocholate into basolateral liver plasma membrane 

vesicles is reduced by about 40 % and the vmax of ATP-dependent bile salt transport into 

canalicular vesicles was reduced by 60 %. Also, the transport of dinitrophenylglutathione was 

markedly reduced. These functional data were paralleled by a 40 % decrease of bile flow 73. 

Heterologous expression of cloned rat Mrp2 identified this transporter as responsible for 
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dinitrophenylglutathione transport 74 and Bsep as the canalicular taurocholate tranporter 39. At the 

mRNA level, Ntcp, Oatp1a1 and Oatp1a4 are markedly down-regulated after 5 days of 

ethinylestradiol treatment, while Oatp2b1 remains unchanged, which is mirrored at the protein 

levels of the respective transporters 75-77. The canalicular transporters Bsep and Mrp2 remain 

unchanged at the mRNA level in this rat model, while protein levels are down regulated by about 

40 % for Bsep and by about 80 % for Mrp2, respectively 76,78. Also, the canalicular water channel 

aquaporin-8 is down-regulated in the canalicular membrane leading to a reduced water 

permeability of this membrane 79. The basolateral salvage transporter Mrp3 is massively 

upregulated in ethinylestradiol treated rats at the mRNA and protein level 80,81. Therefore, high 

levels of estrogens clearly alter the expression pattern of key hepatocellular bile salt and drug 

transporters. Estradiol seems to act predominantly via estrogen receptor a, as in mice with a 

disrupted gene for this receptor neither the expression of the uptake transporters Ntcp, Oatp1a1 

and Oatp1a4, nor the expression of the efflux transporter Bsep is affected 82. In human females, 

the depot estrogen ethinylestradiol propanolsulphonate leads to a significant increase of total 

serum bile salts. Among the different bile salt species, the most pronounced effect was observed 

with taurine conjugates 83. As this was paralleled with an increase in secondary bile salts, this 

study suggests a mild cholestatic phenotype due to the estrogen. 

In a 5 day treatment regimen with ethinylestradiol of Wistar and TR- rats, which lack functional 

Mrp2, cholestasis was observed in both strains 84. In contrast, the acute cholestatic action of 

estradiol-17β-glucuronide critically depends on expression of Mrp2, as this estrogen metabolite 

does not cause cholestasis in TR- rats 49. In less than 30 minutes, treatment of rats with a bolus of 

estradiol-17β-glucuronide leads to a rapid internalization of a fraction of Mrp2 and Bsep into a 
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subapical, vesicular compartment 85-87. This internalization is dependent on Ca2+-dependent 

protein kinase C 88. 

In summary, the molecular events in estrogen induced cholestasis affect many transport systems 

in the basolateral and canalicular membrane, whereby the uptake side seems to be mainly 

affected at the transcriptional level, while in the canalicular export site posttranscriptional 

processes predominate. 

Steroid induced cholestasis is not exclusively associated with estrogens and/or progesterones. 

The usage of androgenic or anabolic steroids, for example by competitive and noncompetitive 

athletes or body builders 89-91 can lead to liver injury including bland cholestasis 92. Liver injury 

by this class of steroids is typically induced by compounds, which are alkylated at the 17α-

position. Androgenic or anabolic steroid induced cholestasis can lead to severe jaundice 93,94, 

which may be prolonged 95 and accompanied with severe pruritus 96. The literature on 

pathogenetic mechanisms of androgenic or anabolic steroid induced cholestasis is scarce. 

Evidence from rat studies has been presented that the pericanalicular microfilaments are lost 97. 

Given the structural similarity of androgenic or anabolic steroids to estrogens, it is tempting to 

speculate that additionally similar mechanisms as with estrogens may apply to the pathogenesis 

of androgenic or anabolic steroid induced cholestasis. 

 

GENETICS OF CHOLESTASIS OF PREGNANCY 

Besides hormonal and most likely environmental factors, genetic susceptibility constitutes a risk 

factor to develop ICP. A genetic predisposition has been suspected based upon the strong 

regional clustering, the higher prevalence in female family members of patients with ICP and the 

susceptibility of ICP-patients to develop intrahepatic cholestasis under other hormonal challenges 

such as oral contraception 57. In the last decade, mutations and polymorphisms in the canalicular 



 14 

transporter proteins BSEP and MDR3 have both been associated with the development of ICP. A 

pathogenic role of genetically determined MDR3 dysfunction was first discussed upon the 

observation that female members of a large consanguineous family with one family member 

suffering from progressive intrahepatic cholestasis experienced typical recurrent episodes of ICP 

98. These observations were subsequently verified in pedigree and case-control studies, 

investigating the pathogenic role of heterozygous MDR3 mutations in different populations. 

Strong evidence for a role of MDR3 genetic variation came from a Swiss cohort, were the extent 

of MDR3 genetic variation in 21 unrelated Caucasian women with ICP was compared to that 

observed in healthy pregnant control women 66. In this collective, 47% of ICP patients had 

elevated GGT levels and 77% of these patients carried ICP-specific MDR3 mutations, including 

three splicing consensus mutation. These findings were later confirmed by a Swedish study, 

reporting the association of specific MDR3 haplotypes and severe cholestasis in 12% of 52 

observed ICP cases compared to 0% in the control group 99. Furthermore, a large Italian study in 

80 women found heterozygous MDR3 mutations in 4% of cases 100. A MDR3 splicing site 

mutation was detected as causative locus for the development of ICP in a large consanguineous 

family of Mennonite kinship 101. Very interestingly, the same genetic locus was associated with 

the development of gallstone disease, which makes it very tempting to think that the higher 

prevalence of gallstone disease observed in ICP women could also be related to MDR3 

dysfunction. In contrast, a study in Finland failed to demonstrate a pathogenic role of MDR3 

mutations in ICP, pointing towards the heterogenous pathogenic nature of this disease 102. 

In contrast to MDR3, the pathogenic role of BSEP genetic variation in ICP has only recently 

emerged. Biochemical workup of ICP-patients subsequently allowed the differentiation between 

high and low GGT forms of ICP, suggesting the involvement of different transporter pathways. 

While high GGT values were present in the majority of ICP-patients with an MDR3 mutation, 
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genetic BSEP dysfunction was postulated in low GGT cases 98,103. Two Swiss studies conducted 

in independent ICP collectives first suggested the BSEP p.V444A polymorphism as ICP 

susceptibility factor, with the homozygous and heterozygous state for the alanine in position 444 

being significantly more frequent in ICP women than in healthy pregnant controls 66,104. Very 

interestingly, the BSEP genotype in position 444 also correlated with serum bile acid levels, with 

carriers of the alanine showing higher serum bile acid levels than carriers of the valine allele. 

These findings were recently confirmed in two independent ICP cohorts comprising a total of 

more than 400 patients, were alanine homo- and heterozygotes were significantly more frequent 

in the ICP collectives. In the same study, heterozygosity for the BSEP mutations p.E297G, 

p.D482G and p.N591S formerly associated with benign and progressive forms of familial 

intrahepatic cholestasis type 2 were found in four, one and two ICP patients, respectively, 

allowing the extrapolation that 1% of European ICP cases are caused by these mutations 105. 

While the molecular and mechanistic basis for p.V444A and p.N591S were not apparent, in-silico 

structural and functional analysis suggests that p.E297G and p.D482G destabilizes the protein 

fold of BSEP leading to decreased taurocholate transport in case of p.E297G 105,106. In addition, 

decreased hepatic BSEP expression 107,108, and very recently, significantly reduced hepatic 

mRNA levels 109 was reported in healthy human liver tissue carrying the alanine allele in position 

444 of BSEP, which could predispose to the development of ICP by way of decreased canalicular 

availability of BSEP. Furthermore, four novel heterozygous variants (c.-1G>T, p.M1V, p.W80R 

and p.M173T 110) of the farnesoid X receptor (FXR), a key transcription factor driving the 

expression of BSEP and MDR3 111,112, were recently identified in a British cohort of 92 women 

with ICP. Of these variants, p.M173T, which is located in the nucleotide binding domain of the 

second zinc finger significantly associated with ICP and was shown to have a markedly reduced 

capacity to activate the BSEP promoter in vitro 110. Although the effect of this variant on MDR3 
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expression has not been studied, it is likely that activation of the MDR3 promoter is also reduced. 

In line with this, a recent report of an ICP patient suffering from alterations in three genes: 

p.S320F in MDR3 (previously described in a patient with ICP 113), p.A444V in BSEP and c.-

1G>T in FXR 114, again highlights the role of FXR as a factor associated with ICP. 

These observations in intrahepatic cholestasis of pregnancy can be translated to other estrogen-

related forms of cholestasis, such as cholestasis seen with the use of oral contraceptives. 

Specifically, a heterozygous p.G855R mutation in BSEP leading to highly impaired taurocholate 

transport was associated with non-inflammatory cholestasis and highly elevated serum bile acid 

levels in a young patient under the first use of an oral ethinylestradiol/gestodene combination for 

contraception 115. Interestingly, the mother and the maternal grandmother of the patient, who 

carried the same mutation had a history of ICP. In another study, homozygosity for the alanine 

phenotype in position 444 of BSEP was seen in four individuals with cholestasis under oral 

contraceptives 104. It is therefore tempting to think that genetically determined impairment of 

canalicular transporter function not only predisposes to ICP, but constitutes a risk factor to the 

development of bland cholestasis observed with the use of female sex hormones. It can only be 

speculated, whether the same genetic events are also involved in cholestasis associated with the 

use of anabolic steroids. 

 

DIAGNOSTIC CRITERIA AND INCIDENCE OF DRUG INDUCED CHOLESTASIS 

Drug induced liver injury including cholestasis is another form of acquired liver disease, 

accounting for approximately two to five percent of hospitalizations for jaundice, ten percent of 

cases of hepatitis in all adults and more than 40 percent of hepatitis cases in adults older than 50 

116-118. Drug induced liver injury causes a significant number of hospital admissions and may in 

severe cases necessitate liver transplantation 119. Also, drug induced liver injury is leading to the 
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attrition of a significant number of substances during drug development and has repeatedly been 

responsible for the withdrawal of drugs from the market 120,121. For these reasons, drug induced 

liver injury poses a significant burden to patient safety and the costs of modern health care 

systems. 

The liver pathology of drug induced liver injury covers a wide spectrum of lesions from bland 

cholestasis to hepatitis and mixed forms 122,123. It occurs with many drugs through a variety of 

mechanisms, which might differ in their clinical presentations ranging from asymptomatic mild 

biochemical abnormalities to an acute illness with jaundice that resembles viral hepatitis 124. 

While good epidemiological data exist on the entire spectrum of drug-induced liver injury (for 

review see: 125,126), data on the incidence of cholestatic forms of drug-induced liver injury are 

scarce. Cholestatic liver injury is typically characterized by a predominant elevation in alkaline 

phosphatase and bilirubin levels while the extent of aminotransferase elevations varies upon the 

causative drugs and the histological pattern of liver injury. Bland canalicular cholestasis is 

typically associated with minimal hepatocellular inflammation and normal or only slightly 

elevated aminotransferase levels and is often seen with anabolic steroids or oral contraceptives. 

In contrast, portal inflammation is seen in hepatocanalicular cholestasis, often associated with an 

elevation of aminotransferases. Hepatocanalicular cholestasis has been linked with different types 

of drugs, including the ACE-inhibitor captopril, the antibiotics dicloxacilline, nafcilline, 

amoxicilline-clavulanate and erythromycine as well as chlorpromazine, naproxen and 

terbenafine. 

The diagnosis of drug-induced liver injury, including cholestasis can be difficult, as the 

relationship between drug exposure and hepatic injury is not always clear due to concomitant 

medication or preexisting liver disease. Different assessment systems such as the criteria 

established by the Council for International Organization of Medical Sciences (CIOMS) have 
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been developed in an attempt to codify the diagnosis of drug-induced liver disease into objective 

criteria 127. According to a recent review, key elements for attributing liver injury to a drug 

include (a) previous drug exposure, (b) exclusion of underlying liver disease, (c) improvement of 

liver injury after cessation of the drug and (d) recurrence after exposure.  

 

PATHOPHYSIOLOGY OF DRUG INDUCED CHOLESTASIS  

Prior to their adverse action on hepatocytes, drugs need to be taken up into the cells. A large 

variety of drugs is entering hepatocytes via the OATPs expressed in the basolateral hepatocyte 

membrane 10,26,27. Interestingly and importantly, it was recently found that the transport activity 

of OATPs may be directly modulated by physiologic substrates such as prostaglandins 128 or 

estrone-3-sulfate 129 as well as the drug clotrimazole 130 or the drug metabolite estradiol-

17bglucuronide 131. Such interactions may potentially lead to different intracellular drug 

concentrations at comparable serum levels. 

Unfortunately, the underlying pathogenetic mechanisms of drug induced liver injury often remain 

enigmatic. After the cloning of rat Bsep, it could be directly demonstrated that drugs known to be 

leading to cholestatic liver injury, such as for instance cyclosporine 132,133 are competitive 

inhibitors of Bsep. Hence, this mechanism is the likely cause of cholestasis of such drugs as for 

example cyclosporin, rifamycin SV, rifampicin, glibenclamide 37,44. The Ki values of Bsep 

inhibition in the Sf9 cell expression system compare favorably with the Km values obtained in 

isolated rat liver canalicular plasma membrane vesicles 37. Such inhibition of Bsep leads to 

intracellular retention of bile salts in hepatocytes, which at elevated concentrations are cytotoxic 

to hepatocytes 134. Bosentan is a dual endothelin receptor antagonist, which is pharmacologically 

active together with one of its main metabolites. Bosentan elimination is predominantly via the 

biliary route. Bosentan and its metabolite enter hepatocytes by OATP1B1 and OATP1B3 
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mediated transport 135. In clinical trials, it was found that bosentan caused asymptomatic, 

reversible transaminase elevations in some patients 136. The incidence of bosentan induced liver 

injury was dose dependent and increases in plasma bile salt levels of affected individuals 

correlated with the aministered dose of bosentan. Furthermore, individuals, who were taking 

glyburide together with bosentan showed a higher incidence of liver injury than patients with a 

bosentan monotherapy. Experiments with rat and human BSEP expressed in Sf9 cell vesicles 

identified bosentan as a competitive inhibitor of BSEP 45,136. Rats treated with bosentan displayed 

an elevation of plasma bile salt levels, which further increases upon coadministration of 

glibenclamide 136. Hence, as serum bile salt levels in patients positively correlated with the 

bosentan dose and as the serum liver parameters after stopping of bosentan spontaneous 

normalized, it can be concluded that bosentan acts as a competitive BSEP inhibitor. This 

inhibition of BSEP seems to be rather specific, as no elevation of serum bilirubin was observed 

136. Most interestingly, in a follow-up investigation of the cholestatic mechanism of bosentan in 

rats it was found that contrary to the expectations bosentan leads to a stimulation of bile flow 137. 

The increased bile flow was not caused by an increased bile salt output but was associated with 

an increased glutathione and bicarbonate secretion. This stimulation of bile flow was not 

observed in TR- rats, which lack functional Mrp2. Hence, bosentan not only directly affects the 

function of Bsep as a competitive inhibitor, but also exerts indirect effects, which depend on 

Mrp2. In vitro characterization of rat and human Mrp2/MRP2 as well as Bsep/BSEP expressed in 

Sf9 cells confirmed the inhibition by bosentan of both isoforms of Bsep/BSEP 138. Furthermore, 

this study demonstrated a direct stimulation of Mrp2/MRP2 transport activity by bosentan. This 

finding most likely presents the molecular explanation for the observed increase of bile salt 

independent bile flo1w in rats. Stimulation of MRP2 activity is not unique for bosentan. 
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Other examples include sulfinpyraznoe, penicillin G or indomethacin 139. The consequence of 

drug-induced activation of MRP2 may be a lowering of the bile salt concentration in the 

canaliculus below a (yet unknown) threshold value followed by an alteration in canaliculaur 

phospholipid and cholesterol secretion 140. Taken together, Bsep can either be inhibited directly 

by drug form the cytoplasm or indirectly, most probably from the canalicular side. This latter 

process seems to need the presence of functional Mrp2. 

In addition, indirect mechanisms of BSEP inhibition requiring MRP2 have been described, such 

as for example for estradiol-17β-glucuronide, bosentan and for the HER1/HER2 inhibitor 

PKI166 37,138,141. In cases, where the acquired liver disease is caused by bland cholestasis, this 

process is rapidly reversible upon discontinuation of the drug, as illustrated for bosentan 136. 

Taken together, many drugs as well as endogenous steroid metabolites have the potential to 

interfere with transport activity of Bsep. As this includes direct and indirect inhibition of BSEP as 

well as regulation of its carrier density in the canalicular membrane, the actual mechanism of 

drug induced reduction of BSEP activity may be complex for a given substance. 

Troglitazone is a drug, which was withdrawn from the market due to its hepatotoxicity. The exact 

molecular mechanisms of its toxicity remains somewhat enigmatic, but a consensus has emerged 

with time that troglitazone is mainly toxic to mitochondria 142,143. In addition to its direct adverse 

action on mitochondria, troglitazone administration leads to an acute reduction to bile flow in 

rats. Hence troglitzone is also cholestatic drug 144. Troglitazone is mainly metabolized into 

troglitazone sulfate in rats, which is subsequently excreted into bile 145. Both, the parent 

compound and its sulfated metabolite are competitive inhibitors of Bsep in rat canalicular plasma 

membrane vesicles. Recently, troglitazone was also demonstrated to be an inhibitor of dog and 

human BSEP 146,147. Taken together, troglitazone can negatively impact mitochondria via direct 

toxicity as well as by inhibiting BSEP, which in turn leads to an accumulation of bile salts in 
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hepatocytes. They by themselves are at elevated intracellular concentrations toxic to 

mitochondria 134. Often, drug induced liver injury results not only in cholestatic but in mixed 

(hepatocellular and cholestatic) liver injury 117. A study investigating a potential class effect of 

thiazolidinediones on Bsep found that both rosiglitazone and ciglitazone are inhibitors of ATP-

dependent taurocholate transport into rat canalicular plasma membrane vesicles 147. This is a 

strong indication that the toxicity of troglitazone requires multiple mechanisms for exerting its 

cholestatic potential. 

In summary, drug induced cholestatic liver injury is a complex pathophysiologic entity including 

both direct and indirect effects of BSEP inhibition. 

 

GENETICS OF DRUG INDUCED CHOLESTASIS  

Investigations of the genetics of drug-induced liver injury have proved taxing, both because of 

their low incidence and their difficulty in replicating observed associations. Nevertheless 

progress has now been achieved by both candidate-gene and genome-wide association 

approaches. In particular, associations between antituberculosis drug-related liver injury and the 

"slow acetylator" genotype for N-acetyltransferase 2, amoxicillin/clavulanate-related liver injury, 

and the human leukocyte antigen (HLA) class II DRB1*1501 allele and flucloxacillin-related 

injury and the HLA class I B*5701 allele are now established 148,149. Although, associations are 

so far drug-specific, more general susceptibility genes for DILI may exist. However, elucidation 

of these links will requires further investigation, ideally by using large cohorts involving 

international collaboration. 

Therefore, the functional and clinical impact of genetic variations in BSEP and MDR3 for the 

development of drug induced liver injury and, more specifically, cholestasis, is currently under 
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investigation (for review see: 150. A Swiss study in 36 patients with drug-induced cholestasis 

supports a role of BSEP and MDR3 mutations and polymorphisms in this condition. Specifically, 

full-length sequencing of BSEP and MDR3 revealed a heterozygous p.D676Y mutation in BSEP 

observed in a patient taking fluvastatin and a heterozygous p.I764L mutation in MDR3 observed 

in a patient taking risperidone 115, which both suffered from hepatocellular cholestasis. The 

pathogenic implications of these mutations remain, however, unclear. In case of BSEP, in-vitro 

taurocholate transport was unchanged for the mutated protein whereas the impact of the p.I764L 

mutation on MDR3 expression and function was not investigated. In the same study, the BSEP 

p.V444A polymorphism was observed significantly more frequent in patients with drug-induced 

cholestasis than in patients with drug-induced hepatocellular injury and healthy controls, with the 

AA phenotype being encountered in 61% of cholestatic patients compared with 31% and 32% in 

patients with hepatocellular injury and healthy controls, respectively. Overall, carriers of the 

alanine phenotype carried a 3-fold increased risk to develop cholestatic drug side effect under 

treatment with different drugs, such as β-lactam antibacterials, psychotropic drugs and proton-

pump inhibitors. However, the underlying mechanism remains still unclear, as none of these 

drugs could be shown to inhibit BSEP function in-vitro (unpublished results). It can be 

speculated, whether BSEP inhibiting drugs with known cholestatic potential such as 

cyclosporine, rifampicin, rifamycin, glibenclamide, troglitazone or bosentan 37,44,45,145 might 

predispose to the development of cholestasis in carriers of the alanine allele.  

Only limited information is so far available on the functional consequences of genetic variation in 

basolateral transporter systems. Tirona et al. identified a total of 14 non-synonymous OATP1B1 

polymorphisms SNPs in a population of African- and European Americans 151, six of which 

exhibited reduced in-vitro uptake of the OATP1B1 substrates estrone-3-sulfate and estradiol-17β-

glucuronide. OATP1B1 genetic variants have also been associated with interindividual 
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differences in hepatic disposition of pravastatin and irinotecan, respectively 152-155. Furthermore, 

the cellular uptake of the lipid-lowering drug rosuvastatin is highly dependent on NTCP and 

OATP function and varies upon the underlying NTCP and OATP haplotypes 156. While the 

impact of these observations for the development of cholestasis remains to be studied, it could be 

speculated that differences in NTCP and OATP mediated basolateral drug uptake predisposes to 

the development of cholestasis by determining intracellular drug levels and hence, the 

concentration of potential competitive inhibitors of apical efflux transporters. 

 

CONCLUSIONS 

From the examples delineated in this article it is apparent that genetically determined dysfunction 

of hepatocellular uptake and excretion of bile salts is an important pathogenic factor for the 

development of cholestasis. While the genetic components of intrahepatic cholestasis of 

pregnancy and estrogen-induced cholestasis has clearly emerged over the last decade, the role of 

genetics in drug-induced cholestasis is less evident. The heterogeneous and multifactorial nature 

of drug-induced liver disease makes it not only challenging to clearly link liver disease to a 

specific drug, but so far impossible to prove the pathogenic role of a specific genetic transporter 

variant. Future challenges will consist in integrating different genetic determinants of drug 

toxicity with different environmental and comorbidity-related factors and in a comprehensive 

system, allowing the cautious use of problematic drugs in susceptible patients.
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