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Some Classical Triangle Inequalities
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Abstract. In this paper we recall with short proofs of some classidahgle
inequalities, and prove corresponding non-Euclidean, spherical and hyper-
bolic versions of these inequalities. Among them are thd Wwedwn Euler's
inequality, Rouché’s inequality (also called “the fundantal triangle inequal-
ity”), Finsler—Hadwiger’s inequality, isoperimetric igeality and others.

1. Introduction

As it is well known, the Euclid’s Fifth Postulate (throughyapoint in a plane
outside of a given line there is only one line parallel to tived) has many equiv-
alent formulations. Recall some of them: sum of the angles tofangle ist (or
180°), there are similar (non-congruent) triangles, there ésafea function (with
usual properties), every triangle has unique circumgielghagoras’ theorem and
its equivalent theorems such as the law of cosines, the lasines, Heron'’s for-
mula and many more.

The negations of the Fifth Postulate lead to spherical ampetiplical geome-
tries. So, negations of some equalities characteristi¢th®rEuclidean geometry
lead to inequalities specific for either spherical or hypédgeometry. For exam-
ple, for a triangle in the Euclidean plane we have the law sfres

& = a4 % — 2abcos C,

where we stick with standard notations (that.j$ andc are the side lengths and
A, B andC are the angles opposite, respectively to the sidésandc).

It can be proved that the following Pythagoras’ inequditield. In spherical
geometry one has the inequality

& < a? 4 b% —2abcos C,
and in the hyperbolic geometry the opposite inequality
> a® +b? — 2abcos C.
In fact, in the hyperbolic case we have
a? +b% — 2abcos C < ¢ < a® + b* 4 2abcos(A + B).
See [13] for details.
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On the other hand, there are plenty of interesting inedealin (ordinary or
Euclidean) triangle geometry relating various trianglengnts. In this paper we
prove some of their counterparts in non-Euclidean cases.

Let us fix (mostly standard) notations. For a given triangld BC, let a, b, c
denote the side lengthg ¢pposite to the verteA, etc.),A, B, C' the corresponding
angles2s = a+ b+ cthe perimeters its area,R the circumradiusy the inradius,
andr,, rp, r. the radii of excircles.

We use the symbols of cyclic sums and products such as:

> fla)= fla)+ f(b) + f(c),
> #( f(A)+ f(B)+ £(O),

(A) = (
> fla,b) = fla,b)+ f(b,e) + f(c,a),
[1f@= f@r®)fe),
[[f@) = @) fwi).

2. Euler’s inequality

In 1765, Euler proved that the triangle’s circumradiiss at least twice as big
as its inradius, i.e.,
R > 2r,
with equality if and only if the triangle is equilateral.Heis a short proof.
R22r<:>‘fl—b§ > %@sab62852:8s(s—a)(s—b)(s—c)@H(s—aj) >
—— —— ——

=z =y =z

8Ha:<:>sza:y Ha: >8[[ze Y zday>9[[r e Y 2%y >6]]x =<
S22y > 6([] 22y)5 = 6 [ 2.  The equality case is clear.

The inequality8S? < sabc (equivalent to Euler's) can also be easily obtained
as a consequence (via— @) of the "isoperimetric triangle inequality”:

wll\.’)

V3
S < T(abc)

which we shall prove i34.

The Euler inequality has been improved and generalieeg, for simplices)
many times. A recent and so far the best improvement of Eulagquality is
given by (see [11], [14]) (and it improves [17]):

R _ abc+ a4+ b3 4¢3 b 2(a b ¢
= > - ——1>Z 424+ ) >2
ro 2abc b+ + . 3<b+c+a>_2

Now we turn to the non-Euclidean versions of Euler’s ineifyial et k be the
(constant) curvature of the hyperbolic plane in which a hlgpkc triangleAABC
sits. Letd = 7 — (A + B + C) be the triangle’s defect. The area of the hyperbolic
triangle is given byS = k26.

Lyet another way to prove the last inequalits®y + y2> = y(2® + 2%) > 22yz, and add such
three similar inequalities.
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Theorem 1 (Hyperbolic Euler’s inequality) Suppose a hyperbolic triangle has a
circumcircle and letR be its radius. Let be the radius of the triangle’s incircle.
Then

tanh % > 2tanh % (1)
The equality is achieved for an equilateral triangle for dmed defect.

Proof. Recall that the radiu® of the circumcircle of a hyperbolic triangle (if it
exists) is given by

sin % B 2 [[sinh 5
- 5N
[Isin(A+3) \/sinh 7 [Isinh 522

Also, the radius of the incircle (radius of the inscribectlg) » of the hyperbolic

triangle is given by
r|]Isinh*3#
tanh E = W (3)

Seee.qg, [9], [6], [7], [8], [9]- We can takek = 1 in the above formulas. Thenitis
easy to see that (1) is equivalent to

Hsinh(s —a) < Hsinh g,

or, by putting (as in the Euclidean case¥ s —a,y =s— b,z = s —¢, to

HsinhwﬁHsinhS;x. 4)

(2)

R
tanh = =
an 2

By writing 2z instead ofx etc., (4) becomes

H sinh 2z < H sinh(s —x) = H sinh(y + 2).

Now by the double formula and addition formula fonh, after multiplications we
get

8 H sinh a:H coshzx < Z sinh? z sinh y coshy cosh? z+2 H sinh x H cosh z.
Hence,
6 H sinhz - H coshz < Z sinh? 2z sinhy coshy cosh? z. (5)

However, (5) is simply thed — G inequality for the six (nonnegative) numbers
sinhz, coshz, ...,cosh z. The equality case follows easily. This proves the hy-
perbolic Euler’'s inequality. O

Note also that (5) can be proved alternatively in the follggwvay, using three
times the simplestl — G inequality:

sinh? z sinhy coshy cosh? z 4 cosh? z sinhy coshy sinh? z

= sinhy cosh y[(sinhz cosh z)? + (cosh z sinh z)?]

> 2sinhy coshy sinhx cosh z cosh z sinh z.
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In the spherical case the analogous formula to (2) and (3semidar reasoning
to the previous proof boils down to proving analogous indiuto (4):

HsinxSHsinS;$ (6)

But (6) follows in the same manner as above. So, we have tloviol.

Theorem 2(Spherical Euler’s inequality)The circumradiusk and the inradiug-
of a spherical triangle on a sphere of radigsare related by

tan R > 2tan r (7
p p
The equality is achieved for an equilateral triangle for diked spherical excess
e=(A+B+C)—m.

Remark. At present, we do not know how to improve these non-Euclicdealer
inequalities in the sense of the previous discussions iitletidean case. It would
also be of interest to have the non-Euclidean analogueseoEther inequality
R > 3r for a tetrahedron (and simplices in higher dimensions).

3. Finsler—Hadwiger’s inequality

In 1938, Finsler and Hadwiger [3] proved the following shapper bound for
the areaS in terms of side lengths, b, c of a Euclidean triangle (improving upon
Weitzenboeck’s inequality):

Y a® =) (b0 +4v3S. (8)

Here are two short proofs of (8). First proof ([10]): Starttwihe law of cosines
a? = b% +c? —2bccos A, or equivalentlya? = (b—c)? 4 2bc(1 —cos A). From the
area formul&S = besin 4, it then followsa? = (b — ¢)? + 4S5 tan 4. By adding
all three such equalities we obtain

S a? =3 b 45y tan .

By applying Jensen’s inequality to the simtan g (i.e., using convexity ofan g,
0 < z < m) and the equalitd + B + C' = m, (8) follows at once.
Second proof ([8]): Put =s —a,y=s—b,z=s—c. Then

Y= b—0=4> ay.

On the other hand, Heron’s formula can be writtent eSS = 4\/3295 Hw
Then (8) is equivalent tq /3> "z - [[= < >y, and this is equivalent to

> a?yz <) (xy)? which in tum is equivalent t& _ [x(y — 2)]* > 0, and
this is obvious.

Remark.The seemingly weaker Weitzenboeck’s inequality
> a® > 438

is, in fact, equivalent to (8) (see [17]).
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There are many ways to rewrite Finsler—Hadwiger’s inegqualiFor example,
since

Z:[a2 — (b—¢)?] = 4r(r + 4R),
it follows that (8) is equivalent to
r(r +4R) > /38,
or, sinceS = rs, it is equivalent to
sV3 <r+4R.
There are also many generalizations, improvements anogstrening of (8) (see
[4]). Let us mention here only two recent ones. One is (s€e [1]

1 T
> b+o)- Zm <10 — §[3\/§—|—2(r+4R)],
and the other one is (see [15])

ZaQ > 438 + Z(a —b)? + Z[\/a(b—H:— a) — v/b(c+a —b)]>.
The opposite inequality of (8) is (see [17]):

> a® <4vB3S+3) (-0

Note that all these inequalities are sharp in the sensedatiges hold if and only
if the triangles are equilateral (regular).

For the hyperbolic case, we need first an analogue of the areaufa2s5 =
besin A. It is not common in the literature, so for the reader’s comece we
provide its short proof (see.g, [5]).

Lemma 3 (Cagnolli’s first formula) The areaS = k2§ of a hyperbolic triangle
ABC'is given by

S sinh 57 sinh % sin C'
2%2 cosh o
Proof. From the well known second (or “polar”) law of cosines in ettary hy-
perbolic geometry

(9)

sin

cosh & — cos A + cos BeosC
k- sin Bsin C ’
we get
cosh = = sin (B + %) S%n (C+ %) , sinh a sin (%) Siu '(A + %) )
2k sin BsinC 2k sin Bsin C

(10)

By multiplying two expressionsinh 4 - sinh % and using (10) we get
ind
sinh 4. sinh i _ s ¢

2%k ok sinC 2k
This implies (9). O
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Theorem 4(Hyperbolic Finsler—Hadwiger’s inequality}or a hyperbolic triangle
ABC we have:
a b—c S a )
Z > in — —_
Z cosh e Z cosh B + 125sin 572 H cosh ok tan 5 (1)

The equality in(11) holds if and only if for any fixed defegt the triangle is equi-
lateral.

Proof. The idea is to try to mimic (as much as possible) the first pod¢8). Start
with the hyperbolic law of cosines

a b c .. b . ¢
cosh 7= cosh — cosh — — sinh Z sinh z cos A.

k k
By adding and subtractingnh £ sinh £, we obtain
cosh % = cosh b-c + sinh % sinh % — sinh % sinh % cos A
b—c .. b . . c .9 A
= cosh + sinh z sinh 7 2 sin 3
b—c .. b . ¢ b c .2 A
= cosh + 4sinh o sinh o cosh o cosh % 2sin 3
By Cagnolli's formula (9), substitute here the pgirth % sinh 5 to obtain
a b—c a b c S A
h — = cosh 4 cosh — cosh — cosh — sin — —. 12
cosh - = cosh — + 4 cos 57, Cosh o cosh o sin o tan 5 (12)

Apply to both sides of (12) the cyclic sum operajo), and (again) apply Jensen’s
inequality {.e., convexity oftan ):

1 A 1 A T—20
_E > _E ) = .
3 tan 5 > tan <3 2> tan 5

This implies (11). The equality claim is also clear from tlhheee argument. [

The corresponding spherical Finsler—Hadwiger inequality be obtained mu-
tatis mutandis from the hyperbolic case. The a$eaf a spherical triangled BC
on a sphere of radiug is given byS = p?c, wheree = A + B 4+ C — 7 is the
triangle’s excess. The spherical Cagnolli formula (like€ds as follows:

ca b -
in & sin 2~ sin
sini—s 55 Sil 55 C (13)
202 < '
p cos 5

So, starting with the spherical law of cosines, using (13) densen’s inequality,
one can show the following.

Theorem 5 (Spherical Finsler—-Hadwiger’s inequality}ror a spherical triangle
ABC on a sphere of radiup we have

b— S b €—
ZCOS%ZZCOS pc+12sin2—p2008%cosgcositan 67T. (14)

The equality in(14) holds if and only if for any fixee, the triangle is equilateral.
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Remark.Note that both hyperbolic and spherical inequalities (i) @4) reduce
to Finsler-Hadwiger’s inequality (8) whelh — oo in (11), orp — oo in (14).

This is immediate from the power sum expansions of trigortamer hyperbolic
functions.

4. Isoperimetric triangle inequalities

In the Euclidean case, if we multiply all three area formulase of which is
S = %bc sin A, we obtain a symmetric formula for the triangle area

S8 = ! abc)? sin A sin B sin B. (15)
8

By using theA — G inequality and the concavity of the functiein = on [0, 7] (or,
Jensen’s inequality again), we have:

. . . 3
sin A sin B sinC < <smA + SH;B * Smc)
_A+B+C\’ a1 3V3
< [sin—— | = — =
3 3 8
This and (15) imply the so called “isoperimetric inequdlifgr a triangle:
53 < %(abc)z, or in a more appropriate form

S < ?(abc)g. (16)

Inequality (16) andd — G imply thatS < %(a + b+ ¢)?, and this is why we call
it the “isoperimetric inequality”.

By Heron's formula we havé4S)? = 2sds(a, b, c), where2s = a + b + c and
ds(a,b,c) == (a+b—c)(b+c—a)(c+a—Db). By [11, Cor. 6.2], we have a sharp
inequality

(2abc)?
ds(a,b,c) < .
3(0:0:0) < B T B T abe

From Heron’s formula and (17) it easily follows
1 a+b+c
< —ab . 18
S_2ac\/a3+b3+c3+abc (18)
We claim that (18) improves the “isoperimetric inequalif{6). Namely, we claim
1 a+b+c V3.
—ab < ==/ (abc)?. 19
2ac\/a3+b3+c3+abc_ 4 (abe) (19)
But (19) is equivalent to

3 3 3 3 3
<a +b ZC —|—abc> > (abe)? <a+§+c> . (20)

(17)
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To prove (20) we can takebc = 1 and prove
A+ +S+1 - a+b+c
4 - 3 '
Instead, we prove an even stronger inequality

3,13, 3 31131 3
a+b:c+123/a+l;+c. 22)

Inequality (22) is stronger than (21) because the meansaredsingi.e.,
My(a,b,c) < My(a,b,c) fora,b,c>0and0 <p <gq,

(21)

1
whereM,(a,b,c) = [(“p“})ﬂ} ". To prove (22), denote = o> + b® + ¢ and

consider the function ,
z+1 T
fa)= (2 -1

4 3
Since (byA — G) § > abc = 1, i.e, x > 3, we considerf(x) only forz > 3.
Sincef(3) = 0 and the derivative’’(z) > 0 for > 3, we concludef(x) > 0 for
x > 3 and hence prove (19).
Putting all together, we finally have a chain of inequalifi@sthe triangle area
S symmetrically expressed in terms of the side lengtlis c.

Theorem 6 (Improved Euclidean isoperimetric triangle inequalities

3 4
Sg%abC\/ at+b+c <1§5/3(a+b+0) (abc) <\/§

ad+ b3 +c3+abe ~ 4 B+t T 4

(abc) 3
(23)

We shall now make an analogue of the “isoperimetric inetyia{iL6) in the
hyperbolic case.

Start with Cagnolli's formula (9) and multiply all such teréormulas to get
(sinceS = dk?):

1) a a
.. 3 . . .
sin” 5 = H sinh % H tanh o H sin A. (24)

As in the Euclidean case we have

. . . 3 3 3
HSiIlAS sin A+ sin B +sinC < sinA+B+C _ sinﬂ )

3 3 3

So, this inequality together with (24) implies the followin

Theorem 7. The areaS = 0k? of a hyperbolic triangle with side lengths b, c
satisfies the following inequality

5\ 3
( _Smé> < H sinh % . H tanh %. (25)
3

sin

For an equilateral triangle(a = b = ¢, A = B = C) and any fixed defe@, the
inequality (25) becomes an equalifppy Cagnolli’s formula (9))
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The corresponding isoperimetric inequality can be obthiioe a spherical tri-
angle:

( 51112 > <Hsm— Htan (26)

Remark.In the 3—dimensional case we have a well known upper bound of the
volumeV of a (Euclidean) tetrahedron in terms of product of lengthiséscedges
(like (16)) :

V< —\/abcde

with equality if and only if the tetrahedron is regular (amahigarly in any dimen-
sion); see [12].

Non—Euclidean tetrahedra (and simplices) lack good voliomeulas of Heron'’s
type, except the Cayley—Menger determinant formulas ithedle geometries. Ka-
han’s formula?® for volume of a Euclidean tetrahedron is known only for the Eu
clidean case. There are some volume formulas for tetraliedtthree geometries
now available on Internet, but they are rather involved. \&a'ttknow at present
how to use them to obtain a good and simple enough upper bound.

In dimension2, Heron’s formula in all three geometries can very easily &e d
duced. A very short proof of Heron’s formula is as followsai$tvith the triangle
areadS = 2absin C and the law of cosines’ + b? — ¢? = 2abcos C. Now square
and add them. The result is a form of the Heron’s fornful8) + (a2 4-b> —c?)? =
(2ab)?. In a similar way one can get triangle area formulas in the-Bodidean
case by starting with Cagnolli’s formula ((9) or (13)) ane thppropriate law of
cosines.

The result in the hyperbolic geometry is the formula

2 2 2
a b c C.a .. b
<4 sin — H cosh 5 k:) + (cosh Z cosh T cosh E) = (smh z sinh E)

or

<4sm Hcosh >—|—Zcosh2 —1—|—2Hcosh—

Remark.In order to improve the non-Euclide@+dimensional isoperimetric in-
equality analogous to (23) we would need an analogue of thetiin ds(a, b, ¢)
and a corresponding inequality like (17). This inequalitgswroved in [11] as a
consequence of the inequalit (a2, b?, c?) < d3(a,b,c), and this follows from
an identity expressing the differendg(a, b, c) — ds(a?,b?,c*) as a sum of four
squares. But at present we do not know the right hyperbobdoamed (a, b, c)
or spherical analogué; (a, b, ¢) of the functionds(a, b, c).

Zsee www.cs.berkeley.edwkahan/VtetLang.pdf, 2001.
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5. Rouche’s inequality and Blundon'’s inequality

The following inequality is a necessary and sufficient cbadifor the existence
of an (Euclidean) triangle with elements » ands (see [4]):

2R%? 4+ 10Rr — 2 —2(R — 2r)\/ R? — 2Rr < s°

< 2R? +10Rr — r* + 2(R — 2r)\/ R? — 2Rr. (27)

This inequality (sometimes called “the fundamental trianigequality”) was
first proved bny. Rouché in 1851, answering a question of Ramus. It wastigce
improved in [16].

A short proof of (27) is as follows. Let,,r;,r. be the excircle radii of the
triangle ABC. Itis well known (and easy to check) that r, = 4R+, 7,1y =
s? andrgryre. = rs?. Hencer,, 1, 7. are the roots of the cubic

23— (AR + )2’ + s’z —rs®> = 0. (28)
Now consider the discriminant of this cubice., D = [ (ra — 3)°.
In terms of the elementary symmetric functianse,, es in the variables, 1, re,
D = e%e% — 46% — 46‘;’63 + 18ejeq9e3 — 2763. (29)
Sincee; =Y r, = 4R+ 1,60 = > 1oy = 8%, e3 = [[ o = rs?, we have
D = s*[(4R +7)%s* — 45 — 4(4R + r)3r + 18(4R + r)rs* — 27r%s?%).
From D > 0, (27) follows easily. In fact, the inequalit) > 0 reduces to the
quadratic inequality i3?:
s —2(2R* + 10Rr — r%)s® + (4R + r)*r < 0. (30)

The “fundamental” inequality (27) implies a sharp lineapapbound of in terms
of r and R, known as Blundon’s inequality [2]:

5 < (3V3 —4)r + 2R. (31)
To prove (31), it is enough to prove that

2R% 4+ 10Rr — 12 + 2(R — 2r)v/ R2 — 2Rr < [(3V/3 — 4)r + 2R]?.

A little computation shows that this is equivalent to thddaling cubic inequality
(withz = R/r):

f(z) := 4(3v3-5)2®—3(60v/3—103)x> +12(48+/3—83)2+4(229—132V/3) > 0.

By Euler’s inequalityz > 2, f(2) = 0 and hence clearly (z) > 0 for z > 2.
Yet another (standard) way to prove Blundon’s inequalitl) (8 to use the con-
vexity of the biquadratic function on the left hand side & thequality (30).
Blundon’s inequality is also sharp in the sense that equiabtds in (31) if and
only if the triangle is equilateral. (Recall by the way th&tiangle is a right triangle
ifand only if s = r + 2R).
Let us turn to non-Euclidean versions of the “fundamentahtyle inequality”.
Suppose a hyperbolic triangle has a circumscribed circle. béfore, denote
by R, r, andr,, y, 1., respectively, the radii of the circumscribed, inscribed a
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escribed circles of the triangle. Then by (2) and (3) we kngwndr, while r,
(and similarlyr, andr,) is given by

. A
tanh % = sinh % tan 7 (32)
and by using
tan 2 = SRR E SR T (33)
2 sinh 7 sinh 7%

The combination of these two expressg terms ofa, b, andc. In order to obtain
for the hyperbolic triangle the analogue of the cubic equafP8) whose roots are
z1 = tanh ¢, 9 = tanh % r3 = tanh % we have to compute the elementary
symmetric functions, es, e3 in the variablesr,, z2, z3. We compute first (the
easiestks. Equations (32), (33) and (3) yield

B Ta . .28 r
e3 = H tanh - = sinh z tanh i (34)
Next, by (32) and (33):
s—a

_ "o tanh 0 — ginh? 2 A Gan S
eg—Ztanhk tanhk—smh thaD2taD2 —smthsmh o

Applying the identity

sinh(z+y+z)— (sinh z+sinh y+sinh z) = 4 sinh Y ; ® sinh ~ _; T sinh 2 ; y,
with z = 552,y = 52b > = 2=¢ e obtain
. S . S—a . a
sinh z Z sinh = 4 H sinh o (35)
And now from (2) and (3) we get
es = sinh? % (1 — 2tanh % tanh %) . (36)

Finally, to computes;, we use the identity

tan(z +y + 2) = tanx + tany + tan z — tanx tan y tan z . (37)
1 —tanztany — tan y tan z — tan z tan

By (32),e; = sinh § 3" tan 4. Now from (37):

A A+B+C A B A
Ztang = tanf <1—Ztan5tan5> +Htan5,

n7A+B+C—tanﬂ_5—coté
2 N 2 2

A tanhZI

From (3), we havd | tan = = k.
(3) ﬂanz sinh%

By (33), (35), and (2), (3) it follows easily

ta

A B r R . s
1-— Ztan;tan; = 2tanhEtanhEsth.
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Finally, putting all together yields

k 2
Equations (34), (36) and (38) yield vid — ;2% + eoxz — e3 = 0 the cubic equation

e = tanh% <1 + 2tanh % sinh 2 cot é) . (38)

0
% — tanh% <1 + 2tanh % sinh % cot 5) x2

o2 S (1 " tanh B 2 — sinh? S tanh - =
+ sinh ? <1 2 tanh 2 tanh k‘> x — sinh 2 tanh r = 0. (39)
This cubic (with rootsanh 72 etc.) reduces to the cubic (28) by lettikg— oo.
This follows from the identity

sinh 7 - tanh ¢ a
—r—F =2 h—.

s g H COS o
If k& — oo, then the right hand side tends2@nd therefore the coefficient by in
(39) goes ta" + 4R which appears in (28); similarly for the other coefficients.

Consider the discriminant of (39)
D ] Ta ] Ty 2
H (tan k tan k ) ’

Now, by applying (29) and (34), (36) and (38) we obtain thertia@olynomial (in
fact degree) in sinh 7 for an expressio. By the following legend

r «——tanhZ &+« cotl

R<—>tanh% s < sinh 7
we can writeD as follows (after some computation); note that it has alrdosble
number of terms than the corresponding Euclidean discamntin

D= s§%[(r’R?0% + 4r*R*6® — 4r3R36> — 1 4+ 6rR — 12r2R? + 8r3R3)s*
+72R6(1 — 4rR + 4r2R%25 — 8r? R%26% + 9 + 18rR6)s3
+r2(r2R? — 10rR — 12r2R?6% — 2)s?

—6r*Ros — 4.
(41)
By definition D > 0, so the quartic polynomial in (in fact insinh 7), i.e,, the
polynomial in brackets in (41) iz 0.
So the hyperbolic analogue of the “fundamental triangleyiradity” (27), or
rather degree—four polynomial inequality (30) is the guagiih s) polynomial in-
equality > 0.

Theorem 8 (Hyperbolic “fundamental triangle inequality”}or a hyperbolic tri-
angle that has a circumcircle of radiuB, incircle of radiusr, semiperimetes,
and excess, we have

>0

5 >0, (42)

S
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whereD is given by(41)together with the legen@0). Whenk — oo, (42)reduces
to (30).

Blundon’s hyperbolic inequality can also be derived as altany of Theorem
8.

The spherical version of the “fundamental inequality” adl &g the correspond-
ing spherical Blundon’s inequality can also be obtained vimiomit them here.

In conclusion, we may say that all these triangle ineqealigive more informa-
tion and better insight to the geometry of 2— and 3— manifolds
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