
Chapter 2

Why are laws mathematical?1

Our experience hitherto justifies us in believing that nature is the 

realization of the simplest conceivable mathematical ideas”

Einstein2

The “Unreasonable Effectiveness of Mathematics” in Describing, Explaining 

and Predicting the Physical World3

With  a  more  or  less  implicit  recall  of  Pythagorism,  Leibniz  once  wrote  that 

mathematics  can  be  differentiated  from  music  only  because  it  a  a  form  of 

conscious calculation, whereas music represents  unconscious calculation. We can 

add that mathematics has a relationship to other sciences that is similar to music’s 

relationship  to  other  arts,  as  it  is  the  most  abstract  but  perhaps  most  effective 

instrument for understanding the world. From physics to biology, psychology to 

economics, there is no empirical science today which has not, in some way, been 

mathematized, and Immanuel Kant had already noted that 

 Since in every theory of nature there can be only as much science, properly 

speaking, as there is a priori knowledge, it follows that the theory of nature 

can contain as much science, properly speaking, as mathematics that can be 

applied to it.2

  A few simple examples from the history of science will serve to illustrate the odd, 

and up until now, mysterious phenomenon on the basis of which entire parts of 

mathematics,  which  were  initially  invented  and  constructed  without  any 

applicative purpose, later proved to be highly useful in predicting, describing, and 

explaining new and unexpected natural phenomena, and therefore in bringing to 

light “areas of knowledge” which had been previously completely obscure.

What renders the problem particularly difficult is that it does not seem easily 

resolvable  by  invoking  one  current  philosophical  position  over  another  on  the 

ontology of  mathematics,  given that  prima facie,  the applicability issue creates 

puzzles for all such positions. Within a constructivist  philosophy of mathematics, 

for example, one must explain why mathematics – regarded as a creation of ours – 

1   I would like to thank the audience at Copenhagen for the interesting questions raised  

during the discussion of a previous version of this chapter.
2 I.  Kant,  Metaphysische Anfangsgründe der Naturwissenschaft, Akademie Textausgabe, 

Bd. IV, Berlin 1968, p. 470.
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enables us to discover properties and entities belonging to a world which, like the 

physical world, we certainly did not create. In the context of a Platonic conception 

– in which mathematics is considered more the fruit of the discovery of facts that 

are abstract and independent from ourselves, rather than an invention of ours – it is 

difficult  to explain how we can come into cognitive contact  with this reign of 

abstract entities, which are by definition  causally inert. Even if one avoided the 

presupposition  that  “knowing”  necessarily  implied  more  or  less  direct  causal 

interaction  with  the  known  entity,  mathematical  Platonism  would  seem  to 

duplicate the problems to be  resolved.  It  should in  fact  be  explained  why the 

physical world (which, in being extended in space-time, is certainly different from 

the abstract world of mathematics) should “reflect” the essential structures of the 

latter.3 Finally, even if we invoked an empiricist or naturalistic explanation of the 

applicability of certain mathematical structures, which could be the evolutionary 

fruit of the long-term adaptation of the human brain to objects with dimensions 

comparable  to  those  of  our  bodies,  we  should  in  any  case  clarify  why  these 

structures have also proved themselves to be indispensable to the investigation of 

entities much smaller and larger than ourselves (from subatomic particles to the 

entire observable universe.) 

The most famous example of the applicability of mathematical notions to the 

physical  world is  perhaps given by  conical sections  or conics  (circles,  ellipses, 

hyperbolas  and  parabolas)  which  are  so  named  because  they  are  obtained  by 

intersecting a circular cone with a plane at different angles (see Figure 1 in the next 

page). In calling AA’ one of the two generators of the cone, we can immediately 

see  that  by  cutting  one  of  the  two  layers  of  the  cone  with  a  plane  that  is  

perpendicular to axis HH’, we obtain a circle (which in the limit degenerates into 

point O),  while by tilting the plane a bit with respect to the horizontal  line we 

obtain an  ellipse, which in the figure is indicated by FDE. If the position of the 

intersecting  plane  is  parallel  to  the  direction  of  one of  the  two generators,  we 

obtain a  parabola: in Figure 1, the parabola GIK is the intersection between the 

cone  and  a  plane  parallel  to  AA’.  Finally,  the  two  branches  of  the  hyperbola 

R’S’T’ and RST can be obtained by a plane which cuts both layers of the cone. 

3  On Platonism in  the  philosophy of  mathematics,  see  M.  Piazza’s  essay,  Intorno  ai  

numeri, Bruno Mondadori, Milano 2000.
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Fig. 1

The study of the properties of conics, which dates to the Third Century B.C., 

was performed by the Greek mathematician Apollonius, apparently without any 

applicative purpose. Almost twenty centuries after Apollonius, one of these curves, 

the ellipse, was used by Kepler to describe the orbit of all the planets around the 

sun,  which  occupies  one  of  its  two  focal  points.  Incidentally,  this  event  was 

particularly  revolutionary  in  the  history  of  ideas,  given  that  the  perfection  and 

immutability that  ancient astronomers attributed to non-corruptible astral  bodies 

led pre-modern astronomers to hypothesize that this orbit was necessarily circular.

The  same  “anticipatory”  fate  met  the  geometries  which  did  not  respect  the 

Euclidean postulate of parallels, or the so-called non-Euclidean geometries, which 

allow for the existence of more than one parallel, or no parallels, to a given line. 4 

These  geometries  were  invented  (or  discovered)  by  mathematicians  in  the 

Nineteenth Century without any particular thought towards application, and were 

later utilized by Einstein at the beginning of the Twentieth Century to describe the 

universe on a large scale, whose spatio-temporal curvature appears variable – and 

different from zero, as predicted by these geometries – in the presence of matter. 

The  extraordinary  degree  of  experimental  confirmation  achieved  during  the 

Twentieth Century by the physical theory that uses these geometries, the theory of  

general relativity, seems to fully corroborate the ancient Pythagorean conception 

4  As is known, given a straight line  r  and point  P external to it, according to Euclidean 

geometry there is only one straight line parallel to r that passes through P.
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of the universe, later expanded upon by Kepler and Galilei, on the basis of which 

the huge world surrounding us is written in geometrical characters.5

To  cite  a  different,  but  more  familiar  example,  when  Bertrand  Russell 

published  his  works  on  logic,  the  mathematicians  of  his  time considered  them 

completely useless, from the applicative point of view, as well as from the point of 

view  concerning  the  progress  of  pure  mathematics.  Paradoxically,  it  was  also 

thanks to the logic codified in Russell  and Whitehead’s  Principia Mathematica 

(1910-1913) that the theory of recursive functions and computability matured, as 

perfected  by  the  logicians  Alan Turing  and  Alonzo Church  during  the  1930’s. 

These  scientists  created  the  mathematical  theory  that  is  at  the  basis  of  the 

functioning  of  the  personal  computers  that  we  all  use  today.  The  difference 

between this example and the preceding ones is that computers, obviously, are not 

objects existing in nature. However, they can be utilized for comprehending how 

both  the  external  world  and  our  minds  function  through  simulations:  how,  in 

particular,  the  cognitive  capacities  of  the  mind  can  be  simulated  by  “neural 

networks,”  that  try  to  represent  the  causal  structure  exemplified  by  the  real 

connections between the neurons of our brains.

Another  good example is  offered by imaginary or complex numbers,  which 

were introduced to calculate the square roots of negative numbers and to solve 

some algebraic equations, and have highly important applications in all fields of 

engineering and physics, especially quantum mechanics, which studies matter at 

the  microscopic  levels  of  atoms and  subatomic  particles.  It  was  precisely  this 

extraordinary power of imaginary numbers that “troubled” the young Törless, so 

that in a novel published in 1906 by the German writer Robert Musil, this character 

said: 6

But what is strange is that with these imaginary or in any case impossible 

values,  calculations  can  be  made  anyway  that  are  perfectly  real  and  that 

eventually allow us to have something concrete in our hands.

I could give other examples regarding the discovery of new families of elementary 

particles, which also came about from considerations of symmetry based on the 

theory of groups,7 but what I have said so far should be enough to convince the 

reader of the importance of the question that will be the focus of our chapter: why 

do mathematical inventions or discoveries, which are often achieved without any  

applicative purpose, just as often prove themselves to be fundamental instruments  

for  explaining  and  describing  the  physical  world? An  answer  to  this  question 

would  be  of  crucial  interest  to  us,  because  it  could  also  be  interpreted  as  an 

explanation as to why physical laws are mathematically formulated.

5   See the citation from Galilei’s Saggiatore in the previous chapter, p. 19.
6  Musil  R.,  (1906/2001),  The  Confusions  of  Young  Torless,  transl.  by  S.  Whiteside, 

Penguin Book, New York, p.56.
7  For other interesting examples taken from particle physics see the excellent book by M. 

Steiner,  The  Applicability  of  Mathematics  as  a  Philosophical  Problem,  Harvard 

University Press, Cambridge, Massachusetts, 1998, especially Chapter 4.
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Apart from their intrinsic interest, I also believe that these issues – which from 

Kant onwards have been strangely neglected, both by philosophers of mathematics, 

as well as by the vast majority of philosophers of science who have written about 

the laws of nature – serve as an important key to responding to a question which 

has accompanied philosophic-scientific literature on the laws of nature from its  

birth:8 Are laws discovered or do we postulate them in a conventional way for the 

purpose of structuring and predicting the phenomena of the external world?

The Three Ingredients for “Producing” the Laws of Physics

If  one  had  to  explain what  a  law of  nature  was  in  a  way that  best  connected 

conceptual  rigor  with  conciseness,  he  or  she  should  use  a  technical  term, 

“differential equation,” which, unfortunately, involves the disadvantage of forcing 

us to introduce the fundamentals of calculus. A road this long can fortunately be 

avoided, given that for our purposes it would be enough to define a physical law as 

an  instrument of calculation (an algorithm) that permits us to pass from certain 

experimental  observations of a certain group of phenomena (initial or boundary 

conditions)  to  other  observations  that  can  be  performed  at  different  times. 

Following a useful indication by the philosopher William Whewell,  which was 

partly  expanded  upon  by  the  astronomer  John  Barrow,9 we  can  reduce  the 

ingredients  necessary  to  defining  the  notion  of  the  law  of  nature  in  the 

mathematical sense to three:

1. the  algorithmic  structure,  given  by  the  formula  (or  differential  equation) 

which represents the law properly speaking;

2. the  initial  or boundary conditions,  or  the initial  numeric data to which we 

apply the law;

3. the constant quantities left unchanged by the application of the algorithm, or 

the constants of nature.

In this respect, Whewell affirmed that the investigation of a physical phenomenon 

consisted of the identification of a relationship between phenomena (“a colligation 

of  facts”)  occurring  in  three  stages,  which  he  called  the  determination  of  the 

independent  variable  (2  above),  the  identification  of  the  formula  or  function 

connecting the independent variable to a dependent variable (number 1 above) and 

the determination of coefficients (3).10

I submit that a philosophical discussion on the laws of nature that does not take 

these three ingredients into account would not be complete, or would run the risk 

of distancing itself from what physicists and scientists generally mean by “natural  

8  See Chapter 1, “The Notion of the Law of Nature in the Seventeenth Century: The Role 

of the “Other” Bacon,” concerning the Seventeenth-Century division between the 

“realists” and the “conventionalists.”
9  See J. Barrow, The World within the World, cit., p. 279.
10  See  R.  Butts,  William Whewell’s  Theory  of  Scientific  Method,  Pittsburgh University 

Press, Pittsburgh, 1968, pp. 210-211.
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law.”  One can certainly admit  that  not all  laws of nature  have a mathematical 

formulation:  “all  metal  objects  rust” or  “all  crows  are  black” certainly  express 

natural  regularities  which  we  call  laws,  and  which  cannot  be  formulated  in 

quantitative  language.  Nevertheless,  the  “original  sin”  that  has  tainted  many 

philosophical  analyses  of  the  nature  of  laws  has  consisted  of  considering 

“qualitative” propositions of this type to be paradigmatic examples of natural laws. 

Note that these propositions do not refer to any of the three components mentioned 

above, and it is perhaps precisely for this reason that philosophical debates on laws 

sometimes  cause  the  reader  to  feel  that  they  have  degenerated  into  purely 

“academic” disputes, in the sense that they center on topics which seem far from 

both the practice and real problems that interest scientists.

Here,  I will examine mainly the first two components of the laws of nature, 

given that the third one does not have much to do with the fundamental question of  

this  chapter.  Obviously,  as  a  partial  integration  of  what  was  affirmed  in  the 

preceding paragraph, it would be correct to observe that to the degree in which one 

also find laws outside of physics (a problem which we will deal with later on), the 

three components above might not be present. Nevertheless,  a restriction of our 

attention to the way in which the laws of nature are codified in physics is justified 

not only by the fact that the latter is the science in which the notion of law has a  

more  important  role,  but  also  by  the  undeniable  observation  that  the 

mathematization of physics is at a much more advanced stage than in the other 

empirical sciences. The problem of why laws are mathematical can therefore be 

posed  especially  within  physics,  and  it  is  plausible  to  believe  that  what  is 

philosophically significant about physical laws can apply without much difficulty 

to the more “qualitative” laws of the other sciences.

The Algorithmic View of Laws as a First Attempt to Explain Why the Laws of 

Physics Are Mathematical 

In returning to the three “ingredients” of a law of physics, I will now focus on the 

first one, which refers to a law as an algorithm: a mathematically formulated law in 

effect functions like a “bridge” connecting two “river banks,” in which we find 

experimental data, expressed quantitatively as a result of measurements. On one 

side  of  the  “river”  we  find  the  initial  data  (the  input)  and  on  the  other  the 

predictions  (the  output),  which  are  the  results  of  the  calculation.  Since  the 

predictions, or the output, are typically obtained in a purely deductive way, as a 

result of the application of the law to the initial data, the metaphor of laws as a 

computer program or algorithm appears to be initially justified. If the initial data 

satisfy a few mathematical conditions which we do not need to consider here, 11 a 

law effectively permits us, in a finite number of steps, to transform the initial input 

into final predictions (the output) in a purely “mechanical” fashion. 

11  It involves ascertaining that the functions representing the data are differentiable at least 

twice.
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What interests us, obviously, is whether this metaphor drawn from computer 

science can help us to understand why the world can be described by mathematical 

laws. To this end, I will begin by supposing that any physical system subject to 

laws is perfectly comparable to a machine, made up of certain parts describable in 

the  language  of  physics,  in  the  same  sense  in  which  the  hardware of  a  real 

computer  is  a  group  of  electrical  microcircuits  built  upon  a  silicon  chip,  and 

connected appropriately. Affirming that the laws governing the temporal evolution 

of  a  physical  system  serve  as  the  software of  the  system  is  tantamount  to 

presupposing the following analogy: Just as the physicist, who in order to pass 

from  initial  measurements  to  predictions,  performs  calculations  with  formulas 

expressing  natural  laws,  a well-identified  physical  system,  in  passing from one 

initial  state  to  a  successive  one on  the  basis  of  how these  states  are  causally 

connected, “performs a calculation” in a certain sense. If the observable universe 

in its entirety can be treated as this sort of system, one could say that the universe 

passes from one state to a successive one by “calculating” it on the basis of its 

laws, which we can therefore call the software of the universe.

“Performing the calculation” or simply “calculating,” should be understood in 

the most liberally possible sense; in fact, no physical system, not even a calculator,  

literally “calculates,” if by this term we mean an intentional, goal-directed activity. 

A  computer  that  manipulates  symbols  actually  carries  out  a  few  physical 

transformations that we interpret as calculations, on the basis of a task that we have 

its  operating  system perform in  relation  to  its  central  processing  unit.  Natural  

phenomena as  well,  like the  beats  of  our  hearts  or  the movement  of  the earth 

around the sun, can serve to measure time, and therefore to calculate in a certain 

sense,  but  this  functioning  obviously  presupposes  our  intentional  attribution  of 

function.

Therefore, affirming that a natural system “calculates” a certain future state is 

no more metaphorical than affirming that “a computer calculates,” given that both 

affirmations presuppose the intentional attribution of a  function to an inanimate 

object. If by “physical state” we mean a description of a system at a certain time,  

all we can say about a physical system (including a computer) is that it passes from 

one state to another,  and nothing more. In short, therefore,  it  is not possible to 

refute the identification of the laws of a physical system with algorithms performed 

by  a  computer  on  the  basis  of  the  claim  that  a  computer  is  able  to  perform 

calculations,  whereas  this  operation  would  be  precluded  in  any  other  physical 

system. Either  both a computer  and any other physical system compute or they 

both do not; to the extent that we are willing to claim that a computer “calculates,” 

we could say the same about any physical system, provided that the operations of  

the latter can be perfectly simulated by another computer taking in the same input  

and producing the same output.

Having put aside this first objection to the view equating the laws of nature to 

algorithms, we nonetheless encounter another view that is much more important: 

not all natural laws establish a link between states of the world that are temporally 

ordered (laws of  succession),  as the notion of algorithm would instead seem to 

presuppose.  Rather,  a  few  natural  laws,  called  laws  of  coexistence,  limit  the 
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compatibility  of  physical  states  coexisting  at  any  single  instant,  so  that  any 

connection possibly transmitted by a causal  or light signal is excluded. That is, 

unlike sequential computer programs, or even those which govern the functioning 

of  the computer in a “parallel”12 mode through “synchronizations”  achieved by 

causal interactions, the laws of coexistence exclude any casual link between the 

magnitudes or properties of the natural phenomena that they relate.

Let us consider,  for example, the law of universal  gravity, which relates the 

attractive force F between two bodies to their masses M1 and M2, to their distance r 

and to the constant of gravity G:

F = G (M1× M2)/r
2 [1]

In continuing with the above metaphor, this equation serves as a bridge between 

the information relative to the masses of the two bodies and the distance separating 

their centers of mass to the attractive force exerted between them.13  In the context 

of  Newtonian  mechanics,  however,  we  generally  hypothesize  that  force  F 

explicates  itself instantly or  “at  a  distance”:  the “attraction” that  the sun exerts 

upon the earth  could be conceived  of  as  a  signal  traveling at  infinite  speed.  It 

follows that  [1] does not connect two states of the Earth-Sun system as can be 

identified in different instances, but rather properties which both bodies manifest 

simultaneously and instantaneously, without any possibility of establishing a line 

of temporal evolution between them. Even though one can, of course, use force and 

distance to calculate the masses or viceversa (this aspect of the algorithmic nature 

of scientific laws is performed by a physicist or by a machine that is used to make 

the appropriate calculations), a physical, two-body system cannot implement [1] if 

we  regard  it  as  an  algorithm,  since  the  parts  of  the  system  would  have  to  

communicate instantaneously.  If the approach to laws as algorithms is meant to 

apply not just to scientific laws, or the laws of science, for which it is adequate, but  

is intended (i) as an explanation of the applicability of mathematics to nature as 

well as (ii) a characterization of laws of nature as opposed to laws of science, then 

it must overcome this difficulty: laws of nature that are of coexistence cannot be 

regarded  as  algorithms,  because  they  cannot  be  implemented  by  any  physical 

system.

Another example of a law of coexistence is offered by Boyle’s law, which links 

pressure P and volume V of a perfect gas14 to its temperature T and to a constant k:

12  To  explain  the  difference  between parallel  and  sequential,  imagine  a  group of  cars  

entering a toll area simultaneously through several entrances (in parallel), or the same cars 

entering in succession through a single entrance (sequentially).
13  Naturally, the bridge in question does not necessarily link the magnitudes in the way 

illustrated in the text.  For example, if given the force and the two masses of the bodies, 

we can calculate their distance, etc. The expert reader will also note that this equation and 

the ones that follow are not written in differential form.
14  A perfect or ideal gas is a model of a real gas, which we can resort to in the hypothesis  

that the forces of cohesion, or other forces acting on their molecules, are negligible.
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  P V  =  k T    [2]

This law tells us that by doubling the volume of gas contained, for example, in 

a cylinder, its pressure halves or vice versa, in a way that respects the constancy of 

the product (as long as during this transformation temperature T remains the same), 

but does not say anything with regard to the temporal  evolution of the system, 

given that it links properties exemplified by the gas in question at the same instant.

To further illustrate the difference between these laws of coexistence and a law 

of succession, we will now consider the Galilean law of free fall. For the sake of  

simplicity, I will suppose that our test particle has no initial velocity, and that its 

initial position coincides with the origin of the coordinates  s.  The final space  s 

traveled by the particle can then be obtained by the formula

s f  =  ½ g t 2     [3]

expressing the proportionality between the distances traveled and the squares of the 

times taken to travel them.15

In sum, while in type [3] laws of succession the formula refers to temporally 

extended  processes,  whose  single  stages  manifest  themselves  in  successive  

instances, laws  like  Newton’s  and  Boyle’s  relate  states  of  physical  systems 

occurring  simultaneously  and instantaneously.  It  follows  that  the  identification  

between  laws  and  algorithms,  as  impressive  as  it  may  be,  is  not  sufficiently  

general,  given  that  the  algorithms  manage  to  account  for  only  the  laws  of  

succession, but not for those of coexistence.

As a consequence, it would seem legitimate to conclude that this identification 

should be seen at best as a heuristic instrument, and that it cannot be utilized to 

explain  why  the  laws  of  nature  are  mathematical,  as  the  physicists  and 

philosophers Paul Davies and John Barrow propose, by expanding a few technical 

results owed to Andrej Kolmogorov, Gregory Chaitin and Ray Solomonoff.16

To  further  elaborate  on  this  criticism  and  to  discuss  possible  ways  to 

circumvent it, it would be opportune to present the view that equates natural laws 

to algorithms in more detail.  The idea essentially consists of assuming that  the 

temporal evolution of every physical system passing through a finite number of 

states  can  be  described  by  a  string  of  real  numbers,  which  correspond  to 

measurements of values of certain physical magnitudes that the system possesses 

(temperature, pressure, velocity, etc.) It is essential to note that these strings can be 

either ordered or completely “random.”

15  The factor of proportionality is given by the acceleration of gravity g multiplied by ½.
16  Besides the previously-cited essay by Barrow, consider J. Barrow,  Perché il mondo è  

matematico?,  Laterza, Roma-Bari 1992. The idea of considering the laws of nature as 

algorithms was also developed by D. Deutsch,  The Fabric of Reality, Allen Lane The 

Penguin Book, London 1997.  At the base of these theories is the work by Kolmogorov 

and Chaitin in the 1960s, and the essay by R. Solomonoff, A Formal Theory of Inference, 

Part I,” in “Information and Control,” VII, 1964, p. 1.
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- In the first case, the string of numbers can be constructed on the basis of a 

precise criterion, as occurs in tests of mathematical ability that ask us to find 

the next number in the sequence.

- If  the  string  is  random,  it  appears to  lack  a  generating  criterion,  where 

“appear” means that while we can demonstrate that a finite string is not causal 

simply by giving its generating law, we can never demonstrate that a string is 

random.17

For example, a list of numbers like

    {1, 4, 9, 16, 25, 36, …} [4]

is not formed by numbers in a random succession, given that it can obviously be 

obtained by squaring the positive integers:

  

      {1, 2, 3, 4, 5, 6, …} [5]

At this point, the link between the notions of algorithm and law should be clear. 

If the numbers in [5] are associated with certain physical magnitudes, like intervals 

of time measured in seconds (measurements of the independent variable, or input 

data)  and if we find through experiment – as  did Galilei  when he rolled some 

spheres  down an inclined  plane  – that  the corresponding  distances  travelled  in 

meters (measurements of the dependent variable, or output data) are proportional to 

the  squares  of  the  times,  as  in  [4],  then  the  program,  which  applied  to  the 

succession of times as inputs generating the succession “of distances” is precisely 

the law expressed by [3], modulo the constant factor ½ g.

Let us therefore imagine that the result of our measurements, or the output that 

constitutes the initial data, is represented by a sequence of numbers like the one in 

[4]. After converting this sequence into a group of binary numbers (binary digits,  

or bits), made up of only 0 and 1,18 a search for laws becomes equivalent to asking 

(following Kolmogorov’s important results) the length of the shortest program that 

can generate the sequence. This length, called complexity, will be equal to that of 

the list if the latter is made up of completely random numbers, and will be equal to  

the number of bits of the shortest program capable of generating the list, if the 

latter can indeed be generated in this way.19

Since a succession like [4] can be generated by the instruction “print the square 

of the first natural  numbers  n,” and this instruction possesses,  also for a large  

number n,20 the same information as the complete list of the squares of the first 

17  This fact comes from the insolvability of the halting problem of Turing machines. See,  

for  example,  H..  Rogers,  Theory of  Recursive Functions and Effective Computability, 

McGraw-Hill, New York 1967.
18  In binary digits, list [4] is given by {1,  100, 1001,  10000…}. The symbols 0 and 1  

correspond, respectively to the absence and presence of electricity.
19  The bit is the elementary unit of information, which can have only the values 0 and 1.
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numbers  n,  [4]  is  called  algorithmically  compressible:21 the  information  of  the 

original list can in fact be condensed into a much smaller number of bits. Instead,  

in a list of numbers that is purely random, there is no rule or law for generating the 

sequence,  and  the  sequence  is  called  algorithmically  incompressible.  The 

complexity of these lists is equal to their lengths, because they are only generable 

by a complete enumeration of their elements.

In  being  equipped  with  these  definitions,  we  can  now  consider  Barrow’s 

explanation of the reason for which the laws of nature are mathematical:22 

Science  exists  because  the  natural  world  seems  algorithmically 

compressible.  The mathematical formulas that we call laws of Nature are 

economic reductions of enormous sequences of data on the changes of the 

state of the world:  this is what we mean by the intelligibility of the world. 

[.  .  .]   Given  that  the  physical  world  is  algorithmically  compressible, 

mathematics  is  useful  for  describing  it:  it  is  in  fact  the language of  the 

abbreviation of the sequences.  The human mind permits us to enter into 

contact  with  that  world  because  the  brain  has  the  ability  to  compress 

complex  sequences  of  sensorial  data  into  a  briefer  form.  These 

abbreviations allow for the existence of thought and memory. The natural 

limits of sensitivity that nature imposes upon our sensory organs impede us 

from overloading ourselves with information about the world. These limits 

function as safety valves for the mind.

In returning now to the difficulties mentioned above, we can observe that the 

aspect  of  compressibility,  and  therefore  of  descriptive  economy,  as  Barrow 

highlights, is undoubtedly present both in the laws of coexistence and in those of 

succession. From this point of view, if the algorithmic thesis were limited to the  

claim,  in  Mach’s  tradition,  that  the  laws  of  nature  condense  a  very  high  and 

potentially infinite number of possible observations and measurements into their 

formulas, one should not hesitate to subscribe to it; if one needed to be further 

convinced, he or she need only read the memoirs of any experimental scientist.23 

Could  we  then  conclude  that  the  laws  of  nature  are  mathematical  because 

mathematics is an excellent instrument for compressing information? While this 

response surely has some truth to it, it is much more difficult to try to explain why 

this  happens;  in  what  sense  does  the  claim  that  nature  “is  algorithmically 

compressible”  explain  why  “the  world  is  mathematical?”  Barrow’s  attitude 

towards this question appears to oscillate between two positions:

20  If  n  is one million or one billion, the instruction “print the square of the first million 

natural numbers” has approximately the same number of bits as “print the square of the 

first billion natural numbers,” but the length of the two complete lists will be completely  

different.
21  See J. Barrow, Perché il mondo è matematico?, cit., pp. 93-96.
22  Ibid.
23  See for example the data relative to Boyle’s law, as appears in R. Harré, Laws of Nature, 

Duckworth, London 1993, p. 14.



42 The Software of the Universe

(a) On the one hand, he attributes the compressibility to “the physical world in 

itself,” whatever this may mean;

(b)  On the  other,  he  seems to  suggest  that  it  is  the  mind that  filters  sensorial 

information, by first compressing it in a “natural” way through perception and 

memory,  and then by further  processing  it  and compressing it  through the 

construction of mathematical concepts, which are more or less freely invented.

Beginning with the second of the two interpretative hypotheses, we will note 

that it seems to depend on a constructivist view of mathematics, on the basis of 

which mathematics is a creation explicitly realized for an applicative purpose. In 

this way, the mystery of the applicability of geometry, algebra and calculus would 

shift  from  the  philosophy  of  mathematics  to  the  cognitive  sciences  and  more 

generally, to the study of the human brain. From this point of view, mathematical  

activity, or at least the part of it that consists of trying to condense numerical data 

obtained through observation into formulas lacking redundancy, is the product of 

the human mind, in the same sense in which any human perception reduces the 

complexity of the object perceived through the mechanisms that filter information.

The problem with this second interpretation, as Barrow formulated it, lies not 

so  much  in  the  fact  that  he  does  not  explicitly  argue  for  mathematical 

constructivism or in favor of the view that mathematics is the art of compressing 

information,  but  in  the  fact  that  the  notion  of  the  brain’s  ability  to  compress  

information,  for  how  interesting  and  plausible  it  may  be,  is  not  sufficiently 

developed. The claim that “mathematics is an effective instrument for compressing 

information” does not help us to understand why this happens with respect to the 

natural world, nor does it bring us closer to our aim of maintaining that the brain 

compresses information from the external world. What is, in fact, the relationship 

between  mathematics’  ability  to  compress  information,  and  the  human  brain’s 

capacity to filter  the natural  world? The suggestion of  looking at  the cognitive 

sciences and neurosciences is probably a step in the right direction, but in this form 

it is still too vague to be of help to us.

If we were to adopt the first  hypothesis,  which “reifies” the compressibility 

achieved  by  mathematics  by  referring  it  to  some  unknown  properties  of  the 

physical  world “in itself,”  we would still  have to explain  why it  is  possible to  

represent  relationships  between observable  properties  of  physical  systems  with  

numerical, algebraic or geometric structures. This problem – which is preliminary 

both to  the computational  approach  to the laws of  nature and to any approach 

intended to explain the applicability of mathematics – has until now been almost 

completely neglected, and we will deal with it in the rest of this chapter.

For the purpose of granting hypothesis (a)  every possibility of success,  this 

problem  can  be  temporarily  put  aside,  remembering  that  a  hypothesis  on  the 

“compressibility in itself” of the natural world is sometimes defended via a recent 

thesis by David Deutsch. According to this view, the applicability of mathematics  

is based on the fact, contingent and fortunate at the same time, that the simplest 

mathematical operations, like addition, can be simulated by natural processes, such 
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as those that take place in the electrical circuits of a computer.24 On the basis of a 

physical  version  of  the  so-called  Turing-Church  Principle,  according  to  which 

every  function  that  is  “intuitively  computable”  can  be  computed  by  a  Turing 

machine, Deutsch has maintained that any physical process consisting of a finite 

number of steps can in principle be simulated by a quantum Turing machine.25 

This proposal, for how interesting it may be, seems very poorly founded. In 

fact, to affirm that the laws of nature render addition and multiplication possible 

due to  the  electrical  impulses  of  a  circuit  can  only mean affirming one of  the 

following theses:

1. any computer, inasmuch as it is a physical system, is subject to limitations 

imposed by those physical laws that the computer itself must obey;

2. we can  interpret  certain  operations performed  by a physical  system in 

finite  time as  a calculation;  for  example,  we can  use the shadow of a  

gnomon to determine the time of day or the fall of sand in an hourglass to 

measure the duration of a phenomenon.

In hypothesis (1), the thesis has undoubtedly interesting theoretical implications 

for  the relationship between computer  science  and physics.  However,  from our 

point of view this thesis does not explain anything, given that it is only a condition 

necessary to the applicability of mathematics. Obviously, if the physical processes 

responsible  for  the  simulation  of  simple  mathematical  operations  were  not 

“computable” (or, in particular, executable in finite time by microprocessors), we 

could not apply mathematics to the natural world, in the sense that we would not be 

able to use computers either to compute or to simulate other situations of the real 

world.  To claim that  nature  has mechanisms  that  can  be  used  for  performing  

addition, and therefore that isomorphisms26 exist between these physical processes 

and the arithmetical operation of addition, is simply another way of formulating the  

problem that gives the title to this chapter, and not a solution. Why in fact do these 

isomorphisms exist?

Hypothesis  (2)  takes  us  back  to  the  subjective  attribution  of  intentional 

properties to inanimate objects that has been already discussed, and which does not 

seem to shed any particular light on our problem. We must admit that from the 

point  of  view of  an  abstract  and  purely  mathematical  formulation  of  Turing’s 

theory,  the  anthropocentric  concept  of  “computability”  lacks  epistemic 

24  D. Deutsch, Quantum Theory, the Church-Turing Principle, and the Universal Quantum  

Computer,  in  “Proceedings  of  The  Royal  Society”,  A 400,  1985,  pp.  97-117,  and  J.  

Barrow, Perché il mondo è matematico? cit., p. 78.
25  A Turing machine is a tape made up of an infinite number of squares, read one at a time 

by a head that moves back and forth along the tape from left to right.  On the basis of 

internal instructions, the head of the machine can read, erase, and write a symbol in each  

of the squares.  
26  An isomorphism is a bijective function  f  between two sets that preserves the relations 

between their elements.  A bijective function f: A → B associates distinct elements of A to 

distincts element of B, and is such that all elements of B originate from elements of A.  
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characteristics  (that  is,  characteristics  referring  to  cognitive  human  powers).27 

Nevertheless, in its applications to physical systems, the affirmation that a physical  

system  effectively  “computes”  values  in  a  way  that  is  structurally  

indistinguishable from the operations of a Turing machine seems to have some 

validity, depending on our particular interpretation of the system in question, and 

renders the physical version of the Turing-Church principle explicatively weak for 

our purposes.

Additionally,  the  purely  “behavioristic,”  black-box  type  consideration  of  a 

physical system (on the basis of which only the input and output of the system are  

considered,  and the nature of the intermediate states  are  ignored) in theoretical  

physics appears needlessly restrictive. If in the case of the intersubjective study of 

the mind, the interpretation of the latter as a sort of “black box” is justified by the 

need  for  an intersubjective  foundation of  the  hypotheses  that  must  explain  our 

behavior, in the case of physical systems this need does not arise, since attributing 

causal powers to the physical states between input and output does not involve, as 

in the case of introspection, affirmations which are purely “subjective” and not 

objectively controllable.

The Reducibility of the Laws of Coexistence to the Laws of Succession

Deutsch’s interesting claim regarding the possibility of perfectly simulating any 

physical  system undergoing a finite number of changes with a quantum Turing 

machine cannot be further discussed here, given that it would take us too far from 

our purposes.28 I have said that the algorithmic view of the laws of nature, which 

uses the metaphor of the world as a giant computer that in every instant computes a 

temporally successive state on the basis of its cosmic “software,” does not succeed 

in accounting for all  those nomic relationships between phenomena that  I  have 

referred to as being of coexistence, and which are not identifiable with real and 

proper  sequential programs.  Might  we  not  try  to  overcome  this  difficulty  by 

maintaining that  every  law of  coexistence  is  expressible  through an  equivalent 

combination of laws of succession? Otherwise, might it not be possible that the 

laws of succession are in any case more fundamental than the laws of coexistence, 

in the sense that the nomic correlations between events coexisting in space depend 

on those that characterize the laws of succession in some way?

To defend  this  hypothesis,  one  could  begin  by  observing  that  post-Einstein 

physics has tried to ban action at a distance. The speed of light, in fact, is often 

interpreted  as  being  the  maximum limit  for  the  speed  of  a  signal,  so  that  the  

concept of  absolute simultaneity, as would be required by action at a distance, is 

27  This observation is emphasized in J. Earman, A Primer on Determinism, Reidel, 

Dordrecht 1986, p. 124.
28  For an initial  elaboration on this,  see M. Dorato,  Chi ha bisogno di una fisica non-

computabile  della  mente?,  in  Prospettive  della  logica  e  della  filosofia  della  scienza, 

edited by V.M. Abrusci, C. Cellucci, R. Cordeschi and V. Fano, ETS, Pisa 1998, pp. 245-

254.
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not valid. As a consequence, in the fundamental theories of contemporary physics, 

in which the concept of  field is truly fundamental, all interactions propagate at  

finite speed. In desiring to salvage the hypothesis of the reducibility of all laws of 

nature  to  sequential  algorithms  executed  by  physical  systems,  one  could  then 

maintain  that  to  the  extent  to  which  the  laws  of  coexistence  presuppose  that 

precisely instantaneous causal action excluded by contemporary field theories, we 

would have good reason to do without it!

Despite the unexceptionable  correctness  of  this last  observation,  the plan to 

eliminate  all  laws  of  coexistence  from  physics  does  not  appear  to  be  easily 

achievable,  given  that  at  least  some of  them,  at  closer  analysis,  do  not  at  all 

presuppose action that is instantaneous, or “at a distance.”29 As a result, a law that 

sets forth relationships between properties as exemplified by a physical system in 

one  instant  does  not  necessarily  involve  the  existence  of  a  causal  interaction 

between the two. For example, let us consider Gauss’ law concerning the flow Φ of 

an electric  field  E0,  generated  by a charge  q  at the center  of  a  closed surface, 

through the surface itself:

  Φ ( E 0 ) =  q / ε0 [6]

In this formula,  subscript “0” refers to the fact that the charge is in the vacuum, so 

ε0 is  the  dielectric  constant  of  the  vacuum.  This  law  connects  two  physical 

magnitudes, Φ ( E 0 )  and q, which, to the extent that they belong to the same plane  

of simultaneity, are  coexistent.30 Of course, the charge generates or “causes” the 

flux at a delayed time, but in the form in which the relationship between the two 

magnitudes  is  stated  in  [6],  the  two  magnitudes  are  coexistent,  because  no 

specification is made of the possibly different times at which one considers them. 

Qua coexisting events, the flux crossing the surface and the simultaneous state of 

the charged body cannot be causally connected, given that, if they were, the spatio-

temporal regions in which they were located would have to exchange information 

at a velocity faster than that of light, in contrast with the spirit of the theory of 

special relativity. 

We can therefore conclude our discussion on the relationships between laws of 

coexistence  and  causal  laws  of  succession  in  the  following way:  until  physics 

29  For an updated discussion on the fact that the laws of coexistence do not imply non-

locality,  see  J.  Earman,  Bangs,  Crunches,  Whimpers  and  Shrieks,  Oxford  University 

Press,  Oxford  1995,  Chapter  5.  See  also  M.  Dorato,  Earman on “Bangs,  Crunches,  

Whimpers, and Shrieks,” in “British Journal for the Philosophy of Science”,  IL, 2, 1998, 

pp. 338-347.
30  The equivalent differential formulation, 

    d i v E 0  =  ρ 0

(Maxwell’s equation), relates the divergence of an electric field to the charge density in  

the vacuum. To be sure, the flow through the surfaces of an infinitesimal volume that  

contains an infinitesimal electric charge dq is generated by the charge. However, at any 

instant of time the charge coexists  with with the flow through the surface on a plane of 

simultaneity having an infinitesimal area.
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forces us to reintroduce signals propagating faster than light, the nomic relationship 

of coexistence between physical phenomena (or types of physical events) must be 

considered “just as fundamental” as the causal one. “Just as fundamental” in this 

case means that:

i) the fact that a single physical event a is the cause of a single event b does 

not  necessarily  presuppose  a  nomic  relationship  between  A and  B (the 

capital letter indicates that we are referring to types of events);

ii) as a result of the existence of “a limiting signal” like that of light, a law of 

coexistence between a and b does not necessarily presuppose a causal link.

Contrary to the thesis that I have just expressed in i), we should take into account  

that,  on  the  basis  of  some  interesting  reductionist  and  physicalist  theories  of 

causality, a causal process is characterized by the existence of laws of conservation 

of some physical magnitudes (including momentum, angular momentum, electrical 

charge,  etc.),  as  exemplified  by  pairs  of  events  or  interacting  processes.31 For 

example,  if  we imagine that  the causal  interaction  between a rock thrown at  a 

window and the window itself is characterized by the conservation of momentum, 

the product of the velocity of the rock times its mass (i.e., its momentum) must  

correspond, if such a magnitude must be conserved through the interaction, to the 

sum of the products of the velocities of the single fragments of glass times their 

respective masses.

Within such a physicalist conception of causality or causal processes, the causal 

interaction of two physical events would therefore seem to require the existence of  

a law of conservation as its necessary condition. Nevertheless, for reasons which 

will become clear only later on, I will instead maintain that, especially outside of 

physics, but sometimes also within it,  many causal  relationships between single 

events do not at all presuppose a law. It follows that, as affirmed in 1), a causal  

relationship  existing  between  two  single  events  cannot  be  reduced  to  a  nomic 

relationship (causal singularism).

Similarly, ii) above claims that laws of coexistence do not presuppose laws of 

succession  or  causal  processes,  precisely  because  the  former  refer  to  pairs  of 

simultaneous  events,  or  events  belonging,  as  we  say  in  jargon,  to  spatial 

hypersurfaces.32

 Nonetheless,  even  in  this  case  there  is  a  possible  objection  that  should  be 

considered. We could hypothesize that the existence of any nomic link between 

events belonging to spatial hypersurfaces is evidence of the fact that the link in 

31  For this theory of causal processes, see P. Dowe,  Wesley Salmon's Process Theory of  

Causality and the Conserved Quantity Theory, in “Philosophy of Science,” LIX, 1992, pp. 

195-216; W. Salmon, Causality Without Counterfactuals, in “Philosophy of Science,” LXI, 

1994, 297-312; P.  Dowe,  Causality and Conserved Quantities: A Reply to Salmon,  in 

“Philosophy of Science,” LXII, 1995, pp. 321-333.
32  These  hypersurfaces  correspond  to  instantaneous  sections  of  space-time,  instants  of  

“cosmic time,” which in certain models of general relativity allow us to subdivide all 

events into past and future (with respect to those instants).
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question originated from a single common “ancestor,” or  common cause,  which 

explains the very existence of the nomic correlation across space. This hypothesis 

seems  to  be  suggested  by  the  example  of  Gauss’  law  [6],  given  that  my 

classification of it as a law of coexistence might be criticized for neglecting the fact
33 that the flow is generated through the closed surface by the charge placed inside 

it, through a process that is causal and not instantaneous.

According to Reichenbach’s Principle of the Common Cause, in the presence 

of a statistical correlation between spatially separate events (for example, a certain 

number of simultaneous cases of indigestion in different people who have dined 

together), and in the hypothesis that such spatially separate events are not directly 

causally related, one can assume the existence of an event in their common past, or 

the  so-called  “common  cause”  (spoiled  milk  utilized  for  the  preparation  of  a 

dessert  that  everyone  has  eaten).  The  common cause  would  explain  away  the 

coincidences given by the collective illness, since without the existence of such an 

event in the common past, the probability of a simultaneous illness for a certain 

number of people would be extremely low. Similarly, on a more theoretical level,  

the presence of cosmic background radiation, for example, that is homogeneous 

and isotropic, has suggested models of the early universe that predict a highly rapid 

expansion (the so-called “inflationary” models). In this way, we could explain why 

regions of space, that would otherwise be causally disconnected, instead present 

such important “correlations” between the physical magnitudes associated with the 

radiation in question.

We could therefore argue that every law of coexistence has been generated, and 

therefore presupposes and depends on laws of succession, or on “almost parallel” 

causal processes that run between them and that originated in the past. For this, see 

Figure 2.

    

33  J. Earman, Bangs, Crunches, Whimpers and Shrieks, cit., Chapter 5.
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Even though it would not be implausible to argue that nomic links between 

simultaneous  events  can  be  explained  by  common  causal  processes  that  have 

generated  and  “preserve”  the  relationships  between  the  events  in  question,  a 

remaining  obstacle  to  implementing  this  plan  would  be  the  so-called  quantum 

correlations. Such correlations nomologically link the measurement results of two 

identical particles fired in opposite directions from a common source, and revealed 

by apparatuses placed in causally disconnected regions. These correlations cannot 

be explained by common causes that render them probabilistically independent of 

each  other,  nor  can  they  be  explained,  without  running  into  difficult  and 

controversial  conceptual  questions,  by  postulating  symmetrical  causal 

dependencies between the measurement results, given that their temporal order is 

not an invariant for different inertial observers.34

In not being able to go into the details of these difficult problems, I will only 

emphasize that the plan to “substitute” every law of coexistence with causal laws 

that  invoke  a  common cause  for  the  nomic  correlations  between  simultaneous 

events does not have enough empirical support at this time. More importantly, even 

if we could maintain that for every nomic correlation between simultaneous events, 

laws  of  succession  existed  that  implicated  a  past  common causal  process,  this 

would not be the same as maintaining that  these correlations  do not exist  now. 

Explaining  a  law  of  coexistence  by  affirming  that  it  derives  (or  that  it  is 

34  For a primary introduction to the problem of quantum non-locality, see J. Cushing and E.  

McMullin  (eds.),  Philosophical  Consequences  of  Quantum Theory,  The University  of 

Notre Dame, South Bend, Indiana 1989.
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determined) by laws of succession is not the same as denying that the laws of  

coexistence exist.  In brief, the laws of coexistence seem difficult to reduce (and  

therefore eliminate) in favor of laws of temporal succession.

If,  given  this  irreducibility,  we  wanted  to  try  to  salvage  the  algorithmic 

conception of the laws of nature by restricting the applicability of the latter to the 

laws of succession, the philosophical  theory we were discussing would become 

very  weak,  because  the  laws  of  coexistence  should  be  excluded.  These 

observations would seem to definitively confute the interpretation of natural laws 

as algorithms.

The  reason  that  the  algorithmic  conception  of  laws  implicitly  tends  to 

underestimate  the  role  of  the  laws  of  coexistence  with  respect  to  those  of 

succession  should  also  be  clear:  predictions  per  se are  only  permitted  by  the 

former,  and  not  by  the  latter,  and  predictive  accuracy  is  considered  the  most 

important cognitive fruit of science.

Note that laws like [1] or [2] above do not explicitly depend on time: from the 

cognitive or applicative point of view, they have properties that are very different 

from laws like [3].  In [2],  by keeping the temperature  of  the gas  constant  and 

doubling its volume, we can “predict” that the pressure exercised by the gas on the 

walls of the vessel will halve only in the sense that this fact can be deduced from 

the form of the law. However, the “prediction” in question does not imply, as with 

genuine predictions, that the modification of pressure is  temporally successive to 

the modification of the volume. The changes in pressure and volume are in fact  

simultaneous, because equation [2] describes an equilibrium state of the system.35 

For instance,  a  decrease  in  the density  of  the gas  – owing,  for  example,  to  an 

increase  in  its  volume  –  simultaneously provokes  a  lower  average  molecular 

velocity,  and therefore  an overall  lower pressure:  the impacts  of  the molecules 

against themselves and against the walls of the recipient are less violent and less 

frequent. Alternatively, we can say that if we modified the system by diminishing 

the pressure, if the temperature remained the same we would simultaneously cause 

an increase in volume. For example, if we took 50 grams of air to the summit of a 

mountain 1000 meters high, if the temperature remained the same, the air would 

occupy a greater volume than at sea level, because at 1000 meters the pressure is 

lower.

In brief, the algorithmic structure involved in the laws of coexistence enables us 

to calculate the value of certain magnitudes (F or Mi in [1]; P or T in [2]) on the 

basis of the other magnitude, which we suppose to be known or given. However, 

while the laws of succession allow us to interpret  the determination of the final  

states  by  the  initial  ones  in  a  causal  sense,  the  laws  of  coexistence  imply  a 

determination that is only “logical,” or deductive (the “cause,” if we could speak 

of such a concept, would be simultaneous to its effect). What I have claimed so far 

could be then summarized as such:  every scientific prediction is the result of a  

calculation performed on the basis of an algorithm yielded by a law of nature, but  

35  This remains true despite the fact that it is easier to intervene on the system from the  

outside, modifying the volume rather than the pressure.
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not every calculation useful for determining the value of a magnitude through a  

law is a prediction.

Before continuing our discussion, it would be useful to try to understand why 

the  predictability  of  the  temporal  evolution  of  a  physical  system  is  rendered 

possible by the mathematical  aspect  that  we attribute to the laws of  nature,  an  

aspect  which  validates  the  numerous  efforts  scientists  have  made  to  find  a 

quantitative formulation of laws. The application of a law of succession allows us 

to calculate what the state of a physical system will be (relative to the units of  

measurement  that  interest  us)  in  any  instant  of  time,  assuming  the  initial 

conditions, if the solution to the differential equation that expresses it

(1)  exists

(2) is unique

and if

(3) slight  imperfections  in  the  measurement  of  the  initial  conditions  do  not 

increase with the passing of time in the successive states.

This  last  condition,  known  as  stability,  is  especially  responsible  for  the 

predictability, also in the long run, that constitutes the strong point of the scientific  

description of the world. The other two conditions, existence and uniqueness of the 

solutions, instead render possible what is known as the deterministic description of 

the world, i.e., that the state of the system at any given time, plus the algorithm 

given by the law, univocally fixes the state of the system at any other time. If the 

ability to predict constitutes the essential characteristic of empirical science, then a 

discipline lacking in laws would not be a science.36

36  Predictability,  despite  frequent  assertions  to  the  contrary,  should  not  be  seen  as  a 

necessary condition for the presence of determinism.  One the one hand, abandoning the 

condition of stability severely  limits the predictive possibilities of a system of equations, 

but  does  not  necessarily  cancel  them,  as  meteorology  shows.   On  the  other  hand,  

phenomena  that  depend  sensitively  on  initial  conditions  show how  an  unforeseeable 

evolution can be compatible with the existence of a single deterministic output. This input  

(initial data), being specifiable only within certain intervals of experimental error, can  

give origin to widely divergent future evolutions, which over time amplify small initial  

differences.  Indeterminism, finally, is given by a “one-to-many” correspondence between 

initial  and  final  data:  many  future  possible  events  correspond  to  a  single  present.  

Determinism requires  the  “same  cause-same  effect”  principle;  non-linear  phenomena, 

depending as they do on small variations in the initial conditions, respect this principle,  

but violate the one according to which “similar effects follow similar causes.” Finally, 

indeterminism violates the first principle, given that different effects can follow perfectly 

identical causes. 
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Measurement as a Necessary Premise for the Mathematization of Laws

We can now proceed to the problem of the quantitative modelling of experimental 

data,  which will  turn out to be essential  for  making progress  not only towards  

understanding why mathematics can describe nature, but also to discovering what 

the laws of nature are and how science operates. A law of physics is nothing but an 

algorithm for passing from a certain set of observations or properties of a system to 

different observations and properties of that system. It would then follow that if 

this data were not expressed quantitatively to begin with, the expressions that relate 

them (the laws) could not be applied to predict  the future,  and no arithmetical  

operation, from the most elementary to the most complex, could ever be executed. 

It is therefore rather strange that, up until now, this aspect has not been considered 

important to the clarification of why laws have a mathematical nature, especially if 

we consider that  measurement is definitely one of the most important, if not the  

main, scientific activity.  

As mentioned at the beginning of this chapter, the path that has been preferred  

until now for explaining the effectiveness of mathematics has led to the attempt to 

clarify  the  nature  of  mathematical  knowledge.  This  entails  trying  to  ascertain 

whether mathematical truths literally reveal the properties of abstract and causally 

inert entities (including functions, groups, classes, etc.), as Platonists would have 

it,  or  whether  mathematics is  essentially a creation of ours (constructivism),  or 

instead,  as  Galilei  believed,  it  is  the  language  in  which  nature  is  objectively 

written.

I will  at  least  partially work around these difficult  questions,  venturing down a 

much less-beaten path,  which will  lead us to attempt to establish what  type of  

relationship exists within the qualitative fabric of our phenomena, as they appear to 

our  perceptions,  and  their  quantitative  treatment,  which  constitutes  the 

presupposition of their measurement.  The key notion I will  appeal  to is that  of 

isomorphism between real objects and mathematical models,37 a notion which for 

our purposes can be considered equivalent to postulating the objective existence of 

structural and formal similarities between certain aspects of the phenomenal world 

and the mathematical structures used to describe them. I will provide evidence for 

the existence of these isomorphisms with a two-pronged argument, i.e., with the 

thesis that supports the empirical origin of all mathematical concepts on the one 

hand, and, on the other, with the hypothesis by the mathematician Saunders Mac 

Lane,  which  is  examined  and  elaborated  upon  here,  on  the  basis  of  which 

mathematics is essentially the knowledge of the forms of objects, a thesis which 

seems supported by a few results obtained in the field of the cognitive sciences, 

and which I will now illustrate.

As we saw in the previous chapter, the most characteristic difference between 

ancient and post-Newtonian physics lies in the widespread use that the latter makes 

of  mathematics. While Aristotle's physics was purely qualitative – we have seen 

37  See note 28.
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that all Greek mathematics, even Archimedes' work, made no reference to physis--

Newton's  Mathematical Principles of Natural Philosophy is full of formulas and 

theorems.  It  must  be agreed  that  ancient  astronomy –  a discipline that  is  both  

empirical and mathematized – constitutes a notable exception to the transition from 

the “world of more or less” to the “universe of precision,” to which the historian of 

modern  science  Alexandre  Kovré  referred  in  characterizing  the  scientific 

revolution.38  However, it is doubtless that the progress of our knowledge of nature 

has evolved from purely qualitative classifications of natural phenomena (hot and 

cold, light and dark, large and small, etc.) to their quantitative descriptions. Such 

descriptions  have  been  achieved  thanks  to  the  application  of  mathematics  to 

measurement  results  that  have  been  obtained  through  instruments  capable  of 

yielding more and more precise experimental data.

To this regard, one of the most important logicians and philosophers of science 

of the Twentieth Century, Rudolf Carnap, has maintained that the evolution of our 

scientific understanding of nature passes through three essential stages:

1.   the  classification of  phenomena on the basis of  the presence  or  absence  of 

certain qualities or properties;

2.    a comparative analysis in terms of “more” or “less”;
3.  the  construction  of  quantitative  concepts,  which  represents  the  final 

destination.39 

We  can  exemplify  this  “Comtean  law  of  the  three  stages”  using  the  case  of 

“possible-probable,” whose quantitative aspect is the subject of Carnap’s  Logical  

Foundations  of  Probability (see  previous  note).  However,  the  following 

considerations are also valid for fundamental physical magnitudes, including the 

length of an object, its weight, or the interval of time between events, even if, for  

reasons of space, I will limit myself to extending the remarks I will be making on 

the notion of probability only to the metric concept of length.

 1. CLASSIFICATION–Let us suppose that a judge must make some decisions 

regarding the depositions of some witnesses whose credibility he or she has reason 

to doubt. In wishing to separate what is believable from what seems implausible, 

the judge will  start  by  classifying all  the events  described  by the witnesses  by 

relying on the qualitative concept of  possible,  the direct  opposite of  impossible. 

This dichotomy is normally used to separate phenomena that are either compatible 

or incompatible with some generalizations we normally take for granted: logical, 

natural,  or  social.  For  example,  if  the  version  told  by  one  witness  contains 

contradictions, the facts stated are automatically classified as “impossible.”

38  See A.  Koyré, "Du monde  de l'«à-peu.près» a  l'univers  de  la  precision", in  Etudes 
d'histoire de la pensée philosophique, Paris, Gallimard, 1973.

39  This division into three, present in R. Carnap,  Logical Foundations of Probability, The 

University  of  Chicago  Press,  Chicago  1950,  was  later  also  examined  by  C.  Hempel, 

Fundamentals of Concept Formation in Empirical Science,  The University of Chicago 

Press, Chicago 1952.
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In proceeding now to the physical concept of length, if we are dealing with 

spatial dimensions, we will begin by classifying objects that we measure as long or 

short,  with  respect  to  standard  objects  conventionally  regarded  as  measures  of 

length.   These  measures  tend  to  involve  parts  of  our  body,  including feet  and 

inches  (once  known  as  “thumbs”),  the  latter  still  present  in  the  Anglo-Saxon 

system of measurement. This is the first state of the formation of concepts, which 

Carnap refers to as classificatory. 

2. COMPARISON–In listening to more than one version of the same unknown 

events by different witnesses, our judge will plausibly proceed to  compare them, 

ordering  all  the  available  reconstructions  according  to  their  being  of  greater,  

smaller or equal probability,  therefore implicitly assigning different “degrees” to 

the  concept  of  possible (plausible),  which  was  previously  used  in  a  purely 

classificatory way. Similarly, the possibility of comparing the length of different  

objects will permit us to order them, so that  one will be longer or shorter than  

another.

This  constitutes  the  second stage  of  concept  formation,  which  Carnap  calls 

comparative,  and it  is  particularly important because it  already has  a very rich 

logical structure.

Once we have recognized that a scientific concept admits different degrees, it is 

possible  to  order  all  cases  in  which  it  is  exemplified  through  relations  of 

comparison (majority or minority) and of equivalence. The comparison of minority 

for example, is characterized by two properties: 

a. Transitivity. In our two examples, the relation “being less plausible” (denoted by 

“<p”,  while the relation “being  less long” will  be referred  to  by “< l”)  is 

transitive, in the sense that if the version of the facts a is less plausible than 

version b, and if the latter is less plausible than c, then it necessarily follows 

that a is less plausible than c. Similarly, if body a is shorter than b, and the 

latter is shorter than c, from the meaning of “shorter,” it necessarily follows 

that a <l c.

b. Asymmetry. Relations of comparison are also asymmetrical, in the sense that the 

order of the two relata is not “interchangeable”: if a <p b or if a <l b, by the 

very meaning of the relations in question, it follows that b <p a or b <l a are 

not also possible. The same property is obviously valid for the comparisons 

of majority (“greater than”).

Since we cannot assume that for any version V, V is necessarily more plausible 

or less plausible than any other version, we must introduce another relation,  the 

relation of equivalence, to denote the notion of “being equally plausible” (“=p”). 

Similarly,  for  the  concept  of  length  we  can  introduce  the  equivalence  relation 

“being of the same length” ( “=l”). 

Any  relation  of  equivalence  is  characterized  by  the  satisfaction  of  three 

properties:

a. Reflexivity. Every version of the facts is trivially as plausible as itself: a =p a;

b. Transitivity: if a =p b and b =p c, then a =p c;
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c. Symmetry: if a =p b, then also b =p a.

The equivalence relation ‘=p’ allows us to divide all our versions into classes of 

equivalence,  the  elements  of  which  all  have  the  property  of  “being  equally 

plausible.” These properties also hold for length: “being of the same length” or 

“being equally long” is also reflexive, transitive and symmetric,  and therefore a 

relation of equivalence.  All objects belonging to the same class are equally long 

and no two objects belonging to different classes of equivalence can be congruent.

3. QUANTIFICATION

Let us suppose that the judge is now willing to bet on the veracity of some of the 

testimony. To allow the force of his or her conviction to emerge and to be able to 

decide rationally on one or other of the available versions,40 he or she must pass 

from the qualitative to the quantitative plane. Essentially this means that he or she 

needs to reach a  numerical measurement of what had previously been evaluated 

only  in  terms  of  “being  plausible”  or  “implausible”  (classification)  or  having 

smaller or  equal probability  (comparison).  We need  to  introduce a  real-valued 

function P, assigning a real number between zero and one, including extremes, to  

the likelihood of the testimony in question. Obviously, the choice of the extremes 

of the numerical interval is partially arbitrary, given that he or she could just as 

well choose a range from 0 to 100, like the one used for percentages. An event that  

is  contradictory  or  impossible,  on which the judge would bet  no money at  all, 

would therefore become an event of zero probability, while a testimonial account 

that was certainly true would receive the maximum allowed probability, namely 

one. 

Between these two extremes, there is what is more or less probable, expressed 

as fractions ranging from numbers very close to zero (denoting a version of the 

facts that is almost impossible) to numbers very close to one (designating a version 

that is almost certain), and where the vague “more or less” can be estimated with 

much  more  precision,  the  more  reliable  the  method  is  for  calculating  the 

probability in question.41 

Of  course,  it  would  not  be  possible  to  assign  a  precise  real  number  to  the 

plausibility of a version in all cases, but if, for example, the judge were to decide 

between only two versions available, the first (V1) being twice as probable with 

respect to the second (V2), then

P (V1) = 2P (V2).  

40    For a study of how a wager can lead to a numeric value between 0 and 1, see R. Festa, 

Cambiare opinione: temi e problemi di epistemologia bayesiana, CLUEB, Bologna 1996.
41   In  this  sense,  probability,  regarded  as  the  measurement  and  quantification  of  the 

possible, represents, as the mathematician and philosopher Hermann Weyl affirmed, the 

new modality of science. “Modality” or “modal propositions” here mean the different 

ways in which a proposition  P can be true (necessarily true, actually true, or possibly 

true). If P  is "I have 1 euro in my pocket," and this is true, the truth of P is actual but its 

negation is not contradictory.  If  P is instead "2 + 2 = 4," then  P is necessarily true, 

because its negation is contradictory.
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 If it were possible to establish that V1 or V2 were mutually exclusive (either one 

or the other was possible, but not both) and exhaustive versions of the facts (no 

other version were possible), then the sum of their probabilities, as we will also see 

in what follows, must equal certainty (it rains or it does not), and the sum of the 

two probabilities must equal 1: 

            P(V1) + P(V2) = 1 

In this case it is already possible to assign to P(V2) the value 1/3, since 3P(V2)=1; 

P(V1) will be twice as much, and therefore 2/3.

Similarly, to quantify the concept of length, we introduce a real-valued function 

L,   which associates  tangible objects to real  numbers giving them their relative 

length on  a  given  scale.  Constructing  a  scale  presupposes  the  conventional 

attribution of a  unit  of measurement  to some chosen object  which functions as 

standard (an inch, a foot,  the platinum-iridium bar in Paris measuring 1 meter,  

etc.). The congruence of r times the length of the standard object with the object to 

be measured O means that O has length r ( r being a real number), relative to the 

chosen unit.

The  representability  of  the  order  of  plausibility  or  the  order  of  length  in 

numerical terms that we have constructed through the two relationships “<p” and 

“=p” can then be obtained by requiring that function  P (that is,  L) satisfy certain 

constraints. Namely: 

 if a =p b, then P (a) = P(b)           [7.1]

            if a =l b then L (a) = L(b)                [7.2]

In [7.1]  and in [7.2]  the sign “=” after  the two words “then” has the same 

meaning,  given  that  it  indicates  equality  between  real  numbers,  but  it  has  a 

different meaning both from “=p”, which stands for “equally probable” and from 

“=l”, which stands for “having the same length.” 

We then have 

    if a <p b, then P (a) < P(b)                                                                    [8.1]
 

       if a <l b then L (a) < L(b)       [8.2]

where  “<”  indicates  the  usual  relationship  of  “being  less  than”  which  holds 

between numbers, and therefore has a different meaning from both “<p” and “<l”.

Despite this difference in meaning, the expressions [7.1 and 7.2] and [8.1 and 

8.2]  allow  us  to  represent all  the  significant  relations between  the  different 

versions on the one hand (their being more or less probable),  and the different 

lengths of objects on the other through  “analogous” relations (analogous in a sense 

to specify) among the corresponding real numbers. The values of the probability 

function P are in fact expressed as real numbers between zero and one, and we can 
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apply  the  normal  arithmetical  operations,  including  sum  and  product  to  these 

numbers. 

Suppose that for any possible testimony there is a real number in the closed 

interval [0, 1] that measures its degree of plausibility. Suppose furthermore that 

any two different testimonies are assigned different numbers of the interval and 

that any real number in the interval corresponds to some testimony. In this case, the 

function P

P: E à R

mapping the set of testimonies E onto the set of real numbers between zero and one 

(R) would be  bijective.42 We could say that a bijection  P  created an isomorphic 

correspondence  between  the  two  sets,  provided  that  P  conserved all  the 

relationships and operations between the two groups. The same reasoning would 

apply to the bijective function L and to the comparative relations “having the same 

length,” or “being less long.” The meaning of the term “conserve” in this case 

could be explained by the following example. If as before we wanted to evaluate 

the plausibility of two versions which could not both be true, in the sense that they 

were mutually exclusive, we would have to introduce beforehand an operation of 

“sum” +p defined on elements of E, and then apply P to the result of the sum of “a 

+p b”, however it is defined. The conservation by the bijection P of the operation in 

question (“summing” versions or conjoining them as in “a +p b”) would imply that 

we had

 

    P 

(a +p b) = P(a) + P(b)

    

 

[9.1]

where, once again, the two operations “+p” e “+” do not have the same meaning, 

given that the second is the usual sum between numbers and the first is the union 

between  the  two sets  representing  the  two different  testimonies  (the  classes  of 

equivalence thereof).  Obviously, if the two testimonies were mutually exclusive 

and  exhaustive,  in  the  sense  that  it  were  possible  to  exclude  any  other,  the 

probability of their union would be equal to the maximum, that is 1, because it is 

certain  that  either  a or  b occurred,  and  the  two  versions  could  not  be 

simultaneously true.

In the case of the concepts “long/short,” the “sum” of the length of the two 

objects (say, two rulers) would be obtained by simply putting them one next to one 

another, as if we had a ruler twice as long as the original one:

      L (a +l b) = L(a) + L(b)                      [9.2]

42  See note 29. 
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In the case of another additive magnitude, weight, the operation of “summing”w the 

weights of two objects would be given by putting both on a scale, as if they were a  

single object. Also in this case, with obvious terminology

W (a +w b) = W(a) + W(b)      [9.3]

 Despite the fact that in the case of physical magnitudes that are not additive, like  

temperature, the procedure would be a bit more complicated (we cannot mix two 

gases of a different temperature and expect the temperature of the mixture to equal 

the sum of the temperature of the single, original gases), the procedures introduced 

are substantially the same,43 so that the method illustrated here could be applied to 

any measurable magnitude.

In simplifying and summarizing our discourse,  our comprehension of nature 

through a quantitative method passes  through four  stages.  We first  introduce a 

comparative order via asymmetrical and transitive relations (“being longer,” “being 

hotter,” “being heavier,” “being earlier than,” etc.), properties which are generally 

ascertainable  through  direct  observation.  We  then  determine  classes  of 

equivalence,  formed  by  entities  having  reflexive,  symmetrical,  and  transitive 

relations among one another  (“being of equal length,” “equal temperature,” “equal 

weight,” or “being simultaneous,” etc). To measure this purely qualitative order  

quantitatively,  we  therefore  introduce  appropriate  units  of  measurement,  and 

construct  a bijective function which assigns numbers  to the group of bodies or 

events  whose  properties  we  would  like  to  measure.  As  illustrated  above,  for 

probability  and  length,  this  is  typically  done  on  the  basis  of  procedures  of 

measurement of an operative type. Finally, by taking the properties exemplified by 

[7.1 and 7.2], [8.1 e 8.2], and [9.1 e 9.2] into account,  we order the classes of 

objects on a numerical basis.

Naturally, it is not always possible to order phenomena in a quantitative way, 

but where we can do so, the advantages are undeniable, and it is not difficult to 

explain why. During the Renaissance, for example, the Italian natural philosopher 

Bernardino Telesio believed that the fundamental explicative principles of nature 

were,  besides  matter,  hotness and  coldness.  However,  this  purely  qualitative 

account, besides lacking in predictive power, presented, unlike the assignment of 

quantitative  concepts  or  magnitudes  to  physical  systems,  the  disadvantage  of 

subjectivity. As we know, if we submerge our hand in a basin of water at room 

temperature after having left a sauna, the water will seem cold, while if we come 

out of a refrigerated room, the same water will seem just as hot. How can we reach 

43 Non-additive magnitudes are those whose sum does not correspond to “the joining” of the 

corresponding bodies: for temperature, mixing two gases at different temperatures in general 

does not yield the sum of the numbers corresponding to the temperatures of the single gases. 

It  is  therefore  necessary to  associate  the  size  in  question  to  the volume occupied by a 

substance which is dilated in a cylinder, or to the adiabatic transformation of the volume of a  

gas.  The  same  happens  for  the  hardness  of  bodies,  see  R.  Carnap,  Philosophical  

Foundations of Physics: an Introduction to the Philosophy of Science, M. Gardner (ed.), 

Basic Books, New York 1966.
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an agreement on the basis of qualitative and subjective concepts like hot and cold? 

Only after having created a conventional scale from 0 to 100 degrees Celsius, or 

from 32 to 212 degrees Fahrenheit, and with the use of a graduated instrument (a 

thermometer) can we find an objective expression corresponding to our sensations 

of hot and cold. As we have seen, this occurs through the assignment of a number 

measuring the temperature of a body, which allows us to compare our impressions 

of “hotter” or “less hot” in a precise way.  

 In defending the advantages of a quantitative description of nature from the 

numerous attacks that still come from certain schools of thought, I do not intend to 

discount the importance of classificatory or purely quantitative concepts. After all, 

our  learning  a  natural  language  and  therefore  the  first  concepts  like  dog,  cat, 

window, bird, etc., coincides with subdividing everything that exists into groups or 

different  classes without individuals in common amongst themselves.  In natural 

sciences like zoology and botany, in which the classifications use strain to identify 

a group of natural genera, the classificatory concepts help us to find the best way 

to systemize our knowledge of plants and animals. In the study of inorganic matter, 

Mendeleev’s Periodic Table of Elements illustrates how important it is to try to 

base  classificatory  concepts  (the  elements)  on  quantitative  differences.  On  the 

other hand, even the physics of elementary particles passed through various phases 

in which a general criterion of classification was sought for the numerous particles  

discovered.

It would not be therefore legitimate to affirm that all sciences necessarily first 

pass through a qualitative classification of nature (the hot-cold, night-day, male-

female, even-odd opposites characterize many primitive cosmogonies based on the 

exclusive “or”) to then proceed to a comparison by degrees (more or less) and in 

their maturity, finally arrive at quantitative concepts or magnitudes. However, it is 

undeniable that, as Hempel emphasizes, the use of quantitative concepts does not 

only  help  us  to  differentiate cases  that  in  a  given  classification  would  result 

indiscriminate – for us “it is hot” both at 31 and 35 degrees Celsius, but at the  

latter temperature it could be, for example, much more risky to exposure ourselves 

to  the  sun.  The  principal  advantage  of  the  formulation  of  natural  laws  in 

quantitative terms consists of the fact that it becomes possible to apply arithmetic  

and  more  advanced  mathematical  theories.44 In  sum,  an  important  difference 

between natural and scientific language lies in the systematic use that the latter 

makes of quantitative concepts, not only classificatory and comparative ones.45

The further question of whether, according to Carnap, the difference between 

quality and quantity can only be posed in linguistic-conceptual terms (and there is 

nothing in nature which objectively corresponds to it)46 will be examined in later 

44 See C. Hempel, cited work, pp. 72-73.
45  Natural languages contain numerals for counting and are therefore partly quantitative; in  

the same way, scientific languages, from a certain point of view, can be considered a part  

of the natural ones.
46  «The difference between qualitative and quantitative is not a difference in nature, but a 

difference in our conceptual system, that is, our language, as we say, if for language we  

intend a system of concepts.» (R. Carnap, cited works, pp. 81-82).  
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chapters. What I can say at this point inclines us towards Carnap’s view, since in  

physics, the scales and units of measurement are at least in part conventional, even 

when they are introduced on the basis of known laws of nature.47  As a result, to 

attribute, for example,  certain numbers over others (32 degrees Fahrenheit rather 

than 0 Celsius or 273.15 Kelvin) to the freezing temperature of water seems to be 

the fruit of a choice which is also dictated by convenience.

In  any  case,  it  is  of  fundamental  importance  to  emphasize  the  fact  that 

relations such  as  “being  longer,”  “being  of  higher  temperature”  and  “being 

heavier”  that  we  have  attributed  to  physical  systems  are  objective,  or  valid  

independently of our mind and of the language that we adopt. From here it would 

follow that comparative relations between homogeneous measurements of physical 

magnitudes are independent of the choice of scales. Therefore, it makes sense to 

institute  comparative  relations  between  the  qualitative  properties  of  physical  

systems  and  their  relative  magnitudes,  which  constitute  the  framework  of  the  

mathematization of the world, and therefore the possibility of formulating natural  

laws  in  a  qualitative  way,  where  the  term “law” indicates  “relation  between  

magnitudes defined on the basis of certain fundamental units.” 

These observations help us, at least in part, to understand why the method of 

processing and mathematically transforming empirical data, and the application of 

the  deductive  consequences  of  the  abstract,  mathematical  model  to  nature  is 

successful. However, the following question remains unanswered: to what degree 

does  isomorphic  correspondence  between  magnitudes  and  numerical  relations 

allow us to explain why mathematics is successful in predicting new aspects of 

reality? The hypothesis which I will put forward here, essentially for the purpose 

of  stimulating  further  research,  is  that  the  ISOMORPHIC  MAPPING  between 

objectively existent physical magnitudes  (mass, length, temperature, charge, etc.) 

and the numerical structures by which we represent them  is also valid, even if 

only partially,  between the physical  laws and the relations existing among the  

magnitudes of physical entities which such laws refer to. It remains to be explained 

if and why such a partial  structural  resemblance also exists at  the level of the 

fundamental laws of nature:  would it  not be a ridiculous anthropomorphism to 

suppose that a creation of ours (mathematics) described, explained and predicted 

the external world in a highly accurate way?

An Explicative Hypothesis on the Applicability of Mathematics

To respond to the question posed above, I will first of all note that  natural  

language also satisfactorily describes the outside world, and that mathematics can 

be seen as a “specialization” of this language, i.e., as a particular, more abstract 

and  more  rigorously  defined  type  of  language.  From  this  point  of  view,  the 

47  The thermometric scale introduced by Lord Kelvin utilizes Boyle's law and departs from 

the concept of absolute zero, that is, from the lowest temperature that can be hypothesized  

as based on the laws of thermodynamics.  This temperature is equal to -273, 15 degrees  

Celsius.
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“representational”  efficacy  of mathematics  should not be more mysterious than 

that of natural languages. 

One could object  by saying that  the  epistemologies of natural  language and 

those of mathematics are very different, insofar as the latter makes use of a priori 

knowledge in a much more systematic and extended way, while within the former 

the referential and causal contact with the empirical world apparently plays a much 

more important role (a posteriori knowledge). However, accepting the importance 

of a priori knowledge in mathematical proofs does not at all exclude a radical form 

of  mathematical  constructivism,  somewhat  suggesting  that  fundamental 

mathematical concepts originate in our experience. Mathematics can be therefore 

conceived  of  as  an  abstract  elaboration  originating from  our  fundamental 

experience as living beings that are biologically equipped with a body that moves 

in surrounding space. This hypothesis implies seriously taking the constraints that 

accompanied our evolutionary history into account. As Henri Poincaré wrote:48 

An immobile being could have never acquired the notion of space: in not 

being able to correct the effects of changes in external objects through his 

or her movements, he or she would have had no reason to distinguish 

them from their changes in state. 

Once again, the fact that the justification of mathematical theorems is typically a 

priori, and therefore independent of experience, does not imply that fundamental 

mathematical concepts are not empirically derived and do not have an intuitive 

meaning. If this were not the case, the applicability of mathematics to the world of 

phenomena would constitute an unsolvable mystery. 

Of course, we must admit that a Platonic conception of mathematics, intended 

as an activity aimed at the discovery of an abstract  universe existing in a non-

spatio-temporal  way,  and  in  a  certain  sense  therefore  “pre-existent”  to  the 

beginning of homo sapiens, is not incompatible with the Darwinian theory of the 

origin of man, strictly speaking. However, Platonism renders the problem of the 

applicability of mathematics even more difficult to resolve.

Independently of the notorious difficulty raised by Paul Benacerraf concerning 

the difficulties in explaining our ability to discover something about this abstract 

(and  therefore  causally  inert)  Platonic  realm  without  some  sort  of  causal  

interaction with it raises the question as to why the physical world should resemble 

the structures of the mathematical, abstract universe? We need only reconsider the 

criticism that Aristotle had already levied upon the Platonic dualism between the 

world of ideas and the phenomenal world, which we mentioned at the beginning of 

this chapter. In our case, the duplication of the properties of the physical world in a 

mathematical universe existing prior to the appearance of minds on earth would 

only duplicate the problems to be resolved. In fact, an explanation of the question 

as to why the physical world reproduces the structural characteristics of an abstract 

world disconnected and independent from it seems as unavoidable as irresolvable. 

48  H. Poincaré, La Science et l’Hypothèse, Flammarion, Paris 1902, p. 78.
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It is therefore highly plausible to hypothesize that mathematics can be applied 

to  experience  only  because  they  originate  and  derive from  the  latter  and  in 

particular, as Kant had suggested, from our intuition of space (geometry) and time 

(arithmetic). The same distinction that has been present throughout this chapter, 

between the laws of coexistence and the laws of succession, recalls the different 

way  of  intuiting  phenomena  in  space  (following  the  order  of  what  exists 

simultaneously) and in time (following the order of succession). Therefore, even in 

its most abstract  developments, mathematics does not lose the intuitive element 

constituted by the perception  of  visible  space,  and by the activity  of  counting 

physically distinguishable objects within our visual field in succession.

Just to give an example, we will note that despite its mathematical complications, a 

structure like Hilbert’s space, which is particularly important in the formulation of 

one  of  the  fundamental  theories  of  physics  of  our  time  (quantum  mechanics) 

eventually  makes  reference  to  a  concept  which  is  of  undeniably  intuitive 

significance, that of  vector space, in which entities (vectors) are in the simplest 

case (denoted by a three-dimensional space) identified da triple from real numbers 

(x, y, z, see fig. 3): 

Fig. 3

Considering the intuitive origin of mathematics, whose sources are arithmetic and 

geometry, we can therefore understand Mac Lane’s definition of  mathematics as 

the science of shape. 

The external world exhibits patterns that repeat themselves and so can be 

captured as forms. The same form can appear in different concrete guises, 

and so can effectively be described abstractly, without reference to any 

one concrete realization. Such an abstract  consideration of the form as 
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such makes it possible to deduce its various properties, independently of 

the different guises.  The mathematics lies in these deductions, even when 

the investigations go far  beyond the original  appearance  of  the forms. 

Then combination of different forms leads to new mathematical objects, 

which is some cases can then be used to understand facts of the physical 

and social world. This is why mathematics is effective: the world exhibits 

regularities which can be described, independently of the world, by forms 

which can be studied and then reapplied.49 

The fundamental point is that these forms exist either in the objects that surround 

us or in our perceptive re-elaboration of them, and do not exist  independently of 

them, as the Platonist believes. In a way in which I cannot discuss in here detail, 

we  perceive  the  forms  and  “abstract”  them  from  objects,  and  only  later 

conceptually elaborated in a deductive and a priori way.  In this sense, they can 

only  be  studied  independently  from  the  physical  world.  The  fact  that  these 

deductive  developments  also  render  themselves  “useful”  for  predicting  the 

existence of properties or entities later effectively found in the phenomenal world

cannot but be explained by the intuitive origins of the fundamental  concepts of 

mathematics.

The hypothesis that I would like to put forward is that the concept of form, and 

the consequential abstract ability of the human mind to which Mac Lane makes 

implicit reference, is related to the processes of visual and tactile perception of 

solid objects and their shapes, and to our subsequent imagining of them, through 

the reactivation of neural circuits indispensable to their perception. From this point 

of view, the forms/shapes to which Mac Lane refers, if they can be interpreted, as 

we believe, realistically, definitely recalls the Aristotelian theory of perception and 

knowledge, as was re-examined by the late Nineteenth-Century philosopher and 

psychologist Franz Brentano. 

In Aristotle’s De Anima, on which Brentano wrote his dissertation, sensation is 

compared to the impression of a wax seal through the passage from potentiality to 

actuality. In perceiving an object, we “absorb” only its shape, in the same sense in 

which the matter that the seal is made of, gold or iron, is completely irrelevant 

with respect to the imprint that it leaves upon the wax. The deductive elaboration 

of  the properties  of  shapes is  independent  from the physical  world,  Mac Lane 

affirms,  analogous  to  the  fact  that  from  the  point  of  view  of  the  shape  of  a 

geometrical object,  which concrete object it exemplifies is completely irrelevant. 

The  shape  of  the  wax  seal  is  potentially  even  in  our  minds  (in  dispositional 

representations already activated by past experiences)50 and it is actualized through 

an abstraction that is also a representation of the shape of the perceived object that 

preserves its spatial properties.

49  S.  Mac  Lane,  "The  Reasonable  Effectiveness  of  Mathematical  Reasoning,"  in 

Mathematics and Science, R. Mickens (ed.), World Scientific, Singapore 1990, pp. 115-

122.
50 For the concept  of  dispositional  representation,  we defer  to  A.  Damasio,  Descartes’  

Error, Papermac, London 1994
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This  objectivistic  conception  of  the  form  or  shape  of  objects  need  not 

presuppose a naive theory of perception, according to which a perception is a mere 

photographic copy of the outside world that does not presuppose any active re-

elaboration  on  the  part  of  the  human  brain.  Nor  does  it  require  a  distinction 

between objective or primary qualities (shape, number) and qualities or properties 

that  are  subjective  or  secondary  (taste,  odor).  In  this  context,  it  is  enough  to 

emphasize that, just as to Mac Lane the abstract property of mathematics depended 

upon recurring form/shapes as exemplified by the natural  world,  the perceptive 

process also involves forms existing in real objects, not as pure dispositions but as 

actual, occurrent properties of the objects. If this were not the case, mathematics 

would apply only to ghosts produced by our brains, which would give meaning to 

and  interpret  a  physical  stimulus  which,  in  itself,  would  be  completely  de-

structured. Therefore, the applicability of mathematics to the physical world would 

be even more mysterious.

To clarify  our  thoughts  on this  controversial  point  of  view,  I  will  take the 

liberty of  including a citation by Barry Smith on Brentano,  which surprisingly 

recalls the words of Mac Lane’s citation above.51

The  mathematical  concept  of  curve  is  already  in  my  sensorial 

representation of an object in the shape of an upturned nose, and in this 

sense it is already the thing itself. [ . . . ]  Therefore in the moment that 

the  intellect  grasps  mathematical  concepts,  it  does  not  recognize 

something that is separate from tangible matter, but [as Brentano says] 

“only knows something that is not separate from itself in a separate way.”

If it is true that mathematics has its origins in the primitive experience of space and 

time, as Poincaré52 had well understood, it is especially the concept of experiential 

space,  and  the  motion  of  solid  bodies  within  it,  that  is  fundamental  to  all 

geometrical applications of advanced mathematical theories, which not by chance 

often  presuppose  the  visualization  of  certain  mathematical  structures 

characterizing them.

In arriving now at more recent data on the way in which we visually perceive 

the world, space and the spatial shapes of objects are predominantly represented to 

us in the right hemisphere of the brain, as a result of mental images capable of 

preserving the fundamental  spatial  relations of external  objects (the form/shape 

that  Aristotle,  Brentano,  and Mac Lane variously refer  to).  In  considering  that 

elementary geometry is no more than the study of the shapes of objects, apart from 

weight,  colors,  tastes,  etc.,  it  is not at all implausible  that the quasi-perceptive  

format  of  visual  and  tactile  mental  images  is  the  base  material  upon  which  

Euclidean elementary geometry was developed. Not by chance, this format is again 

invoked so that geometry can be explained to children of every generation. There 

51  B. Smith, Austrian Philosophy. The Legacy of Franz Brentano. Open Court, La Salle, Ill., 

1994, p. 40.
52  See for example H. Poincaré, La valeur de la Science, Flammarion, Paris, 1905, p. 67.
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is no reason to believe that more advanced geometry does not also retain at least 

some intuitive content based on visual mental images.

Today,  there  is  sufficient  scientific  evidence  of  the  fact  that  the  act  of 

perceiving  a  round  object  and  imagining  it  partly  involves  the  same  cerebral 

mechanisms,53 and that the mental representation of a circular object in an image 

preserves a few of its topological and spatial properties. For example, some studies 

of the brains of macaques54 have unequivocally demonstrated that the same spatial 

organization of the brain during perception (the way in which the neurons are laid 

out)  render  it  plausible  to  hypothesize  that  the  representative  medium (the 

topographical layout of neurons of the occipital cortex) influences the nature of 

mental representation, and therefore the mental images that we usually associate 

with circles, triangles, or squares.

In a way similar to geometry, which is regarded as the study of the shapes of 

objects,  the  activity  of  counting,  and  therefore  the  epistemic  conditions  of 

arithmetic, also presuppose the ability to identify certain configurations that are 

spatially  identifiable  by  sharply  delineated  forms/shapes.  That  is,  we  must 

presuppose  the  ability  to  individuate  shapes  from  space  also  in  arithmetic. 

According to  Mario Piazza,55

In order to count, objects must be assigned an outline, or a border, just as 

in  a  few  paintings  by  Cézanne  the  objects  are  outlined  by  turquoise 

borders: for this reason it is so difficult to count waves, amoebas, clouds, 

and even our thoughts. 

We can therefore affirm that arithmetic does not presuppose only time as an 

internal intuition as Kant intended it, or, as Hermann von Helmholz believed:56

 The ability to preserve in our memories the succession in which conscious 

acts follow one another in time.

The  perception  of  space,  and  in  it  the  separate  and identifiable  shapes of 

objects, is what allows us to create a correspondence between these shapes and 

numerals,  which are the signs extended in space-time that we use to designate 

numbers,  regarded  as  abstract  entities.  From our experience  of  listing concrete 

objects by grouping them, we know that it is not necessary to put 5 and 7 sheep 

together to prove that 5 + 7 = 12, given that this operation is valid for any object 

that  is  discrete  and separable  from others;  the  definition of  what  counts  as  an 

“object” depends on the context and on our cognitive purposes. 

53  See F. Ferretti, Pensare vedendo, NIS, Rome 1998.
54  Ibid, p. 86-87.
55 M. Piazza, cited works.
56  H. von Helmholtz, “Zahlen und Messen”, in  Philosophische Aufsaetze, Fues's Verlag, 

Leipzig,  1887,  pp.  17-52,  transl.  by  C.L.  Bryan,  "Counting  and  Measuring",  Van 

Nostrand, 1930.
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In  sum,  the  problem  of  explaining  the  applicability  of  mathematics  to  the 

natural world can be dealt with most plausibly in a constructivist philosophy of 

mathematics, which sees the latter as a non-arbitrary human invention, rooted in 

our spatio-temporal experience of the external world. In particular, all the complex 

applications of geometry to physics – from the study of the spaces  of variable 

curvatures  to  fiber  bundles,  from the  vector  spaces  of  linear  algebra  to  group 

theory  –  presupposes  a  background  of  intuitive  data  that  originated  with  our  

experience of  concrete  objects,  and is therefore  furnished by our perception of 

shapes, as codified in the perceptions of external objects by our visual and tactile 

apparatuses.  

The mental images that form the fabric of our thoughts and that prove to be so 

important to the resolution of problems in mathematics and physics57 preserve their 

intuitive content because in a sense, they are isomorphic to the objects from which 

they  derive.  I  have  claimed  that  the  isomorphic  correspondence  between  the 

magnitudes of phenomena, and the numeric structures with which we associate 

them is at the root of the process of quantification of the world, and the secret of 

success of modern science. My hypothesis is that the isomorphic correspondence 

in question depends on the empirical and intuitive origins of the two fundamental 

pillars of mathematics, geometry and arithmetic.

This reference to the intuitive, and not purely formal nature of mathematics58 

can also account for an important characterization of the contemporary laws of 

physics in terms of symmetry or invariance,59 notions which I will later discuss in 

reference to a theory of natural  laws of skeptic orientation. In effect,  the same 

notion of the symmetry of an object can be described intuitively as the congruence 

or invariance of a  shape following its  motions in space (translations,  rotations, 

reflections, etc.) For example, a hexagon rotating at an particular angle around its 

center (60 degrees and multiples thereof) remains unchanged or  invariant, in the 

sense that after a rotation at that angle it is congruent to itself.

Let us now note the following properties:

i. if the combination of the two rotations is another rotation;

ii. if to each rotation it is possible to associate its inverse;

iii. if a rotation “identity” exists which leaves the object unchanged; 

iv. if the operations of rotation are associative;

v.   then the set of rotations form an abstract structure called a group. 

57  See J. Hadamard,  An Essay on the Psychology of Invention in the Mathematical Field , 

Princeton University Press, Princeton, New Jersey, 1949.
58  On these themes, I have been influenced by two stimulating essays by G. Longo, “The 

Constructed  Objectivity  of  Mathematics  and  the  Cognitive  Subject,”  and  “The 

Reasonable  Effectiveness  of  Mathematics  and  its  Cognitive  Roots,”  available  on  the  

internet at http://www.dmi.ens.fr/users/longo.
59  For this interpretation, see van Fraassen B., cited works, and E. Castellani, Simmetria e  

natura, Laterza, Rome-Bari 2000.
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Considering the numerous applications of the algebraic theory of groups, not 

only in the study of the symmetry of crystals,60 but also in physical geometry and 

in  particle  physics,  the  applicative  versatility  of  this  concept  can  only  be 

understood by taking into account its intuitive origins, which are related to the 

group of motions that a solid body (its shape) can make in space while keeping its  

identity unchanged.  

The main question that I will tackle in the next chapter regards the ontological 

status of scientific laws. We will see how a proper emphasis on the fact that the 

fundamental  relationship  between  a  mathematical  law  and  the  phenomena  it 

represents has to do with their relational structures can be helpful in evaluating the 

various philosophical positions debated in contemporary literature.  

60 J. Burkhardt, Die Symmetrie der Kristalle, Birkhäuser Verlag, Basel 1988.
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