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The lateral hypothalamus (LH) sends a dense glutamatergic and peptidergic projection to dopamine neurons in the ventral tegmental
area (VTA), a cell group known to promote reinforcement and aspects of reward. The role of the LH to VTA projection in reward-seeking
behavior can be informed by using optogenetic techniques to dissociate the actions of LH neurons from those of other descending
forebrain inputs to the VTA. In the present study, we identify the effect of neurotensin (NT), one of the most abundant peptides in the LH
to VTA projection, on excitatory synaptic transmission in the VTA and reward-seeking behavior. Mice displayed robust intracranial
self-stimulation of LH to VTA fibers, an operant behavior mediated by NT 1 receptors (Nts1) and NMDA receptors. Whole-cell patch-clamp
recordings of VTA dopamine neurons demonstrated that NT (10 nM) potentiated NMDA-mediated EPSCs via Nts1. Results suggest that NT
release from the LH into the VTA activates Nts1, thereby potentiating NMDA-mediated EPSCs and promoting reward. The striking behavioral
and electrophysiological effects of NT and glutamate highlight the LH to VTA pathway as an important component of reward.

Introduction
Dopamine release from ventral tegmental area (VTA) neurons
promotes motivated, goal-directed behavior (Gallistel et al.,
1985; Robinson and Berridge, 2001; Phillips et al., 2003) and is
crucial for mediating the reinforcing properties of rewards
(Roberts and Koob, 1982; Pontieri et al., 1995; Self et al., 1996;
Wise, 2006; Fields et al., 2007; Adamantidis et al., 2011). Gluta-
matergic synapses onto dopamine neurons undergo synaptic
strengthening after exposure to drugs of abuse and natural re-
wards, a process hypothesized to enhance reward-seeking (Ung-
less et al., 2001; Borgland et al., 2004; Kauer, 2004; Chen et al.,
2008; Bowers et al., 2010; Luscher and Malenka, 2011). Due to
previous unavailability of tools to dissect neural circuitry, little is

known about the precise function of VTA afferents arising from
various brain regions.

The lateral hypothalamus (LH) provides an abundant source
of glutamatergic and peptidergic input to the VTA and is of par-
ticular interest given its role in reward and homeostasis (Kelley et
al., 2005; Nestler, 2005; Geisler and Zahm, 2006; Geisler et al.,
2007; Adamantidis and de Lecea, 2008). Stimulation of the me-
dial forebrain bundle (MFB) at the level of the LH induces brain
stimulation reward and exerts its reinforcing properties via direct
or indirect projections to the VTA (Margules and Olds, 1962;
Shizgal et al., 1980; Gallistel et al., 1985; You et al., 2001). Con-
ventional electrical stimulation techniques present two major
technical limitations that have left the function of the LH to VTA
projection ill-defined: (1) electrical stimulation of the LH also
activates the MFB, blurring the distinct role of LH neurons with
forebrain fibers of passage; and (2) in vivo electrical stimulation
activates entire neural networks, preventing isolation of direct
afferents to the VTA.

To elucidate the role of lateral hypothalamic innervation of
the VTA in reward-related behavior, we used in vivo and ex vivo
optogenetic techniques in mice. We focused on the function of
neurotensin (NT), a tridecapeptide found in approximately one-
third of VTA-projecting lateral hypothalamic neurons known to
interact extensively with dopamine neurons (for review, see
Binder et al., 2001) (Carraway and Leeman, 1973; Zahm et al.,
2001). Within the VTA, NT increases the firing rate of dopamine
neurons (Farkas et al., 1996), increases expression of tyrosine
hydroxylase (TH), the rate-limiting enzyme for dopamine syn-
thesis, and promotes dopamine release (Sotty et al., 1998). These
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actions are primarily mediated by the high-affinity NT 1 receptor
(Nts1), although signaling also occurs through NT receptors 2
(Nts2) and 3 (Nts3) (Carraway and Leeman, 1973; Farkas et al.,
1996; Sotty et al., 1998; Binder et al., 2001). Intra-VTA NT infu-
sion increases locomotor activity, supports conditioned place
preference, induces behavioral sensitization, and is actively self-
administered (Kalivas and Taylor, 1985; Elliott and Nemeroff,
1986; Glimcher et al., 1987; Panayi et al., 2005; Rompre and
Bauco, 2006). Given that NT promotes these behaviors and en-
hances forebrain glutamate release (Ferraro et al., 2000; Antonelli
et al., 2004; Chen et al., 2006), we investigated the role of NT as a
reward peptide that mediates the reinforcing properties of excit-
atory transmission from the LH to VTA.

Materials and Methods
Animals and surgery. Adult male C57BL/6J mice were obtained from The
Jackson Laboratory and maintained in accordance with the Institu-
tional Animal Care and Use Committee of the Ernest Gallo Clinic and
Research Center guidelines. Animals were anesthetized with ket-
amine/xylazine before the surgical procedure. An adeno-associated
virus (AAV, serotype 5) coding for the light-sensitive cation channel,
H134R channelrhodopsin-2 (ChR2) and enhanced yellow fluorescent
protein (EYFP) under control of the CaMKII promoter were used in this
study (from the laboratory of K.D.). For behavioral experiments, the
AAV (0.3 �l over 3 min) was injected unilaterally into the rostral lateral
hypothalamus (AP, �0.4; ML, �1.0; DV, � 4.9) with an ipsilateral 4 mm
guide cannula implanted above the ventral tegmental area (AP, �3.2;
ML, �0.5; DV, �4.0). Bilateral injections were performed to prepare both
hemispheres for slice electrophysiology studies. In a subset of experiments,
Nts-Cre mice (from the laboratory of M.G.M.) were injected with a double-
floxed virus under control of the EF1� promoter, enabling specific expres-
sion of ChR2 in NT-containing neurons. The laboratory of M.G.M. also
generously shared the NT receptor 1 knock-out (NtsR1KO) mouse line. All
experiments were conducted at least 3 weeks after surgery.

Pharmacological agents. NT (8 –13) was purchased from Sigma-Al-
drich; AP5 (50 �M) and DNQX (10 �M) were obtained from Tocris
Bioscience; SR48692 (100 and 500 nM), the Nts1 receptor antagonist, was
ordered through the National Institutes of Mental Health Chemical Syn-
thesis and Drug Supply Program.

Electrophysiology. Horizontal brain slices containing the ventral teg-
mental area were prepared from C57BL/6J male mice as previously de-
scribed (Argilli et al., 2008). The brain was rapidly dissected, and
horizontal slices (200 �m thick) containing the VTA were prepared using
a Leica vibratome. Slices recovered for at least 45 min in artificial CSF
(aCSF; containing the following in mM: 126 NaCl, 1.6 KCl, 2.4 CaCl2, 1.2
NaH2PO4, 1.2 MgCl2, 18 NaHCO3, and 11 glucose, saturated with 95%
O2 and 5% CO2) before being individually transferred to the recording
chamber. Slices were superfused with continuous flow (2 ml/min) aCSF
at 32°C containing picrotoxin (100 �M) to block GABAA receptor-
mediated synaptic currents.

Cells were visualized using an upright microscope with infrared illumina-
tion. Whole-cell voltage-clamp recordings were made using an Axopatch 1D
amplifier (Molecular Devices) with 3–6 M� glass electrodes containing the
following (in mM): 120 CsCH3SO3, 20 HEPES, 0.4 EGTA, 2.8 NaCl, 5
N(CH2CH3)4Cl, 2.5 Mg-ATP, and 0.25 Mg-GTP, pH 7.3. Series resistance
(10–30 M�) and input resistance were monitored on-line with a 4 mV
depolarizing step (50 ms) given just after every afferent stimulus. Putative
DA cells were identified by the presence of a large hyperpolarization-
activated potassium current, Ih (Lacey et al., 1990; Johnson and North,
1992). According to previous studies in mice, TH is present in �98% of
neurons identified by the presence of the Ih current (Wanat et al., 2008),
and there is general agreement that Ih(�) neurons are not dopaminergic
(Margolis et al., 2006). To confirm dopamine neuron identity, a subset of
cells were filled with biocytin, fixed overnight with paraformaldehyde
(4%), and post hoc labeled with TH. A bipolar stimulating electrode was
placed 100 –300 �m rostral to the recorded neuron for electrical experi-
ments. For optical experiments, an optical fiber (multimode, 200 �m

core diameter, 0.37 NA, Thorlabs) coupled to a 473 nm laser (Laserglow)
was aimed at the cell of interest at a distance of 100 –200 �m. Afferents
were stimulated at 0.1 Hz with pulses of blue light (430 – 473 nm) or
electric current. Evoked EPSCs were filtered at 2 kHz, digitized at 5–10
kHz, and recorded using Igor Pro software (WaveMetrics). Peak evoked
AMPA-mediated EPSCs were measured from neurons voltage-clamped
at �70 mV. Evoked NMDA-mediated EPSCs were measured 25 ms after
the stimulus artifact in neurons voltage-clamped at 40 mV. Statistics were
computed between 16 –22 min for 30 min electrophysiology experiments
and 32– 40 min for 50 min experiments unless otherwise stated. Signifi-
cance was determined by two-tailed Student’s t tests for within-group
comparisons to baseline and ANOVA tests (one- or two-way, as appro-
priate) with Tukey’s post hoc analysis for multiple group comparisons. All
data shown are the mean � SEM.

Optical intracranial self-stimulation. The intracranial self-stimulation
(ICSS) paradigm used by Olds and Milner (1954) was adapted by replac-
ing electrical stimulation with optogenetic techniques. A fiber optic cable
(Thor Laboratories) attached via FC/PC connector to a 473 nm laser
(blue light, Laserglow) was inserted into and secured to a guide cannula
aimed at the VTA. During each 1 h session, mice explored Med Associates
operant boxes containing an active and inactive nosepoke. The inactive
nosepoke produced no result. Each active nosepoke delivered a 20 Hz
train of 5 ms pulses of blue light for 3 s, depolarizing excitatory lateral
hypothalamic axons terminating in the VTA. As previously described
(Stuber et al., 2011), the active nosepoke was accompanied by a cue light
above the nosepoke and a tone (3 kHz, 5 s), which were insufficient to
promote nosepoking in the absence of optical stimulation. Nosepoke
activity was recorded with MedPC software and visually monitored via
infrared camera. Animals were limited to 4.5 g of food per day beginning
the day before the first training session to promote apparatus explora-
tion. Mice learned this task within one 60 min session and were given up
to five daily training sessions to reach the 40 – 600 nosepokes per session
criterion. The criterion was set to allow for pharmacological-induced
increases and decreases in responding and required the removal of one
animal from each group. Animals were assigned to treatment groups a
priori. A maximum of two additional sessions were administered to
reach steady baseline nosepoke rates preceding drug or vehicle adminis-
tration. The optical intensity was measured before and after each session
to ensure consistent output of �20 mW. Pharmacological agents (0.3 �l
over 3 min) were infused into the VTA 10 min before the session start.
AP5 (0.5 �g/side) was obtained from Tocris Bioscience, SR48692 (500
nM) was ordered through the National Institutes of Mental Health
Chemical Synthesis and Drug Supply Program, and the vehicle for both
drugs consisted of 0.1% DMSO in saline.

In a separate set of extinction experiments, chronic fiber optic im-
plants were used to deliver light pulses to the VTA. Three 1 h sessions of
each manipulation were averaged to obtain the reported values: (1) ex-
tinction: active nosepoke produced cues, but not optical stimulation; (2)
reinstatement: optical stimulation was reintroduced without cue presen-
tation; 3) reversal: active nosepoke location was reversed. The nosepoke
time stamp was recorded by computer software and used for subsequent
analysis of operant behavior. Sessions during which the fiber optic sus-
tained damage were excluded from analysis. Data were analyzed using
GraphPad Prism and WaveMetrics IGOR Pro Software. Single asterisks in all
figures indicate significant differences (p � 0.05).

Immunohistochemistry. For immunohistochemical analysis, animals
were perfused with PBS for 5 min, followed by 4% paraformaldehyde.
Brains were dissected, refrigerated at 4°C in fixative overnight, and then
transferred to 30% sucrose solution until saturated. Sections (50 �m)
were prepared on a Leica cryostat (CM3050). Slices were washed with
PBS and refrigerated until blocking the tissue with PBT (0.3% Triton in
PBS) and 10% normal donkey serum at 25°C for 30 min on a shaker.
Slices were incubated at 4°C for 16 h with 1:100 rabbit anti-TH (Millipore
Bioscience Research Reagents), then washed and blocked with 2% nor-
mal donkey serum before incubating in Alexa-594 donkey anti-rabbit
secondary antibody (Invitrogen). Finally, slices were incubated for 1 h at
25°C in 1:100 neurotrace (Invitrogen) in PBS, then washed, mounted,
and visualized with a Nikon E600 inverted microscope and a Zeiss LSM
510 META confocal microscope.
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Results
Activation of LH to VTA fibers reinforces
behavioral responding
We modified the conventional model of electrical ICSS by opto-
genetically stimulating LH fibers in the VTA (Fig. 1A). We first
confirmed that VTA dopamine neurons, indicated by TH immu-
noreactivity in Figure 1B, were surrounded by a dense network of
lateral hypothalamic axons expressing ChR2. Animals produced
robust optical ICSS of LH to VTA fibers (Fig. 1C,D). On average,
animals nosepoked for optical ICSS 229 � 63 times within the
hour-long baseline session and only produced 9 � 2 nosepokes at
the inactive nosepoke (n � 10, Fig. 1C). In all tested groups,
active nosepokes were significantly greater than inactive nose-
pokes with no significant difference in nosepoke number during
baseline and vehicle sessions (data not shown).

To determine whether operant responses were performed for
the rewarding effects of optical stimulation or for cue presenta-
tion, a separate group of extinction experiments were conducted.
During extinction sessions in which active nosepokes produced
cues, but not optical stimulation, operant responding was re-
duced to 6.2 � 0.8% of baseline responding. Reintroduction of
optical stimulation in the absence of cues reinstated operant re-
sponding at the active nosepoke (125.5 � 33.5% of baseline) and
responding was successfully transferred upon reversal of the ac-
tive nosepoke position (96.3 � 27.7% of baseline, one-way
ANOVA, Dunnett’s multiple-comparisons test, treatment:

F(1.069,9.620) � 11.72, n � 10, p � 0.006; Fig. 1D). Since baseline
responding was higher in the chronic fiber-implanted extinc-
tion group than the cannula-implanted pharmacological
groups presented in Fig. 1C, we graphed normalized active
nosepoke values to facilitate comparison (Fig. 1D). Raw values
are as follows: baseline, active � 689.5 � 173.1, inactive �
24.3 � 8.2; extinction, active � 47.1 � 5.2, inactive � 7.4 � 1.6;
reinstatement, active � 865.6 � 231.4, inactive � 6.1 � 1.2; reversal,
active � 664.5 � 191.2, inactive � 29.1 � 2.2. Together, these ex-
periments support the hypothesis that optical self-stimulation of LH
to VTA synapses is rewarding.

Blockade of endogenous NT in the VTA attenuates
self-stimulation of LH to VTA fibers
Given reports that rats self-administer NT into the VTA (Glimcher
et al., 1987), we sought to determine whether NT is implicated in
LH to VTA ICSS. NT binds to four known receptors (Nts1-Nts4);
however, its action at the high-affinity Nts1 receptor is thought to
drive the majority of NT-induced behaviors (Vincent et al., 1999;
Caceda et al., 2005; Felszeghy et al., 2007). We tested the effect of
an intra-VTA infusion of Nts1 antagonist SR48692 (500 nM) on
optical ICSS. The main effect of the drug was significantly greater
at the active nosepoke than at the inactive nosepoke (SR48692,
n � 5: 116 � 37 active, 9 � 3 inactive; vehicle, n � 3: 393 � 155
active, 12 � 2 inactive; drug F(1,12) � 5.13, p � 0.043; nosepoke
type F(1,12) � 15.57, p � 0.002; interaction F(1,12) � 4.90, p �
0.047). The drug effects are as follows: active nosepoke, p � 0.05;
inactive nosepoke, p � 0.05 (two-way ANOVA, Bonferroni post
hoc test; Fig. 2A). Nts1 antagonist-treated animals also showed a
lower percentage of nosepokes than vehicle-treated animals
(SR48692: 33.0 � 9.3% baseline; vehicle: 99.0 � 19.6% baseline;
p � 0.036, Mann–Whitney test; Fig. 2A). The vehicle control
group confirmed that repeated intra-VTA infusion did not alter
baseline nosepoke activity (one-way ANOVA, treatment:
F(1.092,2.184) � 0.073, p � 0.830). Although previous studies have
investigated the effect of NT infusion in the VTA (Kalivas and
Taylor, 1985), this is the first demonstration that endogenous
signaling at Nts1 is critical for modulating the operant behavior
produced by specific activation of LH to VTA fibers.

To determine whether the pattern of nosepoking was altered
in the presence of SR48692, we plotted the cumulative number of
nosepokes for vehicle and Nts1 antagonist sessions (Fig. 2B, ex-
ample animal). A histogram of the internosepoke intervals
reveals a bimodal distribution (vehicle coefficient of bimodal-
ity � 0.880), indicating distinct periods of continuous nosepok-
ing punctuated by long pauses (Fig. 2C). We therefore defined a
bout, or cluster of higher-rate nosepoke activity, as a series of
three or more nosepokes with an internosepoke interval �30 s.
The interval histogram shows a lower frequency of short inter-
nosepoke intervals in the Nts1 antagonist condition (red) versus
the vehicle condition (blue). This suggests that antagonist-
treated animals spent less time performing high-frequency nose-
pokes. The raster plots in Figure 2, D and E, illustrate a notable
difference in bout activity in the absence of NT signaling. The
number of bouts, bout duration, and number of nosepokes per
bout were marginally, but not significantly, lower during
SR48692 trials (p � 0.396, p � 0.111, and p � 0.111, respectively,
Mann–Whitney test). Antagonist-infused animals did not dis-
play altered motor behavior. The preservation of intrabout nose-
poke frequency served as a motor control, demonstrating that
animals were physically capable of nosepoking at the same rate
whether infused with SR48692 or vehicle (p � 1.000, Mann–
Whitney test; data not shown). No alterations in motor behavior
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Figure 1. A, Schematic of the optical ICSS paradigm. Each active nosepoke produced a train
of 20 Hz blue light pulses (5 ms each) to stimulate lateral hypothalamic axons terminating in the
VTA. B, Images showing cannula placement aimed at the VTA. TH (red) indicates midbrain
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were observed in the antagonist group. Together, the Nts1 antag-
onist reduced the number of nosepokes per bout, the length of
each bout, and the overall number of bouts, to yield a signifi-
cantly lower number of nosepokes per session.

NMDA receptor signaling in the VTA promotes
self-stimulation of LH to VTA fibers
NMDA receptors are required for certain forms of burst firing in
dopamine neurons and are critical for the development of synap-
tic plasticity in the VTA (Bonci and Malenka, 1999; Ungless et al.,
2001; Zweifel et al., 2008). To identify whether glutamate signal-
ing at the NMDA receptor is important for LH to VTA optical
self-stimulation, the NMDA receptor antagonist, AP5, was in-
fused into the VTA before the ICSS session. Compared with ve-
hicle, AP5 significantly reduced the number of active nosepokes
(AP5, n � 4: 48 � 19 active, 7 � 4 inactive; vehicle, n � 4: 290 �
104 active, 14 � 6 inactive; drug, F(1,12) � 5.64, p � 0.035; nose-
poke type, F(1,12) � 9.04, p � 0.011; interaction, F(1,12) � 4.97,
p � 0.046; drug effect, active nosepoke, p � 0.05; inactive nose-
poke, p � 0.05; two-way ANOVA, Bonferroni post hoc test) (Fig.
3) as well as the percentage of nosepoking (11.1 � 3.7%, n � 4,
Mann–Whitney test, p � 0.029 compared with vehicle) and did
not impair the ability of the rodent to explore the operant cham-
ber or physically perform a nosepoke (Fig. 3). This indicates that

NT and glutamate release from the LH to the VTA promotes
nosepoking behavior via Nts1 and NMDA receptor activation.

NT has bidirectional effects on NMDA-mediated EPSCs
Given that NT and glutamate in the VTA supported optical ICSS
and given the ability of Nts1 and NMDA receptors to interact
with one another (Antonelli et al., 2004), we next identified the
effect of NT on excitatory transmission onto VTA dopamine
neurons. Ten minute bath application of NT (10 nM) produced a
19.2 � 1.3% increase in NMDA-mediated EPSCs in VTA dopa-
mine neurons (n � 6, p � 0.001; Fig. 4A,C,E). At higher concen-
trations (100 –500 nM), NT produced a reduction in NMDA
current that persisted after washout (100 nM: 85.1 � 2.2%, n � 5,
p � 0.001; 300 nM: 66.6 � 4.5%, n � 5, p � 0.001; 500 nM: 77.7 �
1.2%, n � 5, p � 0.001, pre-drug vs post-drug exposure; Fig.
4B,D,E). Example traces of NT-induced potentiation and reduc-
tion of NMDA current are shown in Figure 4F.

The Nts1 antagonist, SR48692 (100 nM), blocked NT-induced
potentiation of NMDA currents (n � 5, p � 0.028; Fig. 5A).
Interestingly, SR48692 (500 nM) attenuated, but did not elimi-
nate, the NMDA current reduction induced by 100 nM NT (NT
100 nM and SR48692 500 nM: 89.7 � 0.9%, n � 8, p � 0.001; Fig.
5B). We established that SR48692 had no effect on evoked EPSCs
when administered alone (n � 9, p � 0.963). Therefore, NT (10
nM) binding at Nts1 enhanced signaling at the NMDA receptor,
while higher concentrations of the peptide reduced NMDA-
mediated current via Nts1 and another unidentified receptor.

To expand upon antagonist experiments, we studied the Nts1
knock-out mouse (NtsR1KO). In agreement with antagonist
studies, NT-induced potentiation was not observed in the ab-
sence of Nts1 compared to wild-type controls. The NT-induced
reduction at higher concentrations remained present in
NtsR1KO mice (Fig. 5C,D).

NT reduces AMPA-mediated EPSCs
We next examined the effect of NT on AMPA-mediated EPSCs
recorded at �70 mV and found that NT reduced AMPA current
in a dose-dependent manner (Fig. 6A–C). The NT-induced re-
duction is not due to Nts1 signaling, as SR48692 did not block NT
suppression of AMPA-mediated EPSCs (Fig. 6D). NT also low-
ered AMPA current amplitude at a holding potential of 40 mV in
the presence of AP5 (Fig. 6E). This suggests that the NT effect is
independent of electrochemical driving force and therefore un-
likely due to an indirect effect. Paired-pulse ratio experiments
were conducted to investigate whether this reduction was presyn-
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cal ICSS session. Groups did not differ in baseline operant responding. AP5, n � 4: 48 � 19
active, 7 � 4 inactive; vehicle, n � 4: 290 � 104 active, 14 � 6 inactive; p � 0.035; two-way
ANOVA, Bonferroni post hoc test.
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aptic or postsynaptic; however, results were not significant and
therefore insufficient to rule out either locus of action (Fig. 6F).
The NT-induced depression of AMPA current was also observed
in NtsR1KO mice (Fig. 6G,H).

NT (10 nM) has a net excitatory effect on VTA EPSCs
The 10 nM concentration of NT exerted opposing effects on
NMDA and AMPA currents, which raised the question of the net
effect of NT on the combined EPSC. We measured the EPSC
�2.5 ms after the stimulus artifact, a time point at which gluta-
matergic EPSCs are carried by both AMPA- and NMDA-
mediated components (Fig. 7A). NT potentiated the combined
EPSC (Fig. 7B,D,F), revealing that the overall effect of NT on the
glutamate current is excitatory. We then compared the early time
point of the EPSC with the late-phase component mediated solely
by the NMDA receptor (25 ms after the stimulus artifact, Fig.
7C,E). The combined EPSC increased significantly less than the
isolated NMDA current in the same neurons, suggesting that the
AMPA-mediated, early phase component of the EPSC was re-
duced (Fig. 7B). Indeed, we found that AMPA-mediated currents
recorded at 40 mV in the presence of AP5 were reduced by NT
(Fig. 6E). However, the NT-induced reduction of the AMPA
component was overshadowed by potentiation of NMDA-
mediated current (NMDA, 123.4 � 5.2; combined EPSC,
116.4 � 3.5%, n � 8, p � 0.037; Fig. 7B–F).

Endogenous NT is present at LH to VTA synapses
Given that NT is predominantly released from lateral hypotha-
lamic fibers terminating in the VTA (Geisler and Zahm, 2006),
we next asked whether NT exerts differential effects at LH to VTA
synapses versus nonspecific, electrically stimulated synapses. Op-
togenetic techniques were used to selectively activate lateral
hypothalamic fibers forming synapses onto VTA dopamine neu-
rons while unidentified glutamatergic afferents were electrically
stimulated. The AAV coding for channelrhodopsin-2 under con-
trol of the CaMKII promoter successfully infected neurons in the
lateral hypothalamus and resulted in expression of ChR2 in ax-
onal fibers extending into the VTA (Fig. 8A,B). A horizontal
hemisection of the mouse brain (50 �m thick) shows the rostral
LH site of AAV injection in the green ChR2-EYFP panel with
notable projections to the VTA. The red channel depicts neurons
positive for TH immunoreactivity in the ventral tegmental
area and the substantia nigra. The merged inset illustrates that
a dense network of ChR2 axons entangle dopamine neurons
(Fig. 8B). This optically isolated pathway is excitatory given
that a 5 ms pulse of blue light aimed at the VTA excited lateral
hypothalamic fibers and produced both AMPA- and NMDA-
mediated EPSCs in VTA dopamine neurons (Fig. 8B).

Given the pronounced NT-induced potentiation of electri-
cally evoked current, we hypothesized that NT would have a
greater effect at LH to VTA synapses as a result of either higher
Nts1 density or an abundance of endogenously released NT. Sur-
prisingly, we observed the opposite. NT (10 nM) decreased opti-
cally evoked NMDA current in the VTA (70.1 � 6.1%, n � 6, p �
0.001; Fig. 8C,D). To verify that this effect was not due to record-
ing from two distinct neuronal populations, the experiment was
repeated by activating the recorded neuron with alternating elec-
trical and optical signals. One pulse of electrical current, then one
pulse of blue light, was repeatedly applied in the VTA 100 –200
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Figure 4. A, B, Single-cell examples of evoked NMDA-mediated current in a VTA neuron
recorded via whole-cell, voltage-clamp experiments at a holding potential of 40 mV. NMDA
currents were measured 25 ms after the stimulus artifact. The NT active peptide fragment
(8 –13) was bath applied for 10 min before being washed out. A, NT 10 nM. B, 100 nM. C, D,
Population responses to varied doses of NT. C, 10 nM (red): 119.2 � 1.3%, n � 6, p � 0.001. D,
100 nM (green): 85.1 � 2.2%, n � 5, p � 0.001; 300 nM (blue): 66.6 � 4.5%, n � 5, p �
0.001; 500 nM (purple): 77.7 � 1.2%, n � 5, p � 0.001. The shaded regions indicate the data
points averaged for analysis. E, Average dose-responses of NMDA-mediated current to NT.
One-way ANOVA with Tukey’s post hoc analysis indicated that all concentrations were signifi-
cantly different from one another ( p �0.001 for all comparisons, except 100 vs 500 nM in which
p � 0.01). F, Example traces of NT-induced potentiation at 10 nM (red) and inhibition by 300 nM

NT (blue). Approximately 12 sweeps were averaged per trace. The stimulus artifacts were re-
moved from the trace examples.
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blocked NT-induced potentiation at 10 nM (99.2 � 1.3%, n � 5, p � 0.028 measured 12 min
after NT application). B, SR48692 500 nM attenuated NT-induced reduction at 100 nM (89.7 �
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of NT on NMDA-mediated EPSCs in Nts1 knock-out mice. C, 10 nM (91.1 � 2.2%, n � 7, p �
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�m from the cell body at 0.1 Hz. Within the same neuron, NT (10
nM) concomitantly potentiated electrically evoked NMDA cur-
rent and reduced current at optically stimulated LH to VTA syn-
apses (n � 8, p � 0.001; Fig. 8E,F).

One possible explanation for this divergent effect is that NT is
released at LH to VTA synapses, such that the addition of NT (10
nM) by bath application reproduces the EPSC inhibition ob-
served at high NT concentrations (e.g., Fig. 4B,D). To test this
hypothesis, we used the Cre-lox system to selectively activate LH
neurons containing NT. A double-floxed AAV coding for ChR2
was injected into the LH of Nts-Cre mice enabling translation of

the light-sensitive channel only in Cre-expressing NT neurons.
Optical stimulation of lateral hypothalamic, NT-containing syn-
aptic boutons generated NMDA-mediated currents in the VTA
(Fig. 9A). The GABAA antagonism in this study suggests that a
population of excitatory NT neurons send a direct projection
from the LH to the VTA. If NT is indeed released at lateral hypo-
thalamic NT to VTA synapses, then the Nts1 antagonist would
eliminate the NT contribution to the baseline NMDA-mediated
current. In agreement with our hypothesis, we observed that
SR48692 (500 nM) lowered optically evoked NMDA-mediated
EPSCs (Fig. 9A), suggesting that the NT peptide was actively
released at LH to VTA synapses. The antagonist had no effect on
electrically evoked current, confirming that electrically activated
glutamatergic axons did not release NT and that the antagonist
has no effect on its own. Together, these electrophysiological
results indicate that NT is present at LH to VTA synapses and
Nts1 signaling potentiates NMDA-mediated current in the
VTA.

Discussion
Our data demonstrate that optical self-stimulation of the direct
projection from the LH to the VTA is mediated by NT and glu-
tamate. Using optogenetic techniques to isolate lateral hypotha-
lamic afferents of the VTA in an optical ICSS paradigm, we have
provided a level of anatomical specificity unachievable with con-
ventional electrophysiological techniques. Although collision
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Figure 6. A, B, Dose-responses of evoked AMPA-mediated EPSCs to various NT concentra-
tions: 10 nM (red), 74.4 � 3.5%, n � 9, p � 0.001; 100 nM (green), 60.9 � 8.7%, n � 4, p �
0.001; 500 nM (blue), 59.3 � 3.3%, n � 6, p � 0.001; holding potential ��70 mV. One-way
ANOVA indicated that the treatment was a significant factor ( p � 0.009). Tukey’s post hoc
analysis revealed that the 10 nM effect was significantly different from both 100 and 500 nM

( p � 0.05); however, 100 and 500 nM were not statistically different from one another ( p �
0.05). Average values were determined between minutes 16 –22 for A, D, E, G, and H, as
indicated by the shaded region. C, Response of a single neuron to electrical stimulation in the
absence (black) and presence (red) of 10 nM NT. The stimulus artifact was removed from the
trace example. D, SR48692, the Nts1 antagonist, was bath applied before, during, and after NT
application. AMPA-mediated current reduction of 72.5 � 5.4%; n � 5 was not statistically
distinct from the 74.4 � 3.5% current reduction observed by 10 nM NT in the absence of the
antagonist ( p � 0.570). E, AMPA-mediated currents were recorded at a holding potential
of 40 mV in the presence of NMDA-receptor antagonist, AP5 (71.2 � 4.3%, n � 6, p � 0.001
from baseline, p � 0.310 vs AMPA-mediated currents recorded at �70 mV). F, Paired-pulse
ratios of two AMPA EPSC peaks evoked 50 ms apart at a holding potential of �70 mV. Red
represents cells perfused with 10 nM NT; blue, 100 nM (no significant difference, p � 0.631 and
p � 0.475, respectively). G, H, Effect of NT on AMPA-mediated EPSCs in NT 1 receptor knock-out
mice. G, 10 nM (97.1 � 6.1%, n � 5, p � 0.114 from baseline, p � 0.001 compared with the
effect of NT 10 nM in wild-type). H, 100 nM (80.9 � 1.3%, n � 4, p � 0.001 from baseline, p �
0.068 compared with effect of NT 100 nM in wild-type).
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(116.4 � 3.5%); n � 8.

Kempadoo et al. • Hypothalamic Neurotensin in VTA Promotes Reward J. Neurosci., May 1, 2013 • 33(18):7618 –7626 • 7623



studies have suggested that myelinated fibers from the LH release
glutamate onto dopamine neurons to promote their activity
(Shizgal et al., 1980), it has never been definitively shown that
stimulation of this direct pathway promotes intracranial self-
stimulation in the VTA. Previous studies have described bidirec-
tional modulation between NT and dopamine (Jomphe et al.,
2006); however, this is the first study to establish that the lateral
hypothalamic peptide enhances synaptic transmission in the
VTA and promotes reward. Specifically, LH to VTA optical acti-
vation promotes NT and glutamate release in the VTA, and bind-
ing at Nts1 potentiates NMDA receptor activity, a critical
component of optical ICSS behavior.

Numerous studies implicate other lateral hypothalamic pep-
tides, such as hypocretin, MCH, and CART in reward-related
behaviors (DiLeone et al., 2003; Harris et al., 2005; Borgland et
al., 2006). With the addition of NT to this group of reinforcing
peptides, one must ask what purpose is served by multiple reward
peptides in the LH to VTA pathway. Given the neuronal hetero-
geneity in the lateral hypothalamus, it is possible that the discrim-
inating responses of the various peptide groups to peripheral
signals may confer relative importance of physiological demands,
such as delaying foraging to escape from a predator. When in-
jected intracerebroventricularly, NT and hypocretin are anorec-
tic and orexigenic, respectively (Luttinger et al., 1982; Haynes et
al., 1999); however, both reinforce reward when endogenously
released in the VTA (Felszeghy et al., 2007; Borgland et al., 2006).
This dichotomy may enable animals in varied metabolic states to
produce the behavioral response appropriate for the associated
physiological demand. Studies investigating the relative ability of
lateral hypothalamic peptides to modulate VTA dopamine neu-
rons would be a beneficial avenue of research.

Given the behavioral importance of Nts1 and NMDA recep-
tors in LH-to-VTA ICSS, we used whole-cell patch-clamp elec-
trophysiology to test the effect of NT on excitatory transmission
onto VTA dopamine neurons. Specifically, we have demon-
strated that Nts1 activation potentiated NMDA-mediated cur-
rents in VTA dopamine neurons. At positive potentials where
NMDA receptors are activated (�40 mV), the NT-induced
NMDA potentiation outweighed a small AMPA reduction, a
form of inhibition that may protect against overexcitation. Mea-
surement of EPSCs at a time point comprised of both NMDA-
and AMPA-mediated currents showed overall enhancement,
although not as great as the current carried solely by NMDA
receptors at the late phase of the EPSCs at 40 mV. Cells reach
these positive potentials during every action potential, under-
scoring the high susceptibility of VTA dopamine neurons to NT
enhancement during neuronal activation.

The effect of NT in the slice prepara-
tion occurred on the order of minutes,
highlighting the temporal limitations of
ex vivo experiments. This delay may be at-
tributed to the time required for pharma-
cological penetration of the tissue or to the
evenly paced 0.1 Hz stimulation protocol
that produces reliable synaptic responses
but does not replicate endogenous synaptic
input. The NT-induced enhancement of
NMDA-mediated EPSCs may result from
mobilization and accumulation of intracel-
lular calcium via Nts1 activation paired with
glutamatergic excitation. Accordingly, one
would predict that low-frequency ex vivo
stimulation would produce a longer time
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scale NT effect than would endogenous synaptic activation during
an operant task. Although the exact temporal patterns of synaptic
stimulation and in vivo neuropeptide release cannot be precisely
reproduced ex vivo, the power of this technique lies in the ability to
pharmacologically manipulate and measure synaptic transmission
at isolated, subtype-defined synapses. NMDA receptor signaling is
necessary and sufficient for burst firing in the VTA (Zweifel et al.,
2008). Therefore, dopamine neuron bursting is a potential mecha-
nism by which NT, via augmented NMDA receptor activity, pro-
moted the VTA neuron excitation needed to elicit robust optical
ICSS.

Interestingly, NT modulation of glutamate signaling in the
VTA was not solely excitatory. At higher concentrations (100 –
500 nM), NT reduced the excitatory current mediated by NMDA
and AMPA receptors. Experiments conducted in the absence of
Nts1 signaling, both via pharmacological blockade and in NT
receptor 1 knock-out mice, demonstrated that NT-induced syn-
aptic depression was not Nts1-dependent. The Nts2 receptor is
found presynaptically in the VTA (Binder et al., 2001), has a
lower binding affinity than Nts1 (Mazella et al., 1996; Vincent et
al., 1999), and is not excitatory when expressed in Chinese ham-
ster ovary cell lines (Yamada et al., 1998). Given that NT reduced
both AMPA- and NMDA-mediated currents at high concentra-
tions, it is possible that presynaptic binding at Nts2 exerts inhib-
itory action similar to an autoreceptor. Indeed, brain regions,
such as the prefrontal cortex that contain Nts1 and lack Nts2,
have been linked to NT-induced glutamate excitotoxicity (Anto-
nelli et al., 2004). Although it cannot be ruled out that higher
doses of NT activate targets other than NT receptors, the anatom-
ical and functional evidence supports the hypothesis that actions
of high NT concentrations are mediated by Nts2.

Excitatory fibers innervating VTA dopamine neurons arise
from numerous brain regions; however, neural transmission at
distinct synaptic subtypes cannot be dissected with electrical
stimulation. As in our behavioral paradigm, we used optogenetic
techniques to isolate LH to VTA synapses ex vivo. We identified
the effect of Nts1 activity on synaptic transmission at LH to VTA
synapses and compared EPSC amplitude changes with those re-
corded in nonspecific, electrical experiments to explore func-
tional heterogeneity of excitatory VTA synapses. NT (10 nM)
exerted an excitatory effect on electrically evoked NMDA-
mediated EPSCs but reduced optically evoked LH to VTA cur-
rents similarly to higher concentrations of NT.

To test the hypothesis that endogenous NT is released at LH to
VTA synapses, we solely stimulated NT-containing LH neurons
to maximize the ability to detect peptide release in a slice prepa-
ration. The Nts1 antagonist significantly reduced optically
evoked NMDA-mediated current generated by LH fibers but did
not alter electrically evoked, nonspecific NMDA EPSCs. This ev-
idence is consistent with the hypothesis that optical stimulation
of LH fibers promoted peptide release in the midbrain slice, con-
tributing to the baseline NMDA-mediated current. This finding
also warrants future behavioral and electrophysiological studies
in the recently developed Nts-Cre mice.

The difficulty in demonstrating peptide release in electrical
slice electrophysiology experiments may arise from the fact that
conventional electrical stimulation is not selective for peptide
subpopulations and may activate synapses devoid of the peptide
of interest. This hypothesis is difficult to reconcile with the ana-
tomically dense network of NT fibers innervating the VTA (Hök-
felt et al., 1984). Another feasible explanation is that optogenetic
techniques activate more diverse intracellular machinery than
standard electrical methods. Indeed, ChR2 is a cation channel

that permits calcium influx (Nagel et al., 2003) and may therefore
increase intracellular calcium to levels that promote dense core
vesicle release (Elhamdani et al., 2000). It is also possible that the
inhibitory effect of the Nts1 antagonist on optogenetic glutamate
release is indirect. However, this is unlikely given that: (1) the
fiber optic only produced optical responses when aimed directly
at the recorded neuron, indicating a small stimulation area; and
(2) picrotoxin, a GABAA receptor antagonist, was present in all
experiments. Nonetheless, given that NT is also expressed in a
subset of GABAergic LH neurons (Leinninger et al., 2009), exper-
iments investigating the effect of NT on inhibitory synaptic trans-
mission in the VTA would be beneficial.

Operant learning paradigms model aspects of reward-seeking
behavior in humans. Our studies suggest that NT is a key lateral
hypothalamic peptide that directly mediates reward-related be-
havior by enhancing glutamate transmission in midbrain dopa-
mine neurons. Here we demonstrate that SR48692, a small-
molecule, nonpeptide antagonist of the NT 1 receptor, can
reduce excessive amounts of reinforced behavior while maintain-
ing lower levels of stimulation-seeking. Therefore, the Nts1 an-
tagonist is potentially beneficial as a therapeutic agent that can be
used to reduce human forms of pathological reward-seeking,
such as drug addiction.
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