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                                             Introduction

It is well known that the last century's answers to questions about the cognitive source,
the nature of the object, and the domain of validity of the theory of space conspicuously
contradict one another.  These questions have attracted special attention, as much from a
philosophical as from a mathematical and physical point of view; for, on the one hand, the
general problem of cognition is intimately connected with them, and, on the other, the
construction of the mathematical sciences of space on a secure foundation unavoidably requires
that they be answered.

That these contradictions are found precisely in the conceptions of the most prominent
representatives of the sciences in question suggests that in this case the truth does not  "lie in
the mean"--which strictly speaking implies the falsity of all the competing views.  In fact,
closer investigation of the question teaches us that the appearance of contradiction has only
arisen because very different objects are being talked about from the different points of view.

In order to clarify the situation, we shall therefore present here a survey of the various
meanings of space and the types of space that emerge in connection with each meaning--not,
certainly, according to their historical, but according to their factual interconnections.

Certain structures are designated as "space" in three different domains, not, indeed, by an
accident in linguistic usage, but in virture of their intimate kinship, as will emerge later.  In
particular, then, we distinguish between formal, intuitive, and physical  space.  If by a general
order-structure  we understand a structure of relations, not between determinate objects of a
sensible or non-sensible domain, but rather between completely undetermined relational terms
of which we know only that from a connection of a certain kind we may infer a connection of
another kind in the same domain, then formal space  is a general order-structure of a particular
kind.  Hence it does not deal with the forms that are usually designated as spatial:  triangles,
circles, and so on, but rather with meaningless relational terms for which one may substitute
the most diverse kinds of things (numbers, colors, degrees of kinship, circles, judgements,
people, etc.) in so far as there are relations between them satisfying the particular formal
conditions.  By intuitive space, on the other hand, we understand the structure of relations
between "spatial" forms in the customary sense, namely the linear, planar, and spatial elements
whose particular individuality we grasp on an occasion of sense perception or even mere
imagination.  However, we are not thereby yet dealing with the spatial facts present in
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experiential reality, but only with the "essence" of these forms themselves, which can be
discerned in any representative of the type whatsoever.

Actual spatial facts, by contrast, such as the experiential finding that this edge of this
body stands in this particular spatial relation to that edge of another body, constitute the
structure of physical space.  It presupposes the cognition of intuitive space for its cognition,
and the latter, in turn, finds the pure form of its structure prefigured in formal space and
therefore has this as its conceptual presupposition.

From our presentation of these three different meanings of space and their
interconnections it will also be possible to recognize the ground of our spatial cognition and, in
particular, whether and to what degree it is dependent on experience.

                                              I   Formal Space

Since Euclid geometry has striven to be a purely deductive science:  the proof of any
proposition is supposed to rest only on the axioms forming the basis of the system and the
general laws of logic, not on intuition, experience, or propositions tacitly taken for granted.
Euclid set this goal for geometry and also advanced a significant part of the way towards it, but
he did not himself attain it.  Only the investigations into the foundations of geometry of the last
several decades have succeeded in laying down all the required axioms.1  It has thereby become
clear that it is not necessary to give definitions for the basic elements:  points, lines, planes
(Euclid, indeed, had employed such definitions at the beginning of his system, but he did not
later use them in any proof).  Rather, only certain relations  between the basic elements (a point
lying on a line or in a plane, the equality of two line segments, and so on) are specified by the
axioms:  e.g., "there is always one and only one line through any two points," "any three points
always lie together on one and only one plane," etc.  Theorems are then derived from the
axioms without any regard for whatever intuitive meaning these elements and relations possess.
Therefore, it is by no means the entire meaning-content which the axioms possess for anyone
already acquainted with the concepts point, line, plane, lying on . . . that is also logically
operative for the scientific structure to be erected upon them.  All that is operative is their
logical form, if by this we understand that part of their meaning that is preserved when they are
transformed into something like the following general form:  The elements of three classes p,
L, P and the relation i satisfy the following conditions--"there is always one and only one
element of the class L bearing relation i to any two things of class p," "any three elements of
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class p always bear relation i to one and only one element of class P," and similarly for the
other axioms.  If we also imagine all theorems to be formulated in this more general form, then
we have replaced geometry proper--the geometry of points, lines, and planes--with a "pure
theory of relations"  or "theory of order,"  that is, a science of undetermined elements and
equally undetermined relations that hold between them, for which only a few axioms are
presupposed on the basis of which an unlimited number of theorems are derived.  Thus, in
place of space--the structure of points, lines, and planes determined by properly geometrical
axioms (which will henceforth be called "intuitive space" for distinctness)--the object of our
science will be a "relational structure" or "order-structure" determined by these formal  axioms.
Since this structure presents the formal design of that spatial structure and can, moreover, again
be transformed into such by inserting spatial forms for the undetermined relational terms, it
will also be called space, namely, "formal space."

The advantage of this formal structure lies, on the one hand, in its logical completeness
and rigor--since it is free of non-logical (intuitive or experiential) components--and in its great
fruitfulness precisely for properly geometrical investigation as well--since the indeterminacy of
its relational terms makes it applicable not only to points, lines, and planes, but also to the most
varied kinds of basic forms.  The study of structures that can only be developed very
laboriously on the basis of points and lines is thereby often greatly simplified.  This diversity of
translation, as well as the general relation of formal space to intuitive space, will be exhibited
more precisely later.

The construction of formal space can not only be undertaken in the above way, by laying
down certain axioms about classes and relations, but also in another way:  from formal logic,
the general theory of classes and relations, we develop the [class of] (ordered) series and the
[class of] continuous series as a special case.  Within the [class of] continuous series of higher
order (series of series) we then arrive at the most general case of formal space of several (in
particular three) dimensions, from which we obtain, by particular specifications, (formal)
projective space and the various types of (formal) metrical space.  This method alone can lead
to the complete construction of the formal space which comprises all subordinate types.  We
shall therefore briefly sketch this construction below.  However, since the first method, which
leads immediately to a particular case of (formal) space, is so far the only one to have been
completely developed in science, we shall also briefly allude to it later.

We begin the construction of formal logic with the undefined basic concepts "true" and
"false."  We call anything that is either true or false a judgement.2  A concatenation of signs, in
particular written signs, that designates a judgement is a (complete) sentence.   If we remove
from such a concatenation a constituent with independent meaning, leaving a marker for the
empty place, then such an "incomplete sentence" no longer designates a judgement.



4

Nevertheless, it is of particular importance for logic; many complete sentences can arise from it
when other signs are put into the empty place.  This place is therefore called the argument-
place;  what is designated by the inserted sign is called the argument.  The complete sentences
thereby constructed can then designate true or false judgements.  It is therefore clear that,
although the incomplete sentence does not designate a judgement, it does contain judgements
according to their possibility as it were (potentially)--in fact, depending on the argument--and is
therefore not meaningless:  we say that it designates a "concept."3  Depending on whether the
sentence resulting from insertion of an argument designates a true or a false judgement, we say
that the argument falls under the concept or does not fall under the concept respectively.  For
brevity we shall also say of the sentence (in a secondary sense) that it is true or false.

1.  Example.   From the complete sentence "2 + 3 = 5" we form the incomplete sentence
"2 + ( ) = 5"; this designates the concept  "that which added to 2 results in 5."  Only the number
three falls under this concept.  True sentences are formed only by insertion of signs for this
number ("3" or "2 + 1" or "6/2" etc.); for other insertions ("4", "+", "house") false sentences
result (given sufficiently precise definitions of the arithmetical signs such sentences are not
non-sensical).

2.  Example.       From "2 + 3 = 5" we can also form the incomplete sentence "2 + 3 ( ) 5"
which designates the concept "relation between 2 + 3 and 5."  The relations of equality,
common membership in the same (arbitrary) class (e.g., the class of positive whole numbers)
fall under this concept.  For true sentences result from insertion of "=" or "is a positive whole
number, as is".  By contrast, false sentences arise through insertion of :  ≠, <, 5, etc.

3.  Example.   From "Hamburg is a city" we form the incomplete sentence "( ) is a city."
This designates the concept "that which is a city," briefly:  the concept "city."

Just as an incomplete sentence with one argument place designates a concept, an
incomplete sentence with two argument places designates a relation.4  The two places must be
distinguished; we therefore mark them with ( 1) and ( 2) and say that the first argument stands

to the second in the relation in question.
1.  Example.   From "2 + 3 = 5" we form "2 + ( 1) = ( 2)."  3 and 5 (but not 5 and 3) stand

to one another in the relation thereby designated; so do 4 and 6, and so on.
2.  Example.  From "Odysseus is the father of Telemachus" we form "( 1) is father of (

2)."  This incomplete sentence designates the fatherhood relation.

3.  Example.   Since natural language for the most part takes into account the requirement
of conciseness rather than that of analysis, the linguistic expression must occasionally be
transformed.  Thus, in the above example, to transform the designation of fatherhood into an
argument place, the sentence would have to be expressed something like this:  "O stands in the
kinship relation father to T", from which we can then form:  (a) the incomplete conceptual
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sentence "O stands in the kinship relation ( ) to T" which designates the concept  "kinship
relation between O and T"; (b) the incomplete relational  sentence "O stands in the kinship
relation ( 1) to ( 2)" which designates the relation between kinds of kinship and the person

thereby connected to O.
4.  Example.  All mathematical functions  (of a single  real independent variable) are thus

to be regarded as relations between the value of the variable and the corresponding value (or
values) of the function.  Thus, in order to display both argument places, the sine function, for
example, would have to be expressed in the form "( 1) = sin( 2)."

We must now explain some distinguishing properties of relations; in order to be able to
speak more generally about them we introduce the designation:  R( 1, 2), or more briefly R.  If

a, b, c, d  designate particular objects, then R(a,b), R(c,d) are complete sentences.  If we speak
of several relations we distinguish them with subscripts:  R1(a, b) and R2 (a,b) are therefore

two different complete sentences.
By the converse  of a relation R1( 1, 2) we understand the relation R2( 1, 2) whose

argument places are reversed with respect to R1( 1, 2); therefore, whenever R1(a,b) is true then
R2(b,a) is true also, whatever a and b may be.  Example:  If a  is a descendent of b  then b  is

always an anscestor of a; therefore the anscestor relation is the converse of the descendent
relation.

A relation is called symmetric  if it is identical to its converse; hence if R(b,a) follows
from R(a,b) and vice versa.  Example:  being of the same age.

A relation is called transitive if R(a,c) always follows from R(a,b) and R(b,c).  Example:
In arithmetic a > c  always follows from a > b  and b > c; simlarly a = c  always follws from a
= b  and a =  c; therefore the relations ">'" and "="  are transitive.

A relation is called single-valued  if there is only one second argument for each first
argument; in this case b = c  always follws from R(a,b) and R(a,c), whatever a  may be.
Example:  "the father of ( 1) is ( 2)" (in linguistic expression, the relation to  the father).  In all
other cases the relation is called many-valued.  Example:  "( 1) is father of ( 2)" (in linguistic

expression, the relation of being the father of).
The converse of a relation may be many-valued while the relation itself is single-valued:

such a relation is called many-one  (e.g., the relation to the father); the converse type is called a
one-many  relation (e.g., the relation of being the father of).

A relation is called one-one  if both it and its converse are single-valued.  Example:  the
relation "( 1) + 1 = ( 2)" is one-one.

We now proceed to a connection between concept and relation.  If between the objects of
one concept and those of another there holds a one-one relation, a "coordinating-relation", such
that every object of the first concept stands in this relation to one of the second concept, and to
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very object of the second one of the first, then we say that the two concepts have the same
power  (are equivalent).  Equivalence is therefore a symmetric, transitive relation between
concepts.  On the basis of this relation we can construct the theory of classes or concept-
extensions, as well as a part of mathematical set theory fundamentally in agreement with this:
the theory of powers--although the latter has been developed from a mathematical point of
view proceeding mainly from the treatment of infinite aggregates, and therefore under a
different mode of designation.5  From this same conceptual source arises the theory of numbers
(arithmetic of cardinal numbers), where by number we understand a concept of mutually
equivalent concepts.6

If an asymmetric, transitive relation (e.g., "older than") holds among the objects of a
concept (e.g., the students in a class), such that any two of these objects stand either in this
relation or its converse, then we say that the objects form a series on the basis of this "series-
forming relation."7

Let there be given another concept of the same power as the first (e.g., the coat-hooks in a
schoolroom; one-one coordinating-relation:  "hook ( 1) belongs to student ( 2)").  The objects

of the second class may also form a series (e.g., series-forming relation:  "to the right of").
Then, if the two series-forming relations and the coordinating-relation are such that whenever
any two objects in the first series stand to one another in the first series-forming relation, the
coordinated objects in the second series stand to one another in the second series-forming
relation also, then the two series are called similar .  (Example:  If for any two students it is
always the case that the older student's hook is to the right, then the series of hooks is similar to
the series of students.)  Similarity is therfore a symmetric, transitive relation (based on a
coordinating-relation) between two series.  In such a case we also call the series-forming
relations similar.  (In the example, the relation "to the right of in the series of hooks" stands to
the relation "older in this class of students" in the relation of similarity.)

We call the concept of those relations similar to a given relation its order-number (ordinal
number)--the concept, not the relations falling under it!  On this basis we construct the theory
of order-types as the second main part of set theory.8  The determinations of the most important
order-types will now briefly be given, since they take us further towards our goal:  the
construction of formal space.

All those series (in other words:  their series-forming relations) are similar to one another
that fulfill the following conditions:  there is a first object ("initial term") with respect to the
series-forming relation; for every object there is one that follows it and, except for the initial
term, another that precedes it; thus, in the whole series there is no last object.  Such series are
called progressions (in set theory:  order-type ω).  In order to express more briefly anything that
holds for these mutually similar series, we can assert it of one formal representative which we
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construct for this purpose.  This formal representative of the progressions we call "the series of
natural (order-) numbers."  Strictly speaking, this representative of the progressions is nothing
else but their concept (in our sense of the word).

Further, all series are similar to one another that satisfy the following condition:  the
series has the same power as a progression; with respect to the series-forming relation there is
no first and no last term; for any two objects of the series there is always (at least) a third which
stands to the second, and to which the first stands, in the series-forming relation.  (Order-type
ρ.)  The formal representative of these series we call "the series of fractional numbers "
(rational numbers).

In a fashion similar but too intricate to be briefly explained here, the conditions for series
can be given whose formal representative we call "the series of real numbers" (order-type λ).
These series are continuous.  In this way the continuum is constructed by a purely formal
process, without reference to intuition.9

The objects of a concept can also be ordered in series of series ("series of the second
level") instead of, as heretofore, in one series.  For example, the students of a school can be
ordered according to classes which form a series from first to last, and, within each class,
according to size; or the possible tones of a piano can be ordered by pitch, and all tones of the
same pitch can be ordered by loudness.  These series of the second level constitute the subject
matter of the theory of number-pairs (arithmetic of complex numbers with two units), which
can be developed purely formally from the preceding.

Similarly, series of the third and arbitrarily higher levels--in general, series of the nth

level--can be constructed and treated in the theory of number-triples or n-tuples.10  A
continuous series of the third (or nth) level is called a formal space of 3 (or n) dimensions,
although there has been no mention, as yet, of spatial elements.  It will become clear later than
there is an intimate kinship between this "space" and that which is usually called such.  For this
reason, we will now place further conditions (specializations) on this formal space of n (or 3)
dimensions--designated by Snt (S3t)--which receive their proper sense only through their later

application to properly spatial structures.  For we are here still dealing with merely formal
relations, without making any assumptions about what sort of objects stand in these relations to
one another.  The different S's are therefore also called structures of order-relations (systems of
ordinal-relations), briefly, order-structures.

Through narrower conditions on the series-forming relations in these structures, there
arises from Snt (which is then called topological space for distinctness) first projective space
Snp and then metrical space Snm, which are therefore related to Snt as species and subspecies

to a genus (not as individuals to a species).  Similarly, from topological space with three
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dimensions S3t arise projective space S3p and metrical space S3m, as well as still further

subspecies.11  (See the accompanying overview.)
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                                          OVERVIEW OF SPACE-TYPES

(The classification is the same for formal space S, intuitive space S', and physical space
S''.)

Three Dimensional Space:       Space with Arbitrarily Many Dimensions
(continuum of the third level)                  (continuum of the nth level)

topological space S3t       topological space Snt

projective space S3p projective space Snp

metrical space S3m metrical space Snm
(characterized by the measure of curvature k)

                                    Subspecies of metrical space:

         isotropic spaces:                                 non-isotropic spaces:
(3 equal values of k at each point)

non-homogeneous spaces:   Si                                       Su

                                                              (most general case: all values of k unequal)

Subspecies:

                                                                   Su≤,           Su≥,         Su≤≥
                                                                 (k ≤ 0)         (k ≥ 0)      (k ≤≥ 0)
                                                                                                     (Einstein)
homogeneous spaces:
(the same 3 values of k at all points)

                     Sih                                                                     Sh
(spaces of constant curvature; congruence spaces)

            Subspecies:

  Sih<                    Sih=                Sih>
(k < 0)                 (k = 0)              (k > 0)

(Lobatchevsky)   (Euclid)   (Riemann)

hyperbolic     parabolic    elliptical  (special case: spherical space)
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[  < 180°                = 180°            > 180°     --     sum of angles in a triangle  ]
It has now become clear that the resulting order-structures (e.g., S3p), if they are to be

investigated on their own (i.e., without reference to S3t or Snt), are simpler to construct if they

are presented directly as structures of certain simple relations whose formal properties are
given--rather than taking the circuitous route by way of continuous series of the first, and then
of the third level subject to certain limiting conditions.  This will not be shown here for all the
aforementioned space-types but only for S3p, since that will suffice to make the principle

clear.12

The structure restricted by the following conditions (which are presented here with a view
to brevity and comprehensibility rather than precision and completeness) is of the same type as
the structure S3p to be developed through specialization from S3t.

Let a concept P, under which the objects P1, P2, . . . fall, fulfill the following conditions:
(1) there is a concept L, under which fall not objects but concepts L1, L2, . . . , such that under

each L-concept only P-objects fall--in fact, at least three such--but no L-concept comprises all
P-objects; (2) for any two P-objects there is always one and only one L-concept under which
both fall (their "common" L-concept); (3) no matter which P-objects may be chosen the
following holds in general:  if P1, P3, P'2 fall under the L-concept L1,  P2, P3, P'1 under L2,
then firstly there is an object P4 that falls under both the common L-concept of P1 and P'1 and
that of P2 and P'2, and secondly there is an L-concept L3 comprising P1 but no object falling
under L2.  (See figure 1 below.)

The structure so-defined is the formal projective space S3p.  As an example of the

theorems valid therein which can be derived from the above conditions we present the
following.  In its unintuitive form we will hardly be able to recognize Desargues's Theorem,
which is so central to projective geometry.  The characterization of the structure and the
theorem will only be presented intuitively, and then by means of figures as well, in the
following examples of applications.

Theorem.  If, in the aforementioned structure, there are nine objects P1, P2, P3, P'1, P'2,
P'3, P1,2, P2,3, P3,1, and seven L-concepts L1,2, L'1,2, L2,3, L'2,3, L3,1, L'3,1, L4 such that

P1,  P2,  P1,2    fall under     L1,2
P'1, P'2, P1,2   fall under     L'1,2
P2,  P3,  P2,3    fall under     L2,3
P'2, P'3, P2,3    fall under    L'2,3
P3,  P1,  P3,1     fall under    L3,1
P'3, P'1, P3,1    fall under    L'3,1
P1,2,P2,3,P3,1  fall under     L4
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but neither P1, P2, P3 nor P'1, P'2, P'3 have a common L-concept, then there is an object
(P1,2,3) in the structure which falls under the common L-concept of P1 and P'1, the common
L-concept of P2 and P'2, and the common L-concept of P3 and P'3.  (See figure 2 below.)

In order to show clearly that such a formal structure is not limited to things of any
particular kind, we shall now present certain aggregates of the most different kinds of
objects,of which, if we assume the above characterization of S3p, all the theorems of projective

geometry--e.g., the above proposition of Desargues's--therefore hold as well.  These examples
are not subspecies of the  space-type S3p (like S3m), but individual instances; each one

presents a particular three dimensional projective space (in the formal sense).13

1.  Example.  Let a structure c3p of colors fulfill the following conditions:  the colors are

found in certain configurations called color-strips; each strip bears at least three different
colors, but no strip bears all the colors that appear on the remaining strips.  If we choose any
two of the colors then there is always one and only one strip that bears both; it is called their
common carrier.  Moreover, the following is to hold generally:  if we imagine any three colors
c1, c3, c'2 of a strip s1 and c2, c3 (identical with the former c3), c'1 of a strip s2, then firstly the
common carrier of c1 and c'1 and the common carrier of c2 and c'2 have a color c4 in common;
and secondly there is then a strip s3 which bears the color c1 but none of the colors borne by
the strip s2.

Now all propositions governing S3p hold for this color-structure, including our theorem:
If there are nine colors c1, c2, c3, c'1, c'2, c'3, c1,2, c2,3, c3,1 such that the following

color triples each occur on a common strip:  (c1, c2, c1,2), (c2, c3, c2,3), (c3, c1, c3,1), (c'1,
c'2, c1,2), (c'2, c'3, c2,3), (c'3, c'1, c3,1), (c1,2, c2,3, c3,1), whereas there is no common carrier
either for (c1, c2, c3), or for (c'1, c'2, c'3), then there is a color (c1,2,3) that has a common strip
with c1 and c'1, with c2 and c'2, and with c3 and c'3.

2.  Example.  In order to pick some entirely different objects we shall choose a structure
J3p of judgements for our next example, and indeed judgements for which only certain formal

relations are presupposed:  whose objects are still undetermined.  This formal projective three
dimensional judgement-structure J3p should not be confused with formal projective geometry--

which is of course also a formal structure of judgements--nor with a structure derived from
projective geometry by any sort of transformation (e.g., specialization or generalization).  J3p
does not arise from projective geometry, but from its object S3p:  it arises from S3p by
instantiation.  And S3p is a structure not of judgements, but of undetermined things P (terms);
for these P judgements are now inserted (substituted), and J3p is thereby constructed.  So here

not only the theory of space, but the "space" itself consists of judgements!  What the objects of
these judgements are or might be is not at issue.
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One says that two judgements (or two classes of judgements) are equivalent if one holds
under the same conditions as the other, so that an inference from one to the other (and vice
versa) is permitted.  For example, the judgements "this triangle is equilateral" and "this triangle
is equiangular" are equivalent; each can be inferred from the other; they are either both true or
both false.  Similarly, the class of axioms of a particular geometry (e.g., Euclidean geometry) is
equivalent to the class of theorems; if one is valid so is the other; and each follows from the
other.

We shall now (for this example only) call a class of three or more judgements associated
if any pair of judgements from the class is always equivalent to the whole class.  (Thus, for
example, all those mutually independent linear equations in x and y that are satisfied for x = 3
and y = 4 are associated; for if any two of them are taken to be true if of course follows that x =
3 and y = 4 and thus that all the rest are also true.)  Further, let a judgement (here only) be
called "compatible" with two or more judgement pairs (J1, J2; J'1, J'2) if it is associated with

each individual pair.
Desargues's Theorem now runs thus:  If there are six judgements J1, J2, J3, J'1, J'2, J'3 of

J3p such that the three judgements that are compatible with (J1, J2; J'1, J'2), (J2, J3; J'2, J'3),
(J3, J1; J'3, J'1) respectively are associated, then there is a judgement that is compatible with
the three pairs (J1, J'1; J2, J'2; J3, J'3).

3.  Example.  If we take as out next example a structure of points and lines in space--in
the proper, intuitive sense of the word--then this example is especially significant for us, since
it allows us to recognize the relationship between formal space and the intuitive space that is
due for discussion later.

We assume the following axioms for points and lines in space:  If an arbitrary line is
given, then there are at least three points on the line and at least one point not on the line.
Through two points there is always one and only one line.  The following holds generally:  if
P1, P3, P'2 lie on one line, P2, P3, P'1 on another, there there is firstly a point P4 that lies on
both the line through P1 and P'1 and the line through P2 and P'2, and secondly a line through
P1 that has no point in common with the line through P2 and P'2.

In this example we can finally make our presuppositions intuitive in a figure (figure 1),
which can also serve as a symbolic representation for the other examples and for S3p itself.

Similarly, we can make the following theorem intuitive in figure 2.
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                                                          Figure 1
Desargues's Theorem:  If the points of intersection of any two of the corresponding sides

of the two triangles P1, P2, P3 and P'1, P'2, P'3 (which need not lie in the same plane) lie on a

line, then the three lines connecting any two of the corresponding angles meet in a point.
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4.  Example.  In order to make clear the fruitfulness of formal space in its multiple
applicability to intuitive space, circles and pencils of circles in a plane may be taken as terms of
our structure in place of points and lines in space.

Assumptions precisely corresponding to our earlier ones now hold for these new objects:
For any given pencil there are at least three circles in it and at least one not in it.  Two circles
always have one and only one common pencil.  The following holds generally:  if C1, C3, C'2
belong to one pencil, C2, C3, C'1 to another, then there is firstly a circle C4 belonging to both
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the common pencil of C1 and C'1 and the common pencil of C2 and C'2, and secondly a pencil
to which C1 belongs, but none of the circles in the common pencil of C2 and C'2.

This composite structure of circles and pencils of circles would require an intricate
treatment on its own.  Now, however, we can simply transfer all the theorems governing our
formal space to this structure with no special proofs.  Thus Desargues's Theorem now runs as
follows:

If there are six circles C1, C2, C3; C'1, C'2, C'3 lying in a plane, such that neither the
three first nor the three last have a common pencil, and such that the pencils determined by C1,
C2, and C'1, C'2 respectively have a common circle C1,2, the pencils determined by C2, C3
and C'2, C'3 respectively have a common circle C2,3, and the pencils determined by C3, C1,
and C'3, C'1 respectively have a common circle C3,1, then, if C1,2, C2,3, C3,1 belong to a
common pencil, the three pencils determined by C1, C'1,  C2, C'2, and C3, C'3 respectivley
have a circle C1,2,3 in common.

These two last examples depict two of the infinitely many possibilities of conceiving
intuitive space as an instance of the species determined through formal space:  in this case the
projective intuitive space S'3p as an instance of the species S3p.

                                           II   Intuitive Space     

Intuitive space is an order structure whose formal type we can certainly delimit
conceptually but, like everything intuitible, not its particular nature.  Here we can only point to
contents of experience, namely to intuitively spatial forms and relations:  points, linear
segments, surface-elements, volume-elements, the lying of a point on a line or in a volume, the
intersection of two lines, etc.  The psychological question of how such representations arise is
not at issue here, but rather that concerning the logical foundation of our cognition of intuitive
space:  more precisely, the axioms, since the further propositions are derived from them in a
formal-conceptual manner.  Experience does not furnish the justification for these axioms; they
are independent of experience.  More precisely (Driesch), they are independent of the "quantum
of experience":  i.e., their cognition is not, as with experiential propositions, made ever more
secure by often repeated experience.  For here, as Husserl has shown, we are certainly not
dealing with facts in the sense of experiential reality, but rather with the essence ("Eidos") of
certain data which can already be grasped in its particular nature by being given in a single
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instance.  Thus, just as I can establish in only a single perception--or even mere imagination--of
three particular colors dark green, blue, and red, that the first is by its nature more akin to the
second than to the third, so, I find by imagining spatial forms that several lines [i.e., curves]
pass through two points, that on each such line still more points lie, that a simple line segment,
but not a surface-element, is divided in two pieces by any point lying on it, and so on.  Because
we are not focussing here on the individual fact--shade of color seen here-now--but on its
atemporal nature, its "essence," it is important to distinguish this mode of apprehension from
intuition in the narrower sense, which is focussed on the fact itself, by calling it "essential
insight" (Husserl).  In general, however, the term "intuition" may also include essential insight,
since it is already used in this wider sense since Kant.14

We shall now investigate which axioms about spatiality can be established by appeal to
intuition.  Only the axioms need to be obtained intuitively.  To be sure, we can also obtain the
derived propositions intuitively, at least the first few of them.  However, in order to follow the
principle of scientific economy and build our theory on only as many assumptions as are
absolutely required, we obtain from intuition the fewest possible propositions:  just enough to
uniquely determine the spatial structure, i.e., so that a determinate formal order-structure can be
coordinated with it.  One should also avoid utilizing intuitive statements about non-simple
forms, because they very quicly become more uncertain and indefinite in content as the
complexity of the form increases.  If, for example, one wished to obtain the Pythagorean
theorem immediately from intuition instead of inferring it from simple axioms, then one would
certianly only be able to assert an inequality concerning the sides and an approximate equality
concerning their squares.15

Intuition always relates only to a limited spatial region.  Therefore, it can only yield
cognitions about spatial forms of limited magnitude.16  On the other hand, we have complete
freedom with respect to the total structure we construct from these basic forms.  If, for
example, a form is of such a kind as to permit a second form of the same kind to be added to it
in a certain way, then we can postulate that this process of addition should be possible without
end.  In this way we can construct the concept of an infinite straight line from the straight
segment, and, in a certain derived sense, also the intuition, namely, as a consciousness, based
on knowledge of the rule of connection, of the possibility of apprehending each segment of the
line in intuition.  But then not only the infinite line corresponds to the concept so obtained, but
also the finite, but unbounded, closed line of elliptical space.  Neither intuition nor the above
postulate decides between the two.  Intuition and postulate together certainly help us to
transcend the finite, but still leave certain questions about the infinite open.  Let us investiage
these relationships further.
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We shall first assemble the axioms founded upon intuition.  Next, we shall explain the
postulates which have to be added to these axioms in order to obtain a spatial global structure,
and we then have to investigate the types of structures that result thereby.

Because of the above-mentioned impossibility of conceptually delimiting, here in the
sphere of intuition, the meaning of the basic concepts, either of the basic forms (points, lines,
angles, etc.) or their relations (lying on, intersecting, equality), they could only be made
comprehensible by pointing to a few intuitable characteristics--that is the sense of the
Euclidean definitions.  They do not seem to be required here.17

Hilbert's well-known construction of geometry from axioms that contain precisely the
presuppositions required for the later proofs (which, as is well-known, is not true for Euclid's
axioms) will now be searched, in order to discover which axioms arise from the intuition of a
limited region.18  Let us assemble them here in a brief form:

A.  In a limited spatial region the following axioms hold (Hilbert I, 1-8; II, 1-4; III, 1-4):
Axioms of Connection:

1. Through any two points there is (at least) one line.
2. Through two points there is only one line.
3. On any line there are at least two points; in any plane there are at least three points not

all lying on one line.
4. Through any three points not all lying on one line there always passes (at least) one

plane.
5. Through three points not all lying on one line there passes only one plane.
6. If two points of a line lie in one plane, then so do all the rest.
7. If two planes have one point in common, then they have at least one other in common.
8. There are at least four points not all lying in one plane.

Axioms of Order:
  9. If a point lies on a line between A and B, then it also lies between B and A.
10. If A and C are any two points on a line, then there is always at least one point B lying

between A and C, and at least one point D such that C lies between A and D.
11. Among any three points on a line there is always one and only one that lies between the

other two.
12. If a line and three points not on that line all lie in a plane, and if the line intersects one

of the three segments determined by the points, then it also intersects one of the other
two segments.
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Axioms of Congruence:
13. On any line and from any point on that line in either direction, there is always one and

only one segment that is congruent to any given segment.
Every segment is congruent to itself.

14. If two segments are congruent to a third, then they are congruent to each other.
15. Two segments are congruent if they consist of pairs of congruent partial-segments.
16. For any given angle, in any plane, on either side of any ray, there is always one and only

one congruent angle.
Every angle is congruent to itself.

Remarks.  On 3 and 8:  The corresponding findings of intuition obviously testify to the
presence of many more than two, three, or four points respectivley.  Since, however, the
presence of further points can clearly be inferred from the remaining axioms (10 in
particular), this weakest possible form for axioms 3 and 8 must be chosen in order to
satisfy the requirement of mutual independence of axioms.  On 7:  It follows from this
axiom that the space of intuition is limited to three dimensions.

Whereas axioms 13-16 determine only the formal properties of the concept of equality
(congruence), there now follow two axioms that make contentful assertions about the equality
of determinate segments and angles respectively.  In view of the fact that this is possible for
intuition only with respect to neighboring structures (indeed, strictly speaking, intuition only
asserts the agreement of structures that are brought into coincidence), the following axioms
must be used for our purpose in place of Hilbert's axioms III, 5 (congruence of triangles) and
IV (parallel postulate):

17. If two neighboring triangles agree in any two sides and in the angle they enclose, then
they also agree in the other two angles.

18. If two neighboring lines in a plane do not intersect, then the two angles produced on the
same side of any line that intersects them both are equal.

From 18, together with 16, the uniqueness of (neighboring) parallels follows.
On the basis of these findings of intuition, which relate only to a limited region, we now

have to construct a complete structure whose unlimited validity is laid down by postulation.
We designate it by S3m'.  In order to guarantee its completeness and consistency--both in itself

and with the testimony of intuition--the following postulates are to be fulfilled.19

B.  Postulates for the construction of an unlimited system (S3m'):

1. In every limited partial region axioms A1-18 are to hold.
2. Moreover, axioms A1 and A4 are to also hold for the global region.
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3. The operation of marking off a segment on a line can be repeated arbitrarily many times
on both sides of any given point.

4. By this operation one can always reach a segment in which any arbitrary given point of
the line lines.

5. The formal properties of the equality relations between segments and angles determined
by A13-16 are to retain their validity in the extended system.

6. The equality relations expressed in A17, 18 for neighboring places are to be extended
for non-neighboring places so that, in place of equality, a relation is introduced that
depends on the mutual places of the structures under consideration and continuously
approaches equality in the limit as the places in question approach one another
(symbolically espressed:
Lim  f(P2) = f(P1).)
P2=P1

Remarks.  On 3:  It does not follow from this that the extension always leads to new points.  On
4:  Archimedean axiom (Hilbert V,1).  On 5:  This is not already expressed in 1.  One
must distinguish precisely between the validity of a proposition in every limited partial
region and its validity in the entire structure.

It follows from B1 that those axioms which only asset something about the limited partial
region itself also retain general validity for the extended system.  These are axioms A3, A7-10.
Further, according to B2 and B5, the following continue to be valid:  A1, A4, A13-16.  On the
other hand, the remaining axioms (A2, A5-6, A11-12) are indeed valid--according to B1--in
each limited partial region, but not generally.

If we choose any very small region--which is to mean that only neighboring structures (in
the sense of A17-18) are contained in it--then requirement B4 for the global structure will
obviously also be correct for this partial region.  Further, A1-18 hold without limitation for
such a region.  Now these together comprise Hilbert's axioms, concerning which he proves that
they suffice for the construction of Euclidean geometry (the one axiom not employed here, V,
2, is also not used by Hilbert in his construction; see the conclusion of §8).  Our global
structure is therefore so constructed that Euclidean geometry is everywhere valid in the small.
Riemann, who calls this property "planeness in the smallest parts,"20 was the first to show how
many different possibilities for the global structure are consistent with it.  These different types
of S3m' are characterized by a certain three-valued function of places:  i.e., a coordination of

three numbers to every point of space (the "measure of curvature" for three surface-directions
at this point).  The significance of these numbers in the context of our postulates will now be
explained.21
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Our postulates require that the limited spatial region, whose spatial properties are given in
intuition and expressed in axioms A1-18, shall be extended on all sides.  The properties of the
spaces so extended can best be characterized by stating the properties of the planes lying within
them.  Investigation shows that axioms A1, A3, A9-10, A13-16 remain valid in all such planes.
For the rest, however, the spatial relations in the various possible planes can be as different
from one another as those on curved surfaces.  And the latter can be characterized in a well-
known way by giving their Gaussian curvature at every point.  So, if the spatial relations in any
region of one of our extended planes are to be characterized, this can also be done by means of
a coordination of numbers to the individual points.  It is thereby shown that in this portion of
the plane the same inner relations hold as in that region of a curved surface to whose points the
same numbers are coordinated as measure of curvature.  These numbers, which characterize the
metrical relations within the plane (not the relations to points lying outside it) and are assigned
one to each point, are now also called, as in the case of the curved surface, the (Riemannian)
measure of curvature of the plane at the point in question.  But this should not be
misunderstood to imply that we are dealing here with a curved surface lying within the
extended space S3m'.  Rather, the plane characterized by such curvature-numbers is throughout

a plane, in the sense that any two of its points can always be connected by a straight line lying
entirely within the plane.  Then, do we mean  curved lines by "straight lines"?--especially since
we are speaking of closed lines of finite length.  No, even though every point on such a line
also has a number coordinated to it as "curvature."  It is a straight line, in so far as any small
segment AB on it is shorter than any other piece of any other line of our space between A and
B; while for a curved line a chord is always shorter then the arc of the curve.

The metrical relations of our three dimensional space are thus completely characterized
by giving this measure of surface curvature at every point for three differently directed
surfaces--we will assume it, for example, for three mutually orthogonal surfaces.  Now, if the
same numbers can be assigned to every point of the space, then the same metrical relations that
govern any region in the space also govern every other.  In this case, the space is called
homogeneous.  Any plane in this space then has the same curvature at each point ("planes of
constant curvature"), although not all planes need have the same curvature.  On the other hand,
if the three numbers assigned to any point of the space are all equal to one another, then all
directions in the space are equivalent.  In this case, the space is called isotropic.  If both
conditions are satisfied, then all points and all directions are equivalent; all characterizing
numbers of such a homogeneous and isotropic space are equal to one another:  the curvature of
the "space of constant curvature."  In this case, all planes in the space are not only planes of
constant curvature, but each is equivalent to all the others; the curvature is the same for all and,
indeed, the same as that of the space itself.  (Cf. our overview of space-types.)22
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The planes of constant curvature are designated as hyperbolic, parabolic (or Euclidean),
and elliptic respectively, according to whether the curvature is negative, zero, or positive.  The
spatial relations in limited regions of these planes are the same as those on the following
surfaces in ordinary (Euclidean) space:  (1) the so-called pseudo-sphere or everywhere saddle-
shaped surface, (2) the Euclidean plane, (3) the sphere.  In all three types of plane a congruence
axiom holds in the following form (instead of the limited form A17):  If two arbitrary triangles
agree in any two sides and in the angle they enclose, then they also agree in the other two
angles.  Therefore, these space-types are also called congruence-spaces.  The three cases are
distinguished by the angle-sum in a triangle, which is smaller than, equal to, or greater than two
right angles respectively.  They are also differentiated by the number of parallels:  in a plane
there are several, or (respectively) one, or no lines through a point that do not intersect a given
line.  In the first and second cases the lines, planes, and the entire space are infinite.  In elliptic
space, however, these three structures are indeed unbounded (i.e., they have no terminus
anywhere) but of finite magnitude because they are closed.  The same is true of a subtype of
elliptic space, spherical space, in which there is not always only one line passing through two
points (in the partial regions of these two spaces the same relations hold; they differ only in
their global interconnection).23

From the facts provided by intuition concerning limited spatial regions, with the help of
certain postulates, we have ascertained the various types of complete spatial structure in whose
limited regions all the facts of intuition hold good.  The reason we have not established stricter
postulates, by which we could have arrived only at the simplest of the extended systems--
namely, flat Euclidean space--will only become evident when we discuss physical space.  Let it
merely be noted here that this would certainly be possible:  e.g., via the postulate that axioms
A1-18 should hold not only in limited partial regions, but also in the global structure, and
further, that A17-18 hold not only for neighboring structures, but in general.

The structure S3m' under consideration, three dimensional intuitive space, is still capable

of generalization in various ways and, from a certain point of view, is also in need of it.  The
mathematical treatment of these various subspecies of S3m', whose immediate juxtaposition

and disjunction as mutually exclusive possibilities was highly unsatisfactory from the point of
view of scientific unity, has led to the realization that it is possible to construct a four-
dimensional structure S4m' which contains these different types of S3m' as parts--not, however,
in the sense in which S3m' contains three dimensional volume-elements as parts, but rather in
the way that S3m' contains planes, spheres, and a wide variety of other surfaces.  Intuition,
however, was not even able to grasp S3m' as a whole, let alone S4m', of which, indeed, it

cannot even grasp limited regions.  Nevetheless, since the four-dimensional structures in such a
region can be constructed from intuitively given three dimensional structures with the help of
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conceptual relations, a type of representation akin to intuitive apprehension--one combining
intuitive and conceptual elements--is still possible here.  In the previously discussed formal
structure S4m, and further in S5m, . . , Snm, we already have constructed the frames into which
the intuitive terms need only to be inserted.  In this way, we can ascend from S4m' to S5m', etc.
and finally to Snm':  the intuitive space with arbitrarily many dimensions.  Even this structure

should still be called an intuitive space, in spite of the impossiblitiy of intuitively apprehending
its forms--in so far as they have more than three dimensions; for, firstly all the intuitive
structures we are acquainted with in S3m' also occur in Snm', and secondly these higher-

dimensional forms are put together from intuitively given terms.
This ascent to higher-dimensional spaces is one way of generalizing S3m' and thereby

unifying its different subspecies.  The other way consists in remaining on the level of three
dimensional structures, but proceeds to more general classifications that attend only to those
spatial properties that do not rest on metrical relations.  For it is precisely these latter, as stated
in axioms A13-18, which distinguish the different subspecies of S3m'.  A spatial structure built

up from the primitive concepts point, line, plane and their relations of lying in or on one
another--without using the relations of segment and angle equality--can therefore be so
constructed that these differences here disappear.  Such a structure is called projective space
S3p'.24  The corresponding formal structue S3p has already been mentioned and clarified
through several examples--the third of which presented precisely the application to this S3p'.  A
still more general structure is  S3t', topological intuitive space.  In the construction of the latter

we also forsake the primitive concepts of line and plane; besides the concept of point we use
only the more general concepts of curve and surface, and we investigate their relations of lying
in or upon one another and their interconnections.25

In the same way in which the three dimensional metrical space S3m' has been generalized
here to S3p' and then S3t', we can also generalize the metrical space with arbitrarily many
dimensions Snm' to projective Snp' and topological Snt'.

26  Just as Snt is the most general
structure of formal order-relations, so Snt' presents the most general structure constructed from

intuitive terms:  the most comprehensive intuitive space, which contains all other possible
intuitive spaces--some as parts and some as particularizations (specializations) by means of
further primitive forms and relations (see again our overview ).
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                                          III   Physical Space

In the processes given to us in experience--i.e., in "nature"--we ascertain, in addition to
relations of another kind, also those that are customarily called spatial:  relations of before,
within, between, near, far, and so on.  These relations will here be called physico-spatial.  The
theory of physical space therefore has the task of establishing which of these relations hold for
the particular things that confront us in experience.  The possibilities of solving this problem
will now be investigated.27

It has been emphasized since ancient times, and has lately often been taken into account
even in mathematical investigations, that the spatial forms whose names we customarily
employ to designate physico-spatial relations--e.g., the straight line, the circle, the right angle--
are never to be found in nature and that, moreover, if they were their existence could not be
established with complete precision.  Now since in what follows we shall speak of another
impossibility for establishing certain physico-spatial relations, it might mistakenly be supposed
that we mean this impossibility, which rests partly on the irregular shapes of natural bodies and
partly on the necessarily limited precision of our technical instruments.  In order to avoid such
confusion, we make the fictitious assumption that errors inherent in the production of regularly
defined bodies (e.g., a straight edge) or in their measurement can be reduced at will to any
prescribed level.  Since the following investigation will show how little we are able to assert
about physico-spatial relations on the basis of observation, this assumption cannot lead to false
consequences.  We shall therefore also speak simply of "points" in physical space, without
paying attention to the fact that any designated, or even recognized place in physical space,
however we may designate or even merely notice it, must have an extension--no matter how
small--that depends on the precision of our means of observation.

Similarly, the difficulty that the structures in physical space are treated as continuous,
while physics teaches a discontinuous construction of bodies from separate parts, will not be
discussed here, since it has had no essential effect on the theory of physical space according to
the current state of our knowledge.  It is not impossible, however, that this could take place
sometime in the future.

Let us first investigate the question of whether and in what way a straight line in physical
space can be established.  For example, let the edge of a body be presented to us, or a light ray
be exhibited (e.g., through a few different places at which the edge of a shadow is intercepted
on a moving screen), or even just three or more points be indicated.  The question is:  are these
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lines straight or do these points lie on one straight line?  One normally establishes this by either
"sighting along" the line to be tested, laying a ruler along it, or something similar.  It is
therefore already assumed that either the light-ray or the edge of the ruler in question is straight.
The problem is obviously not solved in this way, but merely pushed back; for we now have to
ask further how it is known that the lines used for comparison--light-rays and straight edges
(among which we should also count the thread of a resting plumb line and other such things)--
are themselves straight.  It is in principle impossible to establish such things if one relies only
on what proceeds unequivocally from experience, without coming upon freely chosen
stipulations about the objects of experience.  Such stipulations, which are set up by postulation
without any possibility of confirmation or refutation by experience, and which are to make it
possible to test physical lines for straightness (more precisely:  for whether they should count
as straight), can be of two kinds.  In the first type, it is directly stipulated that a class of lines
presented by some definite natural objects or processes is to count as straight; let this be called
a "straightness stipulation."  The conditons that such a class of lines must satisfy for this
purpose will not be discussed here, since this case is the less important one.28

The second way consists in "metric stipulation."  Roughly speaking:  a body is specified
that is to count as rigid; more precisely:  a specific body and two specific points on it are
chosen, and one then stipulates which measure-number is to be coordinated with the interval
between these points under various conditions (temperature, place, direction, pressure, electric
charge, etc.).  Example of a metric stipulation:  it is stipulated that the two marks on the
standard meter bar in Paris present a segment of 100 × f(T,f,l,h; . . . ) cm; or of so many feet,
yards, etc.  In other words, a unit must also be chosen--but this is not what concerns us here; we
are concerned, rather, only with the stipulation of the body itself and the function f(T, . . . ).

On the basis of such a stipulated metric one can now test a physical line for straightness
in a great variety of ways.  For example, one can investigate via measurements made with the
help of the stipulated metric-body whether the line-segment to be tested is shorter than all other
lines connecting its endpoints.  Or one can establish with the help of the metric-body that two
other bodies are rigid:  i.e., that all intervals between any two points on their surfaces remain
equal (for this purpose, however, one does not need to test all of the intervals, but only a certain
number of them).  Then, if three or more points of one such rigid body are in contact with just
as many points of the other, and the former can be so moved relative to the latter that all these
points of contact are undisturbed, then all these points lie on a straight line.  Furthermore,
measurement in a coordinate system and yet other procedures are possible.29

One might now object that such a metric can by no means be freely chosen but rests,
rather, on facts of experience.  It is known through experience, for example, that heating an
iron bar by 1° (to consider here only this most important influence) expands its length by
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0.000011%.  One may thence infer that two specific points on such a bar having an interval of
a units at temperature T0 will always have an interval of a(1 + 0.000011(T - T0)) units at

temperature T.  If I now take other bodies made of iron or any other material and insert the
corresponding coefficients of expansion, I can regard all the resulting metrics as equivalent,
because in proceeding from them I always arrive at the very same measure for any physical
segment.  Let these equivalent metrics be therefore counted as one and designated as M1.  But

now what has become of our freedom of choice?  Where are the other possible metrics which
lead to other results of measurement than those customarily employed in physics--yet without
contradicting particular facts of experience?

One should remember, first of all, that a different metric was indeed customary when it
was still usual to disregard the influence of heating on measuring rods.  In those days the metric
(M0) was stipulated as follows:  the interval between these two marks on this iron bar A

remains always the same (and thus independent of temperature).  Subsequently, the
phenomenon of heat-expansion was encountered:  i.e., it was found that the interval between
two points on another body B--in which no other alteration whatsoever was noticed--did not
prove equal on different measurements.  Rather, it always came out shorter if the measuring rod
A was warm.  It would nevertheless have been possible to retain the metric M0 by expressing

the result as follows:  the segment marked on body B alters its length with time--even if all
known state-magnitudes of B itself (termperature, chemical composition, electrical charge, etc.)
remain unaltered--provided only that the temperature-interval between B and A changes.  We
therefore have here an action-at-a-distance, which is in principle no less absurd than are the
actions of electrostatic and gravitational forces, with which we have long been satisfied.  Yet
there was still a very important reason for not remaining with M0 and instead establishing M1--

which incorporates dependence on temperature.  Certainly, it would have been possible to
master all facts of experience with M0 as well:  i.e., to present them without contradiction in

the form of natural laws.  But these natural laws would have taken on a very much less simple
form than the usual laws of heat-expansion which present the facts on the basis of M1.  To

discover the metric that leads to the simpler form for natural laws it is not necessary for the
whole series of possible metrics to be set up experimentally in each such case in order to
develop the laws of nature from them.  Rather, the choice usually proceeds to some extent by
instinct but also (and this is what we always strive for) in many cases consciously, according to
principles of scientific procedure.  These principles themselves, however, have still hardly been
brought into a form valid for all different cases but are, even where the choice of metric or
other stipulation is consciously made, usually tacitly contained in the justification.  In our
example the situation is this:  In measuring different bodies B that are in thermal equilibrium
with the heated measuring rod A it is revealed (even before we can have any idea of expressing
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the effect in a natural law) the remarkable circumstance that, not only is there an action-at-a-
distance affecting all bodies B, but that this action is actually numerically identical in all of
them, no matter what material they are made of.  But here the following principle of scientific
procedure comes into play:  If, relative to a reference body, the other bodies exhibit numerically
identical behavior no matter what their individual differences, then, in order to simplify the
presentation of laws, one should attempt to treat this agreement as merely apparent by
attributing the opposite behavior to the original reference body.  It is this principle, a special
case of Mach's principle of scientific economy, which gives preference to the conception of the
earth's rotation, the earth's orbiting around the sun, and the sun's motion relative to the fixed
stars over the older conception to the contrary.  This same principle, in another application, has
also led us from the fact that all bodies fall with the same acceleration to Einstein's principle of
equivalence for gravitational force.  This principle now prompts us to prefer M1 to M0 as well.

But, and this is our point here, the facts of experience cannot force us to do this.  In this sense,
the choice of metric is free and independent of experience.  It is not arbitrary, however, but is
guided by principles similar to the above and can thereby take the facts of experience into
account.

It is important for our investigation to distinguish the question, within what limits the
choice of metric is possible at all, from the question, which metric is most expedient given the
special facts of experience before us.  Thus, the only thing that is required is that the metric
should lead to a non-self-contradictory presentation.  On closer consideration (which will not
be carried out here) it turns out that a stipulated metric may choose any two points on the
surface of any arbitrary natural body--where the latter may experience equally arbitrary changes
of shape according to the usual way of looking at the matter--subject only to the condition that
the two points never come in contact.

Suppose, for example, we choose a rubber body C, which may change its shape in many
ways, although the two measure-points on it are never to touch each other.  Is the metric
stipulation (M2)--"These two points on C have always the same interval"--contradicted by any
facts of experience?  Certainly not.  To be sure, the measurements made on the basis of M2
will yield very peculiar results:  all other bodies will undergo violent changes of shape which
cannot be brought into agreement with the customary laws of nature--and therefore require
others.  Can these changes of shape, then, be always brought into a law-governed system, or
will there perhaps be some that contradict the principle:  "the same things happen under the
same circumstances"?  This cannot occur.  For this principle is of course satisfied if M1 is

applied as metric (i.e., in the customary physics); so here, by that principle, the interval
between the two measure-points on C will therefore change only if some other circumstances
change as well, which are then called the causes of such a change of interval on C.  Now, if M2



27

is applied instead, and the point-interval on C is conceived as unchanging, then the other
bodies, in so far as they are counted as rigid according to M1, will undergo changes of shape

precisely when and only when these circumstances occur.  The latter will now be conceived as
causes of the change in the other bodies.  Thus, causeless change does not occur even when M2
applies.  But how can we deny the obvious "factual" changes of shape of C?  They are not
"factual" if they cannot be established, and they can only be established by means of
measurement with another body, such as an iron measuring rod D.  This latter can be viewed as
suitable for measurement, however, only if we have, by a freely chosen metric stipulation,
declared the interval between the two measure-points on D to be unchanging.  As we have
seen, the facts do not force us to do this; so no contradiction arises even if D is declared to be
non-rigid on the basis of M2.

We now summarize the results of the foregoing discussion.  The question whether three
or more given physical points lie on a straight line cannot be answered on the basis of the facts
of experience alone without a certain stipulation which we are free to choose, and hence,
without reference to such a stipulation, it is meaningless.  The required stipulation takes place
here either through a straightness stipulation or a metric stipulation.  In the latter case the
interval between two arbitrary physical points (which, however, are never to come in contact) is
set equal to any arbitrary function of state.  The metric stipulation gives us more than the
straightness stipulation:  not only the means of deciding as to the straightness of physical line-
segments, but also as to their relations of magnitude.

This result puts us in a position to recognize the conditions for erecting physico-spatial
systems.  In S3t' we had a structure of intuitive space, which was constructed without using the

concepts of straight line or segment congruence.  We can therefore construct the corresponding
structure S3t''--(three dimensional) topological, physical space--without having to decide about

the straightness or relations of magnitude of physical lines--hence, without straightness-
stipulations or metric-stipulations.  The only relations required for the ordering of physico-
spatial elements given by experience in such a structure are the relations of lying-in-or-on-one-
another (incidence) of points, lines, surfaces, and spatial volumes.  These relations between
physico-spatial elements can be gathered from experience without an agreement on any choice
of stipulation.

Since no experience so far obliges us to choose a structure of more than three dimensions,
we shall not consider Snt'' here.  However, that there is no physical spatial form of more than

three dimensions is not an absolute certainty, but only an experiential probability.  Still less is
three-dimensionality any condition for the possibility of an object of experience in general.  For
it is easy to say what facts of experience (thinkable in principle, only not arising so far) would
have to occur for us to regard them as four-dimensional forms.
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We have seen that only topological space (by which we shall now always understand the
three dimensional S3t'') univocally reproduces what lies before us in experience.  Even the
projective space S3p'' is not univocal, since we must choose and establish a straightness

stipulation for its construction, for which there are always different possibilities.  And still less
are we limited in the construction of a metrical spatial structure S3m''; there are infinitely many

types here.  Which type is realized in our completed structure depends on the metric we choose.
This connection between a freely chosen metric and the physical spatial structure erected

upon it constitutes a central point in the entire question and requires a more detailed discussion.
For this purpose we must introduce an important distinction.  It concerns the analysis of what is
present in the completed experience into two components, which arise from two different
sources.  The analysis I have in mind is related to that into matter and form of experience, but
is not the same.  For the latter analysis does not divide the completed experience on hand into
two parts, but names two constituent forces through whose combined effect each particular
element of completed experience is first possible.  But they cannot be indicated separately:
unformed matter cannot be exhibited but is a mere abstraction.  Instead of that, we wish to
make a division within the realm of form between necessary and optional form.  Let matter
which is certainly not unformed, but appears only in necessary form, be called "matter of fact"
[Tatbestand] of experience.  This can be subjected to a still further formation in terms of
optional form.  In order to test an experiential statement for whether it is a statement of matter
of fact or not, and, in the latter case, what in it pertains to matter of fact and what depends on
the form determined by choice, we have to investigate whether the experiential statement
remains valid for all possible formations, which means, for our investigation, for all possible
types of spatial structure.  Mathematically expressed, this will be the case if the content of the
experiential statement is unchangeable (invariant) under one-one, continuous spatial
transformations.  Now this holds for all topological statements and for these only:  i.e., for
statements concerning incidence and connection of spatial forms, and thus for all statements
with respect to the topological space S3t'' and with respect to this only.  On the other hand, all
statements with respect to S3p'' and S3m'' are not unchangeable under these spatial

transformations, and so do not hold for all possible formations, which result from the various
metrics.  They are therefore not purely statements of matter of fact, but depend on form
determined by choice.  And, in fact, nothing contained in the concepts of straight line and plane
for S3p'' nor in the concepts of segment and angle congruence for S3m'' belongs to matters of

fact.  Statements of matters of fact are, for example:  "this porcelain body is surrounded on all
sides by this glass body" or "the contact-surface of this body (table) with this body (floor)
consists of three separated parts"--for these always remain valid no matter which metric may be
used for measuring the bodies.  On the other hand, the experiential statement "these two points
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of this body have the same interval as those two points of this other body not in contact with
the first" is no statement of matter of fact, but depends on form determined by choice.  If I were
to apply the metrics in our earlier examples (M0, M1, M2), this statement would certainly not

need to remain always valid; it is valid only with respect to a specific group of metrics and
thereby with respect to particular sub-species of S3m''.30

The concept of matters of fact, as the entire content of such corresponding statements,
allows us to recognize more precisely how, from the choice of a metric stipulation, a specific
metric space for nature, a particular sub-species of S3m'' arises.  Although S3t'' has the
advantage over them of emerging uniquely from the matters of fact, the structures S3m'' are

still incomparably more important for both natural science and everyday life, because it is here
a question of measurement.

We therefore choose a metric stipulation, e.g., "these two points A and B on this piece of
iron are to serve as measure-points."  We thereby assert that the interval between the points is
to be conceived as remaining always the same and can therefore serve as a measuring rod.  The
reasons for choosing this particular body and these particular points A and B are not important
here--they will be discussed later.  Here, all that matters is the result of our earlier discussion:
namely, that the establishment of this metric can never lead to a contradiction with experience,
or, as we can now express it more precisely, with the matters of fact of experience.  We shall
now make experiments that are to tell us which type of physico-spatial strucure S3m'' it is that

is consistent with both the chosen metric and the matters of fact of experience.  In so doing, we
must take care to use no other presuppositions than the afore-mentioned metric stipulation and,
with respect to experience, only statement of matter of fact.  Thus, we must be particularly
careful not to introduce unnoticed a knowledge of Euclidean geometry.

The experimental procedure that we wish to set up is rough and laborious.  The theorems
of the geometry of S3m' (which hold for all of its sub-species and might therefore be applied

here without thereby having already presupposed a particular sub-species like the Euclidean)
could offer us simpler procedures for determining S3m''. But we here value the perspicuity of

the procedure more than its economy, so we choose a procedure that employs one of the
previously given distinguishing characteristics for the sub-species of S3m'':  namely, the angle-

sum of a plane triangle.
In order to avoid an ambiguity in the implementation of our procedure, we must also pay

attention to the following important circumstance.  What we designate here as physical space
S'' is not itself the form of spatial events, but rather only a three dimensional projection of this
form:  namely, a projection of the four-dimensional space-time manifold.  Now, three
dimensional projections can be constructed from the latter in various ways through the choice
of three axial directions.  Under certain circumstances (namely, when none of the three axes
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falls within Minkowski's "light-cone") such a projection is to be regarded as space.  So
numerous spatial structures are possible corresponding to different determinations of the
simultaneity of two events at different points.  But we can free ourselves from this ambiguity
by restricting ourselves to those spatial relations that are independent of the determination of
simultaneity.  This can be done if in the following measurement experiments we establish the
position of two spatial forms relative to one another only when they are mutually at rest.  If, for
example, the "simultaneous" contact of the points A, B, C, of one body with one each of the
points A', B', C' of another body is to be established, then this must not be done on merely
momentary contact.  Rather, the following is to be assumed:  an observer transports himself
(with no matter what velocity) from A by way of B, C, A, B, to C; three other observers remain
at A, B, C, respectively, and each of them establishes that the contact with the corresponding
point A', B', or C' remains continually in effect between the two instants at which the first
observer passes by him.  For all possible determinations of simultaneity a simultaneous
occurence of the three contacts AA', BB', CC' is thereby demonstrated.  Since we need not
determine anything other than coincidences in the following experiments, this cautionary rule
for establishing the properties of physical space suffices to free us from the otherwise
unavoidably required reference to time determinations.

We now begin to make measurements with the help of that iron body specified in our
metric stipulation, which carries the two measure-points A, B.  We have found or produced a
(physical) surface element s, perhaps the upper surface of a table top, which satisfies the
following conditions (1) - (5).

(1)  A and B, as well as two other points C and D on the iron body, can always be brought
into simultaneous contact with the four points A1, B1, C1, D1, on s.  Through repeated

experiments it appears that whenever any of the three points A, B, C or A, C, D, or B, C, D
coincide with their corresponding points, the fourth pair of points also coincide.  Further, A and
B can always be put into simultaneous coincidence with B1 and C1, and also with C1 and D1,
and also with D1 and B1.  We shall now call an aggregate of points, a linear or surface element,

or a body "rigid" relative to a certain metric stipulation if the interval between any two points in
the aggregate remains always the same.  According to this definition it follows that first, if we
always presuppose our metric stipulation (A,B), the point-pair A, B is rigid, and further,
according to the experiment, so are the pairs A1 B1;  B1, C1;  C1, D1;  D1, B1 which can

always be made to coincide with A, B.  It follows also by the first experiment that the pair C,
D, is rigid, and so also is the quadruple A1, B1, C1, D1 and therefore the quadruple A, B, C, D.

(2)  We now bring A, B, C, D into coincidence with four other points A2, B2, C2, D2, on
s; repeated experiments also yield here the same results as above.  Thus, the quadruple A2, B2,
C2, D2 is rigid as well.  Moreover, in all point-aggregates we find the very same results for any
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quadruple An, Bn, Cn, Dn on s that can be brought into coincidence with A, B, C, D, and we
find the same behavior with those for which we make the same experiment with A1, B1, C1,
D1.  We find no such quadruple that is not rigid; therefore, the entire surface s is rigid.  This

situation is repeatedly tested during the following experiments and is continually found to be
verified.

(3)  Whereas in the first experiment the coincidence of any three of the four pairs AA1,
BB1, CC1, DD1 always led to coincidence for the fourth as well, except when the fourth pair
was CC1, in this latter case that does not hold:  we observe that A, B, D coincide with their

corresponding points and C also at first, but then no longer, while the other three points of
coincidence are preserved.  The two rigid point-aggregates A, B, C, D and A1, B1, C1, D1 have

therefore moved relative to one another in such a way that three point-pairs have remained in
coincidence.  This is the criterion for a physical straight line; hence A, B, D lie on such a line
and so do A1, B1, D1.

(4)  We bring A into contact with A1, and, at the same time, we successively bring B into
contact with various other possible points B1', B1'', . . .   It then never happens that D is not
also in contact with a point on s:  let these points be D1', D1'', . . .   Then A1, B1', D1' lie on a
straight line, and so do A1, B1'', D1'', etc.

(5)  We make this same experiment as with A1 also upon A2, A3, etc. and observe the

same results for any arbitrary point on s.  From this we conclude that the surface s carries
straight lines in all directions at every point.  Therefore, s is plane.

We now wish to investigate the spatial relations on this physical plane.  We employ the
angle-sum in a triangle as our test.  As already explained, the numbers that characterize the
metric relations in a plane (measures of curvature) are related to this angle-sum in a uniform
way.  Depending on whether the curvature at a point on the plane is equal to, less than, or
greater than zero, the angle-sum of a (small) triangle there is equal to, less than, or greater than
180°--and thus the angle of an equilateral triangle is equal to, less than, or greater than 60°.  Six
equilateral triangles surrounding a point will therefore, in the three cases, either fit exactly, or
leave an angle free, or partially overlap.  Around A1 on s we therefore seek seven points B1,
B2, B3, B4, B5, B6, B7 such that AB can be successively brought into coincidence with A1B1,
A1B2,  . . , and A1B7, and likewise also with B1B2, B2B3, . . and B6B7.  We then check
whether or not B7 coincides with B1.  In the first case the plane s has zero curvature at point
A1, in the second case a positive or negative curvature (one then says briefly that the surface is

curved here; however, our earlier remarks about the meaning of these analogical expressions
again apply).

In order to be able not only to establish the fact of curvature but also its numerical value,
we must derive a procedure for measuring segments from our metric stipulation.  For this
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purpose we produce a body on whose surface a simply connected linear element l is shown to
be a rigid straight-edge via the following experiments.  We test the points of l with two points
A, B of our metric body in the same way that we have tested the surface s.  Corresponding to
experiment (1) we show, first, that the endpoints P0 and P10 of l constitute a rigid point-pair

and, indeed, that they have the same interval as A and B.  Then, by comparison with the rigid
plane s, it is shown, corresponding to experiments (1) and (3), that for a given point Q on l the
three points P0QP10 are rigid and lie on a straight line.  If, in further experiments this is always

found to be confirmed for any arbitrary point on l, the latter is thereby shown to be a rigid
straight-edge.  Now in order to be able to measure in something like the usual way with tenths
of the unit segment AB = P0P10, we mark nine points P1, . . , P9 on l such that the ten point-
pairs P1P2, P2P3, . . , P9P10 prove to be equidistant--by being successively brought into

coincidence with a point-pair MN on s.  Similarly, we could also divide each of these segments
into ten equal parts, and so forth, depending on the precision required for the measurements to
be made with this measuring rod or observationally possible.

We can now measure on another body an interval between any two points K, L that is
smaller than the interval AB (otherwise we would have to set up a longer measuring rod using
obvious procedures):  we apply the measuring rod so that K coincides with P0 and L with a
second point on l; if, for exampe, the latter lies in the partial segment P6P7, then the interval

KL is equal to 0.6 with the precision determined by this division, where AB is taken as the unit
of measurement.  To measure more precisely one must refer to a sub-division of the segment
P6P7.  These considerations exhibit a fundamentally important point:  once a measuring rod is

set up on the basis of the metric stipulation, only topological properties are established in
measuring segments, and thus only "statements of matters of fact":  namely, the mutual contact
of points and the lying of a point in a segment.

With the measuring rod thereby set up we now return to the surface s.  We had delineated
around point A1 the angles of equilateral traingles, without also being able to establish the

sides with the means hitherto employed.  This can now be accomplished simply with the help
of the straight-edge l.  We bring P0P10 successively into contact with A1B1 and B6B7 and

mark all those points on s that come in contact with these points of l.  We then establish
whether the segments A1B1 and B6B7 have a point in common.  In this case the curvature is
either zero, namely, if B1 and B7 coincide, or positive, if other points coincide.  In the two

segments have no common point the curvature is negative.  (The cases of extraordinarily strong
curvature--curvature around ±1--may be left out of consideration here, since they contain
nothing fundamentally different; it will merely be the case that other segments will intersect
and the later calculations will be changed.)  We now measure the interval a of the points B1
and B7 with the measuring rod l, thus in fractions of the unit segment AB; we then give the



33

number a positive or negative sign depending on whether the curvature has been established as
positive or negative by our criterion.  We could now have interepreted the number ±a directly
as the measure of curvature.  But, in order to conform to the usual notation, we can also
calculate the Gauss-Riemann curvature k, which is proportional to a when the curvature is not
excessively strong:  k = 2/√3a.

We have thereby determined the curvature of the planar element s at the place A1.  In

order to determine the metrical relations in the entire region s we must carry out the same
experiments at various other points.  How many points are chosen for this purpose is not a
matter of principle, but depends on the degree of precision aimed at in presenting the global
metrical relations of s, and will also take into account whether large differences of curvature
are found for different places.  Once the findings for s are completed, all the rest of space must
be measured in the same way:  we must everywhere set up surfaces that are to be proved rigid
and plane just like s, and the curvature is to be determined from them.  And, in fact, this must
be done for three different directions at every point in space.  When the entire universe has
been so measured, then we have unambiguously found the particular metrical space, a wholly
determinate subspecies of S3m'', that agrees with the matters of fact of experience and the

chosen metric stipulation.  If we choose any other metric stipulation then we also find
unambiguously, by the same procedure, a determinate, but in general different, physico-spatial
structure.31

The presentation of this experimental procedure is simply designed to show  first, that the
establishment of metrical relations in physical space only has a sense when a freely chosen
metric stipulation has been set up and, second, that this establishment then employs only the
matters of fact from experience:  that is, only topological properties of the physico-spatial
structure are observed and evaluated, and no assumptions are made about the straightness of
any physical lines (such as light-rays), about parallelism, about the homogeneity of space (in
the sense explained earler), and the like.  We thereby overcome the frequently raised objection
that the experimental establishment of metrical relations is circular, since it makes assumptions
that it then attempts to prove.32

This is the significance in principle of our procedure.  In actual practice, by contrast, the
experiments would be carried out quite differently and would be simpler in some respects,
more difficult in others.  We can significantly simplify our extremely laborious procedure,
which in larger regions is quite impossible to carry out.  Just as we have tested the surface s
with the measure-points A, B, so we can also test the properties of light-rays and then use these
rays in a more convenient fashion for constructing figures.  Nor do we need for this purpose to
take the six equilateral triangles carrying thirteen segments--one of which is to be measured--
but can use simpler figures.  It proves to be possible and especially suitable to choose a very
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large figure on which only very small segments need be measured.  This is the case, for
example, if we choose a large triangle constructed from light-rays whose angles are determined
by measuring certain segments with surveying instruments set up at each anlge.  This procedure
was applied by Gauss with the help of the triangle determined by Inselsberg-Brocken -Hoher
Hagen.  We should point out, however, that, in using light-rays in this way, the neglect of
temporal determination is not permissible, since the above mentioned cautionary rules that
entitled us to do this are not applicable in this case.

On the other hand, the difficulties that emerge in the actual execution of such experiments
rest on the fact that (if we presuppose the customary metric M1) the curvature proves to be

everywhere either zero or extremely small, so that the procedure of moving about the iron rod
would be far too imprecise, and only such procedures as permit the measurement of large
regions--that is, only involving light rays--offer any prospect for success.33

The reciprocal relations of dependence between matter of fact, metric stipulation, and
type of physical space have so far been considered by choosing a metric stipulation and then
finding the properties of physical space.  We now wish to proceed in the opposite direction and
show how it is also possible to determine in free choice the metric relations of physical space
and how then a metric stipulation is found that yields the chosen space-type on the basis of the
matters of fact--and according to which the form of particular natural laws is adjusted.  Just as,
in presenting the experiments in the above example, we assumed much stronger curvatures
than are apparent in actually performing the experiments--so as to make the matter of principle
stand out more clearly--so we shall now also choose a spatial structure which diverges very
strongly from the usual one.  The matter of principle--the optional character of the space-type--
is thereby made clearer than if we were to choose, say, the flat (Euclidean) space Sih''.  In

reality, when starting from a choice of space, one would most likely always choose the latter
since it is the simplest.

In contrast to the above example, however, we shall now employ, not the results of
imaginary experiments, but those of the existing physics.  This should be borne in mind
especially at those points where, owing to a different interpretation of physical observation,
completely different metrical relations are asserted of things, such as the earth, from those in
the usual physics; topological relations--the only ones that physical observation can actually
establish--are always to remain in agreement with physics.

In order to take an intuitive example, let it be determined that we shall consider the
earth's surface E as a plane.34  Since E turns out to be a sphere on the basis of the customary
metric M1 (for simplicity we leave oblation out of account), a different metric will prove to be

required here.  But our freedom to choose with respect to the spatial structure is not yet
exhausted by the establishment of the above determination.  For we are still free to determine
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what curvature the plane E is to have at the various points and how the rest of space is to be
constituted.  We could thus determine, for example, that E is to have zero curvature
everywhere.  We could then regard the earth's surface as infinitely large with the Euclidean
geometry of the plane holding everywhere upon it.  For brevity, we shall not proceed to work
out this seemingly strange conception nor to demonstrate that it actually contradicts no physical
experience--and therefore no results of geodetic measurements made by optical or mechanical
procedures, provided only that they are interpreted differently than is customary on the basis of
M1 and are instead interpreted according to Me.  For this purpose Me whould have to have

something like the following form:  "these two points A, B on this iron body present an interval
that is not to count as always the same but (aside from temperature, magnetization, etc. in such
and such a degree) is to depend above all on the place on E at which the body is located in such
and such a manner."  This dependency would have to be so stated that some one particular
point on E, e.g., the place at which the iron body is found just now, or the North pole, say,
appears priviledged in a certain way.  If we do not wish such preference for a point on E to
appear in our metric, then we have to determine that E is to be considered as a plane with
positive curvature everywhere whose magnitude is equal to that which E has as a sphere on the
basis of M1.  Our metric will then no longer contain any dependence upon the place on E.

We can now go on to prescribe values of the curvature for the entire remaining universe.
We wish to choose the simplest structure that can be brought into agreement with the
determination already hit upon:  space is to be homogeneous and isotropic and is thus to have
the same curvature at all points and on every directed-surface.  Since this has already been
determined as positive on E, our choice has thereby fallen upon a species of Sih>''.

We now have to investigate which metric is appropriate to this chosen spatial structure.
Rather than a derivation, let us state the result at once, and then test it to see whether it can
indeed be harmonized with both the spatial structure and the matters of fact of physical
experience--and thus, in particular, with all astronomical and terrestrial space measurements.
The metric (Ms) runs as follows:  "these two points A, B on this iron body present an interval

that is to be certainly counted as independent of the place on E, but (aside from temperature,
magnetization, etc. in the same degree as for M1) as dependent on the height hs above E:  l  =
l0(1 - sin(hs))."

We shall discuss units and numerical values in a moment.  First, we note that Ms agrees
precisely with M1 so far as the relations on E itself are concerned.  It follows that all segments

on E that are counted as equal in physics are also to be viewed as equal here.  Now according to
M1 the great-circles on the terrestrial sphere are the shortest lines on E; hence they are also
such according to Ms.  And, since in this case, as we intend to confirm by measurements

outside E, the latter is a plane, these same lines are straight lines here.  On account of the
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agreement between M1 and Ms on E, physical meter sticks, so far as they are applied to E, are
also valid for Ms-measurement.  However, in order to obtain simpler formulas for relations in

the whole of space, we shall choose units of length of 6,370 km rather than 1 cm or 1 m.  In
these units the total length of every straight line on E--e.g., the equator or the meridians--equals
2π.  One can easily see that through any two points on E there passes, in general, only one
straight line; but if these points are opposing poles (e.g., North and South pole or observation-
point and antipode) then there are infinitely many straight lines passing through them.  The
plane E is thereby characterized as a special sub-species of the elliptical plane ("spherical
plane").  Since we have determined the entire space to be homogeneous, it is thereby itself also
a "spherical space"; so let the generating metric and the segments thereby measured be
designated by Ms, ls, hs.

All straight lines in this space have length 2π.  The greatest distance that can separate two
points is π; the greatest interval between a point and a plane is π/2; this is therefore also the
greatest possible value for hs.  The space itself is certainly unlimited, i.e., any straight segment

anywhere can always be extended on both sides, but space is not infinite:  its total volume is
2π2.  It is divided into two halves by any plane and, therefore, by E:  both the body of the earth
and also the total space outside the earth therefore have the volume π2 (or 400 million km3).

We now return to our metric Ms.  We wish to test what follows from it about the metric

relations outside E and, in particular, whether E is confirmed as a plane by measurements
interpereted according to Ms.  The units of measurement for segments appearing in Ms are
already determined.  But Ms contains an apparent circularity:  the determination of length
outside E is made to depend on the height hs, and this height can itself only be measured if we

already have a length.  However, the circularity vanishes on closer examination.  What is
asserted is completely unequivocal, for it says:  a physical segment that behaves just like the
measure-segment referred to in Ms and which has the length a as measured on E, will have the
length xs when perpendicular, where a is related to xs via the equation:

⌠xs    dx
    _____       =   a.
⌡0  1-sin(x)

For, according to our stipulation, every element dx of such a perpendicular rod that is found at
a height x, will have the length dx/(1-sin(x)) if brought to earth.  Integration yields a = tan(xs)
+ 1/cos(xs) - 1; from which it follows that tan(xs) = a/2 × (2+a)/(1+a) (where one chooses the
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first or fourth quadrant depending on whether a is positivie or negative, i.e., on whether the
segment is directed outward from E or towards the earth's center).  The length of a
perpendicular segment, whose length is measured when lying on E, is thus uniquely
determined.

The distance of a star at the zenith--which, according to M1, may be arbitrarily large--
remains always less than π/2 according to Ms.  The statement of matter of fact to be inferred

from astronomical measurements, that one must place many billion iron rods each measuring 1
m on E (thus in our units 1/6,370,000) perpendicularly one upon another in order to reach such
a star, is interpreted as follows according to Ms:  the rods placed one upon another all undergo

a contraction which is very small in the neighborhood of E but becomes ever greater with
increasing distance, and thereby simulates a very great "apparent length" of the segments.
Thus, for example, the moon has an "apparent" distance of 59.3 from E; but the distance
according to Ms is π/2 - 0.0335.  As the distance approaches the maximum value π/2 (= 10,000
km) according to Ms, the "apparent" distance increases to infinity.  An arbitrarily great distance

established through astronomical measurements therefore creates no contradiction with the
properties of our finite space.

It also follows from Ms that the interval between two measure-points--and consequently

every other physical segment behaving precisely like this measure-segment as well--undergoes
an expansion when brought into the earth's interior instead of a contraction, while the
"apparent" length of the segment (namely, the length measured according to M1) remains

unchanged.  Thus, for example, the segment between two antipodes, and therefore the diameter
of the earth, has the length π instead of the "apparent" length 2.

Hence we are now able to set up a test for whether E is confirmed as a plane via
measurements on Ms.  According to M1 it could be shown, e.g., by the following experiments,

that E is not a plane, but a curved surface whose concave side is directed towards the earth's
interior:  any two points on E are, on the one hand, to be connected by the shortest possible line
on E and, on the other hand, by a straight tunnel; the tunnel is then always found to be shorter
than the connecting line on E.  This result, which does not in fact arise from a direct
measurement but can be unequivocally inferred from geodetic measurements on the basis of
M1, must be interpereted as follows according to Ms:  the tunnel is only apparently shorter--
namely, as a consequence of the expansion of rods that are used as standards according to M1.
Calculation shows that, if the metric Ms is used, the tunnel is always longer than a shortest

possible line connecting the two points on E.  Closer examination also shows that, not only
such a tunnel (which is therefore certainly not a straight line according to Ms), but also any

other arbitrary line connecting the two points--whether it runs outside or inside the earth--is
always longer according to Ms than the shortest connection on E.  This latter connecting line is
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therefore shown to be a straight segment, and, since the same holds for any point on E, E is
shown to be a plane; and it is thereby shown that in this respect Ms corresponds precisely to the

postulates we have set up for our chosen space.
The objection that the behavior of light-rays (objects emerging on the horizon, the

circular shadow of the earth during lunar eclipses, etc.) allows us to unequivocally recognize
the curved shape of the earth can be easily answered on our account.  For these so-called proofs
of course depend on presupposing the straightness of light-rays.  We know, however, that the
straightness of any physical lines whatever holds only for certain metrics.  Now the straightness
of light-rays relative to M1 has certainly been demonstrated by a multidude of facts of

experience, even in everyday life.  On the basis of these same facts, however, light-rays are not
to be conceived as straight relative to Ms, but as curved lines; and, indeed, as closer

examination shows, as circles that all go through the "zenith point" Z.  The straight lines
perpendicular to E according to Ms, which all are also straight and perpendicular to E
according to M1, and which thus  point towards the zenith at every point on E, therefore
intersect one another according to Ms--not only at the distance π/2 at the center of the earth, but

also at the same distance from E at the "zenith point" Z outside the earth.  Z is therefore the
antipode of the earth's center.  Here too we again see that, relative to Ms, E behaves exactly the

same on both sides--towards the interior and exterior of the earth--which is the case for no
other surface but a plane.  According to M1 there is only one possible path for a light-ray
between any two points, namely, the straight path.  On Ms there is a similar uniqueness:  for

any two points there is only one circle that also goes through Z.
On the metric Ms we must obviously arrive at different natural laws from the customary

ones, which are based on M1.35  The required alterations are not of equal magnitude in the
different areas.  Thus, for example, the circular form of light-rays according to Ms allows us to

retain the wave theory of light and, in particular, the electromagnetic theory and therewith all
laws of optics.  We are merely obliged to attribute to so-called empty space, not the refractive
index of 1 at all points, but a value dependent on the distance from E:  n  =  1/(1 - sin(hs)).

We shall show how, according to the chosen metric Ms, natural laws have to take on a

different form from the customary one in the example of the energy principle for mechanics
(the "principle of the conservation of living force") as well, since a natural consideration first
appears to lead to the result that this fundamental principle cannot be sustained according to the
measurements made on Ms.  Imagine an apparatus used to fling a small sphere by means of the

compressed energy in a spiral spring.  The energy of this spring does not change when the
apparatus is taken from one place to another.   Therefore, wherever the test is made--so physics
tells us--it will impart to the sphere the same kinetic energy each time--which is measured, on
the customary definition, by the fact that the sphere flies off with the same initial velocity, say
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10 m/sec, wherever the appratus is set up.  However, if we measure according to Ms we do not
find the same velocity everywhere, for a segment that is 10 m long according to M1 will of
course be measured as 10(1 - sin(xs)) according to Ms if it is found at a distance xs from E:  for

example, as 9.986 m on the highest mountain on earth, and as only 0.55 cm on the moon.
Thus, if the kinetic energy Ls of a mass ms having velocity vs is determined as 1/2msvs2, then

the kinetic energy of our sphere will be smaller at great heights than on E, even though it
absorbs the same compressed energy from the spring.  Therefore, the energy principle is not
satisfied.

Reflection suggested by this example leads on closer consideration to the result that either
the principles of the customary mechanics do not remain valid on Ms or the basic concepts of

mechanics must, to some extent, be given other definitions.  If we follow the second way then,
in place of the magnitudes measured according to M1:  length l, time t, mass m, velocity v,

acceleration a, force F, work W, kinetic energy ("living force") L, and potential V, we can
define the magnitudes measured according to Ms:  ls, ts, ms, etc. in such a way that the
defining equations for vs, as, Ws, Ls correspond precisely to the usual ones:

dls d2ls  ∂Vs
     vs  = __   ,    as  =       ___  ,      Ws  =  Fs × ls ,      _  ___   =  Fs

dt dts2  ∂ls

(where for simplicity we have given only one component of the relevant vectors).  However,
instead of the definition F = ma we must put

                                                                   ms × as                 
                                                 Fs  =       _________  ,
                                                                (1 - sin(xs))2

and, instead of L  =  1/2mv2:

                                                                                  vs2

                                              Ls  =  1/2ms   ×    ________   .

                                                                           (1 - sin(xs))2

By this we insure that if a certain process is observed and measured via both M1 and Ms then,

not only time and mass, but also work, kinetic energy, and potential energy receive the same
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values in both measurements:  i.e., ts = t, ms = m, Ws = W, Ls = L, Vs = V.  For length,

velocity, acceleration, and force, on the other hand, different values result from the two
measurements:  ls = l(1-sin(xs)), as = a(1-sin(xs)), Fs = F/(1-sin(xs)).  The equations Ls = L
and  Vs = V are especially important; from these it follows that the energy principle of
mechanics does remain valid:  Ls + Vs  =  const., and so does another fundamental principle of

mechanics, Hamilton's principle:

ts,1

    δ(Ls - Vs)dts   =   0.
⌡ts,0

From these laws it follows that, if the gravitational potential of a mass ms relative to the

earth is found to be

                                                  ms g × cos(xs)
                      Vs   =   V   =   - mg/r   =     -    ____________     ,
                                                    1 +  sin(xs)

then all processes influenced by the earth's gravity:  projectile motion, pendulum motion,
(monthly) motion of the moon, and so on are calculated with the same results as they are
observed to have, even though the magnitudes measured in these processes in part deviate
considerably from the usual ones measured according to M1:  thus, for example, the moon

orbits around the zenith point Z at a distance of 213 km from it and appears as a sphere of
diameter 1.92 km.

We now conclude this example.  It is clear that the chosen spatial structure is not at all
convenient for presenting the facts of experience and will therefore never be chosen seriously.
But here we are not dealing with the question of convenience, which will be explored later.
Rather, the significance of our example is that it shows the possibility in principle of choosing
a structure for physical space that is quite different from the customary one, but is equally
capable of presenting all facts of experience without contradiction.

We have now considered the relation of dependence subsisting between the matters of
fact of experience F, the metric stipulation M, and the metrical spatial structure S (namely, the
particular sub-species of S3m'') from two different points of view.  Our earlier example

(measurement of the surface s) showed how a particular S results from F by means of a choice
of M.  In the last example (E as plane) we proceeded in the opposite direction:  S was chosen,
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and it then turned out that there was a certain M that brought the matters of fact F into the form
of the chosen structure.  Putting both procedures together, we can therefore say:  F, S, and M
stand in a functional relationship to one another such that, if two of them are given, the third
determination is thereby uniquely given:  S = f1(M,F); M = f2(S,F).  The third case F = f3(M,S)

then also holds:  F is uniquely determined by M and S.  This, in fact, is the basis on which the
spatial matters of fact are presented in scientific theory:  it is asserted that for a specific M,
physico-spatial forms are ordered in a particular metric structure S according to a certain M;
and by this statement the matters of fact of experience F are completely described with respect
to spatial relations.  Still, this third case is quite essentially different from the others in that,
while either S or M may indeed be freely chose, F may not:  the matters of fact are uniquely
given.36

An important question now arises for the scientific procedure of presenting F through S
and M.  We can indeed freely choose either S or M, whereby the other determination in
question uniquely results with regard to F.  But which of these two paths are we now to follow?
And, if we take one of them, from what points of view should the choice of S or M then be
made?  The second question is easier to answer than the first, even though it has to decide
between many possibilities.  For it turns out that among the possibilities for both S and M there
is always one case that clearly proves to be the simplest.  Thus, if we really wished to choose
freely one of the two determinations without reference to the other resulting thereby or to the
presentation of F that proceeds from this, then there would be no doubt about the decision:  for
the choice of S the Euclidean spatial structure Sih='' would be preferred; for the choice of M
the above mentioned metric stipulation M0 (metal rod with no dependence on temperature or

other influences) would be simplest.
Now, do systems of physics appearing historically proceed sometimes from Sih='' and

sometimes from M0?  No.  To be sure, the first choice is customarily made, although this is

usually tacit.  The latter, on the other hand, is never chosen, now that the matter of fact
designated as temperature-expansion relative to M1 has become known.  And, even in those
cases where a different spatial structure from Sih='' has been either established (Einstein) or
conceived as possible (Gauss, Riemann, Helmholtz, Schwarzschild) M0 has never been used as

metric stipulation.
This fact must cause us to wonder whether the correct scientific procedure should consist

in pursuing either one of these two paths:  free choice of the simplest S or of the simplest M.
Bearing in mind that the postulate of simplicity governing the procedure of scientific
presentation relates to the total presentation of matters of fact, we recognize that the greatest
possible simplicity for those optional determinations that are independent of the matters of fact
is to be postulated only to the extent to which we thereby achieve greater simplicity for the
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resulting structure.  The latter is always the final measure:  simplicity of the building takes
precedence over simplicity of the building process and its tools.

Thus, neither S nor M is to be freely chosen without reference to F, even though the
conceptual possibility of such a choice must always be retained.  Rather, a middle way, as it
were, is to be followed, that proceeds neither from the simplest S nor from the simplest M, but
receives its justification only by virtue of its goal, in that it leads to the simplest structure
constituted from our current knowledge.

The way to express the dependence of the spatial structure on experience--more precisely,
the metrical structure S3m'' on the matters of fact F--is therefore as follows:  S is not

determined by F itself, and so in this sense is not dependent on experience; yet it certainly is so
determined if we add to F a goal-directed viewpoint concerning procedure (a teleological and
methodological principle), namely that of simplicity.  Nor is S determined by this principle
alone, but only by it and F together--and, in fact, uniquely, if it is possible to determine the
satisfaction of this postulate of simplicity in the individual case according to generally valid
rules.  If we reckon the postulate of simplicity as belonging to the definition of science, then the
relation between S and F might be expressed as follows:  in theory S is freely chosen and
independent of experience, but determined by F in scientific practice; or better:  is to be
determined, in order to thereby make clear that a particular S does not already lie implicit in the
matters of fact F, but has first to be set up on the basis of that postulate.37

Since only this middle way leads to the goal, the simpler metric M0 was rightly
abandoned in favor of the less simple M1 as soon as certain cognitions of matter of fact

(temperature-expansion) came to light.  Yet, in precisely the same way, a different spatial
structure from the Euclidean would have to be introduced, if the total system were to be
simplified thereby.  Even those of the opinion--still represented by Poincaré, for example--that
such a condition will never be realized, will agree to this postulate.  According to the present
state of knowledge, moreover, the unrealizability of this condition should certainly not be
asserted without closer investigation.38

The question that such an investigation would have to resolve has been forced upon us by
the general theory of relativity.  We shall not answer it here, but merely present the alternatives
clearly.  For the concepts clarified in the foregoing discussion put us in a position more
precisely to grasp the question of the justification of non-Euclidean geometry in physics that is
connected with this theory.  The theory itself will not thereby be put to the test; we shall
assume it to be correct, in the sense that no facts of experience contradict it.  This assumption
appears, on the one hand, to be supported by numerous observational confirmations and, on the
other, to be useful, since in the treatment of relativity theory by philosophy and theory of
science our attention is rightly directed in a higher degree to the wider problem of the form in
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which the theory is to be presented.39  For us, the assertions contained therein will only be
considered in so far as they touch on spatial relations.  In doing so, however, we should again
remember that to consider them separately implies a conceptually permissible abstraction from
the unitary space-time-structure, but one that is not univocal with respect to the observations
themselves (the "matters of fact"), since it only makes sense for a particular conceptual
stipulation concerning simultaneity.  Yet it is possible in special cases to arrive univocally--i.e.,
independently of the definition of simultaneity--at assertions about spatial relations:  if, namely,
we apply the cautionary rules mentioned above in the measurement of surface s and limit
ourselves to such assertions about long-lasting point-coincidences as are established in the
described fashion by several observers.  For brevity, we shall in fact simply use the following
mode of expression:  according to the metric Mn we find such-and-such an interval for the two

points A, B, or we establish that the three points A, B, C lie on a straight line.  But in so doing
it should always be noted that these assertions can always be traced back to point-coincidences
(as in measurement of surface s) and that the simultaneity of different point-coincidences that
occurs here has the sense described earlier.40

The two forms (among infinitely many others that are less simple) in which, if the general
theory of relativity is assumed, the spatial relations in a gravitational field, e.g., in the
neighborhood of the sun, can be presented are now as follows:41

(1)  We again choose M1 as our metric, as has always been customary in physics.
Observations based on M1 yield the result that the length of any measuring rod certainly

depends on temperature, magnetization, elastic stresses, etc. but not on place or direction in the
gravitational field.  The measurement of space to be made in the gravitational field
corresponding to the measurement we described for s (where we again abstract from the non-
fundamental and merely technical difficulties due to the small curvature) would yield the result
that here the curvature is not everywhere null, but, for example, becomes more and more
strongly negative on a plane through the center of the sun as we approach the surface of the sun
from outside, and indeed does so with circular symmetry.

(2)  Our earlier discussions have shown that one can always find a metric stipulation on
the basis of which the matters of fact can be brought into the form of a Euclidean spatial
structure Sih=''.  So there must also be a metric stipulation ME that leads to a Euclidean

structure for the behavior of bodies in the gravitational field.  However, for this purpose it is
necessary to include in the specification of the metric not only, as in M1, the temperature (T)

and other physical state-magnitudes, but also place and direction, more precisely:  the distance
(r) from the center of the mass (m) generating the gravitational field and the angle ϕ between
the measuring-segment and r.  That this dependence on a determination of length (r) in the
metric does not lead to a circular argument has been shown above for a similar example (Ms);
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precisely the same holds for the determination of the angle ϕ, as one can easily convince
oneself by reducing angular measurement to the measurement of length.  Whereas M1 runs as

follows:  "these two points A, B of this iron rod shall be measure-points; at temperature T their
interval presents the segment l  =  l0(1 + b(T - T0))" (where for simplicity we introduce only

temperature among the state-magnitudes and restrict ourselves to the simplest form of
dependence), ME takes the form:  "these two points A, B of this iron rod shall be measure-

points; at temperature T and distance r from mass m at angle ϕ from r, their interval presents
the segment:

                     l   =   l0(1 + b(T - T0))[1 - C((m/r)cos(ϕ))],

where C is a constant (in cm-gr-sec units C = 3.72 × 10-29)."  If we measure according to this
metric stipulation there is, just as in M1, an expansion of all rigid bodies on heating and,
indeed, one that differs according to their composition; unlike in M1, however, there is also a

contraction of all bodies in the direction of the line connecting the body in question to the
center of m (but not at right angles to this direction).  Furthermore, this contraction is the same
for all bodies at the same distance from m, independent of their composition.  If a (very long)
rod is established as straight according to ME, then it does not in general remain straight when

it changes place or direction, but acquires a curvature.
We deliberately refrain from discussing the curvature of light-rays here, because it is not

possible to measure them subject to the cautionary rules that allow us here to ignore time.
The question as to the spatial form in which the matters of fact should be presented in a

gravitational field therefore comes down to a choice between the two metric-stipulations M1
and ME.  We limit ourselves here to characterizing the situation by way of these alternatives,

without wishing to make a decision on this question, which is one not of truth but of scientific
convenience.  We shall merely point out that the decision brings into play the above mentioned
rule of scientific procedure:  if possible, numerically identical behavior of the most diverse
bodies is to be presented as merely apparent, namely, as a consequence of a corresponding
property of that to which this behavior is related--in this case, the metric or spatial structure.
Let it also be recalled once more that we have here abstracted space from the total space-time
structure; if the decision is to be valid not only for this extract, the spatial relations, but also for
the total construction of the structure of natural processes, if can only be so through
investigation of the question whether one or the other of the two metrics yields the simpler
form for the four-dimensional space-time-structure.

We now briefly summarize the results of our investigation of physical space.  The three
dimensional topological space S3t'' is given to us among the matters of fact of experience--not,
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however, a metrical space.  Such a space results only from a metric stipulation, so that either
the latter itself or the metrical spatial structure can be freely chosen.  The best way to proceed,
however, is to choose neither one nor the other, but rather to so determine the metric stipulation
and the associated spatial structure that the matters of fact can thereby be presented as simply
as possible.
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IV   The Mutual Relations Among Formal, Intuitive, and Physical
Space

In discussing the different types of structure that likewise result for each of the three
meanings of space, the relations that exist among these meanings has already become clear at
various places, so that we need only to survey the connections briefly once again.

We consider the three propositions:
(1)  Multiplying one number by another yields the same result as multiplying the second

by the first.
(2)  Three groups of any four things comprise precisely as many things as four groups of

any three things.
(3)  Here are 3 boxes, the number of balls in each is 4; there are 4 boxes with 3 balls in

each; so there are just as many balls here as there.
The relation of (1) to (2) and of (2) to (3) is that of a general rule to its application, but in

a different sense.  The former is a limitation of a general conceptual rule to a special case,
although one to which generality still belongs with respect to reality; the latter is an application
of this limited generality to a particular case in reality, in which no more generality resides.
This distinction will be designated by the terms specification (substitution) and subordination
(subsumption); since in the first case determinate relational terms are substituted for
indeterminate ones, while in the second case experienced reality is subordinated to the
determinate rule.42

The relations among geometries may now be grasped with the help of these definitions.
The relation of specification holds between the theory of formal and that of intuitive space; the
relation of subordination holds between the latter and the theory of physical space.  The same
three-termed relation, which is of fundamental importance for the theory of science, also holds
generally between logic (in the sense of the theory of order), the theory of magnitude (not only
spatial), and physics.  It corresponds (in Husserl's terminology) to the step-wise progression:
formal ontology (Leibniz's "mathesis universalis"), regional ontology, factual science; and also
to the first steps of the scientific pyramid in Ostwald's theory of science.  Examples of
particular realms of science that stand to one another in such relations are:  general theory of
relations, general theory of kinship, historical genealogy; general mathetics, mathetic theory of
color, physical theory of color (as named and developed by Ostwald); and so too with the
geometries.43



47

Corresponding to the relations among the three realms of science are the relations among
their objects--and so here among spaces in the three meanings S, S', S''.  Both the relation of S
to S' and that of S' to S'' is that of species to individual, but in a different sense.  Here also the
relations can be designated as specification and subordination, for these two expressions (or
else substitution and subsumption) are not only used in the theory of judgement but also (in
another, but closely corresponding meaning) in the theory of classes.  The relation of S to S' is
that of the species of structures with determinate order-properties but undetermined objects to a
structure with these same order-properties but determinate objects--viz., intuitively spatial
forms.  The relation of S' to S'' is that of a form of intuition to a structure with this form made
up of real objects of experience.44

From this it can now also be seen why the different types of S'--especially the different
sub-types of S3m'--and the corresponding types of S are constructed.  The point and purpose of

these constructions lies in S''.  The spatial relations of experience are to be brought into a
consistent structure S'', for this the general form S' is constructed first, and for this in turn the
still more general conceptual form S.  Now, since the different types of S3m'' prove to be

possible for S'', depending on the choice of metric, the corresponding types of S' must also be
constructed.  As previously explained, these are then generalized to, and at the same time
brought together in, the comprehensive structures Snm' or S3t'' and finally Snt'.  And for these

latter structures we construct the formal framework of the corresponding S up to the most
general one, Snt.

45

V   The Relations Between Spatial Cognition and Experience

   (a)   The Sources of Spatial Cognition

From the view thus obtained of the three different meanings of space and the
corresponding types of spatial structure encountered under these meanings--especially the
topological and metrical structures--we can answer the question about the dependence of
spatial cognition on experience and, more generally, about the sources of this cognition.46

The theory of formal space is an extension of a special domain of the theory of relations;
its propositions, just like those of number theory, are derived from the basic laws of deductive
logic and are wholly independent of experience.47
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The case is not so simple for intuitive space.  Here the theorems are derived purely
conceptually from certain axioms; so the remaining question is simply what the cognition of
these axioms is based on.  We have distinguished here between axioms in the narrower sense
and postulates.  The former are the findings of a certain type of "essential insight" (in Husserl's
sense) and therefore, like all cognitions from this source, they are not demonstrated by the
accumulation of facts of experience and so are not to be called experiential cognitions; yet they
are also not independent of all experience, in so far as they are obtained from some or another
representative of the type of object in question.48  The postulates, by contrast, are not cognitions
at all, but stipulations advanced in order to obtain a complete global structure, "space," from
cognitions which by nature appear limited to an incomplete region.  Various possibilities
emerged for these extensions to the complete structure.  Topological space presents what is
common to all of them and is therefore to be viewed as the form of what can be grasped in the
essential insight of the spatial.  The metrical intuitive spaces, on the other hand, are also still
dependent on the choice of those postulates; they therefore lack the property of unconditioned
validity that belongs to topological intuitive space, as to all cognitions arising from this source.

Cognition of the structure of physical space is experiential cognition:  it is based on the
"matters of fact" of experience and is obtained through induction--i.e., through the assembling
and processing of facts of experience--and can therefore never itself arrive at unconditioned
certainty, but can merely approach ever more closely to this as a limiting value.  Cognition of
topological space thus arises on the basis of the matters of fact, while its  transformation into
one of the metrical structures is possible only by the addition of a freely choosable metric.49

So far we have intentionally avoided the Kantian terminology of a priori and empirical
cognitions, and of analytic and synthetic judgements--partly because these terms are not
interpreted and applied in the same way by all sides, partly also because the situation in our
problem appears capable of sharper expression with the aid of other given definitions.
However, in order to clarify our relation to views that employ these concepts--especially to the
question of synthetic a priori judgements--let us briefly indicate how the results of our present
investigations relate to these concepts.  Once again, however, the only question here concerns
the axioms of the theory of space, since the theorems are derived from them without help from
either intuition or experience.

The axioms governing formal space are obviously a priori.  They are not synthetic but
analytic, since they are derived solely from logical axioms and therefore assert of every concept
of a "spatial structure" (in the formal sense) that occurs therein only what is already posited in
its definition.  The axioms of intuitive space are likewise a priori.  Following Kant's well-
known distinction between "arises from experience" and "begins with experience" this does not
indeed mean:  comprehensible without experience, but rather:  "independent of the aggregate of
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experience" (Driesch)--and therefore does not contradict the fact that the givenness of
experience is required for essential insight, either immediately in perception or mediately in
imagination.  In these axioms of intuitive space we have before us the synthetic a priori
propositions whose existence is asserted by Kant.  However, the same does not hold generally
for the theorems derived from them, but only in so far as they pertain to topological space; for
those that relate to one of the metrical spaces depend not only on the axioms, but also on the
postulates on the basis of which the complete structure of intuitive space results.  Thus, such
theorems depend on determinations that are not a priori cognitions, because they are not
cognitions at all but rather stipulations.  Hence Kant's assertion is indeed correct, but does not
hold for the entire range of those propositions for which he himself asserted it.  Finally, the
propositions governing physical space are likewise synthetic, but certainly not a priori; rather,
they are a posteriori in that they rest on induction.

Therefore, apart from the determinations added by means of freely chosen stipulations,
the propositions governing formal, physical, and intuitive space are analytic a priori, synthetic a
posteriori, and synthetic a priori, respectively.  The old controversies between mathematicians,
who disputed Kant's assertion, and philosophers, who defended it, were thus obviously unable
to reach any result, because the two sides were not talking about the same object.  The former
had partly formal space in mind (e.g., Couturat) and partly physical space (Riemann,
Helmholtz, Poincaré), the latter intuitive space.  So both parties were correct and could have
been easily reconciled if clarity had prevailed concerning the three different meanings of
space.50

To return to our own definitions, instead of the a priori/a posteriori distinction, we can
express the intellectual (i.e., ground providing) sources of a cognition by a formula, in which
I1, A1, or F1 are to mean that the cognition in question rests on essential insight, arbitrary
stipulation, or matters of fact of experience and I0, A0, or F0 that the cognition is free from

these determinations.  Propositions concerning the various types of space then have the
following source-formulas:

Snt,  S3t,  (S3m): I1A0F0
S3m (see below): I1A1F0

S3t': I1A0F0
Snt': I1A0F0

                    S3m': I1A1F0
S3t'': I1A0F1

                   S3m'': I1A1F1.
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I occurs throughout, but is properly "spatial" only in the latter cases; in the first two, on the
other hand, it is formal in nature (Husserl:  "formal ontology").  S3m is then free from A if this
structure is derived from S3t and thereby has uninterrupted connection with the logical axioms,

but is not so if its axioms are postulated indendently as formal conditions on a relational
structure resting on freely chosen stipulation.  We noted above that this latter procedure is
customarily applied.  That S3t' is free from A, even though constructed with the help of

postulates stipulated by free choice, rests on the fact that this structure contains only those
spatial determinations that result from each of the various possible stipulations, and is therefore
not dependent on the choice of stipulation.

   (b)   Space as a Condition of Experience

According to Kant, space is the condition for the possibility of every (outer) experience as
such.  Is this true for the spatial determinations of all the structures we have distinguished?  To
decide this we must consider which spatial determinations are necessarily to be met with in
every (outer) experience, and thus also when that experience has not yet been brought, on the
basis of freely chosen determinations, into a special form that goes beyond the necessary form.
Now, we have called experience, in so far as it is presented only in the univocal necessary form
that contains no arbitrary stipulation whatsoever, "matter of fact."  Therefore, only the spatial
determinations contained in matters of fact can be conditions for the possibility of experience.
And these, as we have seen, are only the topological, but not the projective and above all not
the metrical relations.

The transformation of a statement of matter of fact from one metrical space-form into
another--e.g., from the Euclidean into one of the non-Euclidean--has been aptly compared to
the translation of a proposition from one language into another.  Now, just as the genuine sense
of the proposition is not its presentation in one of these linguistic forms--for then its
presentation in the other languages would have to appear as derivative and less original--but is
merely that in the proposition which remains unaltered in translation; so too the sense of the
statement of matter of fact is not one of its metrical presentations, but that which is common to
all of them (the "invariants of topological transformations")--and that is precisely its
presentation in merely topological form.

In treating this question it has often been correctly pointed out that this "transcendental
function" of space--the grounding of experience--can be attributed only to a unique space-form,
and that therefore the non-Euclidean space-forms could not be considered for this purpose.
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From this correct assertion it should not, however, be concluded that therefore only Euclidean
space can assume this role.  For this space is on a par with the others and possesses as little or
as much uniqueness as any of the non-Euclidean spaces--the one, say, with a constant curvature
of -20.  Rather, the correct inference from our premise can issue only in topological space, for
only the latter is both superordinate to these and also completely unique:  the matters of fact of
experience cannot appear in several different topological forms.

The topological spatial relations that form the condition of the possibility of every object
of experience cannot be those of physical space, since the latter is not independent of the
matters of fact of experience but rather merely presents the non-necessary, merely actual
findings thereof:  e.g., this particular physico-spatial structure stands to that one in a particular
topological relation (of contact, connection, inclusion, etc.).  The determinations of topological
intuitive space, in their independence of experience and in the general validity accruing to them
in virtue of their cognitive source (and, consequently, also those of formal topological space--
that general relational structure of undetermined things of which topological intuitive space
forms a particular special case), can alone have this experience-constituting validity.

The much disputed question, whether the three-dimensionality of space belongs among
those determinations that are the condition of every object of experience is to be answered in
the negative.  As we have seen in our construction of intuitive space, it emerges as a finding of
intuition that the spatial forms of the realm of intuition have up to three dimensions.  However,
in the extension of this realm to the global space it turns out that, if a form of k dimensions is
present, one can certainly conclude that the global structure to which it belongs has at least k
dimensions, but the upper limit to the number of dimensions of the global structure cannot be
inferred.  From this finding of intuition it thus follows only that the global intuitive space has at
least three dimensions.  Still less can it be certainly concluded from the cognition of physical
space, which possesses no necessity but only experiential probability, or from that of formal
space, for which the number of dimensions is obviously not limited, that it is a condition of the
possibility of any object of experience to have at most three dimensions.  The view that this
conclusion can be drawn by arguing that only by the three-dimensionality of spatial forms will
the uniqueness of experiential determination be guaranteed is likewise off the mark.  Rather,
the situation is precisely the reverse:  spatial determination becomes equivocal if we allow an
upper limit to the number of dimensions, in accordance with the plurality of possibilities for
such limits.  And, in order to avoid this equivocality, the unlimited number of dimensions has
to be postulated as possible, so that arbitrarily many dimensions for objects of experience are
consistent with its possibility as such a structure.

It has already been explained more than once, from both mathematical and philosophical
points of view, that Kant's contention concerning the significance of space for experience is not
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shaken by the theory of non-Euclidean spaces, but must be transferred from the three
dimensional Euclidean structure, which was alone known to him, to a more general structure.
However, to the question what this latter is now to be, the answers are partly indeterminate, in
that only isolated characteristics of the three dimensional Euclidean structure are proposed as
requiring generalization, and partly contradictory, chiefly because of a failure to distinguish the
different meanings of space and insufficient clarity about the conceptual relationship of the
space-types themselves--especially the relation of the metrical to the superordinate topological
ones.  According to the foregoing reflections, the Kantian conception must be accepted.  And,
indeed, the spatial structure possessing experience-constituting significance (in place of that
supposed by Kant) can be precisely specified as topological intuitive space with indefinitely
many dimensions (Snt').  We thereby declare, not only the determinations of this structure, but
at the same time those of its form of order, Snt, to be conditions of the possibility of any object

of experience whatsoever.51
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NOTES
                    

1The treatment of formal space goes back originally to

Leibniz ([147], [149], [152]); see also [146] and compare

[6], Vol. 2, Chap. I, §11, [22], Part I, Chap. 1.  Leibniz

considered formal geometry as a special case of his planned

"mathesis universalis"--a universal theory that presents the

formal law of any contentful particular theory ([151]):

compare Couturat [30], Chap. VII, Chap. IX; Husserl [118],

§60, §69; Cassirer [24], Book 5, Chap. 7, §II, [25], Chap.

III, §III.  But essential steps towards this goal have only

been taken in the last decades, through construction of the

formal theory of relations or order by means of a procedure

imitating the mathematical; see:  Royce [216], §23;

Gätschenberger [75], Chap. 11.  Here compare the following

works and those mentioned in connection with particular

points below.

Couturat [31] above all provides a good overview, which

reports on the works of Russell [218], Whitehead [268], and

others; Cassirer [23] provides a much briefer discussion of

the main questions from [31] and [218].  Whitehead and

Russell [270] is the most fundamental work on the

construction of formal logic and the theories of relations,

series, numbers, and magnitudes; Volume 4 on geometry has

not yet appeared.  This work is apparently much less well

known in Germany than the older [218] and [268] on whose

preliminary work it is constructed; nevertheless [268] still

remains important for its detailed applications to geometry

and mechanics, and [218] above all remains important for its

discussion of logical principle.  [31], [218], and [270] are

also relied upon in the first instance in all following

paragraphs on formal space.



54

                                                            

Hilbert [110] can be considered as a treatment of formal

space; it is so conceived in [25], Chap. III, §III, [40],

Chap. 1, §1, [260], §13; however, see the discussion also in

§II below on intuitive space.  On the distinction of the two

points of view compare Frege's criticism [73].

See also:  Graßmann [84], [85], [86] and the comments in

[169], [222], [30], Appendix V (§§1, 2); Riemann [215];

Vahlen [252]; Peano; [193], [194], [194]; Whitehead [269];

Veronese [254]; Wellstein [260], §§8-13; Husserl [118], §69;

Schlick [223], §7.  See further:  [232], [96], Chap. 7, §1,

[88], pp. 110-368, [89], [175], §4, [176], [177], [143],

[174], [263], [262], pp. 64ff., [219], [55], pp. 8ff.,

18ff., [182], pp. 13-40, 127-147, [198], §85, [106], p. 23.

On the reduction of arithmetic and geometry to logic and

the theory of relations compare also, however, the following

critical remarks:  Jakowenko [123]; Poincaré [206], Book II,

Chap. III-V (and Lindemann's notes to the German

translation), [205], Part 1, Chap. 1; Klein [136], Vol. 2,

Part 3, Chap. II, §2, #3 ("Modern geometric theory of

axioms"); Geißler [80]; Aster [2], Chap. IV, §10.

(For all following paragraphs of §I see also [31], [218],

and [270]!)

2On judgements see:  Couturat [34], [33], §§I-II; Schröder

[231], [232], Vol. 2, [233]; Peano [193], §1, [197], §1;

Cohn [29], Part I, Chap. II, §3; Mally [163].

3For concepts our derivation depends on Frege [71], Vol.

1, §3, [69], [70], and also [73]; see also Bauch [4].  Our

theory of concepts therefore corresponds to the "theory of

classes":  Couturat [34], [33], §III; Schröder [233]; Peano

[197], §1; Mally [163], pp. 3ff.; Royce [216], §19; König

[141], Chap. 2, §§11-12; Russell [219], §VII.

Here only one side of the concept, its extension, is

used.  This theory of classes must therefore find its
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necessary completion either in the already constructed

theory of judgement (see above) or also in a special theory

of the content of concepts:  i.e., a theory of the

determination of objects.  Here compare, e.g.:  Husserl

[117]; Mally [163], p. 77; Dingler [43]; Gätschenberger

[75], Chap. 11; but also Couturat [30], Chap. VIII, §29.

4On relations see:  Schröder [232], Vol. 2; Frege [71],

Vol. 1, §4; Couturat [33], §IV; Royce [216], §18; Russell

[221], Chap. II, [219], §§VII, VIII; Cassirer [23], §§I,

II.1, [25], Chap. II, §II; Cohn [29], Part I, Chap. III, §6;

Ostwald [185], §107, [184], pp. 70-95; Dingler [41], pp.

7ff.; Gätschenberger [75], Chap. 7, Chap. 11.

5Set theory originates with Cantor [20], [21].

Schoenflies [229], [230] presents a comprehensive account;

the best textbook is Hausdorff [96].  For particular

consideration of logical questions see:  Hessenberg [108];

Fraenkel [67]; Couturat [31], pp. 231-240.  Compare also:

Schoenflies [228]; Klein [136], Vol. 1, Supplement, Chap.

II; Voß [256], Chap. 5; Cassirer [23], §III, [25], Chap. II,

§4; König [141].

For critical remarks see:  Natorp [179], Chap. 4, §4;

Weyl [263], [265]; Ziehen [275]; Geißler [80], pp. 96ff.;

Cohn [29], Part II, Chap. 4, §11; Bergmann [9].  Here,

however, compare also Bernstein [11].  On the so-called

paradoxes and their solution see Russell [219] and Zermelo

[274].

6On number see:  Dedekind [36]; Frege [71], Vol. 1,

especially §§38-42, [72], [68]; Schröder [232], Vol. 1;

Couturat [33], §IV; Russell [219], §IX; Hausdorff [96],

Chap. 4, §§1, 2; Klein [136], Vol. 1, Part One, Chap. I, §3;

Weber [257], §§1, 2; Kerry [127], Chap. 3; Voß [256], Chap.

5.  See also:  Natorp [179], Chap. 3, §2, [178], §22;
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Cassirer [25], Chap. III; Cohn [29], Part II, Chap. IV, §9;

Driesch [50], Chap. II, §4a.

For criticism compare:  Husserl [116], Chap. 6; Weyl

[263].

For derivation from proper axioms rather than from the

theory of relations see:  Stolz [247], Chap. II, §3; Peano

[196], [197], §2; Hilbert [111], [112].

7On series see:  Frege [67a], Part III, [71], Vol. 1,

§§43-46; Veronese [254], Introduction, Chap. 2, §2; Kerry

[127], Chap. 2; Russell [219], §X.  See also:  Natorp [179],

Chap. 3, §1, [175], §2; Cassirer [25], Chap. II, §II; König

[141], Chap. 3, §§1, 2; Royce [216], §20; Ostwald [185],

§§111, 112.

8On ordinal numbers see:  Frege [71]; Hausforff [96],

Chap. 4, §§1, 2; Kerry [127], Chap. 3.  See also:  Natorp

[179], Chap. 3, §2; Cassirer [25], Chap. II, §§I, II; König

[141], Chap. 9, §§1, 2.

For criticism of the purely logical derivation of the

theory of numbers see:  Rickert [211]; Nelson [180], §21;

Hartmann [94].

9On continuity and the continuum (irrational number) see:

Dedekind [35]; Cantor [20], §§9, 10, [21], §11; Frege [71],

Vol. 2; Bolzano [14], §38; Du Bois-Raymond [12], §47; Stolz

[248], Chap. II, §5, Chap. III, §§6, 7; Kerry [127], Chap.

6; Klein [136], Vol. 1, Part One, Chap. II, §3, and

Supplement, Chap. II, §2, [134], pp. 234ff.; Veronese [254],

Introduction, Chap. 6, §10; Peano [197], §§3, 94; Voß [256],

Chap. 5.  See also:  Hessenberg [107], §VIII, [108], Part 2,

Chap. IX, §§26-29; Hausdorff [96], Chap. 4, §5; Fraenkel

[67], §5; Weber [257], §24; Russell [221], Chap. V.  See

further:  Cassirer [23], §II.2, [25], Chap. II, §IV;

Herbertz [105], pp. 16ff.; Henry [104], Part II, §4.



57

                                                            

For criticism of the formal derivation of continuity see:

Weyl [265], [266]; Natorp [179], Chap. 4, §§3-6, [178], §26;

Driesch [50], Chap. II, §4c; Cohn [29], Part 2, Chap. VI,

§15; Isenkrahe [120], pp. 99ff., [121]; Schmied-Kowarzik

[225], Part I, Chap. 3; Sigwart [240], §§66, 15; Hankel

[92], §§12, 16; Bergmann  [9], §§10, 11; Wernicke [262], pp.

66ff.; Henry [104], Part II, §4; Schmitz-Dumont [227], pp.

116ff.

10For multi-leveled number-structures see Weierstraß

[258].  For space as a structure of complex numbers see:

Riemann [214]; Hankel [92], §28; Stolz [248], Chap. X, §§1,

2; Burkhardt [19]; Wellstein [260], §12; Couturat [31],

Chap. VI.A; Natorp [175], §4, [177]; Hilbert [110], Chap.

II.  But compare also:  Cohn [29], Part II, Chap. V, §13;

Stallo [243], Chap. XIV; Wundt [273], Part III, Chap. 3, §4;

Geißler [80], pp. 55ff.

11For Snt (compare also note 25 below on the concept of

topology) see: Riemann [215]; Tietze [250], R. Graßmann [90]

(but not H. Graßmann [84]).  Here see the theory of point-

sets:  Schoenflies [229], [230]; Hausdorff [96], Chap. 7,

§1.
For Snp (compare also note 24 below on the concept of

projective geometry) see Pieri [201].  For Snm see Hausdorff

[96], Chap. 8, §5, Example IV.

12For S3t see Enriques [57].  For S3p see:  Veblen [253];

Wellstein [260], §15; Whitehead [269].  For S3m see H.

Graßmann, jr. [87].

13With respect to the multiple applicability of formal

space to geometrical structures (of intuitive space),

Wellstein [260] gives a great number of examples (our

example 4 below is taken from him); see also Müller [174],
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pp. 11ff.  The application of formal space to non-spatial

structures does not appear in the literature; it should here

(examples 1 and 2) only more forcefully illustrate the

complete indeterminateness of the relational terms.  Compare

also Frege [73] and Korselt [143].

14On intuition, essential insight see:  Husserl [119],

especially §§3-5; Aster [2], Chap. 4, §2.  For the rest see

note 50 below, (1), concerning synthetic a priori

judgements.  See the Introduction to Hilbert [110] on

"logical analysis of spatial intuition," but compare also

note 1 above vis à vis formal space.

On the contrast with formal space see:  Graßmann [84],

Introduction, §A.3, Part 1, Chap. 1, §A.13 ("geometry -- the

theory of extension, formal science"); Wernicke [261], pp.

9ff. ("mathematics of extension -- general mathematics as

theory of forms"); Riehl [212], Chap. 2, §8 ("spatial

manifold -- manifolds in general"); Enriques [57], p. 239

("intuitive space (visual) -- analytic space"); Stallo

[243], Chap. XIX; König [140], Chap. 5, §2; Korselt [143];

Geyser [82], Book 2, Part 2, Chap. 13, §2 ("spatially

determinate elements of sensible intuition -- mathematical

order system of places in a number-aggregate"); Schlick

[223], §29 ("system of intuitive spatial structures --

system of pure judgements and concepts"); Henry [104], Part

II, §7; Sellien [238], Part II, Chap. I.  On the relations

of mathematics to both domains compare Klein [133a].

On the distintion from empirical intuition see Nelson

[180], §§3, 4, [181].

The "physiological space of sight" is to be distinguished

from "intuitive space"--compare, e.g., Sterneck [246].  The

"physical space" contrasted with this "space of sight" by

Russell ([220], Chap. III) corresponds to the order

structure S with particular reference to its application to

S' and S''.  The same holds for Schlick's ([223], §29)
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"visual space" -- "physical-objective space."  Moreover, our

"intuitive space" is not equivalent to the space so-

designated by Veronese ([254], Part I, Book 1, Chap. 1, §1),

which corresponds rather to our physical space S''.

15On the imprecision of intuition see:  Klein [132], Vol.

37, §4, [133a], p. 85, [134], pp. 7f., 18f., 39ff.; Hölder

[113], endnote 64; Wellstein [260], §14; Enriques [58],

Chap. 4A, §7; Study [249], Chap. 4; Christiansen [27], p.

31.  On the other hand, see:  Nelson [180], §19, [181], Part

II, §§8, 9; Geißler [80], p. 39.

16On the limitedness of the domain of intuition see:

Klein [136], Vol. 2, Part Three, Chap. II, §2.5

("Significance of non-Euclidean geometry from standpoint of

philosophy"), [135]; Pasch [190], §1 (here under "empirical

observation" is meant intuition--for, although experience is

incorrectly viewed as the cognitive source, physical space

is not yet in question); Schmied-Kowarzik [225], Part II,

Chap. 1; Voß [256], Chap. 6.

17On the impossibility of definition see:  Wellstein

[260], §6; Pasch [190], §1; Couturat [31], Chap. VI; Driesch

[50], Chap. II, §6a; Veronese [254], Preface; Mollerup

[170], before §1; Wernicke [262], p. 73; Schlick [223], §29,

[224], §X.  On the other hand, see Geißler [80], pp. 18f,

30ff.

18On the axioms see, in the first place, Hilbert [110];

compare here Frege [73] and Korselt [143].  See also:

Euclid [65], [56], pp. 6-14; Pasch [190]; Killing [128a],

§1, [128b], pp. 128ff.; Lie [153], especially Part V, §95;

Whitehead [269], §§4-6; Schur [235], Introduction; Mollerup

[170], §1; Klein [134], p. 15; Veronese [254], Introduction,

Chap. 1, §9; Enriques [59], §1; Couturat [31], Chap. VI.C;
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Veblen [253], §9; Geißler [79].  See further:  Poincaré

[204], Chap. III; Cohn [29], Part 2, Chap. V, §§13, 14;

Husserl [119], §72; Nelson [180], §§5-7; Hessenberg [106];

Ostwald [185], §153; Wernicke [261], pp. 25ff., [262], pp.

73ff.; Gerstel [81]; Henry [104], Part II, §1.

19On the question of the expansion of the spatial domain

see:  Killing [128a], §11, [129], Vol. 1--see especially

Chap. 1, §24, Chap. 4, §10; Pasch [190], §1; Kerry [127],

Chap. 4; Driesch [50], Chap. II, §§6a, 6b.

20On the validity of Euclidean geometry in the small see:

Riemann [215], §II.2; Killing [128a], §10 .  With reference

to the physical space of general relativity (see note [39]

below) see:  Weyl [267]; Cassirer [26], Chap. VI;

Reichenbach [209], Chap. III.

21On the Riemannian "measure of curvature" of space see:

Riemann [215], §II; Helmholtz [99]; Killing [128a], §10.

The measure of curvature is very frequently misunderstood

as change of direction--see, for example:  Lotze [160],

§136; Pietzker [202]; Kirschmann [130], e.g., Part I, §IV;

Riehl [212], Chap. 2, §8; Schmitz-Dumont [227], p. 150;

Geißler [80], p. 58; Driesch [49], Chap. B.2; Medicus [164],

p. 23n, [165], pp. 12f.; Natorp [179], Chap. 6, §5;

Weinstein [259], p. 36; Isenkrahe [120], pp. 32ff., [122],

Chap. VII, Chap. XII; Cornelius [29a], Part 2, Chap. III.D.

On this point compare:  Helmholtz [102]; Christiansen [27],

p. 139; Hartmann [93], Part II, Book I; Born [17], Chap.

VII.7.

22On the metrical space-types (non-Euclidean geometry) see

especially:  Wellstein [260], §11; Klein [132], [133];

Killing [128a], [129]; Liebmann [154].  See also:  Vahlen

[252], pp. 237-298; Mollerup [171]; Veronese [254], Part I,
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Book 2, Chap. 3, §1; Simon [241]; and compare the schema in

Heymans [109], §46.  The most fundamental treatments are:

Helmholtz [99]; Poincaré [204], Chap. III; Russell [217];

Geiringer [78].  For space-types not treated by us see:

Hausdorff [95]; Killing [129].

On the historical develoment see:  Bonola [15], [16];

Engel [56].

See:  Euclid [65]; Simon [242]; Lobatchevsky [157],

[158]; Bolyai [13]; Gauß [77], [76], pp. 157-268.

The error of supposing that non-Euclidean geometry can

only be defined with reference to Euclidean geometry is very

widespread; see, for example:  Delboeuf [18], Chap. I.2;

Kirschmann [130], Part I, Chap. IV; Riehl [212], Chap. 2,

§8; Sigwart [240], §67; Geißler [80], pp. 52f., 84; König

[140], Chap. 5, §2; Medicus [165], pp. 12f.; Aster [2],

Chap. IV, §9; Cornelius [29a], Part 2, Chap. III.D; Driesch

[50], Chap. II, §6b. See on the other hand:  Russell [217],

§97; Wellstein [260], §15; Voß [256], Chap. 6; Christiansen

[27], pp. 138f.

23On homogeneity and isotropy, congruence-spaces (constant

curvature) see:  Riemann [215], §II.4; Helmholtz [97], §4;

Poincaré [204], Chap. III. IV (and Lindemann's note 34 in

the German translation).  (Some narrower, non-standard

meanings of homogeneity are found in Cohn [29], Part 2,

Chap. V, §14; Delboeuf [18], Chap. I.2--here distinguished

from isogeny = homogeneity in our sense.  A wider meaning,

holding also for a space of unequal measures of curvature,

is found in Reichenbach [209], Chap. III.)

The curious error of supposing that only Euclidean space

is homogeneous is found very frequently among philosophers:

Lotze [160], §137 (here see Russell [217], §95); Pietzker

[202], p. 29; König [140], Chap. 2, §2; Natorp [179], Chap.

VI, §6; Cassirer [25], Part I, Chap. III, §IV ("The
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conceptual principles of pure space"), [26], Chap. VI;

Driesch [50], Chap. II, §§6b, 3c.

24On S3p' and the concept of projective geometry:

Projective geometry as pure geometry of position goes back

to Leibniz's plan for an Analysis Situs ([150], [144], pp.

69ff., [148], [149]; compare Couturat [30], Chap. IX and

Cassirer [24], Book 5, Chap. 2, §II ("The geometrical

characteristic")); here no concept of measure is used, but

rather the concepts of line and plane.  Therefore projective

geometry is to be regarded as the realization of the

Leibnizean plan, not topology--which is also frequently

called Analysis Situs (see below); here compare Couturat

[31], Chap. VI.A, [30], Chap. IX, §20.  See also:  Steiner

[245]; Staudt [244]; Reye [210]; Pasch [190], §§1-12; Vahlen

[252], pp. 55-169; Killing [129], Vol. 1, Chap. 2, §1, Vol.

2, Chap. 6, §1; Russell [218], Chap. XLV, [217], §102-140;

Klein [131], §3; Enriques [59], §17; Veblen [253]; Wellstein

[260], §15.

For projective geometry as generalization of metrical

geometry see:  Killing [128a], §65; Wellstein [260], §15;

Vahlen [252], p. VI f.; Lindemann, note 24 to the German

translation of [204]; Cassirer [25], Chap. III, §II

(especially "Geometry and the group theory").  (In these

important expositions the generalization with the help of

transformation-invariants is carried out only up to

projective space; the same procedure constitutes a very

appropriate route to topological space.)

25On S3t' and the concept of topology (also called

"Analysis Situs," but compare note 24 above) see:  Couturat

[31], Chap. VI.A; Poincaré [205], Part I, Chap. 3, §2;

[206], Chap. I, §II ("Geometry of Position"), [207], Chap.

3, §1.  See also:  Riemann [214]; Enriques [59], §13; Dehn
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[37], [38]; Klein [131], §8, [136], Vol. 2, Part Two, Chap.

III.3.

On the succession of levels--metrical, projective,

topological space--see:  Klein [136], Vol. 2, Part Three,

Chap. I.1; Enriques [61], §5, [58], Chap. 4A, §27, [59],

§12.

26On higher dimensions see in general (also for history
and literature) Segre [237].  On Snm' see:  Helmholtz [97],

§1; Veronese [254], Part 2, Book 2, Chap. 1, 2; Killing
[128a], §60. On Snp' see Killing [128a], §§48, 49.  On Snt'

see:  Poincaré [207], Chap. 3, §6; Tietze [250].  (Compare
also above under Snm, Snp, Snt.)

For attempts to prove the logical impossibility of higher

spatial dimensions (compare also note 51, (1), below) see:

Lotze [160], §§132-135 (here compare Russell [217], §94);

Pietzker [202], pp. 64ff., 87f., [203]; Schmitz-Dumont

[226], pp. 45f.  These derivations mostly contain formal

fallacies which are easy to detect if one guards against

presuppositions holding only for three dimensional space.  A

complete misunderstanding of the concept of dimension is

found in Kirschmann [130].  Compare Müller [174].

27In the first instance see Dingler [40], especially Chap.

I, Part II, §4, Chap. III, Part I, §1, Chap. III, Part II,

§5, Appendix I, and [47a].  See also:  Helmholtz [103];

Clifford [28], Chap. 2; Dittrich [48].

On the logical construction of S'' from the elements of

sense perception see Russell [221], Chap. III, IV; compare

Bergmann [10].

On physico-spatial relations see:  Helmholtz [99]; Mach

[161], Chap. VI, VII, [162], Chap. 22; Enriques [58], Chap.

4A, §6; Einstein [52], §I.

On the contrast between physical and pure (intuitive or

formal) space (see also note 45 below:  S'' as goal of S and
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S') see:  Russell [218], §352 ("geometry as the study of

actual space -- geometry as a pure à priori science");

Couturat [31], Chap. VI.C; Einstein [54] ("practical

geometry, a natural science -- pure axiomatic geometry, free

creation of the human mind"), [52], §I ("propositions about

the relative position of practically rigid bodies -- pure

geometry"); Natorp [179], Chap. 6, §8 ("spatial order of the

empirical -- pure geometrical space"); Cassirer [25], Part

I, Chap. IV, §VI [under "Hertz's system of mechanics"]

("physical space of bodies -- geometrical space of lines and

distances," with a reference to Leibniz), [26], Chap. V

("empirical -- pure space"), Chap. VI ("relations of

measurement of the empirical -- space of pure intuition");

Medicus [164], pp. 19ff. ("empirical space -- pure form of

intuition"); Dingler [40] and other works ("empirical --

logical geometry"); Meinong [166], §17 ("our space of

reality and physics -- space of geometry"); Liebmann [155],

Part 1, Chap. 2; Enriques [61], §2 ("physical -- intuitive

space"); Kleinpeter [138], Chap. IV, §2 ("geometry as theory

of the spatial proerties of bodies, part of physics --

geometry as formal science"); Study [249], Chap. V ("natural

(concrete) -- abstract geometry"), Chap. IV ("empirical

space -- space of our world of representation"); Ostwald

[185], §148 ("natural -- mathematical space").

28On the establishing of physical straight lines see:

Dingler [40], Chap. I, Part II, §4; Poincaré [205], Part I,

Chap. 3, §1; Einstein [52], §I.  See also:  Helmholtz [103];

Clifford [28], Chap. 2, §5; Study [249], Chap. VII;

Wellstein [260], §13; Born [17], Chap. VII.6; Geiringer

[78], Part III.

On the distinction between straightness stipulation and

metric stipulation compare also Klein [132], Vol. 37, §IV.
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29Concerning metric stipulation:  The possibility of free

choice is not recognized by:  Russell [217], §74, [220],

Chap. III; Hölder [113], pp. 5, 30; L. Poincaré [208], Chap.

2, §2; Aster [2], Chap. IV, §6.

Metric stipulation may appeal only to a point-pair

(compare Einstein [52], §I; Schlick [223], §31), and not to

a rigid body, as is customary--see, for example:  Helmholtz

[97]; Poincaré [204], Chap. IV, [207], Chap. 2; Natorp

[179], Chap. VI, §8; Dingler [42], Part II, Chap. 2, §§5, 6,

Part III, Chap. 1, §3, [40], Chap. I, Part II, §6, Chap.

III, Part I, §1, [45], [46], [47a]; Wellstein [260], §14;

Ostwald [185], §148; Wien [271], Lecture 2; Schlick [224],

§V.

On metric stipulation with dependence on place and time

("reference mollusc") see:  Einstein [52], §XXVIII; Born

[17], Chap. VII.7.

30Concerning the concept of "matter of fact":  On the

circumstance that only spatio-temporal encounter

("coincidence") can be physically established see:  Einstein

[52], §XXVII, [51], §3; Born [17], Chap. VII.6-7; Petzoldt

[200], §35; Schlick [223], §31, [224], §VII; Cassirer [26],

Chap. V.  On the idea that therefore only topological

determinations are unique see:  Poincaré [205], Part I,

Chap. 3, §2, [207], Chap. 3, §1; Schlick [224], §§IV, VII.

31Concerning establishing the physical spatial structure

through experiments, measurement of the surface s, and the

establishing of curvature see:  Helmholtz [103]; Einstein

[52], §XXIV; Born [17], Chap. VII.4-5.  Dingler [40], Chap.

III, Part I, §3 is only apparently in contradiction to this-

-compare the "manual construction of geometry," Chap. III,

Part II, §5 and [46], §3, and see below:  from F and M, S

results uniquely.  Precisely the same holds for Poincaré

[204], Chap. V:  Poincaré's objection, that space could
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equally well be found to be Euclidean or non-Euclidean, is

correct; this depends precisely on the choice of metric

stipulation.  By the way, however, without such a

stipulation the given point-coincidences still determine a

topological physical space--even if they do not determine a

metric space.

32Through our presentation of experiments the conception

that such experiments always already presuppose the result,

or that they must necessarily turn out as Euclidean, is

contradicted; see:  Müller [172], §83; Weinstein [259],

Chap. V, §4; Hönigswald [115a], Part II, §9; Natorp [179],

Chap. VI, §5; Cornelius [29a], Part 2, Chap III.D.  This

conception is correctly disputed by Study [249], Chap. IX

and Medicus [164], p. 35f.

33On actual execution of (astronomical) experiments see

especially Schwarzschild [236].  See also:  Engel [56], p.

216; Enriques [58], Chap. 4A, §10; Study [249], Chap. VII;

Poincaré [204], Chap. V.3 (and Lindemann's note to the

German translation).

34Concerning the choice of space-type, determination of

the metric stipulation belonging thereto:  This procedure

has been universally customary in physics so far, and, in

fact, the choice of Euclidean space.  However, it has only

been articulated in detail by Dingler ([40], Chap. III, Part

I, §1, [46], [47a], Part I, Chap. 2).

Our example, the earth as plance, is not to be confused

with the example of a non-Euclidean world of Poincaré [204],

Chap. IV, which is based on an imagined physical experience

rather than on our actual physical experience--precisely as

in the case of Helmholtz's example in [99] (and similarly

following him repeatedly in the literature).
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The presented possibility, of conceiving the earth as

place according to alternative metric stipulation, has

naturally noting to do with Barthel's theory of The Earth as

Total-plane (Leibzig, 1914), which rests entirely on

unscientific speculation.

35Concerning alteration of the laws of nature on the basis

of an alternative space-form see:  Helmholtz [99]; Killing

[128]; Schlick [224], §§III-V.

36Concerning the functional relationship between space-

type, metric stipulation, and matter of fact:

(1)  S and F are not uniquely coordinated to one another:

Helmholtz [99]; Wellstein [260], §14; Bauch [3], Chap. III

("Experience and geometry . . ."), §II; Natorp [179], Chap.

VII, §§5, 7; Cassirer [25], Part I, Chap. III, §IV, [26],

Chap. VI; Poincaré [204], Chap. V; Dingler [42], Part II,

Chap. 2, §5, Part II, Chap. 1, §3, Part III, Chap. 1, §3,

[46], pp. 119ff., 128, [47a], Part I; Nelson [180], §§14,

15; Hölder [113], endnote 64; Wien [271], Lecture 2;

Kleinpeter [138], Chap. IV, §5; Becher [7], Chap. XI, §5;

Petzoldt [199], [200], §§24, 35; Aster [2], Chap. IV, §9;

Schlick [223], §38, [224] §§III-IV; Geiringer [78], Part

III.  But it is frequently overlooked (although not by

Helmholtz, Wellstein, Petzoldt, Dingler, Schlick, Geiringer)

that if a metric stipulation is set up--and this is always

the case tacitly in physics--this coordination is unique:

see (2) below.

The ambiguity does not follow only from the necessary

imprecision of measurement, as it sometimes appears to be

conceived, for example, by:  Killing [128a], §10, [129],

Vol. 1, Chap. I, §8; Russell [217], §141; [218], §353,

[220], Chap. XIV; Hausdorff [95], Part II, Book 1; Wellstein

[260], §11; Natorp [179], Chap. VI, §7; Henry [104], Part

II, §5.
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On the idea that, in general, it is not possible to

recognize any bridge between non-Euclidean geometry

("chimera") and experience see:  Pietzker [202]; Kirschmann

[130]; Sigwart [240], §67; Geißler [80]; Driesch [49], Chap.

B.2, Chap. B.3, Chap. C.2i, Appendix 17; König [140], Chap.

5, §2; Herbertz [105], pp. 29ff.; Cornelius [29a], Part 2,

Chap. III.D; Wundt [273], Part 3, Chap. 3, §2b (but here

compare:  Killing [129], Vol. 2, Chap. 7, §6; Voß [256],

Chap. 6).

(2)  But each of the three determinations follows

uniquely from the other two:

(a) M from S and F:  Dingler [42], Part II, Chap. 2, §§5,

6; [40], Chap. III, Part I, §1, [45], [46], §III, [47a],

especially Part I, Chap. 2.

(b) S from F and M:  Dingler [40], Chap. III, Part I, §3;

[46], §III (however, since M is determined from (Euclidean)

S and F, no other S but Euclidean space results--but the

other possibilities also subsist:  [46], §III, [47a], Part

IV); Helmholtz [99]; Einstein [52], §I. [54]; Schlick [224],

§§III-V, VII.

37On the postulate of simplicity of the total presentation

see:  Volkmann [255], p. 407; Schlick [223], §38, [224],

§§IV, X; Cassirer [26], Chap. VI--not the simplicity of the

first stipulations (S or M), as Dingler proceeds (choice of

simplest S):  [42], Part II, Chap. 2, §5, Part III, Chap. 1,

§1, [40], Chap. I, Part II, §4, Chap. III, Part II, §4,

[44], §7b, [45], [46], §III, [47a].

38That the Euclidean space-type must be given up if

necessary on the basis of the postulate of simplicity is

conditionally admitted by:  Poincaré [204], Chap. IV, [207],

Chap. 2; Cassirer [25], Part I, Chap. III, §IV; Becher [7],

Chap. XI, §5; Wien [271], Lecture 2; Wellstein [260], §14;

Aster [2], Chap. IV, §9; Hönigswald [115a], Part II, §9;
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Bauch [3], Chap. 3 ("Experience and geometry . . ."), §IV

(here not as a case of greater simplicity but as sole

possibility).  Heymans [109], on the other hand,

incomprehensibly proceeds--after explicit discussion of the

works of Riemann and Helmholtz(!)--always from the

presupposition that "our" space is Euclidean:  one never has

had need of measurements (§47), the probability for the non-

Euclidean case is infinitely small (§59).

For the idea that the abandonment of Euclidean space does

not lead to choice of a determinate non-Euclidean space but

rather to ascent to a more general structure see:  Einstein

[52], §XXVII; Freundlich [74], §5b; Born [17], Chap. VII.6-

7; Geiringer [78], Part III.

39For the example: general relativity (space in relativity

theory) see in the first instance Weyl [264].  See further:

Einstein [52], [53]; Freundlich [74], §5a; Born [17], Chap.

VII; Sellien [238]; Geiringer [78], Part III.  For

epistemological discussions see:  Cassirer [26], Chap. IV;

Petzoldt [200]; Reichenbach [209]; Einstein [54]; Schlick

[224]; Haas [91].  Compare also:  Riemann [215], §III, and

Weyl's remarks thereto [267], §6.

40On the separate consideration of space (without time)

subject to particular limitations see:  Minkowski [168];

Einstein [51], §3, [52], §§VIII, IX, XII; Cassirer [26],

Chap. V.  This was already noted earlier by Czolbe [34a],

Chap. 7 ("Time as the Fourth Dimension of Space") and

Palágyi [188], §§1-3.  On the possibility of a separate

consideration see Weyl [264], §§22, 29.

41On the spatial relations in a gravitational field see:

Weyl [267], §29; Born [17], Chap. VII.9-10; Freundlich [74],

§5a; Reichenbach [209], Chap. III.  Compare the remarkable

presentiment by Clifford [28], Chap. 4, §19.  These are non-
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Euclidean on the basis of M1:  Einstein [51], §22, [54];

Weyl [264], §§31, 32; Born [17], Chap. VII.6,9; Flamm [66].

On the in principle possibility of retaining Euclidean space

see:  Born [17], Chap. VII.6; Schlick [223], §38, [224],

§§V, VII; Einstein [54].  Reichenbach emphasis on the

impossibility of this ([209], Chap. I, III, VIII) is

thoroughly in agreement, since here, as is customary in
physics, M1 is always tacitly presupposed as metric

stipulation.  For considerations in favor of the retention

of Euclidean space see:  Dingler [42], Part III, Chap. 1,

§1, [46], §III, [47], [47a]--but compare note 37 above.

42On the relation of "specification" see Ostwald [183], p.

19 ("coordination"); for the contrary relation see Dingler

[47a], Part II, Chap. 1 ("logical delineation").  On the

contrast between "specification" and "subordination" see

Husserl [119], §13 ("deformalization or filling out --

subsumption").  On "subordination" compare Bauch [3], Chap.

I ("Relation between philosophy and natural science"), §IV

on the necessary presupposition of a "subsumption-universal"

for induction, and Bauch [4], §V on the concept as condition

of possibility of the concrete.

43On the theories of S, S', and S'' as cases of the

general scientific relationships:  "formal ontology,

regional ontology, factual science" see:  Husserl [119],

§§15, 16, 72, [118], §60 (reference to Lebniz's mathesis

universalis, compare [151] and also [146]), §70 (but here

the erroneous conception--which, however, is not essential

to the process of thought of the indicated exposition--is to

be contested that "our space of the world of appearance,"

and thus S'', is to be viewed unconditionally as Euclidean);

Driesch [50] ("general theory of order -- theory of natures

(including theory of space as a determinate order-

particularity) -- theory of the order of natural
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actualities"); Ostwald [186], [183] (the three first steps

of the scientific pyramid), [187], Chap. 2. (application to

theory of color); Kleinpeter [138], Chap. IV, §2 ("operative

sciences (combinatorics, arithmetic, logic) -- geometry --

empirical sciences (physics, etc.)"); Cohn [29], Part 3,

Chap. VIII, §22 ("pure constructive -- general

reconstructive -- particular reconstructive sciences").

44Our meanings of space correspond approximately to those

given by:  Russell [217], §140 ("complex of relations --

intuitive space -- actually given space"); Müller [172], §88

("space of mathematics -- psychological space (=S'?) --

empirical space"); Pasch [191], p. 185 ("hypothetical

geometry -- (geometry of) mathematical points -- (geometry

of) physical points"); Enriques [59], §1 ("abstract space --

customary, intuitive space -- physical space").  On the

other hand, they do not correspond to those given by König

[140] ("intuitive -- geometrical -- physical space"):  the

first and third are not treated by us, the second is S'; nor

to those given by Hausdorff [95] ("mathematical, empirical,

absolute space"):  the second is not treated by us, the

third can as such be no object of experience, and the first

comprises all our three meanings--compare p. 6:  "in three

relations therefore--in thought, in experience, in

intuition--we have full scope and freedom of choice among

numberless forms of mathematical spaces."

45On the idea that the purpose of constucting S and S'

lies in S''(order of experience in spatial respect) see:

Poincaré [205], Part I, Chap. 4, §6, [207], Chap. 3, §4;

Cassirer [23], §VI, [25], Part I, Chap. IV, §VI (under

"Hertz's system of mechanics") and other places, [26], Chap.

V, VI; Kneser [139], p. 13; Hausdorff [95], p. 4; Wellstein

[260], §15; Schlick [223], §7.  The purest expression of

this relationship appears to be the Kantian conception of S'
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(perhaps also of S, where a few declarations can be

indicated:  cf. Bauch [5], pp. 178, 182n) as synthetic

lawfulness of the order of experience and thus of S''.

Compare Bauch [5], Chap. II, Part III; Natorp [178], §5,

§29; Christiansen [27], pp. 140f.  On the significance of

this lawfulness as function see Cassirer [25] and Bauch [4].

46For the distinction between sources of cognition in the

sense of logical grounds of justification and

(psychological) generation see:  Kant [125], B1 ("arising

from -- beginning with"); Bauch [3], Chap. 2 ("Problem of

general experience"), §V ("grounding -- descending from");

Meinong [166], §14 ("legitimation -- origin").

47On the derivation of S from principles of logic,

independently of experience see the references cited in §I

above, especially Couturat [31].

48On the derivation of S' from essential insight,

independently of experience see the references cited in §II

above, especially Husserl [119], §§3-5.

49On the derivation of S'' from induction, as empirical

cognition see:  Lobatchevsky [158]; Riemann [215];

Kleinpeter [137], p. 44, [138], Chap. IV, §5; Study [249],

Chap. VII; Enriques [58], Chap. 4A, §6; Medicus [164], pp.

34ff.  Here, however, the required metric stipulation is

either left out of account or, as is customary in physics,

only tacitly presupposed.  On the other hand, since without

establishing a metric stipulation S'' (as metrical

structure) cannot be determined through experience, the most

often represented conception of the independence from

experience of S'' is correct in certain respects:  here see

the references cited in note 36 under (1) ("S and F are not

uniquely . . .") and, further, König [140], Chap. 5, §2.
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The decision between the two conflicting conceptions

therefore depends on the circumstance--which is usually not

discussed--of whether a metric stipulation is or is not

presupposed.

50On the contradictory conceptions concering the sources

of spatial cognition as a consequence of the diversity of

meanings of space:

(1)  With reference to S' and Kant's "synthetic a priori

judgements" see Kant [125] (Transcendental Aesthetic, Axioms

of Intuition), [126], §2c.2, §§6-13; compare Bauch [5],

Chap. II, Part III and Cassirer [24], Book 8, Chap. 2, §III.

See also:  Bauch [3], Chap. 2 ("Experience and geometry . .

."), §II (including an explicit distinction between S' and

S''); Heymans [109], §40 (on S: p. 164); Husserl [119], §16;

König [140], Chap. 5, §2; Nelson [180], §11; Natorp [179],

Chap. 6, §§5, 7, 8; Gerstel [81], pp. 108ff.; Kirschmann

[130]; Tobias [251], pp. 38-77; Sigwart [240], §67;

Hönigwald [114]; Aster [2], Chap. IV, §§4, 7--most explicit

opposition to Gauß, Riemann, Helmholtz.

(2)  In opposition to Kant:  (a) In reference to S see:

Russell [217], §§58, 140, [218], Chap. LII; Couturat [32],

("The Geometrical Judgement"), [31], Chap. VI.C; Poincaré

[204], Chap. III ("On the Nature of Axioms"); Wellstein

[260], §13; Driesch [50], Chap. II, §6d; Petzoldt [198],

§85; Bergmann [8], Müller [173], p. 343; Schlick [223], §38.

(b) In reference to S'' see:  Gauß [76], p. 177, [56], p.

227 (Paragraph 3 of a Letter from Gauss to Bessel 9 April

1830); Helmholtz [99], [101], [103] (but it is an error to

suppose that S' is otherwise not possible); Wellstein [260],

§§13, 14; Kleinpeter [137], p. 42; Mach [162], Chap. 22,

§§1-3; Erdmann [64]; Bonola [15], §43; Study [249], Chap.

IX; Born [17], Chap. VII.5-6; Geiringer [78], Part III.
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51Kant's theory of the transcendental-logical significance

of space as condition of the possibility of experience is in

fact not overthrown by the development of geometry (Natorp

[179], Chap. 6, §7; Nelson [180], §11; Sellien [238], p. 56;

Helmholtz [100], [103]; Müller [172], §88), but is to be

transferred from three dimensional Euclidean space to a more

general structure.

The following do not belong to the characteristics of

that spatial structure which presents the spatial lawfulness

constituting the objects of experience:

(1)  Three-dimensionality--see:  Russell [217], §159;

Poincaré [204], Chap. IV ("Visual space"), [205], Part I,

Chap. 3, §3, Part I, Chap. 4, §5, [206], Book II, Chap. I,

§§IV, V, [207], Chap. 3, §§4, 6; Medicus [164], pp. 14f.,

25; Simon [241], pp. 26ff.; Aster [2], Chap. IV, §9;

Isenkrahe [122], Chap. VII; Dingler [47a], Part I, Chap. 2.

On the other hand, the following require three-

dimensionality:  Kant [124] (in §9 he rejects an attempted

proof of Leibniz, but he attempts his own derivation in

§10); Helmholtz [99]; Kirschmann [130], Part II, §6;

Schmitz-Dumont [227], p. 149; Killing [129], Vol. 1, Chap.

3, §15; Liebmann [155], Part I, Chap. 3; Riehl [212], Chap.

2, §4; Wundt [273], Part 3, Chap. 3, §2; Natorp [179], Chap.

6, §6, [175], pp. 383f., [178], §32, [177], pp. 7f. (this

detailed derivation contains a formal mistake); Couturat

[32], "The Axioms of Geometry"; Schultz [234], p. 29;

Herbertz [105], pp. 35f; Driesch [49], Chap. B.2; Geißler

[80], p. 135.

(2)  Euclidean constitution ("planeness")--see:

Helmholtz [99]; Russell [217], §58; Poincaré [204], Chap.

III, IV; Wellstein [260], §14; Medicus [164], p. 15;

Christiansen [27], p. 138.

On the other hand, the following retain Euclidan space:

Kirschmann [130]; Schmitz-Dumont [227], pp. 148ff.; Sigwart

[240], §67; Liebmann [155], Part 1, Chap. 3; Geißler [80];
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Hönigswald [114], p. 891 (but compare [115a], Part II, §9);

Wundt [273], Part 3, Chap. 3, §2; Driesch [49], Chap. B.3;

Bauch [3], Chap. 3 ("Experience and geometry . . "), §IV;

Natorp [179], Chap. 6, §§6, 7 (against Natorp: Müller [172],

§86); Schultz [234], pp. 26f.; Meinong [166], §16; Sellien

[238], Part III, Chap. 1.  A reason often adduced for this

is that only the laws of Euclidean space are independent of

an absolute length--see:  Kirschmann [130], Part I, §IV;

König [140], Chap. 5, §2, and note 19 pertaining thereto;

Geißler [80], p. 54; Cohn [29], Part 2, Chap. V, §14;

Gerstel [81], p. 110; Cornelius [29a], Part 2, Chap. III.D;

and compare Aster [2], Chap. IV, §§7, 8.--Against this see:

Russell [217], §§98-101; Müller [172], §86; Dittrich [48].

Euclidean constitution cannot be inferred from the

requirement of uniqueness, as the following maintain:

Pietzker [202], p. 6; Natorp [179], Chap. 6, §§6, 7, 8;

Bauch [3], loc. cit.--Against this see Cassirer [26], Chap.

VI.  Still less can such be inferred from the requirement of

homogeneity (compare note 23 above); moreover, this

requirement is itself doubtful:  see (3) below.

(3)  Constant curvature (homogeneity and isotropy)--see:

Medicus [164], pp. 17ff.; Hausdorff [95], p. 10; Delboeuf

[18], §I.2; Hartmann [93], Part II, Book 1.  (Compare also

note 39 above:  relativity theory.)

On the other hand, the following require homogeneity:

Riehl [212], Chap. 2, §§4, 8; Russell [217], §130, §§143-

145; Aster [2], Chap. IV, §8; Henry [104], Part II, §6.

(4)  Metrical properties in general--see:  Poincaré

[205], Part I, §2; Cassirer [25], Part I, Chap. III, §II

("The concept of space and the concept of order")--but from

this exposition it follows with even greater justice that

topology, rather than projective geometry, is to be declared

the "universal a priori science of space" (see note 24 above

on the concept of projective geometry).
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From the negative determinations (1) - (4) it follows:
that the experience-constituting spatial structure is Snt',

by which the transcendental significance of its formal
lawfulness is also given, namely to Snt.
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