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prefrontal cortex correlate with the size of social group
in which individuals were housed. Remarkably, they
were also able to demonstrate that, within social groups,
there were correlations between the volumes of these same
regions and the dominance ranks of individual monkeys.

The Sallet et al. results are important for two reasons.
First, they confirm that the findings reported for humans
apply more generally to other primates, thereby providing a
unifying framework for the social brain hypothesis. Second,

2 Shultz, S. and Dunbar, R. (2010) Encephalisation is not a universa
macroevolutionary phenomenon in mammals but is associated wit
sociality. Proc. Natl. Acad. Sci. U.S.A. 107, 21582–21586

3 Stiller, J. and Dunbar, R.I.M. (2007) Perspective-taking and socia
network size in humans. Soc. Netw. 29, 93–104

4 Sallet, J. et al. (2011) Social network size affects neural circuits i
macaques. Science 334, 697–700

5 Bickart, K. et al. (2010) Amygdala volume and social network size i
humans. Nat. Neurosci. 14, 163–164

6 Kanai, R. et al. (2011) Online social network size is reflected in huma
brain structure. Proc. R. Soc. B: Biol. Sci. DOI: 10.1098/rspb.2011.195
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they suggest that the functional response might actually b
quite labile: the fact that cortex volumes vary with housing
conditions within the same laboratory colony for animal
that were randomly assigned to groups implies considerable
phenotypic adaptability, similar to that previously known
only for the hippocampus in studies of London taxi driver
[9] and parasitic and caching birds [10].
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New approach illuminates
switch
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Whereas the classic view of systems consolidation
involves an initial hippocampal-dependent memory late
giving way to neocortical structures, a recent study
using precisely-timed optogenetic silencing of key brain
areas reveals a more complex and dynamic interaction
between systems competing for control over the expres
sion of contextual fear memories.

Goshen et al. recently reported a remarkable ability of the
brain to switch between memory strategies when the
hippocampus is silenced using optogenetic control [1]. Thi
capacity was revealed in a study on memory consolidation
in mice. In the systems consolidation literature, the classi
observation is that hippocampal damage impairs recently
acquired memories but spares remotely acquired memo
ries [2]. Contrary to this standard, hippocampal silencing
that was precisely timed during recall of a remotely ac
quired contextual fear memory blocked expression of the
memory. However, with prolonged silencing for 30 minute
before testing and during the test, the remote fear memory
was observed. Taken together, these results suggest tha
the hippocampus is critical to a memory representation
that supports conditioned contextual fear; following con
solidation, however, other brain areas that support a dis
tinct and hippocampal-independent representation of tha
memory are engaged during the pre-recall silencing of the
hippocampus.
-
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102
7 Lewis, P. et al. (2011) Ventromedial prefrontal volume predict
understanding of others and social network size. NeuroImage 57
1624–1629

8 Powell, J. et al. (2010) Orbital prefrontal cortex volume correlates wit
social cognitive competence. Neuropsychologia 48, 3554–3562

9 Maguire, E. et al. (2000) Navigation-related structural change i
the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97
4398–4403

10 Clayton, N. et al. (1997) Seasonal changes of hippocampus volume i
parasitic cowbirds. Behav. Proc. 41, 237–243

1364-6613/$ – see front matter � 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tics.2011.11.013 Trends in Cognitive Sciences, February 2012, Vol. 16, No. 

ow memory systems

15, USA

A large literature supports the view that multiple mem
ory systems compete to mediate a variety of learning per
formances in animals and humans. For example, learning a
simple T-maze choice can be supported either by a hippo
campus-dependent ‘place’ strategy, in which animals re
member the location of previous reward experiences, o
by a striatum-dependent ‘response’ strategy, in which ani
mals learn to repeat reinforced left or right turns at the maze
choice point [3]. After extensive training during which both
strategies are acquired, lidocaine infused into the striatum
just 2-3 minutes prior to the recall test switches memory
expression from the turn strategy to the place strategy [3]
Goshen and colleagues’ results extend to contextual fea
conditioning the observation that, when the dominant mem
ory system is compromised, the brain can rapidly compen
sate by directing control to an alternate memory system and
this compensation occurs only after consolidation is com
pleted. But, for contextual fear memory, what is the alter
native representational strategy and its supporting brain
system, and what is the role of consolidation in determining
when the alternate strategy emerges?

Fanselow [4] recently reviewed the literature describ
ing paradigmatic conditions under which there are two
forms of contextual fear memories, one dependent on and
the other independent of hippocampal function. Notably
both forms can be characterized as involving memory for a
‘context’, defined as an integrated representation of mul
tiple environmental stimuli. In other studies, two process
es have been suggested to support the integration o
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ultiple stimuli into memory representations: configural
arning, whereby the perirhinal/postrhinal cortex binds
ultiple percepts into a unitized representation, and
lational learning, whereby the hippocampus associates
istinct percepts on the basis of their relevant relations [5].
urthermore, configural representations and relational
presentations compete for control of memory expression
 perceptual discrimination [5] and recognition memory
,7]. Notably, remote contextual fear memories also depend
pon the perirhinal and postrhinal cortices [8]. Thus, simi-
r to the situation for other types of memory, we suggest
at the perirhinal/postrhinal cortex supports configural
presentations of context, whereas the hippocampus sup-
orts relational representations of context, and these sys-
ms compete for control of conditioned fear expression via
arallel connections with the amygdala.
In the Goshen et al. study, when the hippocampal
lencing was initiated immediately upon remote recall,
ctivation in the anterior cingulate cortex (ACC) and the
asolateral amygdala (as measured by expression of the
mediate early gene c-Fos) was decreased. Conversely, in
e prolonged hippocampal silencing condition, ACC acti-
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rmed by the hippocampus. After consolidation is com-
lete, hippocampal silencing in the pre-recall period
leases the ACC to direct control to the alternate config-
ral memory system.
It is notable that, while the inactivation studies consid-

red here have focused on neural dynamics over the course of
inutes, recording studies have recently revealed sub-sec-
nd switching between representations within a single
ructure [10]. Perhaps further studies using optogenetic
ntrol may be applied to characterize the full circuitry of the
stems engaged during learning, the interactions between
mpetitive systems, and the timing of these interactions.
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any scientists consider the ancient mind-body problem to
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roperly studied using empirical means. A recent paper by
atanabe, Cheng, Murayama, Ueno, Asamizuya, Tanaka
nd Logothetis [1] demonstrates otherwise. Most research-
rs closely link attention with awareness (equated here
ith the contents of conscious experience), arguing that the
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