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Materials and Methods 
Mice 

All animal procedures followed animal care guidelines approved by Stanford 
University’s Administrative Panel on Laboratory Animal Care (APLAC) and guidelines 
of the National Institutes of Health. The investigators were not blinded to the genotypes 
of the animals. Female mice from a wildtype (C57BL6/J), or Nos1-Cre (BG.129-
Nos1tm1(CreMgmj)/J) background were used for experiments, aged 6–12 weeks at the time of 
surgery. Animals were maintained on a reverse 12 hr dark/12 hr light schedule, and 
experiments were performed during the dark period. Data from 21 mice (14 wildtype, 7 
Nos1-Cre) were included in this study. Mice were water restricted starting ~1 week 
before the onset of training to ~1 mL per day, which was obtained during task 
performance once training began. There was no randomization or blinding of 
experimental treatments. The sample size was set based on conventions in the field.  
 
Surgeries 

For all surgeries, mice were anesthetized with 1–2% isoflurane, and sterile 
techniques were utilized. Mice were given sustained-release buprenorphine (1 mg/kg) 
prior to surgery. Mice were stereotaxically affixed, the scalp and periosteum was 
removed, and the skull was cleaned with hydrogen peroxide and saline. After allowing 
the skull to dry, possible recording locations were stereotaxically marked with a 
permanent marker (frontal cortex: +2.2 A/P, 1.5 M/L; ventral striatum: +1.4 A/P, 1 M/L; 
mPFC: +1.9 A/P, 0.3 M/L; dorsal thalamus: –0.7 A/P, 0.1 M/L; LH: -1.3 A/P, 1.1 M/L; 
amygdala: -1.5 A/P, 3.3 M/L; dorsal striatum: 0.25 A/P, 2 M/L; midbrain: -3.5 A/P, 1 
M/L; lateral cortex: +1.6 A/P; 2.7 M/L). These recording locations were chosen in part 
based on preliminary retrograde tracing experiments from several brain regions thought 
to be involved in thirst (including paraventricular thalamus, lateral hypothalamus, nucleus 
accumbens, and mPFC) that implicated a large, recurrently connected network of many 
regions throughout the brain. A headbar was then affixed over the cerebellum with dental 
cement, and the exposed skull was protected with clear UV curable glue. Mice were 
allowed two weeks to recover before behavioral training. Prior to recording, a 
platinum/iridium reference electrode (~2 mm long, insulated except for the last ~200 µm) 
was implanted into the posterior aspect of the skull (approximately over visual cortex) on 
the contralateral hemisphere from the side being recorded. 
 In the Nos1-Cre mice, an additional step was performed prior to headplate 
implantation to allow optogenetic stimulation of subfornical organ (SFO) neurons. 
AAV5-EF1a-DIO-ChR2-eYFP (350 µl of ~5 x 1012 vg/mL titre) was injected into SFO (-
0.5 M/L, 0 M/L, -2.75 D/V relative to bregma) at 100 nl/min with a Hamilton syringe, 
then 10 min were allowed to elapse before removing the syringe. A 400 µm fiber optic 
with 1.25 mm cannula was then implanted over the SFO at a 30o angle (-0.5 A/P, +1.4 
M/L, -2.76 D/V) and held in place with dental cement.  
 
Histology 

Mice were perfused with phosphate-buffered saline and 4% paraformaldehyde, 
and brains were postfixed overnight at 4oC. For regular histology, brains were sectioned 
at 60 µm on a vibratome and imaged on a confocal microscope. 

For intact brain clearing, since no labeling of biomolecules was required nor was 
retention of any native fluorescence signal needed, the more powerful hydrogel-tissue 
chemistry methods were not required and brains were simply sequentially dehydrated in a 
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methanol gradient (20%, 40%, 60%, 80%) for 1 hr each at room temperature and 
bleached overnight at 4oC in a mixture of 5% hydrogen peroxide in ice-cold methanol. 
Brains were then washed twice at room temperature for at least 1 hr in 100% methanol to 
remove any residual water, and transferred to a mixture of 67% dichloromethane/33% 
methanol for at least 3 hrs to overnight with shaking. Finally, the brains were washed 
twice for 15 min each time in 100% dichloromethane, and transferred to 100% dibenzyl 
ether overnight. Brains were stable in dibenzyl ether indefinitely.  
 
Whole-brain Imaging and Registration 

Cleared brains were imaged on a LaVision lightsheet microscope in dibenzyl 
ether at 488 nm (green autofluorescence) and 532 nm (electrode tracks labeled with CM-
DiI a fixable, lipophilic red dye that is stable even when dehydrated) with 4 µm step size, 
~4 µm pixel size (0.8X magnification), and a single light sheet focus. Only the 
hemisphere with electrode tracks was imaged, in a sagittal orientation.  

The green and red channel images were then downsampled with averaging to 25 
µm resolution. The green channel was then registered to the Allen Brain Atlas CCFv3 
autofluorescence atlas at 25 µm resolution using an affine transform followed by a non-
linear transform implemented in Elastix, which was previously shown to have an average 
registration error of 4 voxels (100 µm) (46–48). This transformation was then applied to 
the red channel, and the electrode tracks were traced in the registered space using custom 
MATLAB software, built on AllenCCF (https://github.com/cortex-lab/allenCCF). 
Electrophysiological recordings were targeted stereotaxically to specific brain regions, 
and each insertion was at least several hundred microns away from any other insertion, 
which allowed for unambiguous determination of which insertion corresponded to which 
recording sessions based on the particular set of brain regions penetrated by that 
insertion. In this way, we could identify many different insertions in the same animal. For 
the final analysis, brain regions were grouped based on the Allen Brain Atlas hierarchy 
into 34 distinct regions. Unit locations were determined based on the location of the 
electrode where that unit had the highest amplitude. The electrodes are spaced 25 µm 
apart (center to center). This location along the electrode was transformed into the Allen 
Brain Atlas space based on the orientation and position of the traced electrode track for 
that recording. 

 
Behavioral Training 

Mice were trained on a behavior rig using a two-odor olfactometer, an optical 
lickometer, and behavioral protocols controlled in real-time by an Arduino (Bpod). Mice 
sat in a clear plastic tube in front of the lickometer and olfactometer. Pure odorants (ethyl 
acetate and 2-pentanone) were diluted to 4% v/v in mineral oil. A pure stream of air 
flowed through the olfactometer between odor delivery. Mice were water restricted for 
approximately one week prior to training, trained to lick for water while headfixed, then 
shaped to lick for water reward (~3 µl) on the Go odor by automatically delivering a 
water droplet during the reward period (2–3 s after odor onset) on every Go trial. No-Go 
trials were always unrewarded. After 4.1 s from the start of the trial, there was an 
exponentially distributed inter-trial interval (ITI) with mean duration 2 s. After mice were 
proficient at licking for the automatically delivered reward, and began to lick in 
anticipation of this reward (1–3 days), they were moved to the training protocol in which 
reward delivery was contingent on them licking during the reward period. Mice were then 
trained on this protocol until they obtained rewards on > 85% of Go trials (2–5 days). 
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After the beginning of water restriction, mice received all their daily water (~1 mL) by 
performing the task.  
 
Electrophysiological Recordings 

At least three hours prior to the recording, the mice were briefly anesthetized, a 
small (<1 mm) craniotomy was made over a pre-marked location, and the dorsal skull 
was covered with Quik-Cast. Mice were then allowed to recover in their homecage until 
the time of recording. At the time of recording, mice were headfixed and put on the 
recording apparatus. The Quik-Cast was removed, and a pool of saline was put into a 
well built into the headbar to keep the craniotomy moist. Recordings were performed 
using Phase 3A, Option 1 (5 mm, passive) or 3 (1 cm, passive) Neuropixels electrodes (5) 
with 374 active recording sites (out of 960 total) along the bottom ~4 mm of a ~10 mm 
shank (70 µm wide shank diameter, 20 µm thick, 25 µm electrode spacing), and reference 
and ground shorted together. A few minutes prior to recording, the electrode was coated 
with a red fixable lipophilic dye (CM-DiI, Thermo Fisher) and allowed to dry. The 
electrode reference was then connected to a chronically implanted reference electrode on 
the skull with a gold pin, was then positioned over the craniotomy with a 
micromanipulator. The electrode array was slowly (~20 µm/s) advanced 4–5 mm into 
brain while being observed under a stereomicroscope for bending or bleeding. The array 
was allowed to sit in the brain for 15 min, and then recording began. Signals were 
sampled at 30 kHz with gain = 500 (2.34 µV/bit at 10 bit resolution) in the action 
potential band, digitized with a CMOS amplifier and multiplexer built into the electrode 
array, then written to disk using SpikeGLX software. Mice were then allowed to perform 
the task until they became sated, at which point a few dozen more trials were recorded. 
For optogenetic stimulation trials, after the sated trial block, a 488 nm laser (~20 mW at 
fiber tip) was used to stimulate for 1 s at 20 Hz with 20 ms pulse width in a raised cosine 
pattern every 4th second. This stimulation was unsynchronized with task, and was turned 
on for ~2–5 min before recording the stimulation block of trials, and was turned off for 
~2–5 min before the washout block of trials. The session start times, trial start times, and 
stimulation times were recorded on a separate data acquisition board, along with a 
synchronization signal that was simultaneously recorded by the Neuropixels and used to 
correct slight drift between the acquisition computer clock and Neuropixels FPGA clock. 
All recordings were completed within ~1–1.5 hrs. Between recordings, the skull was 
protected with Kwik-Cast. 
 
Spike Sorting 
Data from the Neuropixels action potential band were first common average referenced to 
the median across channels (24), and high-pass filtered above 150 Hz. Spike sorting was 
performed offline using Kilosort2 (25), a high-throughput spike sorting algorithm that 
tracks clusters that drift over time and automatically determines the number of clusters. 

Like Kilosort1 (49), Kilosort2 is a template-based algorithm that determines for 
each cluster an average template shape. It then matches this template to the raw voltage 
data to find matches, and subtracts these matches iteratively using a matching pursuit 
algorithm. To account for slow timescale changes in the cluster shapes, Kilosort2 allows 
the templates to change as a function of time. Kilosort2 processes data batches in 
temporal order, and continually re-estimates the cluster templates as the running average 
of the past ~400 spikes, using an exponential filter with decay constant 200. To account 
for potentially fast drift, Kilosort2 has an initial step in which it re-orders data batches 
such that nearby batches have similar levels of drift. After the reordering, it proceeds 
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through the batches in order like before. If only slow drift dominates a recording, the 
reordering does not modify the temporal order in which Kilosort2 processes the data.  To 
further increase robustness to drift, Kilosort2 automatically merges clusters with nearly-
overlapping distributions of spikes (as determined by a mean and standard deviation 
criterion). To ensure that all large spikes are assigned to a cluster, Kilosort2 continually 
evaluates the data residual and introduces new templates to account for un-matched, large 
threshold crossings. If these new templates are determined to be continuous with an 
existing template, they are merged together, again increasing the robustness to drift.  

After sorting, clusters with a peak-to-peak signal-to-noise ratio of < 2.5 or an 
average firing rate of < 0.02 spike/s over the whole recording were removed. The clusters 
were manually validated using Phy (50) to determine whether they were “Good” (well-
isolated and stable over time) or “Noise” (poorly or unstable isolated units and electrical 
artifacts) (similar to the instructions here: 

 https://phy-contrib.readthedocs.io/en/latest/template-gui/).  
A convolutional neural network-based classifier, using spike waveform and 

autocorrelogram shape as inputs, was developed based a subset (~10%) of this manually-
curated data to assist in identifying “Noise” clusters, and then applied to all subsequent 
recordings. All units not classified as “Noise” were then manually inspected, and clusters 
with high signal-to-noise ratio, clean spike time autocorrelograms (few refractory period 
violations), and no significant drift in waveform amplitude over time were classified as 
“Good” (i.e., putative single units). All other clusters, including multi-unit activity, were 
classified as “Noise” and not analyzed. 
 
Electrophysiological Data Analysis 

Spike trains were aligned to the trial start and binned at 10 ms resolution for 
analysis. The brain region each unit resided in was determined by finding the location of 
the channel with peak amplitude for that unit on the electrode array, and then 
transforming that location into Allen Brain Atlas space.  

For all analyses, we excluded rare Miss and False Alarm trials while thirst, and 
Hits and False Alarms during the sated block. Therefore, in all figures ‘thirsty Go’ = Hits 
during thirsty block, ‘thirsty No-Go’ = Correct Reject during thirsty block, ‘sated Go’ = 
Miss during sated block, ‘sated No-Go’ = Correct Reject during sated block. Thirsty and 
sated blocks were determined using a Hidden Markov Model of the total number of licks 
per Go trial, smoothed with a 10 trial moving average filter.  

 For visualization of per-cell average firing rates, trial-averaged firing rates were 
smoothed with a 50 ms Gaussian filter, the average firing rate within the baseline period 
was subtracted per condition, and then the average rates were normalized to the min and 
max firing rate across all conditions.  

For computing average activity for visualization of per-neuron and per-region 
firing rate (Fig. 2), at most 30 trials were randomly sampled from the entire trial block 
(e.g., 30 trials each were randomly from thirsty Go trials, 30 sated Go trials, etc.) A 
similar number of trials was taken from the stimulation and washout blocks. For 
computing average activity within different parts of the session (Beginning, Middle, End, 
Sated), the first 20 trials of the thirsty block, middle 20 trials, and last 20 trials were 
taken, along with 20 trials while the animal was sated. To consistently average trials with 
the same behavior in different trial blocks, False Alarm and Miss trials were excluded 
from this analysis when the animal was thirsty, as were rare Hit trials while the animal 
was sated. 
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 Task-modulated cells were identified based on a Wilcoxon rank-sum test of 
average firing rate within the 1 s baseline and three sequential 1 s epochs within the task 
starting at the odor onset, on a per trial basis. A cell was deemed task modulated if any of 
the task epochs differed significantly from the baseline after false discovery rate (FDR) 
correction across all units, with a corrected significance threshold of P < 0.001.  
 
Single-cell Analysis 

Trial-averaged firing rates for task-modulated cells were z-scored across 
conditions (thirsty/stated x Go/No-Go), principal components analysis was applied to the 
cellular activity across all trial conditions, and then clustered using shared nearest 
neighbor graph-based clustering (51) on the top 20 PCs. The number of clusters was 
automatically determined by the clustering algorithm.  

For the encoding analysis, per-cell firing rates were averaged to 20 ms resolution, 
and smoothed with 100 ms Gaussian filter. The predictors used were ‘ITI’ (3.2 s long), 
‘Go odor onset’ (1 s), ‘No-Go odor onset’ (1 s), ‘Go odor offset’ (1 s), ‘No-Go odor 
offset’ (1 s), ‘lick times’ (0.25 s around each lick), ‘lick onset’ (0.5 s), and ‘reward’ (0.75 
s), and ‘Thirsty’ (6 s). For all predictors except ‘Thirsty’, the predictors were raised 
cosines, repeated ten times the length of the event, and spaced such that each raised 
cosine was 1/4 the width of each cosine. The ‘Thirsty’ predictor was a constant value that 
spanned the entire trial, and was high when the animal was thirsty and low when it was 
sated. Predictors were then constructed for each trial. These predictors were then used to 
fit a model for each cell that attempted to predict the trial-by-trial firing rate. The 
predictors were maximum-normalized and z-scored before fitting. To fit these models, 
we used XGBoost (52), a highly efficient machine learning algorithm that uses gradient 
boosting for classification and regression, with a Poisson loss function. For training and 
testing, the data were split into alternating trials; half the data was then used to fit the 
model, and the other half was used for testing. The goodness of fit was evaluated in terms 
of the fraction of explained deviance: DE = 1 – Dmodel/Dnull, where Dnull is the deviance 
for a null model that predicts the cell’s average firing rate at all timepoints, and Dmodel is 
the model deviance (53, 54). Poisson deviance was computed as 2∑ y log(y/ŷ) – y + ŷ, 
where y is the true firing rate across all trials, and ŷ is the predicted firing rate.  

To determine the per-feature DE, we shuffled the values for each regressor across 
time individual (while keeping all the other regressors unshuffled), refit the model on 
training data, and evaluated the DE on held-out test data (55). The unique DE by that 
variable was then computed as the difference between the DE by the full model and DE 
by the model with that regressor shuffled.  

To determine the total DE by sensory features, we summed the unique deviance 
explained of ‘Go odor onset’ and ‘No-Go odor onset’. To determine the total DE by 
motor features, we summed the unique DE by the ‘lick times’, ‘lick onset’, and ‘reward’ 
features.  

To determine which features or combination of features modeled individual cells 
well, we used a simple threshold of 4% deviance explained for each feature.   
 
Activity Mode Analysis  
 To determine different activity modes within the data, we used a variant of the 
‘Coding Direction’ analysis described in (34). We first subtracted the per-cell mean 
activity across all conditions (thirsty/sated or thirsty/sated/stim/washout). We then 
computed different directions in activity space that would optimally separate different 
task events, by taking the difference in mean population activity between different trial 



 
 

7 
 

conditions within different epochs. All recorded neurons (i.e., both task-modulated and 
non-task-modulated neurons) were used in computing these modes and visualizing 
projections onto them. The ‘State mode’ was computed as the average difference between 
thirsty and sated trials in the baseline epoch (1 s before odor onset), and then averaged 
across that 1 s interval. Specifically, the average baseline period of at most 40 randomly 
thirsty Go trials were contrasted with the weighted sum of average baselines of at most 
40 randomly selected sated Go (67%) and No-Go trials (33%), to ensure a robust estimate 
in spite of there always being fewer sated trials of any type. Since the baseline period 
contained no task-related behavior or sensory input, we found that the trial type label (Go 
vs No-Go) was irrelevant, and these subsets of trials were chosen for convenience; other 
subsets yielded equivalent results. The ‘Cue mode’ was computed as the average 
difference in per-cell activity between thirsty Go and No-Go trials, from at most 40 
randomly subsampled trials of each type, in the odor epoch (0.5 s after odor onset [before 
licking onset]), and then averaged over time within that window. Finally, the ‘Behavior 
mode’ was computed for the same trials, but using the response epoch (1 s around the 2 s 
after odor onset [approximate time of reward on thirsty Go trials]). For a population of N 
neurons, this yielded three N × 1 vectors. QR decomposition was then applied to these 
vectors to form three orthogonal axes W, an N × 3 matrix. Trial averaged data was then 
projected onto these axes using as the dot product as WTx, where x is an N × (4 × T) 
matrix of smoothed, trial-average firing rates across 4 conditions (thirsty/sated x Go/No 
Go) concatenated together (T=600 10 ms bins each). For single-trial analysis, only 
populations where >20 neurons were recorded simultaneously from a single brain region 
were used. The different axes were similarly computed from trial averaged data within 
that population, but then single trials firing rates matrices of size N × T were projected 
onto them. For visualization, the absolute value of the separation between the trial 
averages of these projections were shown: for the per region projections onto the State 
axis, this was |⟨Thirsty⟩-⟨Sated⟩|, and for the Cue and Behavior axes, this was |⟨thirsty 
Go⟩ - ⟨thirsty No-Go⟩|, where ⟨ · ⟩ indicates the average across that trial condition, and | · 
| is the absolute value. The axes were always fit only on thirsty and sated trials. 
 
Decoding Analysis  
 Decoding of categorical variables (satiety state and trial type) was performed 
using regularized linear discriminant analysis, with shrinkage analytically determined 
from the covariance matrix. Firing rates from simultaneously recorded neurons within a 
brain region were averaged to 100 ms resolution, and analyzed without smoothing. Only 
populations of at least 20 neurons recorded simultaneously were analyzed. Decoding of 
continuous variables was performed using regularized linear regression, also setting the 
hyperparameter through cross validation. Decoding of satiety state was performed on the 
1 s prior to odor onset, and data from the entire session (thirsty + sated) was split into 
alternating trials so that the decoder was trained on one half of the data and tested on the 
other half. Decoding of trial type was performed on the first 0.5 s after odor onset, and 
was only trained on half of the trials from the thirsty state. Finally, decoding of per-trial 
number of licks was performed on the 1 s around 2 s after odor onset, and data from the 
entire session (thirsty + sated) was split into alternating training and test trials.  
 When analyzing stimulation and washout trials, 40 trials from the end of the 
thirsty block and the sated block were used for training (with a 50:50 test/train split as 
described above), and then held out thirsty, sated, stim, and washout data were used for 
testing.  
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For comparing size-matched decoders, the minimum population size was 
subsampled from the total population 100 times without replacement. The decoder was 
trained as described above on each subsampled population, and the predictive accuracy 
was averaged for that particular recording.  

For determine chance levels of decoding accuracy, the total population from each 
recording was trained on in the same was as described above, but the training data were 
first shuffled on a per-trial basis. This procedure was repeated 100 times per recording, 
and the mean results were compared with the mean decoding accuracy from the 
unshuffled data. 
 
Data Availability 
 Data analyzed in this study are available online at http://clarityresourcecenter.org. 
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• Numpy: Oliphant E. A., Guide to NumPy, USA: Trelgol Publishing, (2006). 
(http://www.numpy.org/) 

• Matplotlib: Hunter J. D., Matplotlib: A 2D graphics environment, Computing In 
Science & Engineering (2007). (https://matplotlib.org/ ) 

• Scikit-learn: Pedregosa, et al., Scikit-learn: Machine learning in Python, JMLR 
12, 2825-2830 (2011). (http://scikit-learn.org/stable/ ) 

• Pandas: McKinney W. Data Structures for Statistical Computing in Python, 
Proceedings of the 9th Python in Science Conference, 51-56 (2010). 
(https://pandas.pydata.org/ ) 

• IPython: Perez F., Granger B.E. IPython: A System for Interactive Scientific 
Computing, Computing in Science & Engineering, 9, 21-29 (2007). 
(https://ipython.org/ ) 

• Seaborn: https://seaborn.pydata.org/  

• Statsmodels: Skipper S., and Perktold J. Statsmodels: Econometric and Statistical 
Modeling with Python, Proceedings of the 9th Python in Science Conference 
(2010) 

• Keras: https://keras.io/  

• AllenCCF: https://github.com/cortex-lab/allenCCF  

• Spikes: https://github.com/cortex-lab/spikes   

• SpikeGLX: https://github.com/billkarsh/SpikeGLX  

• Kilosort2: https://github.com/MouseLand/Kilosort2  
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Fig S1: Extended behavioral data.  (A,B) Hit rate and Correct Rejection (CR) rate at 
beginning (first 30 trials), middle (middle 30 trials), and end (last 30 trials) of thirsty 
session, and while sated. (C) Total number of licks per trial on Hit trials at different 
points in session.  (D) Latency to first lick on Hit trials at different points in session. 
Mean ± 95% c.i.  
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 Fig S2: 3D registration of electrode tracks. (A) Diagram of experimental pipeline for 

electrophysiological recordings, brain clearing, and registration. (B) Example coronal 
section from brain post registration showing overlay between sample autofluorescence 
and Allen Brain Atlas autofluorescence. (C) Example sagittal section from brain post 
registration, showing autofluorescence, multiple fluorescent electrode tracks, and Allen 
Brain Atlas brain region segmentation and autofluorescence used for registration. Tracks 
are labeled with a red fluorescent, fixable lipophilic dye coated on the electrode prior to 
recording. 
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Fig S3: Recording statistics. (A) Number of simultaneously recorded neurons per 
recording session. (B) Number of simultaneously recorded neurons per brain region. 
Mean ± 95% c.i. Number of recording sessions per region: OLF=27, PIR=11, SSp=3, 
SSs=3, BLA=3, BMA=5, sAMY=6, PA=3, DORpm=22, DORsm=14, PVR=3, PVZ=2, 
LZ=15, MEZ=6, HPC=8, STRd=24, STRv=11, LS=9, PL=9, ILA=8, ORB=12, 
ACA=10, AI=2, RSP=2, PALd=6, PALm=3, PALv=5, BST=2, MOp=6, MOs=9, SC=3, 
MBmot=11, P-mot=5. (C) Total number of units recorded from each brain region. (D) 
Total number of units recorded from each mouse. 
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Fig S4: Extended data on population activity. (A) Regions sorted by Onset Time, 
defined as the first time bin at 10 ms resolution wherein the average firing rate of at least 
5% of recorded neurons from that region is statistically different from baseline; note this 
is to be distinguished from peak time. 10 ms bins. Statistically different is defined as P < 
0.01, two-tailed paired t-test of firing rate in each bin relative to average firing rate before 
odor onset, Bonferroni corrected across all timepoints. (B) Fraction of neurons 
statistically significantly different from baseline per region over trial on thirsty and sated 
Go and No-Go trials. (C) Average population firing rate per brain region aligned to first 
lick per trial, normalized to the 1 s before lick onset. (D) Average population firing rate 
aligned to reward time, normalized to the 1 s before reward, sorted as in (C).  For (C) and 
(D), no regions had decreases in firing rate, so only positive values are shown. (E) 
Distribution of average pre-stimulus baseline firing rates per brain region during thirsty 
block. (Each dot is one neuron.) (F) Distribution of average change in firing rate during 
Go odor cue in thirsty block.  
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Fig S5: Extended data on single-neuron modeling. (A) Diagram of feature-based 
modeling of neuronal activity. Different features are combined to predict the firing rate of 
individual neurons on held-out test data. (B) Two example neurons, showing odor times 
(magenta and green bars) and observed (Obs) vs predicted (Pred) firing rates across 
multiple trials. DE = ratio of Poisson deviance explained in observed data by model. Top: 
a neuron from PALv (ventral pallidum). Bottom: a neuron from PIR (piriform cortex). 
(C) Examples of regressors on a single trial. All regressors for a single event (e.g. ‘Go 
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odor onset’) plotted on the same line to show temporal contiguity, but are fit separately. 
‘Thirsty’ regressor is constantly high throughout a trial when the animal still licks in 
response to water-predicting odor, and low when the animal is sated. Other regressors are 
placed within a trial depending on the timing of task events on individual trials. (D) 
Histogram of ratio of total deviance explained (DE) per neuron, for task-modulated vs 
non-task-modulated neurons. Dashed lines indicate average value for each group. (E) 
Average total DE per cluster, mean ± 95% c.i., using same colors as clusters in Fig 2. (F) 
Per-cluster average DE for other features used in regression. Mean ± 95% c.i. (G) 
Fraction of cells correlated with different variables, and combinations of two variables 
(State = state; Cue = Go odor onset + No-Go odor onset + Go odor offset + No-Go odor 
offset; Response = Lick onset + Lick offset), where a cell was correlated with a regressor 
set if that combination of regressors had > 4% total unique DE.  (H) Fraction of neurons 
per-region that are correlated with only one variable (State, Cue, Response), out of total 
neurons in that region that correlated with any variable or combination of variables.  (I) 
Specific selectivity of individual neurons shown by plotting each task-modulated neuron, 
colored by cluster identity, along axes defined by total unique deviance explained by cue-
, response-, and state-related features.   
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Fig S6: Stability of decoding modes. (A) Pearson correlation of w vector, used to define 
different activity modes, defined at each 10 ms bin from trial-averaged brain-wide data, 
with w vector defined at all other 10 ms bins. Left: w = <Thirsty> – <Sated>. Right: w = 
<Go> – <No Go> while thirsty. High correlations within a time range indicate that the w 
vector is stable during that period. (B) State, Cue, and Behavior modes computed from 
randomly subsampled data with the same population size per brain region (20 units per 
region sampled without replacement from all units in that region across all mice for 1000 
repetitions). Mean ± s.d. (C) Projections of activity from error trials during the thirsty 
block defined onto axes defined by Hit and CR trials. Hit = thirsty Go trials where animal 
obtained reward (‘Thirsty Go’ elsewhere in paper), CR = Correct rejection = thirsty No-
Go trials where the animal withheld licking (‘Thirsty No-Go’ elsewhere in paper), Miss = 
thirsty Go trials where the animal did not obtain reward, FA = False Alarm = thirsty No-
Go trials where the animal licked during the response epoch. There were often very few 
error trials per session.  
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 Fig S7. Per-animal projections onto State, Cue, and Response axes. Projections onto 

State, Cue, and Response axes as Fig 4C, but using only neurons recorded each of the 21 
mice. Number above each plot indicates percent task-related explained variance for that 
mode for that mouse. 
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 Fig S8: Per-region projections onto State, Cue, and Response axes. (A) Per-region 
State, Cue, and Response mode projections of trial-averaged data, defined in same way as 
Fig. 4C but only for neurons from a particular brain region (pooled across multiple 
recordings). Number above each plot indicates percent task-related explained variance for 
that mode for that region. (B) Task-related variance explained by each mode per brain 
region.  
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Fig S9: Instantaneous lick rate decoding. (A) Examples of continuous lick decoding 
(100 ms bins). True = observed lick rate. Pred. = predicted lick rate. (B) Decoding 
performance from simultaneously recorded neurons within single brain regions, using full 
simultaneous population size. (C) Decoding performance from simultaneously recorded 
neurons, using downsampled population size to N=20 neurons (average of 100 random 
subsamplings per recording session). N per region same as in Fig. 4I-K.  



 
 

20 
 

 
 
Fig S10: Decoder performance by population size. (A) Decoding performance from 
simultaneously recorded neurons as in Fig 4I-K, but using downsampled population size 
to N=20 neurons (average of 100 random subsamplings per recording session). (B) 
Decoding performance as in Fig 4I-K, but using trial-shuffled data (average of 100 
repeats per session).  AUC = area under curve. Chance performance (0.5) indicated with 
dashed line.  
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Fig S11. Per-animal projections onto State, Cue, and Response modes with 
optogenetic stimulation. (A) Per-animal average number of licks per trial while thirsty, 
sated, and during and after optogenetic stimulation. (B) Per-animal projections onto State, 
Cue, and Response modes (similar to Fig S8), using trial-averaged data from all neurons 
across all regions recorded in that animal, showing thirsty and sated Go and No-Go 
conditions. Number above each plot indicates percent task-related explained variance for 
that mode for that region.  (C) Same as (B), but showing projections from trials averaged 
at different stages of satiety on Go trials.  
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Fig S12: Real-time effects of optogenetic stimulation on downstream neurons. (A) 
Example neurons that are responsive to SFO optogenetic stimulation in OLF and PALd 
(dorsal pallidum). (B) Per-neuron average firing rate around time of 20 Hz optogenetic 
stimulation (blue band), relative to pre-stimulus firing rate. Neurons are sorted by average 
change in firing rate within the stimulation period. (C) Fraction of stim-responsive 
neurons per brain region, out of total number of neurons recorded from each region. 
Stim-response = different firing rate between 1 s preceding stimulus onset and 1 s of 20 
Hz stimulation, P < 0.01, two-tailed t-test, FDR correction.  (D) Spatial location of each 
stim-responsive neuron, colored by average change in firing rate relative to baseline. (E) 
Spatial location of each stim-responsive neuron, colored by correlation with optogenetic 
stimulus. (F) Fraction of neurons per cluster (colors are as defined in Fig 2) that are stim-
modulated. (G) Fraction of all stim-modulated neurons that come from each cluster.  
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Table S1 
Brain region abbreviations from the Allen Brain Atlas ontology (http://atlas.brain-
map.org/)  
ACA – Anterior Cingulate cortex AI – Agranular Insular cortex 
BLA – Basolateral Amygdala BMA – Basomedial Amygdala 
BST – Bed Nucleus of the Stria Terminalis DORpm – Dorsal thalamus, polymodal 
DORsm – Dorsal thalamus, sensorimotor HPC – Hippocampus 
ILA – Infralimbic cortex LS – Lateral Septum 
LZ – Lateral zone of the hypothalamus  MBsta – Midbrain, state related 
MBmot – Midbrain, motor related MEZ – Medial zone of the hypothalamus 
MOp – Primary motor cortex MOs – Secondary motor cortex 
OLF – Olfactory regions ORB – Orbitofrontal cortex 
P-mot – Pons, motor related PA – Posterior amygdala 
PALd – Dorsal pallidum PALm – Medial pallidum 
PALv – Ventral pallidum PIR – Piriform cortex 
PL – Prelimbic cortex PVR – Periventricular region  
PVZ – Periventricular zone of the 
hypothalamus 

RSP – Retrosplenial cortex 

sAMY – Striatal-like amygdalar nucleus  SC – Superior colliculus 
SSp – Primary somatosensory cortex SSs – Secondary somatosensory cortex 
STRv – Ventral striatum STRd – Dorsal striatum 
 
The following lower-level AIBS regions were combined to make the final set of regions 
used for analysis: 

• ACA: [ACAd1, ACAd2/3,  ACAd5,  ADAd6a,  ACAv1,  ACAv2/3,  ACAv5, 
ACAv6a, ACAv6b,  ACAd6a] 

• AI: [AId6a, AIp6a, AIp6b, AIv6a, CLA, GU6a], 
• BLA: [BLAa, BLAp, CTXsp], 
• BMA: [BMAa, BMAp], 
• BST: [BST], 
• DORpm: [AD, AMd,  AMv,  AV,  CL,  CM,  Eth,  IAM,  IMD,  LD,  LH,  LP,  

MD,  MH,  PCN,  PF,  PO,  PT,  PVT,  RE,  RH,  RT,  SMT,  SubG,   TH,  Xi], 
• DORsm: [LGd-co,  LGd-ip,  LGd-sh,  LGv,  VAL,  VM,  VPL,  VPLpc,  VPM,   

VPMpc], 
• HPC: [CA1, CA2, CA3, DG-mo, DG-po, DG-sg, HPF, ProS, SUB], 
• ILA: [ILA1, ILA2/3, ILA5, ILA6a, ILA6b], 
• LA: [LA], 
• LS: [LSc, LSr, LSv, SF], 
• LZ: [FF, HY, LHA, LPO, PSTN, ZI], 
• MBmot: [APN,  MB,  MRN,  MT,  NOT,  PAG,  PPT,  PR,  RN,  RR,  SNr,   

VTA], 
• MBsta: [PPN, SNc], 
• MEZ: [MPN, PH, PMv, PMd, TMv, TU, VMH], 
• MOp: [MOp2/3, MOp5, MOp6a, MOp6b], 
• MOs: [MOs1, MOs2/3, MOs5, MOs6a, MOs6b], 
• OLF: [AON,  COApl,  COApm,  DP,  EPd,  EPv,  NLOT3,  OLF,  PAA,  TTd], 
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• ORB: [FRP5,  FRP6a,  ORBl1,  ORBl2/3,  ORBl5,  ORBl6a,  ORBm1,  
ORBm2/3,  ORBm5,  ORBvl6a], 

• P-mot: [PG, PRNc, PRNr, TRN], 
• PA: [PA], 
• PALd: [GPe, GPi, PAL], 
• PALm: [MS, NDB, TRS], 
• PALv: [SI], 
• PIR: [PIR], 
• PL: [PL1, PL2/3, PL5, PL6a, PL6b], 
• PVR: [DMH, SBPV], 
• PVZ: [PVH, PVHd, PVi], 
• RSP: [RSPv2/3, RSPv5, RSPv6a], 
• SC: [SCdg, SCdw, SCig, SCiw, SCop], 
• SSp: [SSp-n4, SSp-n5, SSp-n6a, SSp-ul6a, SSp-ul6b], 
• SSs: [SSs5, SSs6a, SSs6b], 
• STRd: [CP, FS, STR], 
• STRv: [ACB, OT], 
• sAMY: [AAA, CEAc, CEAl, CEAm, IA, MEA] 

 
 
 
 
 
 
Caption for Movie S1 
Visualization of baseline-subtracted brain-wide activity dynamics, trial-averaged in 
thirsty and sated Go and No-Go conditions, across the whole brain. Background are 
coronal sections of Allen Brain Atlas CCv3 autofluorescence brain volume. Coronal 
plane positions were automatically determined by applying K-means clustering with K=8 
to the anterior/posterior coordinates of all recorded units, and using the cluster centroid 
positions. FR = z-scored firing rate.  
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