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Materials and Methods 

In silico opsin screening, molecular cloning, and imaging 
For the purpose of finding new classes of opsin genes, in silico screening was performed on the 
data of the Marine Microbial Eukaryote Transcriptome Sequencing Project (27). Transcript 
sequences were obtained via tblastn search against the eukaryotic transcriptome data using known 
opsin sequences as a query with the threshold of e-value 0.1; duplicated sequences and sequences 
shorter than 750 bp were excluded. Then, phylogenetic analysis was performed to search for 
putative functionally-novel opsin genes; to find channelrhodopsins with high cation conductance, 
we focused on sequences with more negatively charged amino acids in the transmembrane 
domains 1, 2, 3, and 7 comprising our structure-resolved ion-conducting pathway and guided by 
our structure-derived pore surface electrostatic model (see Supplementary Text).   
 The amino acid sequence was human codon optimized and synthesized by Genscript in 
pUC57 vectors, the gene was subcloned into an adeno-associated viral vector fused with enhanced 
YFP (EYFP) along with the trafficking sequence (TS) and ER export signal and under control of 
either the CaMKIIα promoter for neuron expression or the Ef1α promoter for HEK293 cell 
expression. For confocal images of opsin-expressing neurons, coverslips of transfected neurons 
were fixed for 15 minutes in 4% paraformaldehyde and mounted with PVA-DABCO. Images were 
acquired with a Leica DM600B confocal microscope.  
 The opsin sequence described herein and discovered via this workflow (from Tiarina fusus 
strain LIS, SEQ_ID=MMETSP0472-20121206|19186), which we named ChRmine, was edited 
and used for subsequent functional analysis. The edited sequence was deposited in the GenBank 
database (accession number MN194599). All transcriptome data used in this study are available 
in the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) (27). 
 
Histology, immunohistochemistry and confocal imaging:  Mice were anaesthetized with isoflurane 
and Beuthanasia-D, and transcardially perfused in cold 4% paraformaldehyde perfusion fix 
solution (Electron Microscopy Services, Hatfield, PA, USA). Brains were extracted and kept in 
the fixation solution for 24 hours at 4° C and then transferred to 30% sucrose in PBS to equilibrate 
for 2 days at 4 °C. 40 μm slices were cut on a freezing microtome and stored in cryoprotectant at 
4° C. Sections were washed three times for 10 minutes each in 1X phosphate buffered saline 
(Thermo Fisher Scientific) then incubated for 60 mins in blocking buffer (PBS+0.3% TritonX and 
3% normal donkey serum), all at room temperature, while rocking. Sections were incubated with 
primary antibodies diluted 1:500 in blocking buffer overnight at 4°C. The two primary antibodies 
used were rabbit anti-GFP (Fisher Scientific A11122) and mouse monoclonal anti-HA tag (Fisher 
Scientific A26183). Sections were then washed in PBST and incubated in secondary antibodies 
against rabbit conjugated to Alexa Fluor® 488 (A21206, Thermo Fisher Scientific) and against 
mouse conjugated to Alexa Fluor® 647 (A-31571, Thermo Fisher Scientific) for three hours at 
room temperature, diluted 1:500 in blocking buffer.  This was followed by three washes of ten 
minutes each in PBST.  The nuclei were stained by DAPI (4',6-diamidino-2-phenylindole) diluted 
1:50000 in PBS for 30 min at room temperature, then washed again and mounted on slides with 
PVA-DAPCO. Confocal imaging of GFP fluorescence (for GCaMP expression), HA antibody 
staining for localization of the opsin, and DAPI for cytoarchitecture was performed using a Leica 
TCS SP5 confocal scanning laser microscope with a 20X or 40X oil objective. Co-localization was 
performed using 40x images (5-6 z slices through each section) by annotating GCaMP6m-
expressing cell body locations and then overlaying these annotations and verifying expression in 
the anti-HA image. Images are displayed in the figure with 1% pixel saturation. 
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In vitro characterization with one-photon electrophysiology 
The hippocampi of Sprague-Dawley rat pups (Charles River) were removed at postnatal 

day 0 (P0), and CA1/CA3 regions were digested with 0.4 mg/ml papain (Worthington, Lakewood, 
NJ) and plated onto 12 mm glass coverslips pre-coated with 1:30 Matrigel (Beckton Dickinson 
Labware). Cells were plated in 24-well plates, at a density of 65,000 cells per well. The cultured 
neurons were maintained in Neurobasal-A medium (Invitrogen) containing 1.25% FBS (Fisher 
Scientific), 4% B-27 supplement (Gibco), 2 mM Glutamax (Gibco) and 2 mg/mL 
fluorodeoxyuridine (FUDR, Sigma), and kept in a humid culture incubator with 5% CO2 at 37°C.  
Primary neuronal cultures were transfected 6-10 days in vitro (DIV). For each well to be 
transfected, a DNA-CaCl2 mix containing with the following reagents was prepared: 2 μg of DNA 
(prepared using an endotoxin-free preparation kit (Qiagen)) 1.875 μl 2M CaCl2, and sterile water 
added for a total volume of 15 μl. An additional 15 μl of 2X filtered HEPES-buffered saline (HBS, 
in mM: 50 HEPES, 1.5 Na2HPO4, 280 NaCl, pH 7.05 with NaOH) was added, and the resulting 
30 μl mix was incubated at room temperature (20-25°C) for 20 minutes. Meanwhile, the neuronal 
growth medium was taken out of the wells and kept at 37°C, and was replaced with 400 μl pre-
warmed minimal essential medium (MEM). The DNA-CaCl2-HBS mix was then added dropwise 
into each well, and the plates were transported to the culture incubator for 45-60 minutes. Each 
well was then washed three times with 1 mL of pre-warmed MEM, after which the MEM was 
removed and the original neuronal growth medium was added back into the wells. The transfected 
neuronal culture plates were placed in the culture incubator for another 6 days. 

Recordings in hippocampal cultured neurons were performed 4 - 6 days after transfection 
in Tyrode’s solution: 150 mM NaCl, 4 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM glucose and 
10 mM HEPES-NaOH pH 7.4. Tyrode was perfused at a rate of 1 – 2 ml min−1 and was kept at 
room temperature. Intracellular solution contained 140 mM K-gluconate, 10 mM HEPES-KOH 
pH 7.2, 10 mM EGTA and 2 mM MgCl2. Signals were amplified and digitized using the 
Multiclamp 700B and DigiData1400 (Molecular Devices, Sunnyvale, CA, USA). The Spectra X 
Light engine (Lumencor) served as a light source and was coupled into a Leica DM LFSA 
microscope. Borosillicate patch pipettes (4 – 6 MOhm) were pulled using a P2000 micropipette 
puller (Sutter Instruments, Novato, CA, USA). HEK293 cells (Thermo Fisher, cells identified by 
the vendor) were cultured as previously described (58). Cells were transfected using Lipofectamine 
2000 (Life Technologies). Recordings in HEK293 cells were performed 12 - 36 hours after 
transfection in extracellular and intracellular solution as described above.  

Voltage clamp recording was performed in the presence of bath-applied tetrodotoxin (TTX, 
1μM; Tocris). For initial screening of action spectra, cells were held at resting potential of -70 mV, 
with 0.7 mW/mm2 light delivery for 1 second at wavelengths (in nm) of 390, 438, 485, 513, 585 
and 650, which were generated using filters of corresponding peak wavelengths and 15-30 nm 
bandpass. Liquid junction potentials (LJPs) were corrected using the Clampex build-in LJP 
calculator by subtracting 15 mV from measured values. For reversal potential measurement, 
HEK293 cells expressing opsins were held at resting potentials from -70 mV to +60 mV (after LJP 
correction) in steps of 10 mV, with 585 nm, 0.7 mW/mm2 light delivered for 1 s.  

Current clamp measurements were performed in the presence of glutamatergic synaptic 
blockers: 6-cyano-7-nitroquinoxaline-2,3,-dione (CNQX; 10μM, Tocris) for AMPA receptors and 
D(-)-2-amino-5-phosphonovaleric acid (APV; 25 μM, Tocris) for NMDA receptors. For light-
sensitivity measurements, light was passed through a 585/29 nm filter (Thorlabs) and delivered 
through a 40x, 0.8 NA water immersion objective. For light pulse-width experiments, 585 nm light 
with 5 Hz frequency and 0.7 mW/mm2 intensity was used at varying pulse-width values (in ms) of 
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0.1, 0.5, 1, 2, 5 and 10. For light sensitivity experiments, 585 nm light with 5 Hz frequency and 5 
ms pulse-width was used at varying light power densities (in mW/mm2) of 0.002, 0.014, 0.08, 
0.28, 0.7, 1.4 and 2.8. For spike fidelity experiments, 585 nm light with 0.7 mW/mm2 power 
density was used, with 1 ms pulse-width for ChRmine and 5 ms for bReaChES and CsChrimson. 
For all experiments, 5 - 7 cells were tested, and data collection across opsins was randomized and 
distributed to minimize across-group differences in expression time, room temperature, and related 
experimental factors.  

For comparison of ChRmine and ChroME (Fig. S3), experiments were done in the same 
patch clamp recording set-up as the red-opsin characterization. 0.5 mW/mm2 lights at 390, 438, 
470, 513, 585, 650 nms were used for action spectra measurements. For light pulse-width 
experiments, lights (585 nm for ChRmine, 470 nm for ChroME) with 5 Hz frequency and 0.5 
mW/mm2 intensity were used at varying pulse-width values (in ms) of 0.1, 0.5, 1, 2, 5 and 10 and 
for light sensitivity experiments, same wavelengths of light with 5 Hz frequency and 5 ms pulse-
width was used at varying light power densities (in mW/mm2) of 0.04, 0.08, 0.16, 0.25 and 0.5. 
All experiments were done on the same day, and data collection across opsins was randomized 
and distributed to minimize across-group differences in expression time, room temperature, and 
related experimental factors.  
 
In vitro characterization preparatory to all-optical set-up 
Dissociated hippocampal neurons were cultured and transfected with both red opsin variants and 
GCaMP6m as previously described (58). Coverslips of cultured neurons were transferred from the 
culture medium to a recording bath filled with Tyrode’s solution containing (in mM, 129 NaCl, 5 
KCl, 30 glucose, 25 HEPES-NaOH, pH 7.4, 1 MgCl2 and 3 CaCl2) supplemented with 10 µM 
CNQX and 25 µM APV to prevent contamination from spontaneous and recurrent synaptic 
activity. Optical stimulation and imaging were performed using a 40×/0.6-NA objective (Leica), 
sCMOS camera (Hamamatsu, ORCA-Flash4.0) and LED light source (Spectra X Light engine, 
Lumencor), all coupled to a Leica DMI 6000 B microscope. GCaMP6m was excited by 488 nm 
(Semrock, LL01-488-12.5) with the Spectra X Light engine. GCaMP6m emission was reflected 
off a dual wavelength dichroic mirror (Chroma, ZT488/594rpc) for orange light stimulation or 
another mirror (ZT488/640rpc) for red light stimulation, and passed through a 535-30–nm 
emission filter (Chroma, ET535/ 30 nm). Red-responsive opsins were activated with a Spectra X 
Light engine filtered either with 585 nm orange light (Semrock, FF01-585/29-25, 0.2 or 2.0 
mW/mm2) or 635 nm red light (Semrock, FF01-635/18-25, 0.2 or 2.0 mW/mm2).  

We used low-intensity 488-nm laser light (12 µW/mm2) for imaging GCaMP fluorescence 
without substantially activating red-responsive opsins. Images were acquired at 20 Hz using 
MicroManager (http://micro-manager.org). Light for stimulation was controlled by LabVIEW 
(National Instruments) and applied every 20 sec at an exposure time of 5, 25, 100, 400 and 800 
msec. Imaging data were analyzed in MATLAB (MathWorks). Circular regions of interest (ROIs) 
were drawn manually based on the averaged image. We performed background subtraction before 
calculating Ca2+ signal. ΔF/F response was calculated to normalize the signal in each ROI by 
dividing by its mean value of total fluorescence intensity and subtracting 1. Noise was calculated 
as the standard deviation of the total ∆F/F fluctuation before the first stimulation. S.D. response 
was then computed as ∆F/F response divided by noise. Peak amplitude was calculated from the 
maximum value between the stimulus onset and 2 sec after the stimulus cessation. To compare 
red-responsive opsins to triggered GCaMP6m kinetics, we calculated 400 ms exposure-triggered 
Ca2+ transients. Rise time (tpeak) was defined as the time-to-peak from the beginning of the light 
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stimulus to the time point at which maximal-amplitude fluorescence was reached. The decay 
constants (tau) were determined by single exponential fit from the peak of the fluorescence 
response for 15 sec after stimulation. 
 
In vitro characterization in two-photon electrophysiology 
All two-photon electrophysiology experiments were conducted on a commercial microscope 
(Bruker Ultima running PrairieView v5.4) using a Nikon 16x/0.8 NA (CFI75) long-working-
distance objective for light delivery. For two-photon stimulation, spiral scanning was performed 
through a defined spiral ROI with 25 µm diameter, with 12 rotations per spiral, and 4 ms total 
exposure duration with 80 MHz laser repetition rate (Coherent Chameleon Ultra II). For imaging, 
a second 80 MHz laser (Coherent Chameleon Ultra II) was relayed through a resonant galvo path 
for 30 Hz imaging rates, to match the imaging characteristics present for the in vivo experiments. 
As each plane in the behavior in vivo imaging experiments was recorded at ~2.7 Hz, the imaging 
rate was appropriately modified by acquiring a new image every 370 ms such that the patched cell 
was sampled at ~2.7 Hz.  

The two-photon stimulation and imaging light paths shared a common objective, tube lens 
and scan lens—but in contrast to the in vivo behavior imaging datasets, for the in vitro 
characterization data, the photostimulation galvanometer pair was smaller than the imaging 
galvanometer pair (3 mm vs. 6 mm). This effectively scaled down the actualized NA for 
photostimulation from the stated microscope objective values. Experiments were performed with 
cultured hippocampal neurons expressing ChRmine-EYFP through AAV transfection, and the 
same intracellular and extracellular solutions for one-photon electrophysiology characterization 
were used for recording. 
 For two-photon action spectra and power spectra characterization, recordings were done in 
voltage clamp mode at holding voltage of -70 mV. Action spectra were measured in randomized 
trial order at wavelengths (in nm) of 800, 860, 920, 980, 1035, 1080, at the laser power of 20 mW. 
Power spectra were measured in randomized trial orders at powers (in mW) of 0, 5, 10, 15, 20, 25, 
30, at the two-photon wavelength of 1035 nm. All measurements were normalized by the 
maximum value of the single recording session. Experiments were done in 6 different cells.  
 For spike fidelity and imaging laser cross-stimulation experiments, recordings were done 
in current clamp mode, under the membrane potential at -65 mV to -70 mV. Spike fidelity was 
estimated by stimulation of cells at frequencies (in Hz) of 5, 10, 20, 30, with 1035 nm laser at 20 
mW. For cross-stimulation experiments, membrane voltage was observed during image 
acquisition as a function of imaging power (920 nm, at 2.8 Hz frame-rate) at 0, 20, 40, and 60 mW. 
Data collection across opsin expressing neurons was randomized.  
 
Electrophysiology data analysis 
pClamp 10.6 (Molecular Devices), and Prism 7 (GraphPad) software were used to record and 
analyze data. Statistical analyses were performed with two-tailed unpaired t-test or one-way 
ANOVA. Data is presented as mean ± s.e.m. P < 0.05 is defined to be statistically significant.  

For preparation of phylogenetic trees, opsin sequences were first aligned using Clustal 
Omega server (https://www.ebi.ac.uk/Tools/msa/clustalo/) and later calculated using 
AQUAPONY (http://www.atgc-montpellier.fr/aquapony/aquapony.php) and TreeDyn 
(http://www.treedyn.org/) for circular and rectangular trees, respectively, and for rectangular one 
the lines to leaves were trimmed to fit into a given space. The homology model of ChRmine was 



 
 

6 
 

built using the C1C2 crystal structure (PDB ID: 3ug9 (59)) as a template, using RosettaCM 
method. All molecular graphics figures were prepared with Cuemol (http://www.cuemol.org).  
 
Mouse in vivo experiments 
Viral constructs: The genes for GCaMP6m (60) and soma-targeted (31) ChRmine were cloned in 
a cis configuration separated by the ribosomal skip motif p2A under the CaMKIIα promoter in an 
AAV2 backbone. This construct was sequenced for accuracy, tested for in vitro expression in 
cultured hippocampal neurons and packaged by the Stanford Neuroscience Gene Vector and Virus 
Core (GVVC) as AAV8/Y733F to create AAV8-CaMKIIa-GCaMP6m-p2a-ChRmine-TS-Kv2.1-
HA (used in all mice except for one). AAV8-CaMKIIa-GCaMP6m-p2a-ChRmine-TS-HA was 
used in the remaining single mouse (mouse 2 in behavioral cohort). Maps and sequences are 
available at http://optogenetics.org/, plasmids are available at Addgene (#130988 to 131004), and 
prepackaged viruses can be purchased from the Stanford GVVC for the following constructs: 
pAAV-CaMKIIa-ChRmine-eYFP-WPRE 
pAAV-CaMKIIa-ChRmine-eYFP-Kv2.1-WPRE 
pAAV-CaMKIIa-ChRmine-mScarlet-WPRE 
pAAV-CaMKIIa-ChRmine-mScarlet-Kv2.1-WPRE 
pAAV-hSyn-ChRmine-eYFP-WPRE 
pAAV-hSyn-ChRmine-eYFP-Kv2.1-WPRE 
pAAV-hSyn-ChRmine-mScarlet-WPRE 
pAAV-hSyn-ChRmine-mScarlet-Kv2.1-WPRE 
pAAV-Ef1a-DIO-ChRmine-eYFP-WPRE 
pAAV-Ef1a-DIO-ChRmine-eYFP-Kv2.1-WPRE 
pAAV-Ef1a-DIO-ChRmine-mScarlet-WPRE 
pAAV-Ef1a-DIO-ChRmine-mScarlet-Kv2.1-WPRE 
pAAV-CaMKIIa-GCaMP 6m-p2A-ChRmine-Kv2.1-WPRE 
pAAV-hSyn-GCaMP 6m-p2A-ChRmine-Kv2.1-WPRE 
pAAV-CaMKIIa-mScarlet-WPRE 
pAAV-hSyn-mScarlet-WPRE 
pAAV-Ef1a-DIO-mScarlet-WPRE 
 
Surgery: All animal procedures followed animal care guidelines approved by Stanford 
University’s Administrative Panel on Laboratory Animal Care (APLAC) and guidelines of the 
National Institutes of Health. Male C57/BL6 mice (8-12 weeks) were anesthetized with 5% 
isoflurane for induction and ~1-2% isoflurane during surgery. The skull was exposed, cleaned and 
coated with a layer of Vetbond (3M). A circular (1 cm diameter, 1 mm height) titanium implant 
with a counter bore (8 mm outer diameter and 6 mm through hole) was affixed to the skull with 
Metabond dental cement (Parkell) centered on -2.75 mm (lateral) and -2.25 mm (posterior) from 
bregma over the lateral portion of primary visual cortex of the left hemisphere (imaging 
experiments were performed approximately 500 µm medial and posterior from this location, and 
thus were more centrally located within primary visual cortex). The mouse was transferred to a 
head clamp device designed to firmly hold the metal implant by an angled groove around its 
perimeter (this same head clamp device design was used to hold the animal under the two-photon 
microscope and thus had micron-level stability). A circular craniotomy was performed using a 
high-speed drill by slowly drilling away bone within the perimeter of the through hole of the 
implant. Once the bone was as thin as possible, but before drilling all the way through the bone, 
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the remaining intact bone was pulled away with forceps to reveal the underlying cortex with the 
dura fully intact. A glass pipette injection needle (~25 µm diameter, angled tip) calibrated to the 
stereotaxic coordinates and filled with the virus was lowered into the cortex to a depth of ~400 
µm. 500 nl of virus (typically 4 x 1012 vg/ml) was injected over ~5 min and then the pipette was 
lowered to ~600 µm and another 500 nl was injected over an additional ~5 min. The pipette was 
left in place in the brain following injection for at least 3 minutes and then slowly retracted. A 4 
mm glass coverslip affixed with UV-cured optical glue (Newport) to a titanium cannula of the 
same diameter (the cannula also had an ~8mm flange at the top to register with the outer circular 
implant) was applied the surface of cortex and cemented in place with Metabond. For analgesia up 
to 72 hours, buprenorphine sustained release (SR) was injected pre-operatively at 0.3-1.0 mg/kg 
subcutaneously, or buprenorphine (0.05-0.1 mg/kg) was injected by subcutaneous or 
intraperitoneal injections.  
 
Visual stimulation: Drifting sine wave gratings, consistent with high-acuity vision relying on V1 
((60) 0.2 cycles/degree spatial frequency; 2 Hz temporal frequency; 2, 3, 4, 5, 12, 25, or 50% 
contrast), were generated using custom software in Psychtoolbox running on MATLAB (code 
available online adapted from (48)) and presented on a calibrated liquid crystal display monitor 
placed 15 cm from the mouse’s eye, centered on the retinotopically targeted location in V1 (48). 
The gratings subtended 60 deg of visual space and were surrounded by uniform gray around the 
rest of the screen. A trial began with a 100 ms, 5 kHz tone cue. 1.25 seconds later, the drifting 
grating was displayed for 3 seconds. The next trial began ~4.5-9 seconds later depending on 
whether the mouse made an error during the answer window and received a time out as penalty 
(no time outs were added for naïve mice or mice in the conditioning phase below). A uniform gray 
screen was presented between drifting grating presentation.  
 
Behavioral training: Mice were kept on a reverse day/night cycle. Mice were habituated to the 
experimenter and to a floating Styrofoam ball and behavior apparatus (Phenosys) for 
approximately 3 days (the setup was either under the microscope or replicated in a behavioral 
chamber for initial training before imaging experiments; mice were briefly anesthetized with 
isoflurane prior to head fixation and allowed to fully recover before proceeding). For 
discrimination behavior training, mice were water restricted and first allowed to lick freely to 
trigger immediate water delivery from a lickport by triggering an infrared optical lickometer 
(Sanworks). This was repeated daily until the animal immediately and consistently consumed 
water once presented with the lickport. Then, mice were presented with visual stimuli (50% 
contrast 0 and 90° gratings, see below) using the same trial structure as above, without penalties. 
If the mice licked during the answer window (1-3 seconds after visual stimulus onset) during the 
0° (target) stimulus, they immediately received a water reward (~6 µl). During this conditioning 
phase, mice always received ~6 µl of water at the end of target visual stimulus presentation, in 
addition to any lick-triggered reward. Once mice reliably licked to the target stimulus before the 
free water was delivered at the end of the trial (mean 6.8 days), they advanced to the discrimination 
task in which water was only delivered if they licked during the answer window during target 
stimulus presentation, and time outs (4.5 sec) were added to the end of error trials (misses/false 
alarms). If the mice did not show discrimination behavior improvement over the course of 4-5 
days, a mild air puff directed toward the mouse’s face was added as immediate penalty for false 
alarms. This air puff was eventually added for all mice for consistency. Training continued until 
mice had nearly 100% hit rates and discriminated 50% contrast gratings with ≥ 2 d’ for at least 3 
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days (mean 9 days total). Then, an equal number of 25% contrast gratings trials were added to the 
protocol and training continued for 3 days. The same criteria were applied until the task included 
2, 12, 25 and 50% contrasts (mice generally could not discriminate 2% contrast gratings). If not 
done so already, mice were additionally trained under the microscope until behavior was stable to 
all contrasts before advancing to all-optical experiments. d’ was defined as norminv(Hit Rate) – 
norminv(False Alarm Rate) in MATLAB. For the d’ calculation, rates equaling 100% or 0% were 
adjusted to 99% and 1% respectively. Percent correct was computed for a given condition(s) as 
[(Hits) + (Correct Rejections)]/(Total Trials).  
 
In vivo visual and optogenetic stimulation experiments: Once trained (or in the case of naïve mice, 
once habituated to the head-fixed floating ball setup under the microscope), mice performed the 
task (or passively viewed visual stimuli) while volumetric two-photon Ca2+ imaging was 
performed in V1 and visual stimuli were presented to the animal. A series of reference images 
were collected of the volume to aid in alignment to the same region on subsequent days. Neural 
Ca2+ responses were analyzed as described below in order to identify ensembles for stimulation on 
subsequent days/experiments.  

Mice returned to the microscope each day and the field of view was aligned to the reference 
images from the reference experiment. This was accomplished using an automated image 
registration algorithm (based on the same cross-correlation procedure described below for 
subsequent analysis) that reported the real-time offsets in pixels between the current imaging field 
of view (streamed from the microscope acquisition pipeline with minimal latency) and the 
reference images. In addition, a real-time overlay image was presented to allow the experimenter 
to optimize x, y, z and θ for precise alignment. This was done before beginning the stimulation 
experiment using several imaging planes throughout the volume. During the volumetric imaging 
and stimulation experiments, a similar program reported real-time offsets and displayed image 
overlays (allowing the experimenter to correct for any offsets online using the motorized 
translation stage), and could be alternated between imaging planes throughout the volume in order 
to confirm alignment across cortical layers (see Fig. S9). 

On randomly interleaved trials (usually up to ~312 total trials per session), visual stimuli 
were presented to the animal or ensemble stimulation (tuned- or random-, target or distractor 
ensembles) were stimulated with the MultiSLM (see below). For naïve mice, contrasts included 
12, 25 and 50%, as well as an equal number of 0% (no visual stimulus), and optogenetic ensemble 
stimulation occurred on 2/3 of 0% contrast trials (balanced tuned and random ensemble stimulation 
trials) but was never paired with visual stimulation. Trial order was pseudorandomized for all 
condition types, and re-randomized if the trial order contained > 3 target, distractor, or low contrast 
(≤ 5%) conditions in a row. For the behavioral cohort, the same paradigm was used, except 
optogenetic stimulation could occur alone, or in combination with the visual stimuli (randomly 
interleaved, balanced trials), and the low contrast condition was exchanged from 0% to 2, 3, 4 or 
5% and back to 0% over the course of the contrast ramp experiments. Following the contrast ramp 
experiments, the low contrast condition was kept at 0% for subsequent experiments (for example, 
layer-specific ensemble stimulation experiments described below). For the behavior cohort, 
licking during target stimuli (0° gratings, 0° tuned ensemble or size-matched “0°” designated 
random ensemble) during the answer window (1-3 sec after stimulus onset) triggered a water 
reward. Licking during distractor stimuli (90° grating, 90° tuned ensemble or size-matched “90°” 
designated random ensemble) during the answer window triggered an air puff.  Errors (misses or 
false alarms) resulted in a time out (4.5 sec) at the end of the trial. Importantly, the microscope 
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hardware performed the same operations on every trial, regardless of condition (e.g., galvanometer 
spiral scanning, laser shutter opening, imaging scanning pattern, spatial light modulator phase 
mask transition, etc.), with the exception of the laser power applied to the holograms (either 0 
power or power calculated to stimulate the ensemble with 10 mW instantaneous power delivered 
to each cell for 0.63 ms at ~30 Hz using the MultiSLM timing protocol in Fig. S4J, see below), 
such that all experiment sounds were the same between all conditions. All mice that proceeded 
through the contrast ramp and simultaneous layer 2/3 and 5 stimulation experiments are included 
in the manuscript. Four additional mice that proceeded only through the contrast ramp experiment, 
but in which we increased laser stimulation power beyond the typical protocol (i.e., to attempt to 
offset weaker stimulation responses) or could not account for z drift over the course of 
experimental sessions, were excluded.  

For analyses in Fig. 4H,I, a single one-way ANOVA was performed for each ensemble 
condition (tuned and random) followed by Tukey HSD post hoc tests. Each data point is from a 
single session in a single mouse returning to the same tuned and random ensembles, except for the 
new ensembles condition in which entirely new tuned or random ensembles were stimulated (from 
a distinct volume/population, z = 30 𝜇𝑚) and the no stimulation condition.  Conditions with < 
10 trials were excluded. 

 
All-optical physiology microscope design and characterization 
As described in detail below, the all-optical (read/write) microscope used in this manuscript was 
optimized to address neural ensembles distributed over large volumes beyond millisecond 
temporal precision for the first time. Achieving these biologically-important specifications 
required development and optimization of several components, including an entirely new, high-
pixel-count, fast spatial light modulator (SLM) with new electronics and software interfaces 
(MacroSLM), new multiplexing strategies (MultiSLM, Figs. S4-8), and a unique pairing with a 
three-dimensional (3D) imaging strategy during head-fixed mouse behavior. 

In prior work, when realizing all-optical physiology using SLMs at high spatial resolution 
(e.g., NA > 0.4), the addressable targeting volume has thus far been significantly constrained 
relative to the available imaging volume due to a ceiling on the number and size of available pixels 
provided with current commercial devices. Furthermore, generation of new ensemble-targeting 
hologram patterns using near-infrared wavelengths has been limited in overall refresh rate by the 
SLM response time and the stimulation durations required by previous multi-photon optogenetic 
opsins and protocols (see, for example, refs (24–26, 32, 61)). This has restricted the ability to write 
in activity patterns at fundamental biological timescales (~1 ms) over volumes spanning several 
cortical layers and whole brain areas in the mouse (~0.5-1mm spatial scale). Therefore, we sought 
a solution where the addressable optogenetic volume meets or exceeds the volume available for 
imaging, potentially spanning multiple functional areas/volumes across cortical layers—and 
developed a hardware and biological interface allowing millisecond-level precision of ensemble 
stimulation during behavior.  
 
MacroSLM: To achieve the frame rates, trigger responsiveness, and 3D field of view used in this 
work, we designed and built a custom liquid crystal on silicon (LCoS) spatial light modulator 
(SLM). The MacroSLM achieves 500 Hz hologram-to-hologram frame rate at λ = 1064 nm at 85% 
diffraction efficiency (Fig. S4E). The square 1536 x 1536 pixel array was selected to provide near 
uniform 2P excitation efficiency and low chromatic dispersion across the transverse dimensions 
of the sample at high numerical aperture (NA) (Fig. S4A,B) and employs high-voltage (0-12V 
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analog) pixel addressing, and carefully-timed transient voltages (also known as overdrive (62)), 
for increased liquid crystal (LC) response speed, requiring development of new driving electronics. 
In addition, a built-in water-cooled, copper heat sink allows temperature control for the LC to 
operate at a fixed temperature where LC viscosity is low, thereby improving the maximum refresh 
rate, while adjusting automatically for illumination- and data-throughput-related heating effects.  
 
MacroSLM optimization for three dimensional fields of view: Achieving a large addressable field 
of view with high spatial precision was a key driving force behind the design of the MacroSLM, 
influencing the choice of pixel count and pixel size. Pixel count determines the addressable 
holographic field of view of the microscope when the magnification of the optical system is fixed 
to image the SLM onto the pupil of the objective lens. The MacroSLM 1536 x 1536 pixel array 
provides a theoretically addressable field of view of >> 1mm at high NA (> 0.4) when using 
appropriate relay optics and microscope objectives (i.e. a total magnification of 0.469x into the 
pupil of an Olympus 10x/0.6NA objective, Fig. S4A) We designed the SLM with a relatively large 
20 µm pixel pitch to achieve several advantages over smaller pixels. The large pixel pitch makes 
the effect of fringing fields small and minimizes interpixel cross-talk ((63) that would otherwise 
act like an unwanted low-pass filter on the pattern that the SLM displays). This allows the SLM to 
maintain high diffraction efficiency (DE) at large steering angles, including when generating large 
numbers of excitation spots. The resulting large 30.7 x 30.7 mm array allows the input beam to be 
spread over a large square area which, along with internal light shielding layers, aids peak power 
handling. The large pixel pitch was also chosen for several important reasons: it enables large 
voltage swings (here 0-12 V analog), which in turn increases hologram transition speed; it is 
sufficient to store enough charge (178 fF) to hold the electric field across the liquid crystal while 
it is switching patterns; and it provides an extremely high fill factor since the active pixel (19.5 μm 
width) is much larger than the gap between the pixel pads needed to prevent shorting (0.5 μm). 
Ultimately, fill factor determines the DE ceiling of the device, with DE = (fill factor)*2 x pixel 
reflectivity, or theoretically for this device (0.96)*2 x 0.95 = 0.88.  This high DE improves overall 
efficiency of the system while minimizing potential artifacts from non-diffracted light. Also, 
achieving this DE value through realizing a high-fill-factor obviates the need for a dielectric mirror 
coating, which is typically used to increase DE, but dielectric mirrors increase the chances of 
unwanted optical artifacts and are associated with decreased LC response time. Lastly, larger 
pixels will be responsible for minimizing the lateral chromatic aberration inherent to using the 
SLM as a diffractive optic when addressing large fields-of-view (maximum deflection angle is 
1.4°) and therefore improve the relative efficiency for multi-photon excitation at the focal spot 
(64). Our calculations indicate that when using the fixed-wavelength ultrafast laser source reported 
herein (Coherent Monaco 1035-80-60 at λ = 1035nm) at a pulse-width (sech2) of Δ𝑡 ൎ 300𝑓𝑠 
(spectral width of 4.5 nm), a maximum chromatic shift of only +/- 0.64 𝜇𝑚 would be present at 
the maximum diffraction angles necessary to address the full-width of the scanned imaged plane 
(reported herein to be 710𝑥710𝜇𝑚 with a Nikon 16x/0.8NA objective and 1020𝑥1020𝜇𝑚 with 
an Olympus 10x/0.6NA objective).  
 
MacroSLM liquid crystal speed response: High-voltage (0–12 V analog) pixel addressing makes 
the LC response fast, along with the use of high transient voltages (also known as “overdrive”, see 
ref (62)). ‘Phase wrapping’ was implemented for each pixel to shorten the distance in phase 
between phase values in time. We also maintain the LC temperature with the use of backplane 
Peltier heating/cooling, allowing the device to operate at a temperature (45°C) where LC viscosity 
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is low while also adjusting for the varying heating effects of high-power laser illumination. We 
optimized the SLM thickness for the use of overdrive at our NIR (~1064 nm) target wavelength, 
and for maintaining full ≥ 2π phase modulation.  

MacroSLM data handling: Data handling is another significant aspect for increasing speed, since 
the system must be capable of calculating the required transient voltages to achieve fast LC 
switching from phase to phase at each pixel, while loading the transient 1536x1536 images onto 
the SLM pixels at ~1250 Hz continuous frame rate. We use a custom field-programmable gate 
array (FPGA) solution for handling these high data rates, including on-board storage of 2045 
images, on-board application of spatially-varying voltage calibrations, and on-board calculation of 
individual transient voltages for every pixel. The driver board receives data over a PCIe interface 
to a Xilinx Kintex-7 primary FPGA. This FPGA distributes the data to 8 secondary Kintex-7 
FPGAs using the Xilinx Aurora high-speed serial interface. Each secondary FPGA is capable of 
performing the overdrive processing for, and supplies the data to, its own section of the SLM (this 
feature was not yet available for data collected in this manuscript; overdrive frames were 
precomputed and loaded into the on-board storage for these experiments). The primary FPGA also 
contains a Microblaze soft microcontroller that performs a number of additional functions, such as 
loading certain parameters over I2C, temperature monitoring, and automatic safety-shutdown for 
both the driver board and SLM head. Interruptible image downloads mean that new holograms can 
be triggered at arbitrary rates exceeding 1 kHz (rather than at integer multiples of the SLM’s base 
refresh rate), without missing triggers. For integration into precisely timed and synchronized 
experiments, the high-speed triggering system instructs the SLM to transition to the next 
commanded hologram with low latency and jitter. The latency between a trigger arriving and the 
voltage changing on the SLM is 6 µs with a range of 3-9 µs, so that the transition to a new hologram 
can be very predictably initiated. We developed a MATLAB-based software development kit 
(SDK) to interface with the SLM. Under these conditions, we could trigger and transition between 
different holograms at 330-500 Hz with 85-100% target hologram efficiency (Fig. S4E). 

 
All-optical physiology microscope design: We developed a custom MultiSLM photostimulation 
path that was integrated into a commercial multi-photon imaging microscope including a resonant-
scanner imaging path and piezo-coupled microscope objective holder (Bruker Nano Surfaces 
Division, Ultima, Middleton, WI). We developed custom optical elements and opto-mechanics, 
alongside commercial elements when possible, to integrate the optogenetic stimulation path, 
including the multiple SLMs, into this microscope. The optical path was modeled in both Zemax 
OpticStudio (Zemax LLC, Kirkland, WA) and MATLAB (The Mathworks, Natick, MA) and 
optimized to maximize the field of view at the full available back aperture of the microscope (Fig. 
S4A, B). Integration is realized via a two-position drop-down mirror located before the existing 
uncaging galvanometer unit of the microscope. For the imaging light path, a tunable-wavelength 
femtosecond pulsed light source is utilized (Coherent Chameleon Ultra II, 𝜆௧௬௣. ൌ 920nm, Santa 
Clara, CA). For the optogenetic stimulation, a fixed-wavelength (𝜆 ൌ 1035nm) femtosecond 
pulsed light source (Coherent Monaco 1035-80-60, Santa Clara, CA) is used at a user-selected 10 
MHz pulse repetition rate. The integrated gate and power-modulation signals of the optogenetic 
laser were utilized to guarantee zero residual optogenetic-laser illumination on sample. An optical 
switch (Conoptics LTA360-80 with 302RM driver) (OS, Fig. 2A) is used to selectively direct the 
optogenetic stimulation light towards two alternative paths at 200 kHz temporal resolution, each 
path with a dedicated SLM. Each path has a 20x beam expander (Thorlabs GBE20-B) (BE, Fig. 
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2A) and a custom pair of turning prisms (Edmund Optics, 36º-54º-90º prism, NIRII coated, PN 
913418) (TP1 and TP2, Fig. 2A, see also Fig. S7A-E) to maintain a compact footprint, thereby 
minimizing mechanical drift issues as well as facilitating simple beam alignment by keeping the 
optics at 90° angles (Fig. S7D). One light path requires a pair of half-wave plates (Thorlabs 
WPH20ME-1064) (HWP, Figs. 2A and S7D) in order to maintain optimal polarization alignment 
through the turning prisms, the SLM liquid crystal alignment layer and the beam combining 
polarization cube (Thorlabs PBS513) (PBS, Fig. 2A). A custom optical relay (Special Optics 54-
44-783 AR-coated doublet and 54-8-750 AR-coated triplet) (RL1 and RL2, Fig. 2A) was designed 
to de-magnify the SLM active area at a 5:1 ratio, matching the SLM size to the clear aperture of 
the dedicated optogenetic galvanometers (OGS, 6 mm clear aperture, Fig. 2A) mounted within the 
commercial multi-photon microscope. This relay was optimized to correct for chromatic 
aberration, field curvature and distortion. To block residual DC signal from the un-diffracted 
optogenetic beam off the SLMs, a pair of magnets (D101-N52, K&J Magnetics, Inc, Pipersville, 
PA) are mounted to each side of a glass cover slip (Fisher Scientific, 12-546-2) and placed in the 
intermediate image plane of the microscope (located between the two lenses of the SLM relay, 
BB, Fig. 2A). A majority of the optogenetic optical path resides on custom 3D printed opto-
mechanics which facilitates alignment and improves compactness as well as total costs (Fig. S7F, 
for individual mechanical parts the files are available through contacting the authors). The 
optogenetic galvanometers (OGS, Fig. 2A) are utilized to generate the temporal spiral raster scans 
which trace the SLM-diffracted beamlets across the neuron cell body membranes. The optogenetic 
and resonant-imaging beams are combined by a dichroic notch filter (Semrock NFD01-1040) (DC, 
Fig. 2A). After both beams are combined, they pass through the commercial scan lens, tube lens 
and emission filter (SL, TL, and FLTR_EM, respectively, Fig. 2A) before reaching the microscope 
objective. Axial scanning during image acquisition was realized with a 1 mm-throw piezo-coupled 
microscope objective (objective for 3D scanning: Nikon 16x/0.8NA (16XLWD-PF), whereas the 
objective for 2D imaging: Olympus 10x/0.6NA). Optical fluorescence emission is collected by the 
appropriate microscope objective (OBJ, Fig. 2A) and redirected via the emission filter to a 
collection lens and a pair of PMTs (PMT1 and PMT2, Fig. 2A) which collect the red and green 
fluorescence channels (523/70nm and 627/73nm). 
 
Precise temporal and spatial optogenetic control: To increase temporal resolution beyond that 
achievable by a single SLM capable of operating at up to 500 Hz (Fig. S4E), we demonstrated 
alternating optogenetic excitation from either SLM1 or SLM2 in the MultiSLM system (Figs. 2C-
G and S4F). At the maximum temporal resolution tested, a Δ𝑡௘ ൌ 210 𝜇𝑠 spiral raster scan was 
designed using a 5-rotation, 10 𝜇𝑚 diameter spiral for optogenetic light exposure and validated 
with the Olympus 10x/0.6 NA physiology objective at 20-30 mW/cell (S4G, S5A-H). This spiral 
was generated by manipulating the Bruker PrairieView (version 5.4U1 r104) generated spiral with 
the above settings such that the interior 1µm diameter of the scan was omitted. This short 
stimulation-duration is many-fold faster than previously reported for in vivo two-photon 
optogenetics (e.g., see refs (24–26)). Post-exposure, each SLM has 1.79 𝑚𝑠 to load the next 
hologram in the sequence, ensuring that the hologram is nearly fully-formed to maximize fidelity 
and minimize DC illumination before exposing the sample. Therefore, when each SLM is running 
at 500 Hz and is temporally interleaved at uniform intervals, full 1 kHz temporal resolution is 
realized (Figs. 2C-G and S4H, S5I-L). This approach realizes efficient targeting precision across 
a full 1.03𝑥1.03 𝑚𝑚 field of view with little apparent roll-off in optogenetic excitation success 
rate vs position in the field (Fig. 2C), average of 8 randomized trials of the e1-e6 ensemble (Fig. 
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2F), photostimulation along with control (Fig. S5J, please see Data analysis of microscope 
performance section below for criterion discussion). Alternatively, a burst-mode operation (Fig. 
S4I) is available where both SLM1 and SLM2 are pre-loaded with the necessary holograms and 
each is sequentially illuminated to expose the sample to an optogenetic illumination pattern, with 
the sequential temporal difference limited only by the gating time of the Pockels cell (here, Δ𝑡 ൌ
80 𝜇𝑠 is conservatively applied). This burst mode operation was employed during all the visual in 
vivo experiments reported herein (Fig. S4J) as a means to maximize the number of neurons 
stimulated per unit time. In those experiments all the targets in the ensemble were randomly 
distributed across two groups, and each group was assigned an individual SLM for the duration of 
the experiment. Note that all three-dimensional holograms are calculated as discussed in (65). 

 In order to image multiple axial planes, we opted for a lighter microscope objective (Nikon 
16x/0.8 NA) to reduce the inertial mass burden on the rapidly scanning piezo to help maintain its 
lifetime. Notably, this solution using a piezo-scanning objective does allow for rapid scanning 
across multiple axial layers while maintaining the ideal optical imaging performance of the 
microscope (Fig. S4C). Despite the temporal lag of acquiring an image from each axial slice 
(33 𝑚𝑠 per slice), the optogenetic photoexcitation can be performed volumetrically, 
simultaneously. Using the viral vector approach taken here, selective expression is observed in 
layer 2/3 and layer 5 (Fig. 2B) and three-dimensional, simultaneous optogenetic excitation is 
realized across the full volume of 0.71 ൈ 0.71 ൈ 0.37 𝑚𝑚, capable of targeting layer 2/3 through 
layer 5 in this preparation (Fig. S6L,M, 30 Hz at 20 mW/cell at the objective, 0.63 ms, 9 rotations, 
15 µm spirals). This spiral was generated by manipulating the Bruker PrairieView (version 5.4U1 
r104) generated spiral with the above settings such that only the final 630µs are used. This was 
also the configuration used for all in vivo visual experiments, except the power was reduced to 10 
mW/cell at the objective (see below); thus, the characterization measurements at higher power 
described here are conservative with regard to stimulation spatial precision. Note that losses due 
to scattering were assumed (mean scattering length, ρ = 150µm) and that the power delivered to 
targets at different depths (z) would each be scaled by adding an amplitude term to each target in 
the hologram (65) weighted by the function (√𝑒௭/ఘ).  

In order to assess the potential for putative ‘off-target’ excitation from our optogenetic 
illumination, we quantified the relative fluorescence modulation of neighbors to the targeted 
location. Under the system configuration Fig. S4A, and during the same experiment reported in 
Fig. 2C, we had randomly interleaved trials where variable ensemble sizes (N=25, 50 and 160 
temporally interleaved) were targeted, in addition to control trials with no optogenetic intervention. 
The pixel-wise ΔF/F across the entire images are shown in Fig. S5A-C and G-I, to facilitate visual 
inspection of the data for successful target stimulation across the field as well as potential ‘off-
target’ excitation. One second of data pre-stimulus was used to calculate the baseline value and 
the mean value of the final 2.5 seconds of optogenetic stimulus was used to calculate the ΔF/F. To 
further evaluate this potential, we highlight one ROI and document where putative neurons have 
been identified via application of a CNMF algorithm relative to the targets (Fig. S5D). Four target 
neurons and 20 neighboring neurons were selected for viewing the ΔF/F traces in Fig. S5E. The 
traces are generated by making the CNMF masks into binary spatial filters and then performing 
the ΔF/F calculation on the data. To quantify the potential for a neighboring neuron to be excited 
by a nearby target, we plot the average ΔF/F of putative neurons as a function of the distance to 
any target (Fig. S5F). The distance metric was calculated using the ROI centroids of neighboring 
neurons and pooling all neighbors which would reside in annular rings separated in 10µm 
increments. The average ΔF/F of all neighboring neurons was normalized by the average ΔF/F of 
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all targets (see discussion below in data analysis). This analysis indicates that while the optogenetic 
stimulus is spatially-precise, a nearby neighbor separated <20μm away from the target neuron may 
occasionally experience associated excitation. We note that it is not clear the degree to which this 
neighboring excitation is related to stray light, local synaptic connectivity or poor target selection. 
To present a clear summary of this conclusion, we identify one region of the field where both a 
tight cluster of neurons was occasionally stimulated while also there were trials with only a single 
member of the cluster stimulated. By requiring that a cluster of neighboring neurons was 
stimulated, we have a positive control that the neighboring neurons express the opsin. In Fig. 2G, 
we presented the intensity images of the local field-of-view during the optogenetic stimulus 
window (top) for cases of spontaneous activity, single-target stimulation and multiple-target 
stimulation. Note that the images have been scaled to the maximum intensity of the multiple target 
image to view the differences across all pixels in that field-of-view. In the bottom row, we present 
the associated traces of nearby neurons which are in this positive control group.  

To further assess the spatial optogenetic precision of our stimulation system, we selectively 
targeted optogenetic perturbations to be localized by anatomical perturbation only to layer, 
including L4 where expression is not present in the cell bodies (Fig. S6L). We measured all 
resulting activity in unbiased fashion across the entire imaged volume by subsampling the images 
into 8x8 pixel bins and reporting the modulation in fluorescence during optogenetic perturbation 
as a function of the tissue depth from the most superficially sampled image. As expected, based 
on the precision of the point spread function of our system (0.48 NA, Fig. S6A, B), layer 4 
stimulation did not yield activity modulation in neighboring layers (Fig. S6M). In the same 
experiments, on randomly interleaved trials, we stimulated neurons in layer 2/3 and/or 5 for 
comparison, which elicited robust responses. It is also important to note that, as a result of the axial 
translation of the microscope objective during volumetric imaging, the spiral-scan stimulation will 
correspondingly be slightly tilted through the cell body, relative to normal. However, this is 
minimized in our setup due to the short exposure times required with this opsin/optics combination. 
As an example, the maximum axial slew rate of the objective in our experiments was ~2 µm/ms. 
Since all individual exposures in the protocols introduced in Fig. S4G-J, and used throughout the 
manuscript, are below 0.63 ms, we expect a maximum axial blur due to microscope objective 
motion to be ≤ 1.2 µm. 

Lastly, as the optical characteristics of brain tissue are typically unfavorable for deep 
imaging and photo-stimulation, as compared to the performance at superficial depths, we quantify 
the influence of tissue depth on our optical and optogenetic performance. Concerns, such as the 
increased likelihood of scattering events, as well as greater aberrations due to the propagation of 
light through a greater amount of inhomogeneous tissue, are known to contribute to non-ideal 
performance and, as a result, much effort within the neuroscience and optical sciences community 
has been placed towards minimizing these losses through compensating measures such as adaptive 
optics. With respect to the optical performance reported in this manuscript, we note that the spiral 
scanning of the photo-stimulation beam across the cell in the transverse dimension results in an 
illumination pattern ~10x larger than the ideal transverse point spread function (PSF). As a result, 
we believe that aberrations of the PSF in this dimension would minimally increase the total size 
and therefore targeting precision would remain relatively robust from L2/3 (Fig. S6C) to L5. 
However, the axial elongation of the PSF may be critically influenced by these effects and we will 
therefore document our findings.  

To quantify the influence of optical quality on tissue depth, we use our MultiSLM to raster-
scan a focused optogenetic beam into the exact same sample prep used in the behavior experiments. 
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A 3D, in vivo image stack is acquired which spans from the dura to layer 5. Naturally present 
lipufuscin granules are utilized as red fluorescent point source proxies (Fig. S6D) since they are 
uniform in size throughout the acquired volume (actual transverse FWHM was measured to be 
~8um). We document that the relative axial elongation of this PSF proxy from L2/3 to L5 is ~3um, 
or ~20% of the ideal PSF (Fig. S6F,G). To place this in context, Layer 2/3 cortical neurons are 
typically 15μm in diameter and Layer 5 slightly larger (we measured ~2μm larger in transverse 
extent from in vivo data), so this broadening of the PSF is still a small fraction relative to the cell 
body. 

Given this measure for the expected axial elongation of the PSF using lipofuscin as proxy 
beads, for reference we next compare with the axial FHWM measurements of imaged neurons 
found in the simultaneously acquired GCaMP channel of the 3D image stack (Fig. S6E). From 
this measurement, we observe a relative difference in the measured axial FWHM of the neurons 
in L2/3 vs L5 which is greater than that expected from optical effects alone (~8um, Fig. S6H,I). 
This remains consistent with the expectation that the average cell body size is larger in Layer 5 
relative to Layer 2/3. Taken together, these observations indicate that while we do observe some 
relative axial elongation to be present, the degree of this elongation may scale proportionally to 
the relative increase in neuron cell body size. Also, the absolute size of the PSF remains well-
matched to the size of a cell body target in either L2/3 or L5. As a result, we would expect there 
to be no relative increase in off-target photo-stimulation in Layer 2/3 relative to Layer 5. 

To directly address this question of axial optogenetic excitation precision, we replicate the 
same conditions as the bias experiments (Fig. 6) (e.g. 6 image planes spaced 65um apart, same 
optogenetic stimulation power, etc.) and axially displace (dz) the target spots in order to map this 
effect onto the neural activity readout (Fig. S6J, K). Specifically, we focused on the experiments 
when N = 4 targets were simultaneously excited in alternatively L2/3 or L5, as this was where we 
observed the differential threshold for driving behavior. For these measurements, trials were 
randomly interleaved with the projected optogenetic stimulation pattern being axially displaced 
randomly from -65 < dz < 65um in 5um intervals (5 trials at each z-offset). The results demonstrate 
an optical physiology PSF with no clear bias of L5 over L2/3 (FWHM = 27.7±9.1μm vs 
26.3±6.0μm from Gaussian fit to the data, error is reported as 95% confidence interval), 
respectively, N = 7 neurons each) and is in agreement with our inferences from the prior 
measurements.  
 
Imaging and Optogenetic beam alignment: Spatial alignment of the targeting and imaging beams 
was accomplished by using the SLMs and optogenetic galvanometers to burn a constellation of 
holes into a thick fluorescent slab and then to register them to the collected imaging frame via 
manual identification of the hole centroids. A rigid, affine transform was defined for each axial 
position (at up to 7 axial planes) and a linear fit was implemented to characterize how each of the 
9 affine transform coefficients would vary as a function of axial plane. This fit was stored and later 
recalled when generating the hologram patterns to be generated for targeting identified neurons in 
the sample. The axial localization of the imaging and optogenetic stimulation beams was 
characterized by measuring the fluorescence signal as a thin fluorescence slab (< 5 𝜇𝑚) was 
translated through the beam (Fig. S6A).  

The phase control afforded by the SLMs was exploited in two additional capacities to 
mitigate inherent optical challenges. First, due to the non-unity fill-factor of the SLM, a fixed 
amount of light will remain un-diffracted from the SLM and be focused in the sample plane unless 
mitigating steps are taken. First, we addressed this by placement of a beam block, in the form of a 
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pair of magnets mounted to a cover slip (BB, Fig. 2A) in the intermediate image plane located 
between relay lens 1 and 2 (RL1 and RL2). This effectively blocked any light from undesirably 
focusing into our sample plane. To further address any potentially un-blocked, un-diffracted light 
focusing in the sample, we opted to de-collimate the beam expander (BE, Fig. 2A) such that the 
native foci of the SLMs were located approximately 300 𝜇𝑚 above the native imaging plane of 
the microscope objective. This axial shift of the native SLM focal plane was compensated by 
adding a complementary focusing and spherical aberration correction term to the SLM phase mask, 
such that the un-diffracted illumination focuses ~300 𝜇𝑚 above the targeting volume. The second 
capacity in which the SLMs were exploited to mitigate optical challenges was by employing an 
optical aberration correction algorithm which accounted for a) slight deviations from phase 
uniformity across the entire 30.7 𝑥 30.7 𝑚𝑚 face of the SLM and b) potential aberrations from 
optical misalignment or inherent to the optics. The aberration correction was realized by manually 
adjusting the weights of a linear summation of Zernike polynomials (up to 𝑍ଵ଺) to account for the 
phase aberration (Fig. S4D), as measured by maximizing the fluorescence signal excited from a 
thin layer (< 5 𝜇𝑚) of fluorescent material on a glass slide (66). The dominant phase errors were 
found to be astigmatism and spherical, with an additional defocus term which accounted for 
making the optogenetic target and the imaging plane effectively co-planar. The astigmatism phase 
correction likely compensated for any residual surface error not already corrected by the SLM 
look-up table.  
 
Optical power considerations for all-optical physiology: It is worthwhile to note that in addition 
to considering instantaneous power, the time-averaged power into the sample (which is most likely 
related to brain heating) is minimal due to the very low duty cycles of each optogenetic photo-
excitation exposure. For example, to target all 160 cells shown in Fig. 2C-G required only: 
 

30 𝑚𝑊
𝑐𝑒𝑙𝑙

ൈ 160 𝑐𝑒𝑙𝑙 ൈ ൬
29𝐻𝑧 ൈ 0.21 𝑚𝑠

1000 𝑚𝑠
൰  ൌ 29.2 𝑚𝑊  

 
of average power during the 3 seconds of optogenetic stimulation. Further reducing time-averaged 
power into the brain, optogenetic stimulation epochs were generally a fraction of the total trial 
time (e.g., minimum 3 out of 8 seconds in behavioral trials).  
 For all behavior-related imaging experiments (e.g. Figs. 3-6), we image 6/11 frames for 
one piezo-scanned volume (5 frames are dropped on piezo flyback) at 2.75Hz, thereby reducing 
the duty cycle of imaging laser illumination to 55%. Total heat load is bound between the lowest 
imaging power in L2/3 (30mW) and the maximum in L5 (120mW), where the imaging power was 
scaled with an exponential gradient value of 7.62 to continuously adjust power for each imaging 
plane (using Bruker PrairieView). This corresponds to imaging powers of 𝑃௣௟௔௡௘ ൌ 30, 40, 52, 
70.4, 93.7 and 120mW at nominal axial piezo positions of 0, 65, 130, 195, 260, 325µm, 
respectively. Therefore, assuming the per plane duty cycle as 𝐷௣௟௔௡௘ ൌ  భ

భభ
, an estimate of the total 

average heat load to the sample would be, 

෍ 𝐷௣௟௔௡௘𝑃௣௟௔௡௘,ே ൌ 36.9𝑚𝑊
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from the imaging laser, where N is the index for each plane. Optogenetic stimulation from the 
objective was <10mW per target in L2/3 and scaled to an absolute maximum of <120mW per 

target in L5 in order to compensate for scattering losses from additional tissue ( 10𝑚𝑊 ൈ  𝑒
యళబഋ೘
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), assuming a scattering length of 𝜏 ൌ 150𝜇𝑚. Stimulation was delivered in 0.61ms durations at 
30.206Hz for a time-averaged power of [0.18-2.2mW] per target. In general, the combined time-
averaged power including imaging and optogenetic stimulation lasers during visual experiments 
was < 50 mW.  
 
Mitigation of photo-stimulation artifact in images: As noted elsewhere (25, 26), the optogenetic 
stimulation creates an image artifact due to the excitation of GCaMP in the targeted cells. Here, 
due to the low-duty cycle of the optogenetic stimulation, this artifact is present in only a small 
percentage of the imaging pixels (e.g., one 210 µs optogenetic stimulation will create artifact in 
only 0.6% of the total image). Furthermore, the artifact band is dithered across trials such that 
when the artifact pixels are excluded from any individual trials (see below), the trial-averaged 
results will reconstruct a full, artifact-free image (Fig. S8).  
 
Data analysis of microscope performance: Multi-photon imaging data in Figs. 2, S5, and S6 was 
processed in MATLAB (R2017a, The Mathworks, Natick MA). Non-overlapping ROIs were 
defined from manual selection of targets. After defining the regions of interest (ROIs), the image 
movies were Kalman filtered (gain = 0.5, noise = 0.05) and data was then extracted by using each 
ROI as a binary mask and calculating the mean signal for each image frame. From this time-series 
ROI signal, the ΔF/F was calculated using the mean of the final 1/5 duration of the time-series data 
as the baseline measurement of each respective ROI. In Fig. 2C, for a neuron ROI to be deemed a 
positive optogenetic stimulation it must pass the following two criteria: a) the difference of the 
mean signal from the stimulation signal and the pre-stimulation baseline must be greater than 2𝜎 
(p ൑ 0.025), and b) the difference of the mean signal and the post-stimulation baseline must be 
greater than 2𝜎 (p ൑ 0.025). Note that the trial-averaged artifact in Fig. 2C-G was negligible due 
to: the phase offset of the image acquisition (30 Hz) and the optogenetic stimulation (29Hz), which 
decreased the probability of the artifact being present in the same pixel across sequential frames; 

the minimal duration / line width of the artifact (
ଶଵ଴ఓ௦

଺ସ.ଽఓ௦
௟௜௡௘ൗ

 lines for each group in the stimulus, 

accounting for 3.8% of the image).  
 
Data analysis of in vivo visual experiments 
Preprocessing of in vivo visual experiment imaging data and selection of stimulated ensembles: 
Raw imaging data were loaded into MATLAB (R2016a, The Mathworks, Natick MA) and 
analyzed using built in functions, MATLAB Distributed Computing Server, and custom scripts. 
To reduce processing time by ~6 fold (n slices) and facilitate activity-guided experiments, raw 
images (~40,000 images per session, per channel) were processed in parallel in a computing cluster 
in which each optical slice (a defined depth in the volume) was processed by a single multi-core 
computing node. Data was served to each node by a high-performance data server in RAID 1+0 
configuration in a 10-Gigabit network.  

Any pixels in the image that were collected during optogenetic stimulation were replaced 
with “not a number” (NaN), and omitted from all subsequent analyses. Images from a single 
imaging plane in the volume were aligned to a reference image by determining the highest cross-
correlation coefficient between each image and the reference image in a 20-pixel shift-window in 
X and Y. For the reference visual-only experiment, the reference image was defined as the average 
image of frames 10-50 from the imaging session. For each subsequent imaging session, the cross-
correlation alignment procedure was repeated in the following order. First, the reference image 
was defined as the average of all images from the aligned, already motion-corrected visual-only 
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experiment. The cross-correlation algorithm was applied to determine the optimal shifts to align 
Kalman filtered (gain = 0.5, noise = 0.05) imaging data from the current session to the reference 
experiment. These shifts were applied to the raw (non-Kalman filtered) data. A new reference 
image was defined as the mean image across the current, aligned dataset, and used to perform a 
final cross-correlation based motion correction for the current dataset. In this way, each session’s 
dataset was aligned to the reference experiment using temporally-smoothed data, and further fast-
motion corrected using its own reference.  

Aligned imaging data from the reference visual-only experiment were input into the 
constrained nonnegative matrix factorization (CNMF) algorithm (67). The spatial components 
estimated by CNMF were alone used to define a single set of cell masks across experimental 
sessions. Time courses for each cell were defined by averaging pixels within each cell mask for 
each image frame. Cell time course data were organized by trial, and baseline-normalized (to 
compute ΔF/F) by the following formula: (Ri-F)/F, where Ri is the cell’s fluorescence at each time 
point i, and F is the cell’s mean fluorescence during the three frames before a visual or optogenetic 
stimulus for each trial. No neuropil subtraction was applied to the data. The rigid alignment 
algorithm described above (well-suited for the high-speed imaging data, with minimal warping in 
each 33ms frame), and alignment of the imaging volume to the reference experiment during each 
session (maintained in real-time using online cross-correlation software during image acquisition, 
see above), allowed us to use the same cell masks across sessions in order to conserve cell identity. 

Tuned ensembles were defined as neurons (any mask segments resembling dendrites were 
removed by visual inspection) which responded robustly and reliably (at least 3 of 8 time points > 
0.3 ΔF/F, and p < 0.05 t-test stimulation epoch versus baseline) to either the 0° or 90° 50% contrast 
visual stimulus, with an orientation selectivity index (OSI) greater than 0.5. OSI was defined by 
the following formula: (Rpref-Rorth)/(Rpref+Rorth), where Rpref is the response during the visual 
stimulus to the preferred orientation, and Rorth is the response to the orthogonal orientation. For 
these analyses of the reference visual experiment (but not subsequent analyses), cell time courses 
were Kalman filtered (gain = 0.5, noise = 0.05) before computing ΔF/F. Tuned ensemble sizes 
were 0°: 32, 26, 27, 37 and 90°: 19, 40, 33, 26 for each mouse in the naïve cohort, respectively 
(Naïve Mouse 1-4). Tuned ensembles sizes were 0°: 55, 42, 33, 53, 33, 32, 29 and 90°: 38, 37, 28, 
46, 42, 45, 46 for each mouse in the behavioral cohort, respectively (Trained Mouse 1-7). Random 
ensembles were randomly selected from the remaining population across the volume to match the 
number of neurons in the respective tuned ensembles. For stimulation of sub-ensembles in each 
cortical layer, either all of the neurons from the tuned ensemble from an anatomically-defined 
layer were used, or a randomly selected subset of those neurons was used, where the number of 
neurons was defined for each subset tested.  
 
Statistical analysis of co-activity: Stimulated neurons and any neuron masks containing pixels 
within a 20.85 µm (15 pixels) radius, including any neurons above or below stimulated neurons 
within a cylinder with the same radius, were excluded from all analyses of co-activity. On each 
day, high contrast visual trials (50% contrast; no optogenetic stimulation) were used to find reliable 
(significant two-tailed Wilcoxon signed-rank test, MATLAB function, frames 5 and 6 versus 
baseline frames 2 and 3), orientation selective (OSI > 0.5, calculated as above) neurons. 
Importantly, frames 5 and 6 occurred during the “Sample Window”, that is during the visual or 
optogenetic stimulus but before any water reward or air puff was delivered. These reliable, 
orientation-selective neurons, which were distinct from the original tuned ensembles as described 
above, were used to define the tuned populations for network analyses. Neurons within these tuned 
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populations that reliably increased fluorescence across trials of a specific optogenetic ensemble 
condition (significant two-tailed Wilcoxon signed-rank test, frames 5 and 6 versus frames 2 and 3, 
Figs. 4J-N,S12A,B: p<0.05, Figs. 5D,E,6A-D,S15A,B: p<0.01) were deemed co-active. To define 
the fraction of co-active neurons for each condition, the number of co-active neurons was divided 
by the number of tuned neurons.  

For scatter plots, each data point is the result from a single optogenetic ensemble 
stimulation condition from a single day. Relationships between the number of stimulated neurons 
and the fraction of co-active neurons were computed using the Spearman’s correlation coefficient, 
with significance defined by a two-tailed test versus no correlation (built in MATLAB function). 
To statistically compare ρ values, a two-tailed Fisher’s z transformation was performed.  

For bar graphs, the number of co-active neurons and tuned neurons neurons were each 
summed across sessions for each mouse to define each mouse-identified data point plotted on the 
figure, and across mice for summary data. A two-tailed Pearson’s chi square test was used to 
statistically compare frequencies of co-activity on pooled data across mice between conditions 
(SPSS). To account for the contribution of mouse identity, additional statistics are presented here 
using the Cochran-Mantel-Haenszel (CMH) test, in which data are stratified by mouse identity. 
The CMH tests yielded comparable results to the Pearson’s chi squared test in all instances.  A 
Breslow-Day test was run to test the assumption of homogeneity of the odds ratio for each CMH 
test. The Breslow-Day test rejected the null hypothesis that the odds ratio was equal across mice 
for the following statistical tests, implying that an interaction may have existed between mouse 
identity and observed co-activity counts. These included Tuned After Contrast Ramp (Fig. 4L), 
Random After Contrast Ramp (Fig. 4M), Tuned vs. Random Before Contrast Ramp (Fig. 4N), 
Tuned vs. Random After Contrast Ramp (Fig. 4N), Iso vs. Ortho (Fig. 5D), Layer 2/3 vs Layer 5 
Iso Tuned (Fig. 6C), Layer 2/3 Iso vs. Ortho (Fig. S15A), and Layer 5 Iso vs. Ortho (Fig. S15A). 
Pearson’s chi square tests were run independently for each mouse for each of these instances and 
were found to be significant to at least p < 0.05 for 4/5, 4/5, 4/5, 3/5, 5/5, 3/4, 5/5, and 5/5 mice, 
with effect directions always matching the pooled data, for each of these comparisons respectively. 
Layer 2/3 vs. Layer 5 Iso Tuned (Fig. S15A) had 4/5 mice with significant Pearson’s chi square 
tests (p < 0.001) going in the direction of increased layer 5 recruitment vs. layer 2/3, and Mouse 3 
had greater layer 2/3 recruitment than layer 5 (p = 0.046). 
 
Statistical analysis of neuronal dynamics: All classifier and neural decoding analyses were 
performed in Python 3.6 and used open source libraries listed below. This analysis is presented 
in parts of Fig. 3, Fig. 5, and Fig. 6 as well as all of Fig. S10-S15 (except for S12A). 
 
Neural decoding analysis using sparse logistic regression: In order to select cells to include in our 
neural decoding analysis for a given mouse, we first identified all neurons that were ever 
optogenetically stimulated on any experimental day or condition. Then we defined a column of 
exclusion with an approximately 20.85 µm (15 pixel) radius around each of these stimulated 
neurons to conservatively identify any neuron that might have been erroneously stimulated during 
our experiments. Other neurons whose fluorescence signals were contaminated by stimulation 
artifacts were also removed during this process (see above). This neuron selection procedure 
differs slightly from the one used for the statistical analysis of co-activity (see previous methods 
section) in that all neurons that were ever stimulated in a mouse (plus surrounding neurons) were 
excluded on all days to facilitate training regression models that generalize between experiments 
where different ensembles were optogenetically stimulated. 
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 Our regression models were trained only on experimental trials where mice watched a 
visual stimulus and no neurons were optogenetically stimulated. Specifically, for each 
experimental day, we found each condition where a visual stimulus was presented (at any contrast 
between 12-50%). Then from each one of these trials, we computed the average fluorescence of 
each neuron across two fluorescence frames after stimulus onset (frames 5 and 6 of 19 total 
imaging frames/trial; the same frames used for co-activity analyses above). These two frames were 
specifically chosen to eliminate the frame where fluorescence was rising at the onset of the visual 
stimulus (frame 4) and to also eliminate the later frames during the stimulus where either a water 
reward or punishing air puff could have been delivered. This process yielded a vector of length 
equal to the number of unstimulated neurons in each dataset, for each trial. We concatenated each 
of these vectors into a matrix of size equal to the number of trials by the number of unstimulated 
neurons. Importantly, only this visual-stimulus-only data was ever used to train our regression 
models. The same models were then used to predict condition type (target vs. distractor) on all 
other kinds of data (i.e. during optogenetic stimulation of different types). This procedure was 
identically followed in both the behavioral cohort of mice (where reward and airpuff stimuli were 
present) and the naïve cohort of mice (where neither stimulus existed). 
 We then took this data matrix and another vector containing the true stimulus type (target, 
0° or distractor, 90°) and used them to fit a set of sparse logistic regression models. This procedure 
was repeated independently for each mouse. To perform the regression model fitting, we used a 
class in Python’s scikit-learn package named LogisticRegression with the penalty argument set to 
‘L1.’ Each of the five models was trained on a distinct random fifth of all of the trials presented 
(five-fold cross validation). Classifier weights and predictions reported are means across all five 
of the regression models trained for each mouse. Finally, we found that across all n = 5 behavioral 
mice (Fig. S12) and n = 4 behaviorally naïve mice (Fig. S10), setting the sparseness parameter 
(1/λ) equal to 0.5 approximately minimized the training error in each case. Models generating all 
results reported had 1/λ set to this value. 

Across n = 4 behaviorally naïve mice (and 2 tuned + 2 random ensembles for each mouse; 
60 stimulation trials from each neuron were used in this analysis), we tested that the effective size 
of the tuned and random optogenetically-stimulated ensembles was comparable. This was 
computed by using a Wilcoxon signed-rank test to compare the average fluorescence in the 
baseline period (frames 1 and 2) to the average fluorescence after optogenetic stimulus onset 
(frames 5 and 6) across all individual trials from each targeted neuron. The significantly recruited 
fraction of tuned ensembles ranged from 0.4-0.92. This fraction for random ensembles ranged from 
0.37-0.74. A paired t-test revealed no significant difference between these two distributions, (p = 
0.48) (Fig. S10C). 

This same analysis was also applied to n = 3 behaviorally trained mice (40 stimulation 
trials/neuron were used for this analysis; there were 2 tuned and 2 random ensembles analyzed for 
each mouse). In contrast to the naïve mice, our conservative metric found that there was a 
significant difference in stimulation efficacy between the size-matched random and selective 
ensembles. The significantly recruited fraction for tuned ensembles ranged from 0.58-0.9. For 
random ensembles it ranged from 0.26-0.75. A paired t-test revealed a significant difference here, 
*** p < 0.001 (Fig. S12D). 
 
Neural trajectory analysis using PCA: In a similar manner to the procedure described above for 
our decoding analysis, we used Principal Components Analysis (PCA; scikit-learn class PCA) to 
visualize the average population response of all trials of an identical experimental condition, on a 
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given experimental day. Principal components were identified using a data matrix composed of 
the mean fluorescence responses across all neurons to both the target, 0º and distractor, 90º visual 
stimuli (contrast ranged from 12 to 50%; in the absence of any optogenetic stimulation). Since 
each trial was 19 frames long, this yields a training matrix of size: (19 x 2) x number of neurons. 
The first two principal components estimated from this data matrix were used to plot all neural 
trajectories for an individual mouse in all experimental conditions. 

A similar analysis using Partial Least Squares Regression (scikit-learn function 
PLSRegression) was performed with the identical data matrices, but also with ground truth visual 
stimulus information (target, 0° vs. distractor, 90°). This approach yielded nearly identical results 
to PCA—despite the fact that the latent dimensions were explicitly derived to separate target from 
distractor conditions, rather than to simply maximize variance explained (Fig. S14). 
 
Psychometric curve fitting: To assess the relationship between either neural or behavioral 
performance and the size of an optogenetically stimulated ensemble, we used an open-source 
package called Psignifit-python (68) to fit logistic psychometric curves of the following form: 
 

𝜓ሺ𝑥ሻ ൌ 𝛾 ൅ ሺ1 ൅  𝜆 െ  𝛾ሻ 𝑆ሺ𝑥; 𝑚, 𝑤ሻ 
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1

1 ൅  𝑒ିଶ ୪୭୥ ሺ ଵ
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We fitted three parameters of the curve: the threshold m, width w, and the lapse rate 𝜆.  The lower 
asymptote parameter, 𝛾, was fixed to 50%. Psychometric curves fit in this manner are presented 
as a visual aid for interpreting the data and were statistically analyzed as described in the text. 
 
In Fig. 6F and Fig. 6H, individual points correspond to experimental conditions taken from single 
days and single mice; mean ± s.e.m. are shown for each ensemble size bin (the bin width is 4 
neurons). This subset of data was used to compute a two-way ANOVA to compare the effect of 
ensemble laminar position on classifier performance (F) or animal behavior (H). Equivalent 
numbers of layer 5 neurons were more successful at driving performance (p < 0.01 for classifier 
data, p = 0.023 for behavioral data, main effect of layer). Matched target and distractor ensembles 
differ in size by at most one neuron. 
 
Open source packages used: The following open source Python libraries were used in the 
statistical analyses of the data presented in this paper: 
IPython (69): https://ipython.org/ 
Numpy (70): http://www.numpy.org 
Matplotlib (71): http://www.matplotlib.org 
Psignifit 4 (68): https://github.com/wichmann-lab/python-psignifit 
Pandas (72): https://pandas.pydata.org/ 
Scikit-learn (73): http://scikit-learn.org/stable/index.html 
SciPy (74): http://www.scipy.org 
Seaborn: http://seaborn.pydata.org 
Statsmodels (75): https://www.statsmodels.org/stable/index.html  
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Supplementary Text 

 
I. Structural insights into the high conductance of ChRmine 

Although ChRmine was discovered through our functional metagenomic screening targeting for 
joint exhibition of properties required for the experiments shown here, the mechanisms underlying 
its unique functionality remain unclear. However, recent advances in structural understanding of 
channelrhodopsins (ChRs) have provided a foundation for understanding of the basis of ion 
selectivity and spectral sensitivity (58, 59, 76). Although ChRmine shows low similarity to 
previously studied ChRs, mechanistically important features, such as transmembrane domains 3,6 
and 7 comprising the retinal-binding pocket and ion-conducting pathway, exhibit high sequence 
homology (Fig. S1), suggest structural explanations for the properties of ChRmine based on 
structural and biochemical studies of other ChRs.  

In ChRmine, Asp115 (Glu162 in C1C2 and Glu129 in CrChR2), which may form a counter-
ion network along with Asp253 (Asp292 in C1C2 and Asp253 in CrChR2) to the protonated retinal 
Schiff base, is thus one carbon shorter than its glutamate counterparts in C1C2 or CrChR2 (Fig. 
S1). This difference may slightly destabilize the hydrogen-bonding network between the 
protonated Schiff base and its counter-ion, which would lead to elevation of the energy of the 
ground state of the protein and result in less energetic, more red-shifted photons sufficing for 
driving the transition to the light-activated state (76). Moreover, the homology model (Fig. S2F, 
built on C1C2 crystal structure as a template) reveals that overall electrostatic surface potential of 
ChRmine is even more negatively charged than that of the lower-photocurrent cation-conducting 
channelrhodopsin C1C2, suggesting a more suitable ion-conducting pore/vestibule structure for 
deterring anion flux and thus allowing greater cation flux. This model would be consistent with 
prior findings showing how surface electrostatics determine ChR ion selectivity, and together may 
explain how ChRmine can give rise to higher photocurrent magnitude than other cation ChRs (58, 
76). Further structural and spectroscopic studies are clearly needed to completely understand the 
molecular mechanisms of ChRmine.  

 
II. Side-by-side comparison of ChRmine and ChroME 
To fully confirm the suitability of ChRmine for all-optical experiments, we directly compared 

the opsin with ChroME, another engineered opsin previously reported to be suitable for 
multiphoton optogenetics (26). We have performed in vitro electrophysiology of the two opsins 
under the same experimental conditions (intracellular solution, extracellular Tyrode, transfection 
period, light source). As previously reported, we observed a blue-shifted action spectrum and high 
photocurrents from ChroME-expressing cells (up to ~2 nA under its maximally responsive, blue-
shifted light stimulation, Fig. S3A, B); nevertheless, significantly higher currents were observed 
in ChRmine cells (~4nA under red-shifted light). Most importantly, we observed high light 
sensitivity (100% spike probability down to 0.08 mW/mm2 / 0.5 ms pulse width, Fig. S3C, D) in 
ChroME-transfected neurons, concordantly with the data previously reported, as well as neurons 
expressing ChRmine (26). However, as expected from the blue-shifted action spectrum, ChroME-
expressing neurons failed to reliably elicit spiking in response to red-shifted light, whereas 
ChRmine cells could spike down to 0.08 mW/mm2. Finally, we were able to confirm that under 
our imaging conditions, ChroME and ChRmine drove equivalent levels of depolarization in cell 
culture (Fig. S3E, F)  

In side-by-side comparison, we have shown that 1) ChroME has a more blue-shifted action 
spectrum than ChRmine; 2) ChroME is more sensitive to blue light (which includes the 2P 
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wavelength of 920nm used for imaging) relative to orange light; and 3) for both ChroME and 
ChRmine, the 920 nm imaging laser under 2P conditions does not elicit notable membrane 
depolarization (Fig. 1M, N, S3E, F). These data suggest that ChroME is suitable for all-optical 
experiments in which blue actuators and red sensors are required, in contrast to ChRmine, a potent 
red excitatory opsin suitable to be used combinatorially with blue sensors or actuators.  
 
 

III. Temporal and Spatial Multiplexing of Spatial Light Modulators (MultiSLM) 
A general description of the theory and possible embodiments of this brain interface, MultiSLM, 
are provided here. For more details on the instantiations used in the manuscript, see Materials and 
Methods, and Figs. 2, S4-8. Additional instantiations are described in Figs. S18, S19.  

MultiSLM was designed as an optical hardware solution for spatially specific >kHz 
targeting of any of the thousands of neurons located throughout a three-dimensional (3D) volume 
of tissue. While imaging neural activity (e.g., fluorescent activity reporter), simultaneous 
photostimulation (e.g., with optogenetics) of user-specified targets is possible—both at high spatial 
resolution (< 1 μm lateral). One to hundreds of diffraction limited spots can be generated in precise 
locations, simultaneously (within < 1 ms), using holograms generated by combining high peak 
power lasers with an array of several customized, high-resolution spatial light modulators (SLMs) 
which are controlled by custom computational hardware and software.  

In addition to enhancing the individual performance of an SLM, the MultiSLM approach 
presented here utilizes multiplexing of multiple optical beams (e.g. using polarization-states or 
chromatic-dependent optics) to gain additional utility beyond a single SLM device. Generally, 
laser light can originate from 1 or more lasers and be de-multiplexed into at least 2 distinct 
channels. The channels can be de-multiplexed using an array of strategies for beam separation 
across multiple channels simultaneously, or directed to different channels (SLMs) in rapid 
sequence, with temporal precision on the order of microseconds. A number of strategies are 
available to add additional SLM modules – yielding 4 or more SLMs in one system (Figs. S18 and 
S19). These channels are then multiplexed after the SLMs into a common optical axis by using 
dichroic mirrors, polarization beam splitters, high speed polarization switches (or electro-optic 
modulators) and/or 50/50 beamsplitters, which are carefully aligned with angle and polarization 
tuning.  

When multiplexing across SLMs, two operation modes—sequential and simultaneous—
can be realized and the choice of multiplexing mechanism will influence the performance of these 
two mode options, as discussed in more detail below. In Sequential Mode, the refresh times are 
staggered across individual SLMs (each with ~500 Hz refresh rate); thus, the effective temporal 
resolution of distinct ensemble addressing can exceed 1 kHz. In Simultaneous Mode, multiple 
SLMs are simultaneously projecting to the sample, allowing more neurons to be targeted at 
precisely the same time (for example, over a larger volume if the SLMs are spatially tiled; Fig. 
S19). In all designs, no optical interference is expected to occur between distinct MultiSLM system 
optical paths since different polarizations, wavelengths and/or optical path lengths are used (and 
in all presented instantiations, the femto-second, pulsed stimulation laser(s) are synchronized at 
the source and pulsed with low duty cycle on the nanosecond scale).  

Temporal precision and excitation duration (< 640μs) are tightly controlled with custom 
software and electro-optic modulators (Pockels cells and/or polarization switches), for example, 
to drive a single spike in each targeted neuron using optogenetics. The SLM modulated light 
reflects off a set of high-speed galvanometer mirrors which move the SLM generated hologram 
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rapidly in the volume, for example, to create a spiral motion spanning the size of a typical neuron. 
This pattern could be divided into multiple “mini-spirals” to span most of the neuron cell body 
more rapidly, with greater efficiency. This motion moves the spot around the cell body of the 
neuron using empirically-derived parameters for velocity and spatial resolution to reliably yield a 
spike in the neuron (reaching saturating photocurrent in the best case, or at least enough 
photocurrent to reliably elicit a spike). It should be noted that, alternatively, a disc of light or 
virtually any image pattern can be created using SLM-based holography to stimulate an entire 
neuron cell body, or other part of a neuron, such as a dendritic spine, without the need to move the 
galvanometer mirrors, but with a lower light power density and thus far lower multiphoton 
efficiency (in standard two-photon excitation, light power density—modeled as numerical aperture 
of the system producing the excitation spot—is thought to influence the multiphoton effect 
exponentially to the fourth power (77), and is one of the single largest determinants of multiphoton 
excitation probability). Additionally, a grid of dots or other arbitrary pattern of light can be created 
to match the features (i.e., neuron cell body locations) in the volume for imaging or stimulation. 
In the instantiation presented in the current manuscript, the galvanometer mirrors are part of a 
modified two-photon microscope which has two additional sets of galvanometer mirrors, including 
a resonant scanner dedicated to imaging at high rates.  

The wavelengths for SLM optogenetic stimulation are chosen to excite optogenetic 
actuators (e.g., ChRmine) at or near their peak excitation wavelengths, while minimally exciting 
neural activity sensors (e.g., GCaMP). This allows simultaneous opsin stimulation and neural 
activity imaging from the same population of neurons. Thus, the effects of stimulated patterns of 
activity on local dynamics can be read out in real time with neural activity imaging at single cell 
resolution. In low stimulation-duty cycle experiments, it may be advantageous to simply omit 
stimulation epochs from imaging data (as in the current manuscript), since the stimulation laser 
will elicit some unwanted activity sensor fluorescence. More generally, synchronizing imaging 
and photostimulation lasers (typically kHz-MHz repetition rates of tens to hundreds of 
femtosecond pulses) could permit photostimulation to occur out of phase with imaging at the level 
of laser pulse times (by varying optical path lengths), such that light and fluorescence artifacts 
caused by optogenetic photostimulation could be completely removed with a lock-in amplifier, 
chopper circuit operating on the MHz or GHz scale (depending on the laser source repetition rates; 
fluorescence decay time constants of activity reporters, such as those based on green fluorescent 
protein (GFP), are likely to be on the order of a few nanoseconds and thus within a fraction of the 
period of high repetition rate lasers, e.g., 12.5 ns for 80 MHz). Even if lasers are not synchronized 
with each other, high-speed electronic acquisition circuits could at least partially remove 
photostimulation artifacts by precisely gating acquisition on laser pulse times. Similar high-speed, 
laser-synchronized electronic acquisition circuits have been demonstrated previously for 
spatiotemporal multiplexed two-photon imaging (78). These approaches may thus have utility not 
only for artifact subtraction, but also for multiplexed imaging applications using MultiSLM 
holography for excitation of multiple points of interest at once in combination with non-scanning 
acquisition and computational methods that measure and estimate location information of recorded 
signals in 3D (53, 64, 67). 

As demonstrated in this manuscript, essentially any neurons in the three-dimensional field 
of view accessible with a single two-photon objective are addressable to stimulate with high 
precision. Thus, natural patterns of activity can be precisely replayed into the population, for 
example, to create artificial perceptions, or to artificially reinforce learning. Furthermore, the 
generated pattern of activity can be altered in precise ways, or combined with other experimental 
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manipulations, to help understand the necessity and sufficiency of quantifiable features of the 
pattern on neural coding robustness, perception and behavior. In these ways, this novel device and 
experimental strategy may open fundamental new insights into the complexities of the brain. 
 
MultiSLM Sequential Mode: The MultiSLM design allows for the overall hologram generation 
rate of the system to surpass the hologram generation rate of any single SLM in the system, by 
staggering the triggering of individual SLMs in the system, each running at maximum hologram 
generation rate (plus dwell time on a given hologram). The following equations describe the design 
and limits on the Sequential Mode of operation. 
 

𝑃ௌ௅ெ ൌ  𝐿 ൅ 𝑟ௌ௅ெ ൅ ሺ2 ∗ 𝜎௅ሻ ൅ ሺ2 ∗ 𝜎௥ሻ 
 
Where PSLM is the period in time that the SLM takes to reach complete formation of a hologram 
(including time to load phase mask onto the SLM and time for the liquid crystal to respond and 
reach desired phase level to successfully generate the hologram, see Fig. S4F), rSLM is the mean 
hologram generation time of the SLM from start to completion, L is the mean latency from input 
trigger to beginning of hologram generation by the SLM, 𝜎௅ is the standard deviation of latency 
from trigger input to the time the SLM begins transitioning to the next hologram, and 𝜎௥ is the 
standard deviation of rSLM. Assuming a normal distribution of L and rSLM, this achieves an estimate 
of PSLM that is true 95% of the time.  
 
Following from this, the hologram refresh rate of a given SLM in the system is: 
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The hologram refresh rate of the MultiSLM system in Sequential Mode, Rseq, that is the rate at 
which new holograms can be created, is: 
 

𝑅௦௘௤ ൌ  
𝑁ௌ௅ெ

𝑃ௌ௅ெ ൅  𝑑
 

 
Where d is the duration that a formed hologram is displayed (e.g., to illuminate the sample for a 
desired period of time typically on the order of hundreds of microseconds), and NSLM is the number 
of SLMs in the MultiSLM system.  
 
So far, this assumes that PSLM and d are each the same for all SLMs in the system. More generally, 
periods, durations, latencies and jitters can be determined for each SLM in the system and summed 
to determine Rseq: 
 

𝑅௦௘௤ ൌ  ෍
𝑁ௌ௅ெ

𝑃ௌ௅ெ௜ ൅  𝑑௜

ேೄಽಾೞ

௜ୀଵ

 

 
The period of the MultiSLM system, Pseq, is: 
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𝑃௦௘௤ ൌ  
1

𝑅௦௘௤
 

 
The duty cycle of stimulation, D, is defined as: 
 

𝐷 ൌ  
𝑑 ∗  𝑁ௌ௅ெ

𝑃௦௘௤
 

 
assuming equal interval in time between illumination of each SLM in the MultiSLM system. 100% 
duty cycle is achieved for all: 
 

𝑃௦௘௤ ൑  𝑑 ∗ 𝑁ௌ௅ெ 
 
The maximum hologram refresh rate of the MultiSLM system, MAX(Rseq), occurs with 100% duty 
cycle when  
 

𝑃௦௘௤ ൌ  𝑑 ∗ 𝑁ௌ௅ெ 

and laser exposure duration times for each SLM in the MultiSLM system, LaserExposureTime, are 
spaced sequentially in time such that: 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒்௜௠௘೔శభ
ൌ  𝐿𝑎𝑠𝑒𝑟𝑃𝑢𝑙𝑠𝑒்௜௠௘೔

൅ ൬
𝑃௦௘௤

𝑁ௌ௅ெ
൰ 

 
and the laser pulse duration, LaserExposureDuration, equals d: 
 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒஽௨௥௔௧௜௢௡ ൌ 𝑑 
 

and triggers to a given SLM, Ti, repeat with period Ptrig, such that:  

𝑃௧௥௜௚ ൌ  𝑃௦௘௤ 
 
 
assuming that all SLMs in the system have equal PSLM (otherwise, timings should account for the 
different periods of each SLM to achieve the same effect). MAX(Rseq) increases as d approaches 
zero. 
 
Furthermore, the improvement in hologram refresh rate of the MultiSLM compared to the 
hologram refresh rate of a single SLM in the system, RSLM, is: 
 

𝑀𝐴𝑋൫𝑅௦௘௤൯ ൌ  ሺ𝑅ௌ௅ெ ൅ 𝑑ሻ ∗ 𝑁ௌ௅ெ 
 
Increased temporal precision [beyond that afforded by the MAX(Rseq) at 100% duty cycle] can by 
generated for all: 
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𝑃௦௘௤ ൐ 𝑑 ∗ 𝑁ௌ௅ெ 
 
leading to lower than 100% duty cycle. This also has the effect of lowering the average power 
delivered to the sample proportional to the reduction in duty cycle (see below). Higher temporal 
precision could be applied in a burst mode (that is the array of SLMs are illuminated in rapid 
sequence at or near 100% duty at the higher rate and overall in less time than Pseq, followed by a 
time period to allow the completion of Pseq) or the higher temporal precision can be achieved while 
maintaining equal, sequential spacing between SLMs as described above for the 100% duty cycle 
implementation. 

The maximum temporal precision, MAX(p), that is the precision in stimulation time that 
can be guaranteed by the system, is ultimately limited by the Pockels cell response time (or more 
generally whatever device is used to modulate the laser beam such as electo-optic modulator, 
acousto-optic modulator, polarization switch, shutter, etc), rPC: 
 

𝑀𝐴𝑋ሺ𝑝ሻ ൌ 𝑟௉஼ 
 
assuming modulator driver electronics with equal or better temporal precision as rPC (if this 
assumption is not met, then the limiting factor is driver signal sample rate). Furthermore, it is 
assumed that: 
 

𝑟௉஼ ൏൏ 𝑑 
 
A exposure of laser power to illuminate the hologram is calibrated in intensity depending on the 
hologram generated (e.g., calibrated to achieve equal hologram spot intensity regardless of 
imaging depth in scattering tissue), is created by a calibrated signal sent by the modulator 
electronics, which in conjunction with a polarizing beam splitter and beam dump, achieves the 
desired power level for the hologram after the light has passes through all optics and biological 
tissue. Additional software corrections in the hologram generation code can normalize the intensity 
of spots across the field of view (FOV) to account for diffraction efficiency fall off from the center 
of the FOV. The timing of the laser exposure for a given SLM should have duration d and be 
synchronized to start with the completion time of the hologram generation by an SLM, such that: 
 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒்௜௠௘೔
ൌ  𝑇௜  ൅  𝑃ௌ௅ெ೔

 
 
In Sequential Mode, the overall laser power stimulated at one time corresponds to the laser power 
of the laser exposure generated, LaserExposurePower, at that time to illuminate a single hologram 
generated by a single SLM in the system, without overlap with illumination of other SLMs. Thus, 
the maximum exposure power, MAX(LaserExposurePower), is limited to the maximum power 
allowable for any one SLM (SLMdamagethresh) or hologram (Hologramthresh). The power may be 
further limited based on the peak power allowable into the biological tissue, PeakPowerbiothresh, 
which may depend on the duration of d. 
 
Thus: 
 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥ ൏  𝑆𝐿𝑀ௗ௔௠௔௚௘௧௛௥௘௦௛ሺ𝑑ሻ 
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and 
𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥ ൏  𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚௧௛௥௘௦௛ 

 
and 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥ ൏  𝑃𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟௕௜௢௧௛௥௘௦௛ሺ𝑑ሻ 
 
Furthermore, an allowable average power limit may further constrain the allowable 
LaserExposurePower, for example, in the case when accumulated heating over a longer period of 
time must be avoided, such as over the full period of the system, Pseq (but other time durations can 
be used depending on the application). Depending on empirically determined limits of power into 
biological tissue, a limit may be set taking the form of: 
 

෍
𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥೔

𝑃௦௘௤
∗ 𝐷 ൏ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑤𝑒𝑟௕௜௢௧௛௥௘௦௛

ேೄಽಾ

௜ ୀ ଵ

 

 
where lower duty cycle (D) can increase the allowable LaserExposurePower, up to peak power 
limitations. 
 
 
MultiSLM Simultaneous Mode: In some configurations, the MultiSLM system can be run in 
synchronized mode, such that independent holograms generated across all of the SLMs are 
illuminated by laser exposures at the same time,  
 

𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒்௜௠௘೔
ൌ  𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒்௜௠௘೔ାଵ ൌ ⋯ ൌ  𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒்௜௠௘ಿೄಽಾ

 

 
In this configuration, the damage threshold of a single SLM can be overcome by distributing 
more power onto more than one SLM. 
 

𝑀𝐴𝑋ሺ𝑃𝑜𝑤𝑒𝑟௦௜௠௨௟ሻ  ൑ 𝑆𝐿𝑀ௗ௔௠௔௚௘௧௛௥௘௦௛ሺ𝑑ሻ ∗  𝑁ௌ௅ெ 
 
As in the case of Sequential Mode, power limits will still remain in place regarding peak and 
average power into the biological tissue, and would be summed across laser power used for each 
SLM in the system: 
 

෍ 𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥೔
 ൏ 𝑃𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟௕௜௢௧௛௥௘௦௛ሺ𝑑ሻ

ேೄಽಾ

௜ ୀ ଵ

 

 

෍
𝐿𝑎𝑠𝑒𝑟𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒௉௢௪௘௥೔

𝑃௦௘௤
൏ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑤𝑒𝑟௕௜௢௧௛௥௘௦௛

ேೄಽಾ

௜ ୀ ଵ

 

 
Some sources of noise depending on the stimulation pattern (hologram) could benefit from 
distributing the pattern generation across multiple SLMs, instead of a single SLM. For example, 
complex holograms involving generation of many spots, or complex shapes may be achieved with 
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fewer artifacts (e.g., higher intensity spots or pattern with lower background and/or lower speckle). 
Since each laser source(s) can produce synchronized pulses across multiple optical paths 
(corresponding to each optical path in the MultiSLM system), with temporal delay lines for each 
path (as will occur easily given the extremely low duty cycle of the pulsed laser source and the 
typical length differences between optical paths on an optical table), the holograms are not 
generated simultaneously at the femtosecond timescale, but would be synchronized at the 
microsecond timescale. This design removes any chance of optical interference between the 
holograms generated on each SLM in the MultiSLM system.  
 
In Simultaneous Mode, duty cycle would be lower than Sequential Mode; and depends on d and 
the period of the slowest SLM in the system: 
 

𝐷௦௜௠௨௟ ൌ
𝑑

𝑀𝐴𝑋ሺ𝑃ௌ௅ெሻ
 

 
Since all SLMs are illuminated at the same time, the maximum period is limited by the period by 
the period of the slowest SLM in the system: 
 

𝑃௦௜௠௨௟ ൌ  𝑀𝐴𝑋ሺ𝑃ௌ௅ெሻ ൅  𝑑 
 
The refresh rate in Simultaneous Mode is comparable to the refresh rate of a single SLM: 
 

𝑅௦௜௠௨௟  ൎ 𝑀𝐴𝑋ሺ𝑅ௌ௅ெሻ 
 
and is equal to the inverse of Psimul: 
 

𝑅௦௜௠௨௟ ൌ  
1

𝑃௦௜௠௨௟
 

 
IV. Conceptual overview of models and simulations 

 
In this part of the supplementary appendix, we address the theoretical implications of 

important puzzles raised by our data. The first puzzle is that optogenetic stimulation of a small 
number of neurons with similar tuning, often as little as 20, can excite a non-negligible, finite 
fraction of the entire population of the rest of the recorded neurons. Moreover, the threshold for 
external stimulation to trigger percepts that can guide behavior is equally low. These results are 
remarkable considering the population of similarly tuned V1 neurons to a particular oriented 
grating can be quite large, numbering in the several thousands. Thus these data reveal that the V1 
cortical network seems to be highly excitable, with stimulation of a vanishingly small fraction of 
the entire network recruiting a finite fraction of the network and triggering perception. The second 
puzzle then is, with such a low threshold for network excitation, why don’t spontaneous 
fluctuations in network activity elicit both false positive global network excitation events and false 
percepts at an appreciable rate? 

 
In section V we quantitatively address this puzzle in a simple model of independently firing 

Poisson neurons. Using biologically motivated numbers for the size 𝑁 of the cortical population 
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of similarly tuned excitatory neurons, the rate 𝑟 of spontaneous firing, and typical integration time 
constants of cells Δ, we show that it can in principle be possible to choose a threshold for both 
network excitation and perception, such that in a large population of 𝑂ሺ𝑁ሻ neurons, optogenetic 
stimulation of only 𝑂ሺ√𝑁ሻ neurons could reliably trigger excitation of a finite fraction of the 
population, without spontaneous fluctuations triggering false positive neural or perceptual events 
at any appreciable rate. This analysis quantitatively explains why such a low threshold of 
stimulation of about 20 cells for triggering network excitation and perception is viable given 
biologically plausible parameters governing V1 ensemble population sizes, spontaneous activity 
rates, and single neuron integration time constants. However, this analysis does not provide a 
network mechanism that instantiates such a low threshold for network excitation. 

 
To discover a proof of principle instantiation of such a network mechanism, we describe a 

simple modeling framework for a network of excitatory and inhibitory cells in section VI. Readers 
who are interested in the network model can skip directly to section VI. In relation to our 
experiment, this network is a model of the population of excitatory cells with similar tuning to a 
single oriented grating, also connected to a population of inhibitory cells. This model, while 
simple, is still rich enough to make predictions about how the fraction of active excitatory and 
inhibitory cells varies over time, both in the spontaneous state, and in response to optogenetic 
stimulation. Moreover in section VII, we analyze theoretically the properties of the fraction of 
active excitatory and inhibitory neurons as a function of the strength of connectivity, single neuron 
thresholds and nonlinearities, and properties of exogenous inputs. 
 

While we exhibit a critically excitable model that is consistent with the remarkable finding 
that as few as 30 stimulated neurons can elicit large network responses, while 10 cannot, we cannot 
of course claim that no other qualitatively distinct models might also be consistent with the data. 
Such models may include for example non-mean field models with local or otherwise structured 
connectivity; in fact, the regime of connectivity in which our model satisfies the above criteria 
gives one such example of structured versus random connectivity. The main goal of our modeling 
was not to model the V1 recordings in detail, but rather to provide a proof of principle realization 
of a large neural network of 𝑂ሺ𝑁ሻ neurons, in which stimulation of only 𝑂ሺ√𝑁ሻ neurons could 
reliably trigger excitation of a finite fraction of the population, without spontaneous fluctuations 
triggering false positive neural or perceptual events at any appreciable rate.   

 
 But regardless of the particular modeling choices we use to realize such a network,  our 

combined theory and experiment reveals a key concept required of all models in order be consistent 
with the V1 data, namely the notion of critical excitability, in which the stimulation threshold for 
both exciting a large fraction of the network, and triggering perception, is not much higher than 
the size of population activity fluctuations about the spontaneous state. 
 

V. A simple theory of critically excitable neural dynamics in a Poisson model 
  
Consider a population of 𝑁 neurons that, in a spontaneous network state, all fire in a 

Poisson manner at a low spontaneous rate 𝑟. In the context of our work, this population of neurons 
corresponds to a selective neural ensemble of excitatory cells that are similarly tuned to the same 
oriented grating. Let 𝑛 denote the total number of neurons that fire in the entire population within 
a time window Δ. In the spontaneous state, 𝑛 is then a Poisson random variable with mean 𝜇 ൌ
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𝑁𝑟Δ and standard deviation 𝜎 ൌ √𝑁𝑟Δ. For large values of 𝑁𝑟Δ we can approximate 𝑛 as a 
Gaussian random variable with the same mean and standard deviation. Now further suppose the 
neurons are recurrently connected in a way such that if the total number of neurons 𝑛 that fire 
within a time window Δ, either due to spontaneous fluctuations or due to external excitation, 
exceeds a threshold 𝜃, then the network undergoes a global excitation event in which a large 
fraction of the network fires. This implies that if we optogenetically stimulate a number of 𝑁௦ 
neurons within a time window Δ, while the network is in the spontaneous state, we will be able to 
trigger a network excitation event with some probability 𝑃ሺ𝑁௦ሻ. This probability should become 
close to 1 as 𝑁௦ becomes large. An interesting network property is the minimum number of neurons 
we need to stimulate so that we obtain a network excitation event with a high probability, for 
example a probability of 𝑃 ൌ 0.95. We will denote this number of neurons required to obtain an 
excitation event with such high probability by 𝑁௛. Our data suggests the intriguing observation 
that this minimal number 𝑁௛ required for network excitation is much less than the total number of 
neurons 𝑁 in the selective ensemble. 

 
However, we also wish to ensure that the rate of spontaneous network excitation events 𝑟௦ 

due to spontaneous activity remains low. This spontaneous rate is given by 𝑟௦ ൌ 𝑃ሺ0ሻ/Δ where 
𝑃ሺ0ሻ is the probability of global network excitation if 𝑁௦ ൌ 0 cells are optogenetically stimulated. 
The key issue is then whether it is possible to choose biologically plausible parameters so that one 
can stimulate network excitation events with high probability with a very small 𝑁௛ ≪ 𝑁, while 
still ensuring the rate of spontaneous excitation events 𝑟௦ ≪ 1𝐻𝑧 remains very small. To address 
this issue we compute both 𝑟௦ and 𝑁௛ as a function of 𝑁𝑟Δ and the network excitation threshold 𝜃. 
First we note that 𝑃ሺ𝑁௦ሻ is simply the probability that 𝑛 ൅ 𝑁௦ is greater than 𝜃, where 𝑛 is the 
random number of neurons already spontaneously active during the stimulation window. Here we 
are assuming that the 𝑁௦ neurons we are stimulating are not already spontaneously active, which 
is a good assumption when both 𝑛 and 𝑁௦ are much smaller than 𝑁. This assumption is consistent 
with the data and the regime in which we will eventually apply our theory. Thus 𝑃ሺ𝑁௦ሻ is simply 
the probability that a Gaussian random variable with mean 𝑁𝑟Δ ൅ 𝑁௦ and standard deviation √𝑁𝑟Δ 
exceeds the threshold 𝜃. 𝑃ሺ𝑁௦ሻ is given by  

 

 𝑃ሺ𝑁௦ሻ ൌ 𝐻 ቀ𝑧ఏ െ ேೞ

√ே௥୼
ቁ,    (1) 

where 𝑧ఏ ൌ ሺ𝜃 െ 𝑁𝑟Δሻ/√𝑁𝑟Δ is a z-scored version of the threshold for network excitation that 
reflects how many neurons one needs to stimulate to go from the spontaneous mean 𝜇 ൌ 𝑁𝑟Δ to 
the threshold 𝜃, measured as a fraction of the spontaneous standard deviation 𝜎 ൌ √𝑁𝑟Δ. Also 

𝐻ሺ𝑥ሻ ൌ ׬
ஶ

௫
ௗ௭

√ଶగ
𝑒ି௭మ/ଶ is the probability a zero mean unit variance Gaussian variable exceeds 𝑥. 

The function 𝑃ሺ𝑁௦ሻ is a montonically increasing function of 𝑁௦. 
 

From this function, we can obtain 𝑟௦ ൌ 𝐻ሺ𝑧ఏሻ/Δ . And we obtain 𝑁௛ as the solution to 
𝑃ሺ𝑁௛ሻ ൌ 0.95. We denote 𝑥௛ as the solution to 𝐻ሺ𝑥௛ሻ ൌ 0.95, then we obtain 𝑁௛ ൌ √𝑁𝑟Δሺ𝑧ఏ ൅
|𝑥௛|ሻ, where the numerical value of 𝑥௛ is given by 𝑥௛ ൌ െ1.65. These results quantitatively 
capture the tradeoff induced by varying the threshold 𝜃. Increasing 𝜃 also increases the z-scored 
threshold 𝑧ఏ, and thereby decreases the spontaneous rate 𝑟௦ of excitation events, but also increases 
the minimum number of neurons 𝑁௛ needed to reliably trigger a global network excitation event 
with high probability. Conversely, decreasing 𝜃 makes the network more sensitive by reducing 
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𝑁௛, but also increases the rate 𝑟௦ of false positive spontaneous excitation events. However, varying 
𝜃 yields dramatically different effects on 𝑟௦ and 𝑁௛. In particular, increasing 𝜃 (and therefore 
increasing the z-scored threshold 𝑧ఏ) exponentially suppresses 𝑟௦ but only leads to a modest, linear 
increase in 𝑁௛. Therefore by setting a relatively low threshold for excitation so that the z-scored 
threshold 𝑧ఏ is a fixed constant, independent of the network size 𝑁 (i.e. say 5 or 10), we can make 
the spontaneous rate exponentially small in 𝑧ఏ, while still ensuring that the minimum number of 
neurons 𝑁௛ needed to reliably trigger excitation remains proportional to the standard deviation of 
the spontaneous fluctuations, which grows only as the square-root of the tuned-ensemble size 𝑁. 
In essence this corresponds to a situation in which the network ensemble has a low excitation 
threshold that lies just above what spontaneous fluctuations could reliably reach. However, the 
threshold is not so high that a small number of 𝑂ሺ√𝑁ሻ additional stimulated neurons, of size 
proportional to the 𝑂ሺ√𝑁ሻ size of these same spontaneous fluctuations, cannot push the network 
over the threshold for a global excitation event. 

 
We can now employ biologically plausible numbers to test this simple framework. A 

reasonable estimate for the tuned-ensemble size is given by 𝑁 of order of magnitude in the 
thousands. For simplicity we take 𝑁 ൌ 5000. Previous studies of spontaneous activity in mouse 
primary visual cortex suggest a low spontaneous rate of 𝑟 ൌ 0.2𝐻𝑧. We consider a time window 
of Δ ൌ 20𝑚𝑠, proportional to the typical membrane time constant over which neurons can 
integrate spikes. This yields a total population mean spike count of 𝜇 ൌ 𝑁𝑟Δ ൌ 20 and 
spontaneous fluctuations of standard deviation 𝜎 ൌ √𝑁𝑟Δ ൌ 4.47. Now suppose we set a 
threshold 𝜃 corresponding to a z-scored threshold 𝑧ఏ ൌ 5. Then 𝑟௦ ൌ 𝐻ሺ𝑧ఏሻ/Δ ൌ 1.43 ൈ 10ିହ𝐻𝑧. 
With this small rate of spontaneous events, we would observe on average 1 spontaneous network 
excitation event, or false positive percept, every 19 hours. However, we could still reliably trigger 
an global network excitation event by optogenetically stimulating only 𝑁௛ ൌ √𝑁𝑟Δሺ𝑧ఏ ൅ |𝑥௛|ሻ ൌ
4.47 ൈ ሺ5 ൅ 1.65ሻ ൌ 30 neurons, which is much less than the ensemble size of 𝑁 ൌ 5000, and 
similar to what we observe in our data. Thus overall, this analysis provides a simple and 
quantitative framework for thinking about low thresholds for global network excitation or 
perception can be. Furthermore, when combined with our experiments, this framework suggests 
that V1 may have organized its internal connectivity and thresholds so as to be highly sensitive to 
the simultaneous excitation of exceedingly small numbers selectively tuned neurons, without 
suffering from unreasonable rates of false positive spontaneous network excitation events. 
 

VI. A Model of a critically excitable recurrent network 
 

While the above considerations of spontaneous activity suggest thresholds for external 
stimulation to trigger global network excitation or percepts could be as low as of 𝑂ሺ√𝑁ሻ, it does 
not exhibit any neural network capable of achieving this lower bound.  Here, we provide, as a 
proof of principle, one network that can do so. The key idea behind our network model is to employ 
a highly excitable excitatory subnetwork that can itself be bistable, with both a low and a high 
activity state. However, we connect it to an inhibitory network with delayed inhibition, though 
other undiscovered mechanisms might suffice. This sets up an excitable network dynamics in 
which optogenetic stimulation of a subset of excitatory cells can yield the activation of a large 
fraction of the excitatory subnetwork, before the slow inhibition is engaged and brings this activity 
back down. The challenge in the network, as explained in the previous section, is to tune the 
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recurrent excitatory and inhibitory conectivity strength so that small optogenetic perturbations 
would elicit a strong circuit-wide response, while the fluctuations of spontaneous state due to 
spontaneous external inputs would not de-stablize the spontaneous resting state. In the following 
section below, we will explain in more detail how we can anaytically derive recurrent excitatory 
and inhibitory weights to satisfy these objectives.  In this section, we simply present the resultant 
network, so the reader can understand the model without having to read the theory behind its 
derivation.  
 

We consider a simple, standard neural network model of firing-rate neurons previously 
used in many scenarios to analyze neural circuit dynamics (79). We assume two populations of 
such neurons (Fig. S17A): one population of 𝑁 excitatory neurons (denoted by 𝐸) and one 
population of 𝑁 inhibitory neurons (denoted 𝐼). For simplicity, we employ the same population 
size 𝑁 for both the 𝐸 and 𝐼 populations, as we can trade off population size with strength of 
connectivity without significantly affecting the final conclusions derived from our model. The 
excitatory population can be thought of as a single population of V1 excitatory cells all with similar 
preferred tuning to a particular orientation. 

 
In our model, the instantaneous output firing activity 𝑠௜

஺ሺ𝑡ሻ at time 𝑡 of each neuron 𝑖 ൌ
1, … , 𝑁 in population 𝐴 (where 𝐴 ∈ ሼ𝐸, 𝐼ሽ) is given by 

  
 𝑠௜

஺ሺ𝑡ሻ ൌ 𝜙ሺ𝑥௜
஺ሺ𝑡ሻ െ 𝑇஺ሻ. (2) 

 
Here, 𝑥௜

஺ሺ𝑡ሻ is the input to each neuron, 𝑇஺ is the firing threshold for neurons in population 𝐴, and 
𝜙 is a nonnegative sigmoidal transfer function that approximates the relation between the input 
and the output firing rate of the neuron. In particular 𝜙ሺ𝑥ሻ increases monotonically from 0 for 
large negative 𝑥 and rises to 1 for large positive 𝑥 taking the intermediate value 𝜙ሺ𝑥ሻ ൌ 1/2 for 
𝑥 ൌ 0. Thus if the internal input 𝑥௜

஺ሺ𝑡ሻ is far above the threshold 𝑇஺, then the neuron is active with 
𝑠௜

஺ሺ𝑡ሻ close to 1. A temporal average of 𝑠௜
஺ሺ𝑡ሻ then yields the neuron’s firing rate. While our 

conclusions hold for general sigmoidal input-output nonlinearities, we run our simulations with 
the particular form 𝜙ሺ𝑥ሻ ൌ 𝑒௚௫/ሺ1 ൅ 𝑒௚௫ሻ, where g is the gain of non linearity.  
 

In turn, in our model, the input 𝑥௜
஺ሺ𝑡ሻ to each neuron is obtained by a leaky integration of 

activity via  

 𝜏஺
ௗ

ௗ௧
𝑥௜

஺ሺ𝑡ሻ ൌ െ𝑥௜
஺ሺ𝑡ሻ ൅ 𝑢௜

஺ሺ𝑡ሻ ൅ 𝜉௜
஺ሺ𝑡ሻ, (3) 

 
where 𝜏஺ is the integration time constant of neurons in population 𝐴, 𝑢௜

஺ሺ𝑡ሻ is the total summed 
activity of sources both internal and external to the network, and 𝜉௜

஺ is a potential source of 
stochastic noise, which may itself be internal to each neuron or originate from external inputs to 
the network. We assume the mean of 𝜉௜

஺ሺ𝑡ሻ is zero and its variance is 𝜎଴
ଶ. The total summed activity 

𝑢௜
஺ሺ𝑡ሻ is given by 

  
 𝑢௜

஺ሺ𝑡ሻ ൌ ∑௜ 𝑊௜௝
஺ா𝑠௝

ாሺ𝑡ሻ െ ∑௜ 𝑊௜௝
஺ூ𝑠௝

ூሺ𝑡ሻ ൅ 𝐼஺ሺ𝑡ሻ. (4) 
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It consists of three components: (1) a contribution from the excitatory population activity 𝑠௝
ாሺ𝑡ሻ 

weighted by a synaptic connectivity matrix 𝑊௜௝
஺ா from neuron 𝑗 in the 𝐸 population to neuron 𝑖 in 

the 𝐴 population, (2) a contribution from the inhibitory population activity 𝑠௝
ூሺ𝑡ሻ weighted by a 

synaptic connectivity matrix 𝑊௜௝
஺ூ from neuron 𝑗 in the 𝐼 population to neuron 𝑖 in the 𝐴 population, 

and (3) an external input 𝐼஺ that is broadcast to all neurons in population 𝐴. Loosely speaking, one 
could think of the different terms in (4) as different synaptic input currents, and the leaky 
integration in (3) as corresponding to the passive integration of these synaptic inputs by a 
membrane potential like variable 𝑥௜

஺ሺ𝑡ሻ, so 𝜏஺ would roughly correspond to the membrane time 
constant. 
 

We next consider an ensemble of network connectivities that are chosen randomly 
according to the probabilistic rule  

 

 𝑊௜௝
஺஻ ൌ ଵ

௣ே
𝑤஺஻ ൈ ቀ1 with probability 𝑝

0 otherwise
, (5) 

 
where 𝑤஺஻ are all positive O(1) numbers. In principle the connection probability 𝑝 could depend 
on 𝐴 and 𝐵. Without loss of generality, we take the connection probability to be uniform between 
pairs of populations, as changes in connection probability between population pairs can be traded 
off against changes in the strength of nonzero connectivity 𝑤஺஻ between population pairs A and 
B, without altering the main conclusions of our analysis.  In this model, each active presynaptic 

neuron contributes ~ ଵ

௣ே
 to the postsynpatic neuron’s input, and there are pN neurons from each 

population projecting to each neuron on average, yielding a total mean O(1) input current with  a 
magnitude similar to the threshold. Fluctuations due to heterogeneous activity across presynaptic 
neurons contribute only term of order 1/√𝑁. Thus, this network operates in a mean driven regime, 
with fluctuations originating from the external noise term 𝜉ሺ𝑡ሻ.  
 
For our simulations, we have chosen a set of parameters 𝑤஺஻, 𝜎଴ so that the system is in a state of 
critical excitability. Here, the net excitatory synapses are not too strong, and random fluctuations 
due to the noise 𝜎଴ are not amplified through the positive feedback in the network, yielding a stable 
low activity spontaneous state.  However, the feedback is finely tuned so that a small amount of 
excitation on top of the spontaneous activity results in a strong positive feedback that de-stablizes 
the spontaneous state and initiates a global network excitation event amongst the fast excitatory 
cells. The slower inhibitory population follows the excitatory one, and eventually shuts it off, 
generating a transient network excitation. The difference in the inhibitory and excitatory time 
constants, and the relative strengths of the inhibitory and excitatory synapses, combine to 
determine the height and duration of the excitatory peak (here slower and weaker inhibitory 
feedback leads to a stronger and more long-lasting excitatory response).  The amount of noise 𝜎଴ 
is chosen so that the network’s spontanuous activity is similar in magnitude to that observed  in 
the spontaneous acivity of V1 in awake mice. The rest of the parameters are tuned to achieve 
critical excitablity as explained above. A detailed theoretical analysis of this dynamics, and of how 
parameters can be chosen, is given in the following section. Simulation results are pesented in Fig. 
S17B,C, which contains full numerical values for the simulation parameters.  
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VII. Self-consistent mean field analysis of the population dynamics 
 

In the following theoretical analysis of the network model defined in the previous section, we 
consider a simpler form of the activation function, for which neurons are either active, or silent, 
depending on their synaptic input. 

 𝜙ሺ𝑥ሻ ൌ ቀ1 𝑥 ൒ 0
0 𝑥 ൏ 0

. (6) 

 
This function can be considered as a high gain, or large 𝑔 approximation of the sigmoid activation 
function 𝜙ሺ𝑥ሻ ൌ 𝑒௚௫/ሺ1 ൅ 𝑒௚௫ሻ  (Fig. S17D). Nevertheless, all the qualitative results of our 
analysis hold for this more general activation.  Moreover, the gain 𝑔 of the sigmoid can be traded 
off against the strength 𝑤஺஻ of the synaptic weights, to achieve similar network behaviors.   

 
In the limit of large 𝑁, statistical properties of the neural population dynamics in equations 

(2), (3), and (4), converge to deterministic mean quantities that do not depend on the detailed 
realization of the random connectivity in (5). Mean field theory can then be used to analytically 
compute these statistical properties. Two such key properties are the population average activity 
of each population 𝐴 in the network, given by 

  

 
ଵ

ே
∑ே

௜ୀଵ 𝑠௜
஺ሺ𝑡ሻ ൌ 𝑚஺.   (7) 

 
and the heterogeneity, or variance of the population activity around its mean, given by  
 

 
ଵ

ே
∑ே

௜ୀଵ ൫𝑠௜
஺ሺ𝑡ሻ െ 𝑚஺൯

ଶ
ൌ 𝑚஺ሺ1 െ 𝑚஺ሻ. (8) 

 
Because we are focusing our theory on the Heaviside nonlinearity in (6), in which each neuron is 
either active (with 𝑠௜

஺ሺ𝑡ሻ ൌ 1) or inactive (with 𝑠௜
஺ሺ𝑡ሻ ൌ 0), 𝑚஺ is between 0 and 1 and can be 

thought of as the fraction of active neurons in the population at an instant of time. Similarly, the 
variance in (8) can be thought of as the variance of a 0 െ 1 Bernoulli variable with a probability 
𝑚஺ of being active. 
 

Over time, the network dynamics will settle into a stationary state in which the fraction of 
active neurons 𝑚஺ will become independent of time (up to fluctuations that are of order 1/√𝑁). 
This constant value of 𝑚஺ can be computed in mean field theory by demanding a simple self 
consistency condition: the statistics of the inputs across neurons must be consistent with the 
statistics of the output 𝑚஺. However, since the inputs to each neuron are in turn generated by the 
outputs of the neural population, the input statistics are also a function of 𝑚஺. Thus demanding 
self-consistency of the statistics of inputs and outputs of the neural population yields an implicit 
equation whose solution enables us to determine 𝑚஺ and its dependence on all parameters. 

 
To obtain this self consistent equation, we first compute the statistics of the inputs 𝑢௜

஺ 
across neurons 𝑖 in each population 𝐴. The population mean of the synaptic input currents 𝑢௜

஺ can 
be computed by averaging (4) across neurons, yielding 

 
ଵ

ே
∑ே

௜ୀଵ 𝑢௜
஺ ≡ 𝑢஺ ൌ 𝑝𝑁ሺ𝑤஺ா𝑚ா െ 𝑤஺ூ𝑚ூ ൅ 𝑤஺଴𝑚଴ሻ ൌ ଵ

ே
∑ே

௜ୀଵ 𝑥௜
஺.      (9) 
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Moreover, in a stationary state, the population mean of the synaptic currents 𝑢௜

஺ equals the 
population mean of the membrane voltages 𝑥௜

஺ (up to fluctuations that are 𝑂ሺ1/√𝑁ሻ) because we 
are assuming the noise 𝜉௜

஺ in (3) is zero mean. Also, we have parameterized the external input 𝐼஺ 
as  
 

                                                    𝐼஺ ൌ 𝑤஺଴𝑚଴.  (10) 
 
We can think of 𝑚଴ as the fraction of active neurons in an outside population, distinct from either 
the 𝐸 or 𝐼 populations, and this external population provides inputs to each population 𝐴 ∈ ሼ𝐸, 𝐼ሽ 
through mean synaptic connectivity parameter 𝑤஺଴.  
 

Now the actual membrane potential of each individual neuron 𝑥௜
஺ሺ𝑡ሻ will vary across 

neurons 𝑖 at any instant of time 𝑡. The heterogeneity, or variance, in membrane potentials about 
the population mean 𝑢஺ is due to the noise, 𝜉௜

஺ሺ𝑡ሻ in (4), and is given by  
 

 𝜎஺
ଶ ൌ ଵ

ே
∑ே

௜ୀଵ ൫𝑥௜
஺ െ 𝑢஺൯

ଶ
ൌ 𝜎଴

ଶ ൅ 𝑂ሺଵ

ே
ሻ, (11) 

 

Where the extra terms of 𝑂 ቀଵ

ே
ቁ are due to the varance in the recurrent input from the network. 

 
Now equations (9) and (11) describe how the mean 𝑢஺ and variance 𝜎஺

ଶ, respectively, of 
the distribution of membrane voltages 𝑥௜

஺ across neurons 𝑖 in population 𝐴, depend on the fraction 
of active neurons 𝑚ா and 𝑚ூ in the 𝐸 and 𝐼 populations. However, these fractions are in turn 
determined by the distribution of membrane voltages 𝑥௜

஺ across neurons 𝑖, through the single 
neuron nonlinear input-output map in (6). Thus self-consistency imposes additional relations 
between the fraction of active neurons 𝑚஺ and membrane potential statistics 𝑢஺ and 𝜎஺

ଶ given by  
 

 𝑚஺ ൌ ଵ

ே
∑ே

௜ୀଵ 𝑠௜
஺ሺ𝑡ሻ ൌ ଵ

ே
∑ே

௜ୀଵ 𝜙ሺ𝑥௜
஺ሺ𝑡ሻ െ 𝑇஺ሻ. ൌ ׬ 𝑑𝑥 𝒩ሺ𝑥; 𝑢஺, 𝜎஺

ଶሻ𝜙ሺ𝑥 െ 𝑇஺ሻ, (12) 

 

where 𝒩ሺ𝑥; 𝜇, 𝜎ଶሻ ൌ expሺെ ଵ

ଶ
ሺ𝑥 െ 𝜇ሻଶ/2𝜎ଶሻ/√2𝜋𝜎ଶ is the normal distribution with mean 𝜇 and 

variance 𝜎ଶ. In the last step in (12) we have replaced the sum over neurons with an integral over 
a Gaussian distribution of membrane voltages with the appropriate mean and variance. This 
Gaussian distribution is justified by central limit arguments, under the assumption that each neuron 
receives many weakly correlated inputs. A graphic representation of how the distribution of 
membrane voltages and the single neuron nonlinearity conspire in (12) to generate the fraction of 
active neurons is shown in Fig. S17D.  

 
For the step function 𝜙ሺ𝑥ሻ in (6) we can easily perform the integral on the RHS to get  

 𝑚஺ ൌ 𝐻 ቀ்ಲି௨ಲ

ఙబ
ቁ, (13) 

where  

 𝐻ሺ𝑥ሻ ൌ ଵ

√ଶగ
׬

௫

ஶ
𝑑𝑧𝑒ି௭మ/ଶ ൌ ଵ

ଶ
𝑒𝑟𝑓𝑐ሺ𝑥/√2ሻ. (14) 
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Since mean 𝑢஺ and variance 𝜎଴
ଶ of the distribution of membrane voltages are themselves functions 

of 𝑚ா and 𝑚ூ, through (9) and (11), (13) yields a pair of self-consistent equations for 𝑚ா and 𝑚ூ 
which determine the fraction of active neurons in each population in a stationary state. We next 
examine solutions to these equations. 
 
            The motif of strong excitatory positive feedback stabilized by delayed inhibition yields a 
threshold like behavior in which stimulation of a small number of cells above threshold yields a 
large response. A key issue then is, the threshold must be low enough so that the requisite number 
of stimulated cells to yield a large network response is small, as seen in the data, but not so small 
so that spontaneous fluctuations can reliably trigger global, false positive network excitation events 
at appreciable rates. We now examine conditions under which we can generate such a tuned, 
sensitive threshold by tuning network connectivity. 
 
             To allow a strong excitatory response, we assume that the membrane potential of the 
excitatory neurons is faster than the inhibitory neurons, 𝜏ா ൏ 𝜏ூ. To simplify the theoretical 
analysis, we will work in the limit where 𝜏ா ≪ 𝜏ூ. In this limit we can decouple the dynamics of 
the inhibitory and the excitatory populations. Furthermore, the full dynamics of the system is well 
described by the nullclines, where the time derivatives of either the mean excitatory or inhibitory 
activities are zero. We first analyze the excitatory subnetwork at fixed mean external inhibition. 
The mean activity of the excitatory population in a stationary state at a fixed mean inhibitory 
synaptic current 𝐼 is obtained by inserting the above choices into (13):  
 

 𝑚ா ൌ 𝐻 ቀ்ಶାூି௪ಶಶ௠ಶ

ఙబ
ቁ, (15) 

 
The stationary mean firing rates of the excitatory population 𝑚ா are given by the solutions 

of (15), and depend on the amount of inhibition 𝐼 received from the inhibitory population. The 
graphical solutions of (15), for various values of 𝐼 are depicted in Fig. S17E. Interestingly, for a 
fixed threshold 𝑇ா, as 𝐼 varies, the system goes through two dynamical bifurcations. At low values 
of 𝐼 there is a single stationary state with 𝑚ா ൎ 1. This corresponds to a situation in which the 
weak inhibitory input 𝐼 is unable to balance the strong recurrent excitation, which then drives a 
large fraction of the network into a high activity state. 
 

As 𝐼 increases, at some point 𝐼 ൌ 𝐼′, there is a saddle-node bifurcation, where two new 
stationary solutions (in addition to the stable high activity stationary solution) appear at some low 
value of 𝑚ா. One of these new solutions is stable, and the other unstable. As 𝐼 further increases, 
the two new solutions drift apart: the stable one approaches zero, and the unstable one approaches 
the high activity stable point. This intermediate range of inhibition corresponds to an excitatory 
subnetwork that is bistable, with two possible activity states. Which one gets chosen depends on 
the initial fraction 𝑚ா of active neurons. If this fraction is below (above) the level of the single 
unstable fixed point, this fraction will be driven to that of the low (high) activity stable state. The 
distance between the low activity fixed point and the unstable fixed point then constitutes a type 
of excitability threshold. In essence it determines how many excess neurons must fire to push the 
network out of its low activity state and into its high activity state. 
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At some point 𝐼 ൌ 𝐼′′ ൐ 𝐼′, a reverse saddle-node bifurcation takes place, and the low-
activity stationary solution becomes the only stable solution. This corresponds to a situation in 
which the inhibition 𝐼 is so strong that the excitatory subnetwork cannot stably maintain any high 
activity state.  

 
While the above analysis of the excitatory subnetwork was predicated upon the assumption 

that the inhibitory subnetwork had a fixed constant level of population activity 𝑚ூ, thereby 
providing a fixed mean inhibitory current 𝐼 to all neurons in the excitatory subnetwork, in reality 
the fraction of active excitatory (𝑚ா) and inhibitory (𝑚ூ) cells can jointly co-vary. We can use this 
degree of freedom to choose all the connectivity parameters within and between the 𝐸 and 𝐼 
populations so that the joint mean field fixed point (𝑚ா, 𝑚ூ) yields a particular synaptic current 
input 𝐼 onto the excitatory subnetwork. We can tune connectivity parameters so that this net 
inhibition 𝐼 is just above the first bifurcation point 𝐼′, so that the low activity state and the unstable 
fixed point in 𝑚ா are close to each other. This corresponds to a low threshold for excess excitation 
in the excitatory subnetwork to run-away to the high activity state, only to be brought back down 
when the delayed inhibition is engaged. However, we must still tune connectivity parameters so 
that 𝐼 is sufficiently above 𝐼′ that spontaneous fluctuations do not cause this transient runaway of 
the excitatory subnetwork. 

 
More quantitatively, the inhibitory population will flow toward the stable stationary states 

given by the solutions of  
 

 𝑚ூ ൌ 𝐻 ቀ்಺ା௪಺಺௠಺ି୵ಶ಺௠∗
ಶ

ఙబ
ቁ, (16) 

 
where 𝑚∗

ா is one of the stable stationary solutions for the excitatory population in (15) with the 
relation between 𝑚ூ and 𝐼 given by the inhibitory component of the synaptic current in (9). We 
note that the model does not require recurrent inhibitory connections, and we can set 𝑤ூூ ൌ 0 or 
any number. A schematic illustration of the dynamical landscape set by the two nullclines 
associated with the joint equations (15) and (16) is depicted in Fig. S17F. 
 

Note, that in order for the network to exhibit critical excitatory behavior, with slow 
relaxation back to resting state, the synaptic weights must obey some relations. In particular, there 
are two conditions that must be met. The first requirement corresponds to an inequality that ensures 
that the inhibitory synaptic current onto the excitatory subnetwork is strong enough to bring the 
excitatory subnetwork back to the low activity state if it starts in the high activity state. This 
requirement can be written as  

 
 wாூ𝑚∗

ூ ൐ 𝐼′′, (17) 
 
where 𝑚∗

ூ  is the high activity stable solution to (16). The value 𝐼′′ is itself a function of 𝑤ாா and 
𝜎଴. This is a weak constraint, and does not require fine tuning of the synaptc weights. 
 

The second requirement is a tight requirement related to the fine tuning of the threshold for 
excitability. It requires that at the stationary state we have  
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 𝑤ாூ𝑚∗
ூ ൌ 𝐼′ ൅ 𝜖, (18) 

 
where 𝐼′ depends on 𝑤ாா and 𝜎଴, and 𝜖 ≪ 1 has the same units as the threshold. The smaller 𝜖 is, 
the smaller the stability region of the low activity stable state, and the smaller the number of excess 
excitatory neurons needed to elicit a global network response. However, if it is set too small, then 
the network will suffer from high rate of spontaneous false positive excitation events. 
 

Now, given that fluctuations in the spontaneous mean activity 𝑚ா are as small as 
𝑂ሺ1/√𝑁ሻ, we can set 𝜖 to be as small as 𝑂ሺ1/√𝑁ሻ without triggering an appreciable rate of false 
positive global network excitation driven by spontaneous activity. This in turn implies that the 
distance from the low activity stable fixed point to the unstable fixed point, in the excitatory 
subnetwork, measured in terms of fraction of active neurons is 𝑂ሺ1/√𝑁ሻ. This small distance 
means that, in terms of the total number of neurons, if 𝑂ሺ√𝑁ሻ of them have excess excitation, for 
example due to direct optogenetic stimulation, this tiny subpopulation, which is a vanishing 
fraction of the total population size 𝑁 as 𝑁 gets large, can elicit a large network response in which 
a finite fraction of neurons fire.  

 
Thus this finely-tuned critically exitable  model provides a proof of principle realization of 

a neural network that can be highly sensitive to external inputs (achieving the lower bound of 
sensitivity to  stimulation of  only 𝑂ሺ√𝑁ሻ neurons, as laid out in Sec. VI. ), while still maintaining 
low levels of spontaenous activity without appreciable false positive global network excitation 
events.  
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Fig. S1. Structure-based sequence alignment of natural channelrhodopsin genes. The 
sequences are ChRmine (GenBank ID: TBD), GtACR1 (GenBank ID: AKN63094.1), GtACR2 
(AKN63095.1), CrChR1 (GenBank ID: 15811379), CrChR2 (GenBank ID: 158280944), VChR1 
(UniProtKB ID: B4Y103), and Chrimson (Genbank ID: AHH02126.1). The sequence alignment 
was created using PROMALS3D and ESPript3, followed by manual re-alignment of TM1s, which 
were apparently misaligned. Predicted transmembrane domains are shown as coils. Structurally 
important residues are highlighted with red boxes and white font color, with other residues 
showing high sequence homology highlighted with blue boxes and red font color.    
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Fig. S2. Electrophysiological and structural characterization of ChRmine. (A) Top - example 
traces showing channelrhodopsin recovery from desensitization after 1 s, 10 s and 30 s dark 
recovery times. Peak photocurrent magnitudes before (Δ I1, Ipeak1 – Istationary1) and after (Δ I2, Ipeak2 
– Istationary2) the recovery time interval (Δ t), and 1 second of light illumination periods (585 nm, 
0.7 mW/mm2, orange lines) are shown in the scheme. Bottom - time-dependent recovery plotted 
against the recovery time interval (left). Note that 50% recovery time constant of ChRmine was 
significantly faster than that of CsChrimson or bReaChES. (right). (means ± s.e.m. n = 5 – 6 cells. 
* p < 0.05, *** p < 0.001 in one-way ANOVA with Dunnett’s test). Vertical scale bars = 1 nA 
current amplitude, horizontal scale bar = 1 second. (B) Top - examples traces showing 
channelrhodopsin photocurrents across different light intensities. Photocurrents were measured 
with 585 nm, 1 sec light stimulation at power densities of (in mW/mm2) 0.014, 0.08, 0.28, 0.7, 1.4, 
2.8 and 7. Bottom - normalized photocurrents plotted against the light intensities (left). Note that 
Effective Power Density for 50% maximal photocurrent (EPD50) for ChRmine is significantly 
lower than that of CsChrimson (means ± s.e.m. n = 5 – 6 cells. * p < 0.05 in one-way ANOVA 
with Dunnett’s test). (C) Red-shifted channelrhodopsin spike fidelity. All spiking protocols used 
a train for 2 seconds and 0.7 mW/mm2 light power was used for illumination. For light width, 1 
ms for ChRmine and 5 ms for bReaChES and CsChrimson were used, as determined from the light 
sensitivity measurement from Fig. 1. (means ± s.e.m. n = 5 -7 cells, ** p < 0.01 in one-way 
ANOVA with Tukey’s test). (D) Left - Trial-averaged Ca2+ response peak amplitude to ChRmine 
(red), CsChrimson (orange) and bReaChES (green) after pulses of 2, 5, 25, 100, 400, or 800 ms in 
response to 635 nm light. Right – Summary of rise and decay kinetics of Ca2+ transients in response 
to 635 nm, 800 ms light pulses.  bReaChES data not plotted in kinetics since the amplitude is too 
small for precise analysis (mean ± s.e.m, n = 5-7 cells, ** p < 0.01, *** p < 0.001; one-way 
ANOVA with Tukey correction). (E) Left- representative Ca2+ imaging traces response to 
indicated pHext (7.0, 7.2, 7.4) at 585 nm light pulse, under the same experimental setup as indicated 
in (Fig. 1H). Right - trial-averaged Ca2+ response kinetics to ChRmine (red) and CsChrimson 
(orange) at indicated pHs (mean ± s.e.m of n = 5-7 cells. * p < 0.05, ** p < 0.01, *** p < 0.001 in 
two-tailed t-test). (F) Surface electrostatic potentials of the crystal structure of C1C2 (left) and 
homology model of ChRmine (right), built using RosettaCM (80), with C1C2 structure as a 
template. The surface is colored on the basis of electrostatic potential contoured from -15 kT (red) 
to +15 kT (blue). White denotes 0 kT. Surface potential was calculated using PDB2PQR (81) for 
both GtACR1 and C1C2 models. Note that homology model-based comparison indicates more 
electronegative surface potential of ChRmine than that of C1C2. 
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Figure S3. Comparison of ChRmine and ChroME under identical experimental conditions.  
(A) Representative voltage-clamp traces of ChRmine and ChroME-expressing neurons 
responding to 1 s blue (438 nm, 0.5 mW/mm2), orange (585 nm , 0.5 mW/mm2) and red light 
(650 nm, 0.5 mW/mm2). (B) Action spectra of ChRmine and ChroME in cultured neurons using 
peak currents after 1 s stim (0.5 mW/mm2) (mean  s.e.m. n = 6 cells, * p < 0.05, ** p < 0.01, 
two-tailed t-test). (C) Left - probability of evoking spikes at different intensities of light at 5 Hz 
for 2 s, pulse width 5 ms. Right - probability of evoking spikes for different light pulse widths 
delivered at 5 Hz for 2 s and 0.5 mW/mm2. (mean  s.e.m. n = 4 cells). (D) Left - current-clamp 
traces; ChroME reliably induced spikes with cyan light (470 nm, 5 ms pulse width, 5 Hz pulses) 
but not with orange light (585 nm, 5 ms, pulse width, 5 Hz pulses). Right - summary of ChroME 
spike fidelity in response to orange or blue light (mean  s.e.m., n = 4 cells). (E) Voltage clamp 
traces during 40 mW and 60 mW imaging exposure (right) (λ = 920 nm, 2.8 Hz frame-rate). (F) 
Summary of experiments in (E) (mean  s.e.m. n = 5 cells for ChroME and 4 for ChRmine). 
Note that depolarizations in ChroME and ChRmine are not significantly different across all 
powers (two-tailed t-test, p = 0.757).  
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Fig. S4. Theoretical and operational properties of the microscope. (A) Theoretical multiphoton 
excitation efficiency curves for two alternative microscope objectives. The Olympus 10x/0.6NA 
multiphoton objective affords a large transverse field-of-view (1.02 mm x 1.02 mm) at a 
theoretically lower excitation NA (0.39). White contour lines document the graded multi-photon 
excitation efficiency as a function of field position. (B) The Nikon 16x/0.8NA multiphoton 
objective compromises on the transverse field size (0.71mm x 0.71mm) in order to realize a more 
precise theoretical point spread function (PSF) (NA = 0.56) (bottom). (C) 3D imaging with 
optogenetic photoexcitation is realized by use of a piezo-coupled microscope objective for imaging 
while the SLM volumetrically addresses cells for optogenetic stimulation. During each frame 
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acquisition (frames 1 to M), all SLMs are able to volumetrically address the sample across N axial 
image planes (i1 to iN). Because of the piezo movement, the constellation of optogenetic targets 
will be axially offset during each frame acquisition, requiring a compensating quadratic phase 
offset to the SLM phase masks for each axial position. (D) Representative adaptive optical 
correction to the SLM/optogenetic stimulation path as represented by Zernike polynomials. 
Application of the superposition of these polynomials as a compensatory phase mask results in the 
optimization of the optical PSF. The most significant aberrations are associated with astigmatism 
and possibly compensating for deformations across the face of the large-format SLMs (66). (E) 
The maximum refresh rate of the large-format SLM is benchmarked at optimum diffraction 
efficiency (and slow refresh rate) (red) in comparison to the operation using software overdrive at 
500Hz (blue) by placing a photodiode at the target A position. Alternating between holograms 
which alternatively place a spot at position A and alternative positions (e.g. position B) reveals 
that 85% of the optimum performance can be realized at a 500Hz switching rate. Note the 
measurement is at λ=1064nm, in the wavelength range where we plan to operate, since LC 
response is often more than 3x faster at visible wavelengths (82). (F) A diagrammatic description 
of the temporal interleaving sequence using multiple SLMs. As each target/group hologram is 
exposed (e.g. solid bar SLM1 / target 1A @ t = 0ms), the alternate SLM is already constructing 
the next hologram (e.g. dashed-line SLM2 / target 2A @ t = 0ms). The maximum temporal 
resolution of a single SLM is limited by the sum of the SLM rise time (PSLM) and optogenetic 
exposure time (d). (G) The MultiSLM with ChRmine technology allows significantly faster 
ensemble stimulation paradigms than previous studies. For example, a single hologram must be 
maintained for 5 ms duration to drive a spike in (26). We report exposures driving spikes in cell 
ensembles (i.e. e1) at 0.21ms durations with spiral-scanning galvos across the cell membrane. (H) 
Exploiting the fast optogenetic exposure and SLM dynamics, as well as temporal interleaving of 
multiple SLMs, results in a lower practical limit of 1.79ms rise times and 0.21ms exposures for a 
1 kHz temporal resolution spike train for neuron ensembles e1 - eN. (I) For a multiple SLM system, 
the system may run in a burst-mode where the interval between two successive ensembles, 
addressed by SLM1 and SLM2 respectively, can be continuously variable, down to the switching 
time of the Pockels cell (< 50µs). (J) Increasing the spiral size (15μm diameter, excluding the 
central ~4µm) correspondingly increased the necessary exposure time. Note all behavior 
optogenetic stimulation protocols in Fig. 3-6 were operated using this condition with a switching 
time of 80µs. 
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Fig. S5. Optogenetic targeting and ‘off-target’ properties. (A) Pixel-wise ΔF/F across the entire 
acquisition image during the simultaneous optogenetic excitation of 25 targets using protocol in 
panel Fig. S4G. Targets are denoted as red circles which are not to scale with the actual target 
spiral. Note that the colormap has a max. ΔF/F of 100% to aid in visualization of weaker 
modulations associated with putative ‘off-target’ neurons which may or may not be present across 
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the sample. Average of 8 trials. Two additional examples acquired under exact same conditions 
are provided as (B-C). (D) Visualization of putative ‘off-target’ neurons from (A) with ROIs 
provided of estimated neurons from CNMF. (E) ΔF/F traces from the binary ROIs identified in 
(D) showing representative target (red) and neighboring (black) neuron activity across the 
stimulation epoch. Average of 8 trials, baseline is 1 sec. of data prior to stimulation. (F) 
Quantification of the average ΔF/F from neurons located in 10μm annuli as a function of distance 
from a target in (A-C), scaled relative to the average ΔF/F of targets which experienced successful 
stimulation (70/75 targets, one-sided t-test of target ROI during stimulation epoch vs. during 
control trials, p ≤ 0.01). Exclusion radius of all ROIs used in neural analyses of behavioral data is 
20µm. Error bars are s.e.m. (G-H) Pixel-wise ΔF/F across the entire acquisition image during the 
simultaneous optogenetic excitation of 50 targets using protocol in Fig. S4G. (I) Pixel-wise ΔF/F 
across the entire acquisition image during the sequential optogenetic excitation of 160 targets using 
protocol in Fig. S4H (average of 27 targets per 1ms exposure). (J) 160 target cells are identified 
as successful optogenetic stimulations (green) or unsuccessful (red) and used to map the success 
rate across the imaging field-of-view in Fig. 2C. (K-L) Visualization  and ΔF/F traces of putative 
‘off-target’ neurons from (I) with ROIs provided of estimated neurons from CNMF.   
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Fig. S6. Spatial precision of the MultiSLM. (A) Empirical, axial optical PSF measurements of 
both the optical imaging beam (FWHM = 9.6µm, NAest = 0.64) and an optogenetic stimulation 
beam (FWHM = 21.4µm, NAest = 0.48) using the Nikon 16x/0.8 NA microscope objective in the 
MultiSLM microscope. Data collected by translating a ~3µm thick fluorescent slide through a 
focused beam. Best-fit to the empirical measurements was calculated using the square of a 
Gaussian function. (B) Empirical optical PSF measurements of the MultiSLM optogenetic beam 
taken at λ=1035nm, using 1μm fluorescent beads. (C) The physiological response, as characterized 
by the percentage change in GCaMP6m fluorescence, when using a 15µm diameter spiral for 
optogenetic photostimulation (9-spirals, 0.63ms duration, as used in behavior experiments; n = 10 
neurons in vivo, mean response across 5 trials per stimulation location—the spiral was 
intentionally shifted from center of each cell by the defined lateral offset—randomized and 
interleaved, normalized to maximum for each cell, fit with a single gaussian function, error bars 
are s.e.m.). (D) The red acquisition channel of a raster-scanned image using the MultiSLM 
optogenetic beam and scanning with the optogenetic galvo pair. Excited fluorescence from data 
acquisition of an in vivo preparation following the same protocols as the behavior cohort is 
suspected to be lipofuscin granules of ~7-8μm diameter. (E) The simultaneous green acquisition 
channel from raster-scanning the beam in (D). Excited fluorescence is GCaMP6m. (F) Putative 
granules from (D) were manually identified (N=20) in Layer 2/3 of cortex and Gaussian envelopes 
were fitted to the axial intensity profiles. The FWHM of the fits are reported as the histogram. (G) 
Putative granules from (D) were manually identified (N=20) in Layer 5 of cortex and the associated 
FWHM fits are reported in the histogram. (H) Neurons from (E) were manually identified (N=20) 
in Layer 2/3 of cortex and Gaussian envelopes were fitted to the axial intensity profiles. The 
FWHM of the fits are reported as the histogram. (I) Neurons from (E) were manually identified 
(N=30) in Layer 5 of cortex and Gaussian envelopes were fitted to axial intensity profiles. (J) All-
optical physiological response of Layer 2/3 neurons (N=7), as measured by the relative change in 
GCaMP6m fluorescence, as the optogenetic ensemble target pattern is axially displaced, dz. Error 
bars are s.e.m. (K) All-optical physiological response of Layer 5 neurons (N=7), as measured by 
the relative change in GCaMP6m fluorescence, as the optogenetic ensemble target pattern is 
axially displaced, dz. Error bars are s.e.m. (L) Optogenetic excitation of manually-selected targets 
with no known functional association, segregated by anatomical layer (L2/3 only, L4 only, L5 
only, L2/3+L5), demonstrate positively responding neurons localized only in the anatomical layers 
associated with viral expression under the AAV8-CaMKIIa-GCaMP6m-p2a-ChRmine-TS-Kv2.1-
HA construct. Averaged and normalized ΔF/F results from N=5 randomized trials of the four 
unique target ensembles in each of the four cases are presented in the lower row. The imaging 
conditions match those reported in our naïve and behavior protocols. Note that since little 
expression was localized to L4, the targets for that stimulation condition are not localized to cell 
bodies with high confidence. (M) To measure to axial localization of the photostimulation 
response across the entire sampled volume, fluorescence modulations where quantified from every 
exclusive set of 8x8 pixel ROIs throughout the image acquisition volume. They are then organized 
according to sample depth during image acquisition and then aligned by the conditions in (L). 
Optogenetic modulation is measured by the d’ (the difference in the mean number of counts 
acquired during photostimulation versus baseline, divided by the average of the standard deviation 
in counts of both time epochs) of each 8x8 pixel ROI. Supporting evidence that the optogenetic 
targeting is axially/anatomically localized is seen in the 1st, 3rd, and 4th columns where significant 
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responses are isolated to L2/3, L5 and L2/3+L5, respectively. Conversely, when the same amount 
of stimulation light is delivered to L4, no significant modulation is seen in layers above or below.  
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Fig. S7. Optomechanics for MultiSLM. The MultiSLM microscope utilizes a novel beam folding 
approach and 3D printed optomechanics to minimize size and promote mechanical stability. (A) 
A custom 36º-54º-90º prism was manufactured (Edmund Optics) of fused silica and anti-reflection 
(AR) coated on two faces to minimize air-to-glass interface reflections. (B) A pair of prisms, 
separated by an air gap, are used to redirect a P-polarized input beam to an SLM and to have the 
SLM output beam exit at a 90˚ angle, with minimal optical loss (97% throughput measured using 
a mirror as a proxy for SLM backplane). Note the three specified angles (θ1, θ2 and θ3) are all 
related to the angle of the beam when propagating from the fused silica into the associated air 
interface. (C) The specific angles of the prism were chosen to allow beam propagation through the 
turning prism assembly which is aligned to the peak and minimum Fresnel reflection coefficients 
(|r|2 = 0 is total transmission, |r|2 = 1 is total reflection) in order to allow maximum photon 
efficiency. The specific angles highlighted with a gray-scaled bar are associated with the angles 
identified in (B). Rfs-air is the theoretical scalar coefficient of reflected intensity (e.g., the reflection 
coefficient of the first interface θ1, from the fused silica to the air-gap, is 1 – indicating total 
reflection). (D) Two turning optic assemblies are utilized, along with beam polarization optics, to 
co-linearly combine the SLM outputs from a pair of input beams. Half-waveplates are utilized to 
control the light polarization for maximum transmission through the system. (E) Pulse propagation 
through di-electric material (e.g. glass) can induce a chromatic phase delay which leads to pulse 
broadening, and therefore less efficient multi-photon excitation. Theoretical modeling of femto-
second pulses from the light source as it propagates through these turning prisms (118.8 mm of 
fused silica, blue curve) indicates that while sub-100 fs pulses would experience significant pulse 
broadening, minimal pulse broadening is expected using the current optogenetic stimulation light 
source (nominally between 250 and 300 fs) (83). (F) 3D printed optomechanics are used to mount 
and align the MultiSLM optogenetic path to the commercial microscope. Two distinct 
optomechanic groups represent the complete set of 3D fabricated parts - the SLM beam 
combination module and the SLM beam relay module. The SLM beam combination module 
provides convenient reference points to align and secure the SLMs as well as the beam turning 
prisms and polarization optics. The MacroSLMs were designed to use the mechanical face of the 
external SLM mount as a flush and parallel mount to the combination module using 4-40# cap 
screws. The prism pair are kept parallel to each other and normal to the incident beam by reference 
groves in the seating of the 3D printed module. The SLM combination module mounts to the beam 
relay module by use of cap screws and/or Thorlabs cage railings in order to provide a reliable 
alignment. Within the beam relay module, the optical path is folded by use of 50 mm leg right-
angle mirrors and 100 mm circular mirrors to ensure that zero beam vignetting occurs on this 
smaller footprint. Each 50 mm leg right-angle mirror has guide-points along each leg for precise 
placement on the 3D printed footings which directly bolt to a 12”x24” Thorlabs breadboard using 
the 1” hole-spacing. The custom beam relay lenses were aligned and mounted in custom 3D printed 
optomechanics within the module. By referencing to the 1” grid system of the breadboard, and 
keyed to other 3D printed components on the board, the relative positions of the two lenses could 
be readily optimized to ensure precise alignment and telecentricity. Note, both the relay lenses 
could be rapidly removed from the system to test or verify alignment using these custom opto-
mechanics.  
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Fig. S8. Removal of photostimulation artifact in imaging channel of MultiSLM. (A) Targeted 
excitation of the opsin-fluorophore expressing neurons at λ = 1035nm results in a spatial block of 
pixels with increased background signal from co-excitation of the GCaMP6m reporter (here a bulk 
fluorescent slab serves as a phantom proxy), where the width of the artifact block is directly related 
to the excitation duration width. Note that optogenetic stimulation of each ensemble will result in 
an individual artifact band of width proportional to the ratio of the photostimulation duration (here 
0.63 ms) to the imaging line-scan time (here, typical is 64.9 µs). Shown here are two ensemble 
stim artifacts, e1 (SLM1) and e2 (SLM2), analogous to Fig. S4J and the protocol applied in vivo. 
(B) Random offsets of the trial time (τ), where 𝝉 ∈ ሼെ𝐝, 𝟎, ൅𝐝ሽ and 𝐝 is the optogenetic exposure 
duration, diversifies which image pixels which will have a photostimulation artifact. 
Representative recording of the optogenetic stimulation onset and frame start (where ∆𝐭𝐢𝐦𝐚𝐠𝐞 is 
frame acquisition time) which is used to track the relative timing and therefore the pixels which 
are contaminated by the artifact. (C) Trial mean intensity image taken from 10 trials of 30 Hz 
stimulation with trial-to-trial temporal shifting (dithering) of the onset (𝝉). The randomized onset 
shift broadens the artifact on average but the diversity provides artifact-free access to every pixel 
for at least 1/3 of trials. (D) Result from artifact removal in the trial mean intensity image by 
omitting all pixels with artifact from the average on a per trial basis. (E) Comparison of this artifact 
removal in vivo. Top: Mean intensity image (one time-point averaged from 10 trials) when 
including the temporally shifted photostimulation artifact. Bottom: Mean intensity image (same 
time-point at above) when omitting the pixels associated with photostimulation artifact on a per 
trial basis. Areas representative of the increased contrast as a result of removing the additive 
photostimulation artifact are highlighted (cyan and red arrows). Note a Kalman filter (gain = 0.8, 
noise = 0.05) was applied to the time-series data after the artifact removal. All stimulation artifact 
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fluorescence was completely removed from analyses of visual experiments by excluding artifact-
contaminated pixels (Materials and Methods).  
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Fig. S9. Targeting the same ensembles across weeks with cellular resolution. (A,B) The same 
population of neurons is revisited for many weeks (29 sessions spanning 54 days) by precisely 
aligning the MultiSLM imaging/optogenetic volumetric stimulation systems to the original field 
of view (A, full optical slice in layer 5 from the live imaging volume, scale bar 50 μm, white arrows 
indicate examples of correspondence between the images; B, region of interest in layer 5 with 4 
labeled cell bodies, corresponding to white box in A; overlay: green, original imaging session, 
magenta, each subsequent session of imaging and optogenetics). (C,D) Alignment is maintained 
online during the experiment using a real-time cross-correlation algorithm to compensate for the 
shift between the instantaneous image and the reference image (from day 0) for each slice through 
the volume (Materials and Methods). (C) Shift relative to the reference image over the duration 
of the experiment (dx, blue; dy, red; median data are plotted across 9 mice, optical z slices and 
sessions). (D) Shifts relative to reference image for all images (dx, blue, dy, red; 95% of all shifts 
were < 8.34 μm (dx) and < 4.17 μm (dy); ~2.5 million image shifts from reference across 9 mice 
from all optical z slices and sessions). 
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Fig. S10. Parameter estimation for classifier analysis of behaviorally naïve mice. (A) Bar 
graph indicating the fraction of all imaged neurons that were used for classifier and neural 
trajectory analyses (neurons used are termed “unstimulated neurons”). (B) Plot indicating 
cumulative variance explained by increasing numbers of Principal Components (PCs) as applied 
to the unstimulated neuronal traces during visual stimulus presentation. Results shown for four 
mice. Horizontal red line is at 90%. The vertical red line indicates that five PCs are necessary to 
explain at least 90% of the variance in all four mice. (C) The fraction of optogenetically stimulated 
tuned (left) and random (right) neurons that were significantly modulated by light is shown for n 
= 4 naïve mice using 60 stimulation trials/neuron (using conservative metrics; see Materials and 
Methods). A paired t-test pooling across mice revealed no significant difference between these 
two distributions (p = 0.48). (D, F, H, J) Classifier performance shown for four behaviorally naïve 
mice as a function of the number of neurons with classifier regression weights equal to zero 
increases (which increases as a function of the parameter 1/λ). A constant value (1/λ = 0.5) was 
used across all four mice. We found that this value approximately minimized each model’s 
prediction error on held-out test data (that was not used for training). (E, G, I, K) Spatial map of 
all ROIs extracted across six cortical depths shown for four naïve mice. Black dots (targets) were 
excited by 2P illumination in at least one experimental condition. Excluded ROIs (not shown but 
counted in Panel A) were within 20 microns of a target ROI at some depth or were contaminated 
by a 2P-induced stimulus fluorescence artifact and were excluded from the classifier analysis. 
Remaining ROIs (colors) were used for classifier analysis. Right histograms show weight values 
for ROIs that had weights > 10% of the maximum weight obtained by any ROI. Scale bar is 100 
µm.  
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Fig. S11. Neural selectivity of additional behaviorally naïve mice. Each row shows the trial-
averaged fluorescence response of a neuron during the 0˚ visual stimulus minus its response during 
the 90˚ visual stimulus (or matched optogenetic stimulus) for all neurons with large classifier 
weights (defined as abs(weight) > 99th percentile). This analysis is shown here for three naïve mice 
not shown in the main text. Dots on the left-hand side of each row indicate the classifier weight of 
each neuron. Blue indicates neural responses preferential to the 0˚ condition, red responses were 
stronger for the 90˚ condition. 
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Fig. S12. Parameter estimation for classifier analysis and tuned visual network recruitment 
in behaviorally trained mice. (A, left) Among the non-targeted cells in naïve mice, both iso-
tuned and orthogonally-tuned neurons are secondarily recruited during tuned ensemble 
optogenetic stimulation, with a modest preference for iso-tuned in the absence of visual stimuli, (p 
< 0.05, χ² two tailed test). Data are pooled across sessions and mice for bars and statistics (n = 25 
sessions in 5 mice; co-active neurons are found by two-tailed Wilcoxon signed-rank tests, p < 0.05, 
sample window vs. baseline, Materials and Methods). (A, right) Recruitment of iso-tuned 
populations is enhanced with training on the visual discrimination task (p < 0.05, χ² two tailed test, 
trained vs. naïve cohorts). Data for each mouse in each cohort are shown as shaded or color dots 
corresponding to stratified Cochran-Mantel-Haenszel (CMH) tests controlling for mouse identity 
(Materials and Methods, see legends: NM is Naïve Mouse, M corresponds to a trained mouse 
consistent with main figures and numbering throughout this figure). (B) Bar graph indicating the 
fraction of all imaged neurons that were used for classifier and neural trajectory analyses (neurons 
used are termed “unstimulated neurons”). The number of unstimulated neurons was 929 ± 250 
[mean ± SD], or 21 ± 5% of all neurons in each of the 5 mice in this cohort. (C) Plot indicating 
cumulative variance explained by increasing numbers of Principal Components (PCs) as applied 
to the unstimulated neuronal traces during visual stimulus presentation. Results shown for five 
trained mice. Horizontal red line is at 90%. The vertical red line indicates that five PCs are 
necessary to explain at least 90% of the variance in all five mice. (D) The fraction of 
optogenetically stimulated tuned (left) and random (right) neurons that were significantly 
modulated by light is shown for n = 3 trained mice that had at least 40 stimulation trials/neuron 
(using conservative metrics; line color corresponds legend in (A); see Materials and Methods). 
A paired t-test revealed that a higher fraction of neurons within tuned ensembles were recruited by 
optogenetic stimulation than with random ensembles (Fig. S10D, p < 0.001, paired t-test, n = 3 
mice). The remaining two mice in the trained mouse cohort had insufficient random-only 
stimulation data (i.e. the random condition was not run on enough days) to make this comparison. 
(E, G, I, K, M) Classifier performance shown for five trained mice as a function of the number of 
neurons with classifier regression weights equal to zero increases (which increases as a function 
of the parameter 1/λ). A constant value (1/λ = 0.5) was used across all five mice. We found that 
this value approximately minimized each model’s prediction error on held-out test data (that was 
not used for training).  (F, H, J, L, N) Spatial map of all ROIs extracted across six cortical depths 
shown for five mice. Black dots (targets) were excited by 2P illumination in at least one 
experimental condition. Excluded ROIs (not shown but counted in panel (A)) were within 20 
microns of a target ROI at some depth or were contaminated by a 2P-induced stimulus fluorescence 
artifact and were excluded from the classifier analysis. Remaining ROIs (colors) were used for 
classifier analysis. Right histograms show weight values for ROIs that had weights > 10% of the 
maximum weight obtained by any ROI. Scale bar is 100 µm.  
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Fig. S13. Neural selectivity of additional behaviorally trained mice. Each row shows the trial-
averaged fluorescence response of a neuron during the 0˚ visual stimulus minus its response during 
the 90˚ visual stimulus (or matched optogenetic stimulus) for all neurons with large classifier 
weights (defined as abs(weight) > 95th percentile). This analysis is shown here for three trained 
mice not shown in the main text. Dots on the left-hand side of each row indicate the classifier 
weight of each neuron. Blue indicates neural responses preferential to the 0˚ condition; red 
responses were stronger for the 90˚ condition. 
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Fig. S14. Visually evoked population activity is more similar to that evoked by stimulation 
of tuned ensembles than by random stimulation. (A-E) Neural trajectories were computed 
individually for each experimental condition on each experimental day. The basis vectors were 
computed for each mouse with the visual only data, using either Principal Components Analysis 
(PCA, left column) or Partial Least Squares Regression (PLS, right column). Light blue trajectories 
represent data obtained during target conditions and light red trajectories represent distractor 
conditions. Dark blue and red trajectories denote target or distractor conditions where the mouse 
performed with mean performance less than 50% (meaning fewer than half of the trials on that 
condition and day elicited the correct behavioral response). Each trajectory is composed of neurons 
that were never optogenetically stimulated and that lie at least 20 microns away from any 
stimulated neuron. Principal Components (PC) were computed using visual-only data. Black dots 
represent the start of each trajectory. Red and blue dots mark the first frame following visual or 
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optogenetic stimulus onset and are superimposed onto each trajectory. For Mouse 3 and Mouse 4, 
all but the tuned partial-ensemble panels were shown in Fig. 5. They are reproduced here for 
completeness. If motor behavior plays a role in the shape of these neural trajectories, it would be 
expected that in the case of the mouse making a large number of behavioral errors, those 
trajectories would look distinct from trajectories constructed from data where high behavioral 
performance was observed. Instead we see that the highlighted red and blue trajectories (where 
mean performance was < 50%) look qualitatively indistinguishable from other red and blue 
trajectories from conditions where few errors were observed.  
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Fig. S15. Selective laminar recruitment and excitation event threshold visualized for five 
individual mice. (A) Stimulation of full tuned ensembles involving both layers 2/3 and 5 
preferentially recruited iso-tuned neurons in both layer 2/3 and layer 5 (p < 0.0001, χ² two tailed 
test, iso vs. ortho in each layer; co-active neurons are found by two-tailed Wilcoxon signed-rank 
tests, p < 0.01, sample window vs. baseline, Materials and Methods). A greater proportion of 
layer 5 iso-tuned neurons was recruited compared to layer 2/3 (p < 0.0001, χ² two tailed test, n = 
58 experiments in 5 mice). Data were pooled across sessions and mice for each colored bar and 
reported with Pearson’s χ2 square test results; pooled data across sessions for each mouse shown 
as colored dots (see legend, per Figs. 4H, 5D, 6A; Materials and Methods: stratified CMH tests 
controlling for mouse identity). **p < 0.01, ****p < 0.0001 throughout. (B) Data from Fig 6B,D 
showing direct comparison of iso-tuned recruitment within each stimulated layer. Stimulation of 
layer 5 neurons recruits a greater fraction of layer 5 iso-tuned neurons more rapidly than layer 2/3 
stimulation recruits iso-tuned layer 2/3 cells (p < 0.01, ANCOVA controlling for the covariate of 
number stimulated; Spearman’s ρ = 0.46, p < 0.01, n = 46 data points, within layer 2/3 and 
Spearman’s ρ = 0.61, p < 0.01, n = 24 data points for layer 5 recruitment). (C) Logistic 
psychometric functions (solid lines) fit to predictions derived from a classifier trained on either 
neural (left column) or behavioral data (right column) taken from a single mouse. Each curve 
relates the mouse's performance to the stimulation of a specific number of neurons. Individual 
points represent averages across the one or more days where a particular experimental condition 
was run +/- the s.e.m. Each plot shows fits to data for only conditions where ensembles resided in 
individual layers. (D-G) Results shown for four additional mice. Format matches (C). No 
psychometric function was fit to the layer 5 data from Mouse 2 because of insufficient data (there 
were not many targetable layer 5 neurons in that mouse). Matched target and distractor ensembles 
stimulated in each mouse differ in size by at most one neuron. Importantly, the parameters 
underlying the psychometric function fits were not used for any quantitative statistical analysis 
and are presented only for illustrative purposes. 
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Fig. S16. Summary of selective recruitment across the cortical volume for all layer-specific 
and full ensemble stimulation experiments. The proportion of iso-tuned neurons that were 
recruited throughout the cortical volume during all layer-specific (layer 2/3 stimulation, magenta 
dots; layer 5 stimulation, green dots) and full, original ensemble stimulation experiments (black 
dots; data reproduced from Fig. 5E) rapidly increased as the number of stimulated neurons 
increased (Spearman’s ρ=0.71, p<0.0001, n=186 data points; combining full ensemble stimulation 
data shown in Fig. 5E and full volume, across layers recruitment data corresponding to the layer-
specific stimulation experiments shown in Fig. 6A-D). Means±s.e.m. (black boxes and error bars) 
are computed using data binned by number stimulated (width=10). A logit function (black curve) 
was fit to the mean, binned data for visualization purposes. For the fit, mean data points were 
normalized by dividing by the maximum mean value; the fit was rescaled for plotting by 
multiplying by the same value. 
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Fig. S17. A critically excitable network model: simulation and analysis. (A) A network 
schematic of recurrently connected excitatory (circles) and inhibitory (stars) neurons. Optogenetic 
stimulation is modelled by clamping the activity of a small number of excitatory neurons (black 
dots) to their saturated firing rate. (B,C) Direct simulation of the equations governing the single 
neuron input-output nonlinearity (2), membrane voltage integration dynamics (3), neuronal inputs 
(4), network connectivity (5), and external inputs (10) are performed via Euler integration with a 
time-step 𝑑𝑡 ൌ 0.6ms. Smaller timesteps yielded similar results. Parameters exhibiting critical 
excitability were chosen to be 𝑁 ൌ 1500, g=10, 𝑝 ൌ 0.3, I=0, 𝑤୉୉ ൌ 3, 𝑤ாூ ൌ 2.25,  𝑤୍୉ ൌ
2.25,  𝑤୍୍ ൌ 0.15 and all threhsolds were set to T=1. Zero mean noise is injected to each neuron 
with standard deviations 𝜎଴

ா ൌ 0.75 and 𝜎଴
ூ ൌ 0.75. (B) The 𝐼 population is slower than the 𝐸 

population: 𝜏ா ൌ 20ms, 𝜏ூ ൌ 66ms. For a period of 300𝑚𝑠 (grey bar) a small subset of 30 
excitatory neurons is stimulated, and the temporal traces show the mean activity (mE) of the rest 
of the unstimulated neurons.  (C) The temporal average (orange) and peak fraction (blue) of mean 
activity of unstimulated neurons, 𝑚ா, during stimulation window (grey) yields a nonlinear increase 
to increasing stimulation. Error bars are smaller than the line thickness and reflect standard error 
across 250 repeated stimulation windows.  (D) Illustration of the mean field solution. The 
distribution of membrane potentials 𝑥௜ሺ𝑡ሻ across neurons 𝑖 in a given population at an instant of 
time 𝑡 converges in the limit of large numbers of neurons to a Gaussian distribution (blue) with 
mean 𝜇 and standard deviation 𝜎. The transfer function, 𝜙ሺ𝑥 െ 𝑇ሻ (orange) relates the membrane 
potential to a firing rate. Here it is given by the logistic function 𝜙ሺ𝑧ሻ ൌ exp𝑔𝑥/ሺ1 ൅ exp𝑔𝑥ሻ; for 
large values of the parameter 𝑔 it approaches the Heaviside function, which we employ in our 
theoretical analysis. The resultant output firing rate 𝑚 of the population (shaded area) is given by 
the integral of the product of transfer function and the distribution of membrane voltages through 
(12).  (E) Stationary points for the output firing rate of the excitatory subpopulation with fixed 
external inhibition marked by crossing of lines. Different curves show the RHS of (15) for different 
levels of inhibition 𝐼, while the unity line shows the LHS of (15). As the inhibition level is 
increased, the excitatory subpopulation undergoes two saddle-node bifurcations. (F) Nullclines of 
inhibitory (orange) and excitatory (blue) populations from equations (15) and (16) plotted  as a 
function of the fraction of active neurons 𝑚ூ and 𝑚ா in each population.  
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Fig. S18. MultiSLM designs and scalability. (A) Simplified, modular design for multiplexing 
two SLMs. This basic design was used for figures in the main text to enable temporal multiplexing 
of two SLMs in time to achieve kilohertz hologram refresh rate. In this implementation, the laser 
contains an acousto-optic modulator (AOM) to rapidly modulate power (200 kHz). The electro-
optic modulator (EOM; Pockels cell) rapidly switches polarization (200 kHz, between S 
polarization/Spol, and P polarization/Ppol). A polarization beamsplitter (PBS) determines the 
subsequent optical path based on polarization of the beam, and therefore either SLM1 or SLM2, 
for hologram illumination. Half waveplates (HWP) rotate polarization before and after SLM1 to 
optimize illumination of the SLM (Ppol is optimal for MacroSLM; alternatively, the SLM could be 
rotated 90° to achieve the same effect). A polarization beamsplitter (PBS) combines both SLM-
modulated paths together onto a single beam path. In this configuration, only one SLM path is 
illuminated at any time. (B) Multiplexing four SLMs using polarization, similar to (A), and 
wavelength (proof of concept in Fig. S19). Power is modulated on each independent SLM path 
(POW; either a Pockels cell with PBS, or AOM in our setup). A prism after each SLM is used to 
add constant tilt to the beam, effectively increasing the maximum deflection angle of the 
modulated path. Adding this tilt at 90° rotations for each SLM path allows each quadrant of a 
larger FOV to be addressed. A PBS combines both polarizations of each single wavelength, and a 
dichroic mirror combines both wavelengths. All four SLM paths can be illuminated and combined 
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fully simultaneously. In our setup, both lasers lines are synchronized to one another (and we have 
two 40W laser amplifiers available at each wavelength, fully synchronized, such that all four SLMs 
can receive a full 40W beam), and given inherently different path lengths for each SLM modulated 
beam, the combined beams from all beams do not interfere with one another given their low duty 
cycle on the femtosecond scale. Orthogonal polarizations should also effectively eliminate any 
interference, and wavelength differences should significantly reduce possible interference. 
Removing the prism from the beam paths (using a magnetic mount in our setup) re-centers each 
SLM on the same FOV, allowing full 4x multiplex of the same addressable volume in time.  
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Fig. S19. 4x MultiSLM for expanded addressable field of view.  (A) Spatial multiplexing of the 
sample field-of-view (FOV) is realized by dividing the field into quadrants and assigning a unique 
SLM to each one. This is implemented by placement of wedge prisms (Edmund Optics #45-558) 
in the optical path near each SLM face – adding a fixed 1° tilt offset to each beam. Each of the 
four tilting prisms is rotated 90° from each other such that all four SLM beams are tilted radially 
outward. This tilt of the optical beam will be scaled by the relay optics to the microscope objective 
to effectively tile the full, square FOV. This configuration substantially improves two-photon 
efficiency of diffracted spots across an enlarged field of view. (B) Theoretical multi-photon 
excitation efficiency across the 450 µm FOV of an Olympus 25x/1.05NA objective when using a 
conventional SLM (512x512 pixel array, 15 µm pixels, BNS/Meadowlark) which is scaled to 
realize a 0.48 NA photostimulation path. (C) Theoretical multi-photon excitation efficiency of the 
spatially multiplexed approach addresses the full FOV at high multi-photon excitation efficiency 
(> 0.7) (scale bars 50 µm). Values for two-photon efficiency (contours) take into account the 
quadratic dependence of the two-photon effect. (D) Mechanical layout of an individual SLM beam 
combination module dedicated for two SLM units. The layout is functionally similar to that 
described in Fig. S7F but scaled to accommodate the different sized SLMs. One additional utility 
of the board is to integrate the wedge prism close to the SLM face (the 1º prisms). Note that in this 
design there is only a single port where the optogenetic stimulation laser will enter before being 
selected by the polarizing beam splitter (PBS) to be directed to either of the two integrated SLMs. 
In this way, the input beam polarization can be rotated to continuously control the amount of power 
directed to either quadrant. The turning prism assembly for this design is a scaled version of that 
presented earlier so that it fit appropriately on the 3D printed assembly board. (E) Mechanical 
layout, combining two of the MultiSLM beam combination boards into a common optical path 
which is relayed to the optogenetic galvanometer set in the microscope. Each module has a 
dedicated laser and the two light sources are spectrally separated (λ1 = 1060 nm vs. λ2 = 1080 nm, 
Laser-femto Uranus). Each module can therefore be multiplexed onto a common optical axis by a 
beam combining dichroic (Semrock LPD02-1064RU), see Fig. S18B. The spectral- and 
polarization-multiplexed beams are then optically relayed into a commercial microscope (Bruker 
Ultima II) via a pair of lenses (Thorlabs AC508-400-B-ML, f = 400 mm and Edmund Optics #49-
391, f = 150 mm, total magnification = 0.375x) where the 6 mm clear aperture, 
optogenetic/uncaging galvanometers are utilized to generate the raster scanned spirals of the SLM-
mediated focused points in the sample. (F) A random subset of 50 neurons expressing C1V1T/T 
and GCaMP6m are targeted for stimulation in a 450x450x100 µm volume of layer 2/3 cortical 
cells (green, targeted cell showing statistically significant GCaMP response, p < 0.001, one-sided 
t-test, cyan, targeted cell not showing a response, white, other cells). (G) Comparison of the trial-
averaged responses (N=5 trials each for control and optogenetic stimulation) across all cells 
identified for targeting during randomized, no optogenetic stimulation control trials (left) versus 
in the presence of the optogenetic stimulation (right) (20µm diameter spirals, 2.11ms exposure 
duration, 12 revolutions per spiral). The majority of targeted cells show a robust, statistically 
significant response in the stimulation period relative to the pre-stimulation baseline (p<0.001, 
one-sided t-test). Successful targets are found throughout the volume, regardless of position. 
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