
The Theory of the Rainbow 
When sunlight is scattered by raindrops, why is it that colorful 

arcs appear in certain regions of the sky? Answering this subtle 

question has required all the resources of mathematical physics 

The rainbow is a bridge between the 
two cultures: poets and scientists 
alike have long been challenged to 

describe it. The scientific description is 
often supposed to be a simple problem 
in geometrical optics, a problem that 
was solved long ago and that holds inter­
est today only as a historical exercise. 
This is not so: a satisfactory quantitative 
theory of the rainbow has been devel­
oped only in the past few years. More­
over, that theory involves much more 
than geometrical optics; it draws on all 
we know of the nature of light. Allow­
ance must be made for wavelike proper­
ties, such as interference, diffraction and 
polarization, and for particlelike prop­
erties, such as the momentum carried by 
a beam of light. 

Some of the most powerful tools of 
mathematical physics were devised ex­
plicitly to deal with the problem of the 
rainbow and with closely related prob­
lems. Indeed, the rainbow has served as 
a touchstone for testing theories of op­
tics. With the more successful of those 
theories it is now possible to describe the 
rainbow mathematically, that is, to pre­
dict the distribution of light in the sky. 
The same methods can also be applied 
to related phenomena, such as the bright 
ring of color called the glory, and even 
to other kinds of rainbows, such as 
atomic and nuclear ones. 

Scientific insight has not always been 
welcomed without reservations. Goethe 
wrote that Newton's analysis of the rain­
bow's colors would "cripple Nature's 
heart. " A similar sentiment was ex­
pressed by Charles Lamb and John 
Keats; at a dinner party in 1817 they 
proposed a toast: "Newton's health. and 
confusion to mathematics. "  Yet the sci­
entists who have contributed to the the­
ory of the rainbow are by no means in­
sensitive to the rainbow's beauty. In the 
words of Descartes: "The rainbow is 
such a remarkable marvel of Nature 
. . .  that I could hardly choose a more 
suitable example for the application of 
my method. " 

The single bright arc seen after a rain 
shower or in the spray of a waterfall is 
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the primary rainbow. Certainly its most 
conspicuous feature is its splash of col­
ors. These vary a good deal in brightness 
and distinctness, but they always follow 
the same sequence: violet is innermost. 
blending gradually with various shades 
of blue. green, yellow and orange, with 
red outermost. 

Other features of the rainbow are 
fainter and indeed are not always pres­
ent. Higher in the sky than the primary 
bow is the secondary one, in which the 
colors appear in reverse order, with red 
innermost and violet outermost. Careful 
observation reveals that the region be­
tween the two bows is considerably 
darker than the surrounding sky. Even 
when the secondary bow is not discern­
ible, the primary bow can be seen to 
have a "lighted side" and a "dark side. " 
The dark region has been given the 
name Alexander's dark band, after the 
Greek philosopher Alexander of Aph­
rodisias, who first described it in about 
A.D. 200. 

Another feature that is only some­
times seen is a series of faint bands, usu­
ally pink and green alternately, on the 
inner side of the primary bow. (Even 
more rarely they may appear on the out­
er side of the secondary bow.)  These 
"supernumerary arcs" are usually seen 
most clearly near the top of the bow. 
They are anything but conspicuous. but 
they have had a major influence on the 
development of theories of the rainbow. 

The first attempt to rationally explain 
the appearance of the rainbow was 

probably that of Aristotle. He proposed 
that the rainbow is actually an unusual 
kind of reflection of sunlight from 
clouds. The light is reflected at a fixed 
angle. giving rise to a circular cone 
of "rainbow rays. " Aristotle thus ex­
plained correctly the circular shape of 
the bow and perceived that it is not a 
material object with a definite location 
in the sky but rather a set of directions 
along which light is strongly scattered 
into the eyes of the observer. 

The angle formed by the rainbow rays 
and the incident sunlight was first mea-

sured in 1266 by Roger Bacon. He mea­
sured an angle of about 42 degrees; the 
secondary bow is about eight degrees 
higher in the sky. Today these angles are 
customarily measured from the oppo­
site direction, so that we measure the 
total change in the direction of the sun's 
rays. The angle of the primary bow is 
therefore 180 min us 42, or 13 8, degrees; 
this is called the rainbow angle. The an­
gle of the secondary bow is 130 degrees. 

After Aristotle's conjecture some 17 
centuries passed before further signifi­
cant progress was made in the theory of 
the rainbow. In 1304 the German monk 
Theodoric of Freiberg rejected Aristot­
le's hypothesis that the rainbow results 
from collective reflection by the rain­
drops in a cloud. He suggested instead 
that each drop is individually capable of 
producing a rainbow. Moreover, he test­
ed this conjecture in experiments with a 
magnified raindrop: a spherical flask 
filled with water. He was able to trace 
the path followed by the light rays that 
make up the rainbow. 

Theodoric's findings remained largely 
unknown for three centuries, until they 
were independently rediscovered by 
Descartes, who employed the same 
method. Both Theodoric and Descartes 
showed that the rainbow is made up of 
rays that enter a droplet and are reflect­
ed once from the inner surface. The sec­
ondary bow consists of rays that have 
undergone two internal reflections. 
With each reflection some light is lost, 
which is the main reason the secondary 
bow is fainter than the primary one. 
Theodoric and Descartes also noted that 
along each direction within the angular 

DOUBLE RAINBOW was photographed at 
Johnstone Strait in British Columbia. The 
bright, inner band is the primary bow; it is 
separated from the fainter secondary bow by 
a region, called Alexander'S dark band, that 
is noticeably darker than the surrounding sky. 
Below the primary bow are a few faint stripes 
of pink and green; they are supernumerary 
arcs. The task of theory is to give a quanti­
tative explanation for each of these features. 
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GEOMETRY OF THE RAINBOW is determitted by the scattering angle: the total angle 
through which a ray of sunlight is bent by its passage through a raindrop. Rays are strongly 
scattered at angles of 138 degrees and 130 degrees, giving rise respectively to the primary and 
the secondary rainbows. Between those angles very little light is deflected; that is the region of 
Alexander's dark band. The optimum angles are slightly different for each wavelength of light, 
with the result that the colors are dispersed; note that the sequence of colors in the secondary 
bow is the reverse of that in the primary bow. There is no single plane in which the rainbow lies; 

·the rainbow is merely the set of directions along which light is scattered toward the observer. 

range corresponding to the rainbow 
only one color at a time could be seen in 
the light scattered by the globe. When 
the eye was moved to a new position so 
as to explore other scattering angles. the 
other spectral colors appeared. one by 
one. Theodoric and Descartes conclud-

ed that each of the colors in the rainbow 
comes to the eye from a different set of 
water droplets. 

As Theodoric and Descartes realized. 
all the main features of the rainbow can 
be understood through a consideration 
of the light passing through a single 

REFLECTION AND REFRACTION of light at boundaries between air and water are the 
basic events in the creation of a rainbow. In reflection the angle of incidence is equal to the 
angle of reflection. In refraction the angle of the transmitted ray is determined by the properties 
of the medium, as characterized by its refractive index. Light entering a medium with a higher 
index is bent toward the normal. Light of different wavelengths is refracted through slightly 
different angles; this dependence of the refractive index on color is called dispersion. Theories 
of the rainbow often deal separately with each monochromatic component of incident light. 
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droplet. The fundamental principles 
that determine the nature of the bow are 
those that govern the interaction of light 
with transparent media. namely reflec­
tion and refraction. 

The law of reflection is the familiar 
and intuitively obvious principle that 
the angle of reflection must equal the 
angle of incidence. The law of refraction 
is somewhat more complicated. Where­
as the path of a reflected ray is deter­
mined entirely by geometry. refraction 
also involves the properties of light and 
the properties of the medium. 

The speed of light in a vacuum is in­
variant; indeed. it is one of the funda­
mental constants of nature. The speed 
of light in a material medium. on the 
other hand. is determined by the proper­
ties of the medium. The ratio of the 
speed of light in a vacuum to the speed 
in a substance is called the refractive 
index of that substance. For air the in­
dex is only slightly greater than 1; for 
water it is about 1.33. 

A ray of light passing from air into 
water is retarded at the boundary; if it 
strikes the surface obliquely. the change 
in speed results in a change in direction. 
The sines of the angles of incidence and 
refraction are always in constant ratio to 
each other. and the ratio is equal to that 
between the refractive indexes for the 
two materials. This equality is called 
Snell's law. after Willebrord Snell. who 
formulated it in 1621. 

Apreliminary analysis of the rainbow 
can be obtained by applying the 

laws of reflection and refraction to the 
path of a ray through a droplet. Because 
the droplet is assumed to be spherical all 
directions are equivalent and there is 
only one significant variable: the dis­
placement of the incident ray from an 
axis passing through the center of the 
droplet. That displacement is called the 
impact parameter. It ranges from zerO. 
when the ray coincides with the central 
axis. to the radius of the droplet. when 
the ray is tangential. 

At the surface of the droplet the inci­
dent ray is partially reflected. and this 
reflected light we shall identify as the 
scattered rays of Class 1. The remaining 
light is transmitted into the droplet (with 
a change in direction caused by refrac­
tion) and at the next surface is again 
partially transmitted (rays of Class 2) 
and partially reflected. At the next 
boundary the reflected ray is again split 
into reflected and transmitted compo­
nents. and the process continues indefi­
nitely. Thus the droplet gives rise to a 
series of scattered rays. usually with 
rapidly decreasing intensity. Rays of 

Class 1 represent direct reflection by the 
droplet and those of Class 2 are directly 

transmitted through it. Rays of Class 3 
are those that escape the droplet after 

one internal reflection. and they make 
up the primary rainbow. The Class 4 

rays. having undergone two internal re-
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flections. give rise to the secondary bow. 
Rainbows of higher order are formed by 
rays making more complicated pas­
sages. but they are not ordinarily visible. 

For each class of scattered rays the 
scattering angle varies over a wide range 
of values as a function of the impact 
parameter. Since in sunlight the droplet 
is illuminated at all impact parameters 
simultaneously. light is scattered in vir­
tually all-directions. It is not difficult to 
find light paths through the droplet that 
contribute to the rainbow. but there are 
infinitely many other paths that direct 
the light elsewhere. Why. then. is the 
scattered intensity enhanced in the vi­
cinity of the rainbow angle? It is a ques­
tion Theodoric did not consider; an an­
swer was first provided by Descartes. 

By applying the laws of reflection and 
refraction at each point where a ray 
strikes an air-water boundary. Des­
cartes painstakingly computed the paths 
of many rays incident at many impact 
parameters. The rays of Class 3 are of 
predominating importance. When the 
impact parameter is zero. these rays are 
scattered through an angle of 180 de­
grees. that is. they are backscattered 
toward the sun. having passed through 
the center of the droplet and been re­
flected from the far wall. As the impact 
parameter increases and the incident 
rays are displaced from the center of the 
droplet. the scattering angle decreases. 
Descartes found. however. that this 
trend does not continue as the impact 
parameter is increased to its maximum 
value. where the incident ray grazes the 
droplet at a tangent to its surface. In­
stead the scattering angle passes through 
a minimum when the impact parameter 
is about seven-eighths of the radius of 
the droplet. and thereafter it increases 
again. The scattering angle at the mini­
mum is 138 degrees. 

For rays of Class 4 the scattering an­
gle is zero when the impact parameter 
is zero; in other words. the central ray 
is reflected twice. then continues in its 
original direction. As the impact param­
eter increases so does the scattering an­
gle. but again the trend is eventually re­
versed. this time at 130 degrees. The 
Class 4 rays have a maximum scattering 
angle of 130 degrees. and as the impact 
parameter is further increased they bend 
back toward the forward scattering di­
rection again. 

Because a droplet in sunlight is uni­
formly illuminated the impact pa­

rameters of the incident rays are uni­
formly distributed. The concentration 
of scattered light is therefore expected 
to be greatest where the scattering angle 
varies most slowly with changes in the 
impact parameter. In other words. the 
scattered light is brightest where it gath­
ers together the incident rays from the 
largest range of impact parameters. The 
regions of minimum variation are those 
surrounding the maximum and mini-

mum scattering angles. and so the spe­
cial status of the primary and secondary 
rainbow angles is explained. Further­
more. since no rays of Class 3 or Class 4 
are scattered into the angular region be­
tween 130 and 138 degrees. Alexander's 
dark band is also explained. 

Descartes's theory can be seen more 
clearly by considering an imaginary 
population of droplets from which light 
is somehow scattered with uniform in­
tensity in all directions. A sky filled with 
such droplets would be uniformly bright 
at all angles. In a sky filled with real 
water droplets the same total illumina­
tion is available. but it is redistributed. 
Most parts of the sky are dimmer than 
they would be with uniform scattering. 
but in the vicinity of the rainbow angle 
there is a bright arc. tapering off gradu­
ally on the lighted side and more sharply 
on the dark side. The secondary bow is a 
similar intensity highlight. except that it 
is narrower and all its features are dim­
mer. In the Cartesian theory the region 
between the bows is distinctly darker 
than the sky elsewhere; if only rays of 
Class 3 and Class 4 existed. it would be 
quite black. 

The Cartesian rainbow is a remark-
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ably simple phenomenon. Brightness is 
a function of the rate at which the scat­
tering angle changes. That angle is itself 
determined by just two factors: the re­
fractive index. which is assumed to be 
constant. and the impact parameter. 
which is assumed to be uniformly dis­
tributed. One factor that has no influ­
ence at all on the rainbow angle is size: 
the geometry of scattering is the same 
for small cloud droplets and for the 
large water-filled globes employed by 
Theodoric and Descartes. 

so far we have ignored one of the most 
conspicuous features of the rain­

bow: its colors. They were explained. of 
course. by Newton. in his prism experi­
ments of 1666. Those experiments dem­
onstrated not only that white light is a 
mixture of colors but also that the re­
fractive index is different for each color. 
the effect called dispersion. It follows 
that each color or wavelength of light 
must have its own rainbow angle; what 
we observe in nature is a collection of 
monochromatic rainbows. each one 
slightly displaced from the next. 

From his measurements of the refrac­
tive index Newton calculated that the 

WATER DROPLET 

CLASS 1 

PATH OF LIGHT through a droplet can be determined by applying the laws of geometrical 
optics. Each time the beam strikes the surface part of the light is reflected and part is refracted. 
Rays reflected directly from the surface are labeled rays of Class 1; those transmitted directly 
through the droplet are designated Class 2. The Class 3 rays emerge after one internal reflec­
tion; it is these that give rise to the primary rainbow. The secondary bow is made up of Class 
4 rays, which have undergone two internal reflections. For rays of each class only one factor 
determines the value of the scattering angle. That factor is the impact parameter: the dis­
placement of the incident ray from an axis that passes through the center of the droplet. 
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rainbow angle is 137 degrees 58 minutes 
for red light and 13 9 degrees 43 minutes 
for violet light. The difference between 
these angles is one degree 45 minutes. 
which would be the width of the rain­
bow if the rays of incident sunlight were 
exactly parallel. Allowing half a degree 
for the apparent diameter of the sun. 
Newton obtained a total width of two 
degrees 15 minutes for the primary bow. 
His own observations were in good 
agreement with this result. 

Descartes and Newton between them 
were able to account for all the more 
conspicuous features of the rainbow. 
They explained the existence of primary 
and secondary bows and of the dark 
band that separates them. They calcu­
lated the angular positions of these fea­
tures and described the dispersion of the 

scattered light into a spectrum. All of 
this was accomplished with only geo­
metrical optics. Their theory neverthe­
less had a major failing: it could not 
explain the supernumerary arcs. The un­
derstanding of these seemingly minor 
features requires a more sophisticated 
view of the nature of light. 

The supernumerary arcs appear on 
the inner. or lighted. side of the primary 
bow. In this angular region two scat­
tered rays of Class 3 emerge in the same 
direction; they arise from incident rays 
that have impact parameters on each 
side of the rainbow value. Thus at any 
given angle slightly greater than the 
rainbow angle the scattered light in­
cludes rays that have followed two dif­
ferent paths through the droplet. The 
rays emerge at different positions on the 

surface of the droplet. but they proceed 
in the same direction. 

In the time of Descartes and Newton 
these two contributions to the scattered 
intensity could be handled only by sim­
ple addition. As a result the predicted 
intensity falls off smoothly with devia­
tion from the rainbow angle. with no 
trace of supernumerary arcs. Actually 
the intensities of the two rays cannot be 
added because they are not independent 
sources of radiation. 

The optical effect underlying the su­
pernumerary arcs was discovered in 
1 803 by Thomas Young. who showed 
that light is capable of interference. a 
phenomenon that was already familiar 
from the study of water waves. In any 
medium the superposition of waves can 
lead either to reinforcement (crest on 
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RAINBOW ANGLE can be seen to have a special significance when 
the scattering angle is considered as a function of the impact param­
eter. When the impact parameter is zero, the scattering angle for a 
ray of Class 3 is 180 degrees; the ray passes through the center of the 
droplet and is reflected by the far surface straight back at the sun. As 
the impact parameter increases, the scattering angle decreases, but 
eventually a minimum angle is reached. This ray of minimum deflec­
tion is the rainbow ray in the diagram at the left; rays with impact 
parameters on each side of it are scattered through larger angles. The 
minimum deflection is about 138 degrees, and the greatest concentra­
tion of scattered rays is to be found in the vicinity of this angle. The 
resulting enhancement in the intensity of the scattered light is per­
ceived as the primary rainbow. The secondary bow is formed in a 
similar way, except that the scattering angle for the Class 4 rays of 
which it is composed increases to a maximum instead of decreasing 
to a minimum. The maximum lies at about 130 degrees. No rays of 
Class 3 or Class 4 can reach angles between 130 degrees and 138 de­
grees, explaining the existence of Alexander's dark band. At the left 
two Class 3 rays, with impact parameters on each side of the rain­
bow value, emerge at the same scattering angle. It is interference be­
tween rays such as these two that gives rise to the supernumerary arcs. 
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crest) or to cancellation (crest on 
trough). Young demonstrated the in­
terference of light waves by passing a 
single beam of monochromatic light 
through two pinholes and observing the 
alternating bright and dark "fringes" 
produced. It was Young himself who 
pointed out the pertinence of his discov­
ery to the supernumerary arcs of the 
rainbow. The two rays scattered in the 
same direction by a raindrop are strictly 
analogous to the light passing through 
the two pinholes in Young's experiment. 
At angles very close to the rainbow an­
gle the two paths through the droplet 
differ only slightly, and so the two rays 
interfere constructively. As the angle in­
creases, the two rays follow paths of 
substantially different length. When the 
difference equals half of the wavelength, 
the interference is completely destruc­
tive; at still greater angles the beams re­
inforce again. The result is a periodic 
variation in the intensity of the scattered 
light, a series of alternately bright and 
dark bands. 

Because the scattering angles at which 
the interference happens to be construc­
tive are determined by the difference be­
tween two path lengths, those angles are 
affected by the radius of the droplet. 
The pattern of the supernumerary arcs 
(in contrast to the rainbow angle) is 
therefore dependent on droplet size. In 
larger drops the difference in path length 
increases much more quickly with im­
pact parameter than it does in small 
droplets. Hence the larger the droplets 
are, the narrower the angular separation 
between the supernumerary arcs is. The 
arcs can rarely be distinguished if the 
droplets are larger than about a millime­
ter in diameter. The overlapping of col­
ors also tends to wash out the arcs. The 
size dependence of the supernumeraries 
explains why they are easier to see near 
the top of the bow: raindrops tend to 
grow larger as they fall. 

W ith Young's interference theory all 
the major features of the rainbow 

could be explained, at least in a qualita­
tive and approximate way. What was 
lacking was a quantitative, mathemati­
cal theory capable of predicting the in­
tensity of the scattered light as a func­
tion of droplet size and scattering angle. 

Young's explanation of the supernu­
merary arcs was based on a wave theory 
of light. Paradoxically his predictions 
for the other side of the rainbow, for the 
region of Alexander's dark band, were 
inconsistent with such a theory. The in­
terference theory, like the theories of 
Descartes and Newton, predicted com­
plete darkness in this region, at least 
when only rays of Class 3 and Class 4 
were considered. Such an abrupt transi­
tion, however, is not possible, because 
the wave theory of light requires that 
sharp boundaries between light and 

RAINBOW RAY 

CONFLUENCE OF RAYS scattered by a droplet gives rise to caustics, or "burning curves." 
A caustic is tbe envelope �f a ray system. Of special interest is tbe caustic of Class 3 rays, wbicb 
bas two brancbes, a real brancb and a "virtual" one; tbe latter is formed wben tbe rays are ex­
tended backward. Wben tbe rainbow ray is produced in botb directions, it approacbes tbe 
brancbes of tbis caustic. A tbeory of tbe rainbow based on tbe analysis of sucb a caustic was 
devised by George B. Airy. Having cbosen an initial wave front-a surface perpendicular at 
all points to tbe rays of Class 3-Airy was able to determine tbe amplitude distribution in sub­
sequent waves. A weakness of tbe tbeory is tbe need to guess tbe amplitudes of tbe initial waves. 

shadow be softened by diffraction. The 
most familiar manifestation of diffrac­
tion is the apparent bending of light or 
sound at the edge of an opaque obstacle. 
In the rainbow there is no real obstacle, 
but the boundary between the primary 
bow and the dark band should exhibit 
diffraction nonetheless. The treatment 
of diffraction is a subtle and difficult 
problem in mathematical physics, and 
the subsequent development of the theo­
ry of the rainbow was stimulated mainly 
by efforts to solve it. 

In 1835 Richard Potter of the Univer­
sity of Cambridge pointed out that the 
crossing of various sets of light rays in a 
droplet gives rise to caustic curves. A 
caustic. or "burning curve, " represents 
the envelope of a system of rays and is 
always associated with an intensity 
highlight. A familiar caustic is the bright 

cusp-shaped curve formed in a teacup 
when sunlight is reflected from its inner 
walls. Caustics, like the rainbow, gener­
ally have a lighted side and a dark side; 
intensity increases continuously up to 
the caustic, then drops abruptly. 

Potter showed that the Descartes rain­
bow ray-the Class 3 ray of minimum 
scattering angle-can be regarded as a 
caustic. All the other transmitted rays of 
Class 3, when extended to infinity, ap­
proach the Descartes ray from the light­
ed side; there are no rays of this class on 
the dark side. Thus finding the intensity 
of the scattered light in a rainbow is sim­
ilar to the problem of determining the 
intensity distribution in the neighbor­
hood of a caustic. 

In 1838 an attempt to determine that 
distribution was made by Potter's Cam­
bridge colleague George B. Airy. His 
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PREDICTED INTENSITY as a function of scattering angle is compared for three early theo­
ries of the rainbow. In the geometric analysis of Descartes, intensity is infinite at the rainbow 
angle; it declines smoothly (without supernumerary arcs) on the lighted side and falls off 
abruptly to zero on the dark side. The theory of Thomas Young, which is based on the interfer­
ence of light waves, predicts supernumerary arcs but retains the sharp transition from infinite 
to zero intensity. Airy's theory relocates the peaks in the intensity curve and for the first time 
provides (through diffraction) an explanation for gradual fading of the rainbow into shadow. 

reasoning was based on a principle of 
wave propagation formulated in the 
17th century by Christiaan Huygens and 
later elaborated by Augustin Jean Fres­
nel. This principle regards every point 
of a wave front as being a source of 
secondary spherical waves; the second­
ary waves define a new wave front and 
hence describe the propagation of the 
wave. It follows that if one knew the 
amplitudes of the waves over any one 
complete wave front. the amplitude dis­
tribution at any other point could be re­
constructed. The entire rainbow could 
be described rigorously if we knew the 
amplitude distribution along a wave 
front in a single droplet. Unfortunately 
the amplitude distribution can seldom 
be determined; all one can usually do is 
make a reasonable guess for some cho­
sen wave front in the hope that it will 
lead to a good approximation. 

The starting wave front chosen by 
Airy is a surface inside the droplet. nor­
mal to all the rays of Class 3 and with an 
inflection point (a change in the sense of 

. curvature) where it intersects the Des­
cartes rainbow ray. The wave ampli­
tudes along this wave front were esti­
mated through standard assumptions in 
the theory of diffraction. Airy was then 
able to express the intensity of the scat-
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tered light in the rainbow region in 
terms of a new mathematical function. 
then known as the rainbow integral and 
today called the Airy function. The 
mathematical form of the Airy function 
will not concern us here; we shall con­
centrate instead on its physical meaning. 

The intensity distribution predicted 
by the Airy function is analogous to the 
diffraction pattern appearing in the 
shadow of a straight edge. On the light­
ed side of the primary bow there are 
oscillations in intensity that correspond 
to the supernumerary arcs; the positions 
and widths of these peaks differ some­
what from those predicted by the Young 
interference theory. Another significant 
distinction of the Airy theory is that the 
maximum intensity of the rainbow falls 
at an angle somewhat greater than the 
Descartes minimum scattering angle. 
The Descartes and Young theories pre­
dict an infinite intensity at that angle (be­
cause of the caustic). The Airy theory 
does not reach an infinite intensity at 
any point. and at the Descartes rainbow 
ray the intensity predicted is less than 
half the maximum. Finally. diffraction 
effects appear on the dark side of the 
rainbow: instead of vanishing abruptly 
the intensity tapers away smoothly with­
in Alexander's dark band. 

Airy's calculations were for a mono­
chromatic rainbow. In order to apply his 
method to a rainbow produced in sun­
light one must superpose the Airy pat­
terns generated by the various mono­
chromatic components. To proceed fur­
ther and describe the perceived image of 
the rainbow requires a theory of color 
vision. 

The purity of the rainbow colors is 
determined by the extent to which the 
component monochromatic rainbows 
overlap; that in turn is determined by 
the droplet size. Uniformly large drops 
(with diameters on the order of a few 
millimeters) generally give bright rain­
bows with pure colors; with very small 
droplets (diameters of .01 millimeter or 
so) the overlap of colors is so great that 
the resulting light appears to be almost 
white. 

An important property of light that we 
I\. have so far ignored is its state of 
polarization. Light is a transverse wave. 
that is. one in which the oscillations are 
perpendicular to the direction of propa­
gation. (Sound. on the other hand. is a 
longitudinal vibration.) The orientation 
of the transverse oscillation can be re­
solved into components along two mu­
tually perpendicular axes. Any light ray 
can be described in terms of these two 
independent states of linear polariza­
tion. Sunlight is an incoherent mixture 
of the two in equal proportions; it is of­
ten said to be randomly polarized or 
simply unpolarized. Reflection can alter 
its state of polarization. and in that fact 
lies the importance of polarization to 
the analysis of the rainbow. 

Let us consider the reflection of a light 
ray traveling inside a water droplet 
when it reaches the boundary of the 
droplet. The plane of reflection. the 
plane that contains both the incident 
and the reflected rays. provides a conve­
nient geometric reference. The polariza­
tion states of the incident light can be 
defined as being parallel to that plane 
and perpendicular to it. For both polari­
zations the reflectivity of the surface is 
slight at angles of incidence near the per­
pendicular. and it rises very steeply near 
a critical angle whose value is deter­
mined by the index of refraction. Be­
yond that critical angle the ray is totally 
reflected. regardless of polarization. At 
intermediate angles. however. reflectivi­
ty depends on polarization. As the angle 
of incidence becomes shallower a stead­
ily larger portion of the perpendicularly 
polarized component is reflected. For 
the parallel component. on the other 
hand. reflectivity falls before it begins to 
increase. At one angle in particular. re­
flectivity for the parallel-polarized wave 
vanishes entirely; that wave is totally 
transmitted. Hence for sunlight incident 
at that angle the internally reflected ray 
is completely polarized perpendicular 
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to the plane of reflection. The angle is 
called Brewster's angle, after David 
Brewster, who discussed its significance 
in 1815. 

Light from the rainbow is almost 
completely polarized, as can be seen 
by looking at a rainbow through Polar­
oid sunglasses and rotating the lenses 
around the line of sight. The strong po­
larization results from a remarkable co­
incidence: the internal angle of inci­
dence for the rainbow ray is very close 
to Brewster's angle. Most of the parallel 
component escapes in the transmitted 
rays of Class 2, leaving a preponderance 
of perpendicular rays in the rainbow. 

W ith the understanding that both 
matter and radiation can behave 

as waves, the theory of the rainbow has 
been enlarged in scope. It must now en­
compass new, invisible rainbows pro­
duced in atomic and nuclear scattering. 

An analogy between geometrical op­
tics and classical particle mechanics had 
already been perceived in 1831 by Wil­
liam Rowan Hamilton, the Irish mathe­
matician. The analogues of rays in geo­
metrical optics are particle trajectories, 
and the bending of a light ray on enter­
ing a medium with a different refractive 
index corresponds to the deflection of a 
moving particle under the action of a 
force. Particle-scattering analogues ex­
ist for many effects in optics, including 
the rainbow. 

Consider a collision between two at­
oms in a gas. As the atoms approach 
from a large initial separation, they are 
at first subject to a steadily increasing 
attraction. At closer range, however, the 
electron shells of the atoms begin to in­
terpenetrate and the attractive force di­
minishes. At very close range it becomes 
an increasingly strong repulsion. 

As in the optical experiment, the 
atomic scattering can be analyzed by 
tracing the paths of the atoms as a func­
tion of the impact parameter. Because 
the forces vary gradually and continu­
ously, the atoms follow curved trajecto­
ries instead of changing direction sud­
denly, as at the boundary between me­
dia of differing refractive index. Even 
though some of the trajectories are rath­
er complicated, each impact parameter 
corresponds to a single deflection angle; 
moreover, there is one trajectory that 
represents a local maximum angular de­
flection. That trajectory turns out to be 
the one that makes the most effective use 
of the attractive interaction between 
atoms. A strong concentration of scat­
tered particles is expected near this an­
gle; it is the rainbow angle for the inter­
acting atoms. 

A wave-mechanical treatment of the 
atomic and nuclear rainbows was for­
mulated in 1959 by Kenneth W. Ford of 
Brandeis University and John A. Whee­
ler of Princeton University. Interference 

between trajectories emerging in the 
same direction gives rise to supernumer­
ary peaks in intensity. A particle-scatter­
ing analogue of Airy's theory has also 
been derived. 

An atomic rainbow was first observed 
in 1964, by E. Hundhausen and H. Pau­
ly of the University of Bonn, in the scat-
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tering of sodium atoms by mercury at­
oms. The main rainbow peak and two 
supernumeraries were detected; in more 
recent experiments oscillations on an 
even finer scale have been observed. The 
rainbows measured in these experi­
ments carry information about the inter­
atomic forces. Just as the optical rain-

TOTAL INTERNAL REFLECTION 

PARALLEL 

90 

PLANE OF REFLECTION - PERPENDICULAR 

WATER 

AIR 

EVANESCENT 
WAVE 

POLARIZATION OF THE RAINBOW results from differential reflection. An incident ray 
can be resolved into two components polarized parallel to and perpendicular to the plane of 
reflection. For a ray approaching an air-water bouudary from inside a droplet the reflectivity 
of the surface depends ou the angle of incidence. Beyond a critical angle both parallel and per­
pendicular components are totally reflected, although some light travels parallel to the surface 
as an "evanescent wave." At lesser angles the perpendicular component is reflected more effi­
ciently than the parallel one, and at one augle in particular, Brewster's angle, parallel-polarized 
light is completely transmitted. The angle of internal reflection for the rainbow ray falls near 
Brewster's angle. As a result light from the rainbow has a strong perpendicular polarization. 
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RAINBOW 
TRAJECTORY 

SCATTERING OF ATOMS BY ATOMS creates a particulate rainbow. The role played in 
optical scattering by the refractive index is played here by interatomic forces. The principal dif­
ference is that the forces vary smoothly and continuously, so that the atoms follow curved 
trajectories. As one atom approaches another the force between them is initially a steadily 
growing attraction (colored shading), but at close range it becomes strongly repulsive (gray 
shading). A local maximum in the scattering angle corresponds to the optical rainbow angle. It 
is the angle made by the trajectory most effective in using the attractive part of the potential. 
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ATOMIC RAINBOW was detected by E. Hundhausen and H. Pauly of the University of Bonn 
in the scattering of sodium atoms by mercury atoms. The oscillations in the number of scattered 
atoms detected correspond to a primary rainbow and to two supernumerary peaks. A rainbow 
of this kind embodies information about the strength and range of the interatomic forces. 
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bow angle depends solely on the refrac­
tive index, so the atomic rainbow angle 
is determined by the strength of the at­
tractive part of the interaction. Similar­
ly, the positions of the supernumerary 
peaks are size-dependent, and they pro­
vide information about the range of the 
interaction. Observations of the same 
kind have now been made in the scatter­
ing of atomic nuclei. 

The Airy theory of the rainbow has 
had many satisfying successes, but it 

contains one disturbing uncertainty: the 
need to guess the amplitude distribution 
along the chosen initial wave front. The 
assumptions employed in making that 
guess are plausible only for rather large 
raindrops. In this context size is best ex­
pressed in terms of a "size parameter," 
defined as the ratio of a droplet's cir­
cumference to the wavelength of the 
light. The size parameter varies from 
about 1 00 in fog or mist to several thou­
sand for large raindrops. Airy's approxi­
mation is plausible only for drops with a 
size parameter greater than about 5,000. 

It is ironic that a problem as intracta­
ble as the rainbow actually has an exact 
solution, and one that has been known 
for many years. As soon as the electro­
magnetic theory of light was proposed 
by James Clerk Maxwell about a centu­
ry ago, it became possible to give a pre­
cise mathematical formulation of the 
optical rainbow problem. What is need­
ed is a computation of the scattering of 
an electromagnetic plane wave by a ho­
mogeneous sphere. The solution to a 
similar but slightly easier problem, the 
scattering of sound waves by a sphere, 
was discussed by several investigators, 
notably Lord Rayleigh, in the 1 9th cen­
tury. The solution they obtained consist­
ed of an infinite series of terms, called 
partial waves. A solution of the same 
form was found for the electromagnetic 
problem in 1 908 by Gustav Mie and Pe­
ter J. W. Debye. 

Given the existence of an exact solu­
tion to the scattering problem, it might 
seem an easy matter to determine all its 
features, including the precise character 
of the rainbow. The problem, of course. 
is the need to sum the series of partial 
waves, each term of which is a rather 
complicated function. The series can be 
truncated to give an approximate solu­
tion, but this procedure is practical only 
in some cases. The number of terms that 
must be retained is of the same order of 
magnitude as the size parameter. The 
partial-wave series is therefore eminent­
ly suited to the treatment of Rayleigh 
scattering, which is responsible for the 
blue of the sky; in that case the scatter­
ing particles are molecules and are 
much smaller than the wavelength, so 
that one term of the series is enough. For 
the rainbow problem size parameters up 
to several thousand must be considered. 
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A good approximation to the solution 
by the partial-wave method would re­
quire evaluating the sum of several 
thousand complicated terms. Comput­
ers have been applied to the task. but the 
results are rapidly varying functions of 
the size parameter and the scattering an­
gIe. so that the labor and cost quickly 
become prohibitive. Besides. a comput­
er can only calculate numerical solu­
tions; it offers no insight into the physics 
of the rainbow. We are thus in the tanta­
lizing situation of knowing a form of the 
exact solution and yet being unable to 
extract from it an understanding of the 
phenomena it describes. 

The first steps toward the resolution 
of this paradox were taken in the 

early years of the 20th century by the 
mathematicians Henri Poincare and G. 
N. Watson. They found a method for 
transforming the partial, wave series. 
which converges only very slowly onto a 
stable value. into a rapidly convergent 
expression. The technique has come to 
be known as the Watson transformation 
or as the complex-angular-momentum 
method. 

It is not particularly hard to see why 
angular momentum is involved in the 
rainbow problem. although it is less ob­
vious why "complex" values of the an­
gular momentum need to be considered. 
The explanation is simplest in a corpus­
cular theory of light. in which a beam of 
light is regarded as a stream of the parti­
cles called photons. Even though the 
photon has no mass. it does transport 
energy and momentum in inverse pro­
portion to the wavelength of the corre­
sponding light wave. When a photon 
strikes a water droplet with some impact 
parameter greater than zero. the photon 
carries an angular momentum equal to 
the product of its linear momentum and 
the impact parameter. As the photon 
undergoes a series of internal reflec­
tions. it is effectively orbiting the center 
of the droplet. Actually quantum me­
chanics places additional constraints on 
this process. On the one hand it requires 
that the angular momentum assume 
only certain discrete values; on the other 
it denies that the impact parameter can 
be precisely determined. Each discrete 
value of angular momentum corre­
sponds to one term in the partial-wave 
series. 

In order to perform the Watson trans­
formation. values of the angular mo­
mentum that are conventionally regard­
ed as being "unphysical" must be intro­
duced. For one thing the angular mo­
mentum must be allowed to vary contin­
uously. instead of in quantized units; 
more important. it must be allowed to 
range over the complex numbers: those 
that include both a real component and 
an imaginary one. containing some mul­
tiple of the square root of - 1 .  The 

plane defined by these two components 
is referred to as the complex-angular­
momentum plane. 

Much is gained in return for the math­
ematical abstractions of the complex­
angular-momentum method. In particu­
lar. after going over to the complex­
angular-momentum plane through the 
Watson transformation. the contribu­
tions to the partial-wave series can be 
redistributed. Instead of a great many 
terms. one can work with just a few 
points called poles and saddle points in 
the complex-angular-momentum plane. 
In recent years the poles have attracted 
great theoretical interest in the physics 
of elementary particles. In that context 
they are usually called Regge poles. af­
ter the Italian physicist Tullio Regge. 

Both poles and saddle points have 
physical interpretations in the rain­

bow problem. Contributions from real 
saddle points are associated with the or­
dinary. real light rays we have been con­
sidering throughout this article. What 
about complex saddle points? Imagi­
nary or complex numbers are ordinarily 
regarded as being unphysical solutions 
to an equation. but they are not mean­
ingless solutions. In descriptions of 
wave propagation imaginary compo­
nents are usually associated with the 
damping of the wave amplitude. For ex­
ample. in the total internal reflection of 
a light ray at a water-air boundary a 

INCIDENT RAY 

light wave does go "through the looking 
glass." Its amplitude is rapidly damped. 
however. so that the intensity becomes 
negligible within a depth on the order of 
a single wavelength. Such a wave does 
not propagate into the air; instead it be­
comes attached to the interface between 
the water and the air. traveling along the 
surface; it is called an evanescent wave. 
The mathematical description of the ev­
anescent wave involves the imaginary 
components of a solution. The effect 
called quantum-mechanical tunneling. 
in which a particle passes through a po­
tential barrier without climbing over it. 
has a similar mathematical basis. "Com­
plex rays" also appear on the shadow 
side of a caustic. where they describe the 
damped amplitude of the diffracted 
light waves. 

Regge-pole contributions to the trans­
formed partial-wave series are associat­
ed with surface waves of another kind. 
These waves are excited by incident rays 
that strike the sphere tangentially. Once 
such a wave is launched. it travels 
around the sphere. but it is continually 
damped because it sheds radiation tan­
gentially. like a garden sprinkler. At 
each point along the wave's circumfer­
ential path it also penetrates the sphere 
at the critical angle for total internal re­
flection. reemerging as a surface wave 
after taking one or more such shortcuts. 
It is interesting to note that Johannes 
Kepler conjectured in 1 584 that "pin-

SURFACE 
WAVE 

IMPACT 
PARAMETER 
EQUAL TO 
DROPLET 

CRITICAL 
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COMPLEX-ANGULAR-MOMENTUM theory of the rainbow begins with the ohservation 
that a photon, or quantnm of light, incident on a droplet at some impact parameter (which can­
not be exactly defined) carries angular momentnm. In the theory, components of that angular 
momentnm are extended to complex values, that is, values containing the square root of -1. 
The consequences of this procedure can be illustrated by the example of a ray striking a drop­
let tangentially. The ray stimulates surface waves, which travel around the droplet and con­
tinuously shed radiation. The ray can also penetrate the droplet at the critical angle for total 
internal reflection, emerging either to form another surface wave or to repeat the shortcut. 
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wheel" rays of this kind might be re­
sponsible for the rainbow, but he aban­
doned the idea because it did not lead to 
the correct rainbow angle. 

In 1 937 the Dutch physicists Balthus 
Van der Pol and H. Bremmer applied 
Watson's transformation to the rainbow 
problem, but they were able to show 
only that Airy's approximation could be 
obtained as a limiting case. In 1 965 I 
developed an improved version of Wat­
son's method, and I applied it to the 
rainbow problem in 1 969 with some­
what greater success. 

In the simple Cartesian analysis we saw 
that on the lighted side of the rain­

bow there are two rays emerging in the 
same direction; at the rainbow angle 
these coalesce into the single Descartes 
ray of minimum deflection and on the 
shadow side they vanish. In the com­
plex-angular-momentum plane, as I 
have mentioned, each geometric ray 
corresponds to a real saddle point. 
Hence in mathematical terms a rainbow 
is merely the collision of two saddle 
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points in the complex-angular-momen­
tum plane. In the shadow region beyond 
the rainbow angle the saddle points do 
not simply disappear; they become 
complex, that is, they develop imagi­
nary parts. The diffracted light in Alex­
ander's dark band arises from a complex 
saddle point. It is an example of a "com­
plex ray" on the shadow side of a caustic 
curve. 

It should be noted that the adoption of 
the complex-angular-momentum meth­
od does not imply that earlier solutions 
to the rainbow problem were wrong. 
Descartes's explanation of the primary 
bow as the ray of minimum deflection is 
by no means invalid, and the supernu­
merary arcs can still be regarded as a 
product of interference, as Young pro­
posed. The complex-angular-momen­
tum method simply gives a more com­
prehensive accounting of the paths 
available to a photon in the rainbow re­
gion of the sky, and it thereby achieves 
more accurate results. 

In 1 975 Vijay Khare of the University 
of Rochester made a detailed compari-

AIRY 
THEORY -

139 
SCATTERING ANGLE (DEGREES) 

son of three theories of the rainbow: the 
Airy approximation, the "exact" solu­
tion, obtained by a computer summa­
tion of the partial-wave series, and the 
rainbow terms in the complex-angular­
momentum method, associated with the 
collision of two saddle points. For the 
dominant, perpendicular polarization 
the Airy theory requires only small cor­
rections within the primary bow, and its 
errors become appreciable only in the 
region of the supernumerary arcs. For 
the scattered rays polarized parallel to 
the scattering plane, however, Airy's ap­
proximation fails badly. For the super­
numerary arcs the exact solution shows 
minima where the Airy theory has maxi­
mum intensity, and vice versa. This seri­
ous failure is an indirect result of the 
near coincidence between the angle of 
internal reflection for the rainbow rays 
and Brewster's angle. At Brewster's an­
gie the amplitude of the reflected ray 
changes sign, a change the Airy theory 
does not take into account. As a result of 
the change in sign the interference along 
directions corresponding to the peaks in 
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QUANTITATIVE THEORIES of tbe rainbow predict tbe intensity 
of tbe scattered Iigbt as a function of tbe scatteriug angle and also 
witb respect to droplet size and polarization. Here tbe predictions of 
tbree tbeories are presented for parallel-polarized Iigbt scattered by 
droplets witb a circumference equal to 1,500 wavelengths of tbe Iigbt. 
One curve represents tbe "exact" solution to tbe rainbow problem, 
derived from James Clerk Maxwell's equations describing electro­
magnetic radiation. The exact solution is tbe sum of an infinite series 
of terms, approximated bere by adding up more tban 1,500 compli-

cated terms for eacb point employed in plotting tbe curve. Tbe Airy 
tbeory is clearly in disagreement witb tbe exact solution, particu­
larly in tbe angular region of tbe supernumerary arcs. Tbere the exact 
solution sbows trougbs at tbe positions of Airy's peaks. The results 
obtained by the complex-angular-momentum metbod, on the otber 
band, correspond closely to tbe exact solution, failing only to repro­
duce small, bigb-frequency oscillations. Tbese 8uctuations are associ­
ated witb anotber optical pbenomenon in tbe atmospbere, the glory, 
wbicb is also explained by tbe complex-angular-momentum tbeory. 

126 

© 1977 SCIENTIFIC AMERICAN, INC



the Airy solutions is destructive instead 
of constructive. 

In terms of large-scale features, such 
as the primary bow, the supernumerary 
arcs and the dark-side diffraction pat­
tern, the complex-angular-momentum 
result agrees quite closely with the exact 
solution. Smaller-scale fluctuations in 
the exact intensity curve are not repro­
duced as well by the rainbow terms in 
the complex-angular-momentum meth­
od. On the other hand, the exact solu­
tion, for a typical size parameter of 
1 ,500, requires the summation of more 
than 1 .500 complicated terms; the com­
plex-angular-momentum curve is ob­
tained from only a few much simpler 
terms. 

The small residual fluctuations in the 
exact intensity curve arise from 

higher-order internal reflections: rays 
belonging to classes higher than Class 3 
or Class 4. They are of little importance 
for the primary bow, but at larger scat­
tering angles their contribution increas­
es and near the backward direction it 
becomes dominant. There these rays are 
responsible for another fascinating me­
teorological display: the glory [see "The 
Glory,"  by Howard C. Bryant and Nel­
son Jarmie; SCIENTIFIC AMERICAN, July, 
1 974].  

The glory appears as a halo of spec­
tral colors surrounding the shadow an 
observer casts on clouds or fog; it is 
most commonly seen from an airplane 
flying above clouds. It can also be ex­
plained through the complex-angular­
momentum theory, but the explanation 
is more complicated than that for the 
rainbow. One set of contributions to the 
glory comes from the surface waves de­
scribed by Regge poles that are associat­
ed with the tangential rays of Kepler's 
pinwheel type. Multiple internal reflec­
tions that happen to produce closed, 
star-shaped polygons play an important 
role, leading to resonances, or enhance­
ments in intensity. Such geometric coin­
cidences are very much in the spirit of 
Kepler's theories. 

A second important set of contribu­
tions, demonstrated by Khare, is from 
the shadow side of higher-order rain­
bows that appear near the backward di­
rection. These contributions represent 
the effect of complex rays. The l Oth­
order rainbow, formed only a few de­
grees away from the backward direc­
tion, is particularly effective. 

For the higher-order rainbows Airy's 
theory would give incorrect results for 
both polarizations, and so the complex­
angular-momentum theory must be em­
ployed. One might thus say the glory is 
formed in part from the shadow of a 
rainbow. It is gratifying to discover in 
the elegant but seemingly abstract theo­
ry of complex angular momentum an 
explanation for these two natural phe­
nomena, and to find there an unexpected 
link between them. 
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g rounds of the staff and the tec h n i cal env i ronment at our headquarters i n  Bedfo rd , Massach usetts, a l l  
com b i ne t o  p rovide y o u  w i t h  so l i d ,  long-range work that chal lenges al l you r  tech nologica l  sk i l l .  

P rojects l i ke SATIN IV, the new SAC com m u n i cat ion system u s i n g  packet switch i n g  tec h n i q ues. 
O r  JTIDS, a system which com b i nes the p ri n c i p les of TDMA, sp read spectrum mod u lat i o n ,  erro r 
detect ion and correct ion codes and data p rocess i n g  for better tri -se rvice C3. And there a re sco res of 
other p rojects that dai ly chal lenge o u r  750 experienced staff mem bers,  more than half  of whom have 
advanced deg rees. 

As for the envi ronment,  o u r  comp lex is  s i tuated on 1 00 acres 20 m i les outside of Bosto n ,  near 
h isto r ic  Lexi ngton and Concord.  Here at the corporate headquarters, ou r staff is backed - u p  by 
spec i a l i zed support p rofessionals .  B e i n g  in the forefront of tech n o l ogy i s  what keeps sharp people  
com i n g  to M i t re. I t  a lso keeps them work i n g  here. I f  you know the C3 f ie ld , read on : 

COMPUTER SYSTEMS 
Projects span t h e  spectrum from systems prog ramm i ng w i t h  370/158 software t o  developing cost models for 

standard ization in put analyses, software b u i ld i ng block development, computer performance eval uat ion,  req u i re­
ments analysis for i nformation processing systems, inte l l i gence data hand l i n g ,  and su bsystem test documentat ion.  

COMMUNICATIONS 
Major  prog rams are underway i n  system design a n d  analysis ,  d i g ital rad io com m u n i cations, m i c roprocessor 

app l ications, d i g ital c i rcu i t  development, sate l l ite systems and term inals ,  hardware and software for com m u n i ca­
tions processors , anti-jam analysis ,  mod u l ation/cod ing tech niq ues, secu re d i g ital and analog com m u n ications. 
peripherals .  and system test and evaluat ion.  

COMMAND AND CONTROL 
Numerous projects exist i n  a i r  defense and tactical  a i r  control systems engi neering for  deployable and f ixed 

instal l at ion m i l itary systems. These p rojects req u i re top-notch engi neers for system analysis and specification , 
software development. intersystems eng i neerin g ,  s imu lation and evaluat ion,  surve i l lance systems design and 
tact ical  control systems eng i neeri ng.  

To apply for these career posit ions,  send yo u r  resume,  i n c l u d i n g  salary h i story ,  to M r. David L. 
F i n neg a n ,  The M ITRE Corporat i o n ,  6404 M i dd lesex Tu rn p i ke ,  Bedfo rd , M assach usetts 01 730. 

TH E =========== 
M ITRE 
C O R P O R A T I O N  

An equal opportun ity employer. 

Technical excellence through professional challenge 
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