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ON d-DIMENSIONAL COMPACT HYPERBOLIC
COXETER POLYTOPES WITH d + 4 FACETS

PAVEL TUMARKIN AND ANNA FELIKSON

Abstract. We prove that there are no compact Coxeter polytopes with d+4 facets
in a hyperbolic space of dimension d > 7. This estimate is sharp: examples of such
polytopes in dimensions d ≤ 7 were found by V. O. Bugaenko in 1984. We also show
that in dimension 7 there is a unique polytope with 11 facets.

Introduction

A polytope in a hyperbolic space is called a Coxeter polytope if all its dihedral angles
are of the form π

kij
for some integers kij ≥ 2. Any Coxeter polytope is a fundamen-

tal domain of the discrete group generated by the reflections in its facets. A complete
classifications of compact hyperbolic Coxeter polytopes is not yet known. Vinberg [18]
showed that there are no such polytopes in dimensions d ≥ 30. The known examples are
only in dimensions d ≤ 8 (see [5] and [6]). In dimensions 2 and 3, compact hyperbolic
Coxeter polytopes were completely classified by H. Poincaré [15] and Andreev [3]. Com-
pact hyperbolic Coxeter polytopes of the simplest combinatorial type, i.e., simplices were
classified by Lannér [14]. Kaplinskaya [13] (see also [19]) classified all simplicial prisms,
Esselmann [9] classified the remaining d-dimensional compact hyperbolic Coxeter poly-
topes with d + 2 facets. In [8], Esselmann proved that d-dimensional compact Coxeter
polytopes with d+3 facets exist only in dimensions 8 and lower, and also showed that in
dimension 8 there is only one such polytope. Compact d-dimensional Coxeter polytopes
with d + 3 facets in dimensions 4 through 7 were classified by P. Tumarkin [17].

In this paper we investigate the next-in-complexity class of polytopes, namely, d-
dimensional compact hyperbolic Coxeter polytopes with d + 4 facets. We prove that
there are no such polytopes in a hyperbolic space of dimension d ≥ 8. In dimensions
2 ≤ d ≤ 7 such polytopes do exist [5]. We also prove that in dimension d = 7 there is
only one such polytope.

The paper is organized as follows. Section 1 is of auxiliary nature: we recall basic
results about Coxeter diagrams and the combinatorics of simple polytopes. We also
mention some facts connecting combinatorial (metric) properties of the faces of a poly-
tope and combinatorial (metric) properties of the polytope itself. Section 2 is devoted to
Coxeter diagrams that do not contain Lannér subdiagrams of order less than 5. In par-
ticular, we show that the Coxeter diagram of any compact hyperbolic Coxeter polytope
contains a Lannér subdiagram of order less than 5. In Section 3 we develop a theory of
liftings, which connects the combinatorics of a face of a Coxeter polytope and a certain
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subdiagram of the Coxeter diagram of this polytope. In Sections 4 and 5 we apply the
obtained results to prove the non-existence of the above polytopes in dimensions d ≥ 8.
Finally, in Section 6 we prove that in a hyperbolic space of dimension 7 there is only one
compact Coxeter polytope with 11 facets.

This work was partially done at the Max Planck Institute in Bonn. The authors thank
the Institute for hospitality.

1. Preliminaries

In this section we collect basic facts about Coxeter diagrams, Gale diagrams, and
diagrams of missing faces. In our discussion of Coxeter diagrams we mainly follow [19]
and [20]. For details about Gale diagrams, see [12] and [7] (see also [8], where connections
between Coxeter polytopes, Gale diagrams, and diagrams of missing faces are explained).
At the end of the section, we mention a recent result of D. Allcock [1] showing that most
Coxeter polytopes have a Coxeter face, and explaining how to construct the Coxeter
diagram of a Coxeter face from the Coxeter diagram of the polytope.

1.1. Coxeter diagrams. 1. An abstract Coxeter diagram Σ is a finite one-dimensional
simplicial complex, whose edges are assigned positive weights wij , where wij = cos π

mij

for some integer mij ≥ 3 whenever wij < 1. A subdiagram of Σ is a subcomplex whose
edges are labeled by the same weights as in Σ. The order |Σ| of the diagram Σ is the
number of its nodes.

The union of subdiagrams Σ1 and Σ2 of Σ is the subdiagram 〈Σ1, Σ2〉 spanned by the
nodes of Σ1 and Σ2. By definition, the subdiagrams Σ1 \v and Σ1 \Σ2 of Σ1 are spanned
by the nodes of Σ1 without v, respectively, without the nodes of Σ2.

Given an abstract Coxeter diagram Σ with nodes v1, . . . , vn and weights wij we con-
struct a symmetric (n × n)-matrix G(Σ) = (gij) such that gii = 1, and for i �= j,
gij = −wij if vi and vj are joined, and gij = 0 otherwise. We define the determinant
det(Σ) and the signature of Σ as the determinant and, respectively, the signature of
G(Σ).

We draw the edges of a Coxeter diagram in the following way: if the weight equals
cos π

mij
, then the corresponding nodes are joined by an (mij − 2)-fold edge or a simple

edge labeled by mij ; if the weight equals 1, the nodes are joined by a bold edge; if the
weight is greater than 1, then the nodes are joined by a dashed edge labeled by the weight
(or without a label).

We write [vi, vj ] = mij if wij = cos π
mij

, and [vi, vj ] = ∞ if vivj is a dashed edge. The
notation [vi, vj ] = 2 indicates that vi and vj are not joined.

An abstract Coxeter diagram Σ is said to be elliptic if G(Σ) is positive definite; Σ
is parabolic if each indecomposable component of G(Σ) is degenerate and positive semi-
definite; a connected diagram Σ is said to be Lannér if Σ is neither elliptic nor parabolic
but any proper subdiagram of Σ is elliptic; Σ is said to be hyperbolic if G(Σ) is indefinite
with negative inertia index equal to 1; Σ is said to be superhyperbolic if its negative
inertia index is greater than 1; Σ is said to be admissible if Σ contains no parabolic
subdiagrams and is not superhyperbolic.

Table 1 contains the list of elliptic and connected parabolic Coxeter diagrams in their
standard notation. In [20, Table 3] one finds a list of Lannér diagrams. Notice that the
order of a Lannér diagram cannot be greater than 5; moreover, there are only finitely
many Lannér diagrams of order greater than 3. In Table 2 we reproduce a list of Lannér
diagrams of orders 4 and 5 and introduce notation for them.

2. It is convenient to describe Coxeter polytopes via their Coxeter diagrams. Let P be
a Coxeter polytope with facets f1, . . . , fr. The Coxeter diagram Σ(P ) of P is a diagram
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Table 1. Coxeter diagrams. The left column lists connected elliptic
Coxeter diagrams. The right column lists connected parabolic Coxeter
diagrams

with nodes v1, . . . , vr; nodes vi and vj are not joined if fi is orthogonal to fj ; vi and vj

are joined by an edge with weight

wij =

⎧⎪⎪⎨
⎪⎪⎩

cos
π

k
if fi and fj form a dihedral angle

π

k
,

1 if fi is parallel to fj ,
cosh ρ if fi and fj diverge and ρ is the distance between fi and fj .

If Σ = Σ(P ), then G(Σ) coincides with the Gram matrix of the outward unit normals to
the facets of P .

It was shown in [19] that if Σ = Σ(P ) is the Coxeter diagram of a d-dimensional
compact hyperbolic polytope P , then Σ is an admissible connected hyperbolic diagram
with positive inertia index equal to d. In particular, Σ has no bold edges and parabolic
subdiagrams. The elliptic subdiagrams of Σ are in one-to-one correspondence with the
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Table 2. Lannér diagrams of orders 4 and 5. Open nodes are black,
doubly open nodes are encircled. The superscript equals the order of
the diagram

faces of P : a k-face F corresponds to the elliptic subdiagram ΣF of order d − k whose
nodes correspond to the facets containing F .

3. Given a Coxeter diagram Σ it is easy to check whether or not it is superhyperbolic.
However, when the order of the diagram is big, the computation of the signature could
be difficult. When the diagram is the union of two subdiagrams either joined by a single
edge or having only one node in common, there is a more effective way to determine if
such a diagram is superhyperbolic [18].

Suppose T is a subdiagram of Σ such that det(Σ \ T ) �= 0. A local determinant of Σ
on T is det(Σ, T ) = det(Σ)

det(Σ\T ) .

Proposition 1.1 ([18, Prop. 12]). If a Coxeter diagram Σ consists of subdiagrams Σ1

and Σ2 that intersect in a single node v, then

det(Σ, v) = det(Σ1, v) + det(Σ2, v) − 1.

Proposition 1.2 ([18, Prop. 13]). If a Coxeter diagram Σ consists of non-intersecting
subdiagrams Σ1 and Σ2 joined by a single edge v1v2, then

det(Σ, 〈v1, v2〉) = det(Σ1, v1) det(Σ2, v2) − w2
12,

where w12 is the weight of the edge v1v2.

Proposition 1.3 ([18, Prop. 15]). Suppose that a Coxeter diagram Σ consists of two
non-intersecting hyperbolic subdiagrams Σ1 and Σ2 joined by a single edge v1v2 such that
Σ1 \ v1 and Σ2 \ v2 are elliptic. Assume also that one of the following conditions holds:

1) v1v2 is a simple edge and det(Σ1, v1) det(Σ2, v2) > 1
4 ;

2) v1v2 is a double edge, and det(Σ1, v1) det(Σ2, v2) > 1
2 .

Then Σ is superhyperbolic.

In [18, Table 2] one can find some useful determinants. When we need to check if
a certain diagram is superhyperbolic, we use Propositions 1.1–1.3 and Table 2 of [18]
without further stipulation. We also use the fact that local determinants of Lannér
diagrams of orders 4 and 5 on their open nodes (see Table 2 and the definition of an open
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node below) do not exceed 0.95 — this can be checked directly. In particular, we use the
following consequence of Proposition 1.2:

Proposition 1.4. Suppose Σ consists of two disjoint Lannér diagrams L1 and L2, each
of order 5, joined by a single non-dashed edge v1v2 such that Li \ vi (where vi ∈ Li,
i = 1, 2) are of type H4 or F4. Then Σ is superhyperbolic.

4. Suppose Σ is an abstract Coxeter diagram and v is a node of Σ. Suppose we can
add a node x to Σ so that x /∈ Σ, x is joined with v in 〈Σ, x〉, and x belongs to neither a
Lannér nor a parabolic subdiagram of 〈Σ, x〉. Then v is called an open node of Σ.

A node v is said to be doubly open if a node x can be added to Σ so that x be joined
with v in 〈Σ, x〉 and x be open in 〈Σ, x〉.

Notice that for any non-open node v of a Lannér diagram Σ and any node x /∈ Σ
joined with v there exists a non-elliptic subdiagram M ⊂ 〈Σ, x〉 containing both x and
v. Indeed, if x is not joined with Σ \ v, the assertion is obvious. When we add edges
joining x with Σ \ v, non-elliptic subdiagrams remain non-elliptic.

In [8, Table 2] Esselmann listed all Lannér diagrams of orders 4 and 5 containing open
nodes. In Table 2, the open nodes are black, and the doubly open nodes are encircled.

As a direct consequence of the classification of Lannér diagrams, we have

Proposition 1.5. Any Lannér diagram of order 4 contains at least two subdiagrams of
type H3 or B3.

Proposition 1.6 ([18, Prop. 2]). Any two Lannér subdiagrams of the diagram Σ of a
hyperbolic Coxeter polytope are joined by at least one edge.

This is obvious: if it is not true, then Σ is a superhyperbolic diagram.

1.2. Gale diagrams and diagrams of missing faces. 1. As was shown in [19, Corol-
lary to Th. 3.1], a compact hyperbolic Coxeter polytope is simple (i.e., a k-face of a
d-dimensional polytope belongs to exactly d− k facets). Now we want to list some com-
binatorial properties of simple polytopes. For brevity, a d-dimensional polytope will be
called a “d-polytope”.

Each combinatorial type of a simple d-polytope can be represented by its Gale diagram.
It consists of d + k points a1, . . . , ad+k on the (k − 2)-dimensional sphere Sk−2 ⊂ Rk−1

centered at the origin. Each ai corresponds to a facet fi of P . The combinatorial type
of a simple convex polytope can be read off its Gale diagram as follows: for any subset
J ⊂ {1, . . . , d + k} the intersection of the faces {fj | j ∈ J} is a face of P if and only
if the origin is an interior point of conv{aj | j /∈ J} (where conv X is the convex hull of
the set X).

A set of points a1, . . . , ad+k ∈ Sk−2 is the Gale diagram of a d-polytope P with d + k
facets if and only if each open half-space H+ of Rk−1 bounded by a hyperplane passing
through the origin contains at least two of the points a1, . . . , ad+k.

Two Gale diagrams are said to be isomorphic if the corresponding polytopes are
combinatorially equivalent.

Let P be a simple polytope. The facets f1, . . . , fm of P form a missing face if
⋂m

i=1 fi =
∅, but any proper subset of the facets {f1, . . . , fm} has a non-empty intersection. Clearly,
any set of facets with an empty intersection contains at least one missing face. Whence:

Lemma 1.1. Let P be a simple d-polytope with d + k facets, let a1, . . . , ad+k ∈ Sk−2

be the Gale diagram of P , and let H+ be an open half-space bounded by a hyperplane
passing through the origin. Then H+ contains a set I ⊂ {a1, . . . , ad+k} corresponding to
a missing face of P .
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2. When k = 2, the Gale diagram of P is 1-dimensional, i.e., the points ai lie on a
zero-dimensional unit sphere. In other words, each point ai lies on the number line and
coincides with either −1 or 1. Whence:

Proposition 1.7 ([12, 7]). A simple d-polytope with d + 2 facets is the direct product of
two simplices ∆n−k × ∆k (where 0 ≤ k ≤ [n/2] and ∆m stands for an m-simplex).

As was shown in [9], a compact Coxeter d-polytope with d + 2 facets is either a
simplicial prism or the product of two triangles. Coxeter prisms are listed in [13], the
remaining Coxeter polytopes of this type (there are seven of them) can be found in [9].
We call those seven polytopes the Esselmann polytopes.

When k = 3 the Gale diagram of P is two-dimensional, i.e., the points ai lie on a unit
circle.

A standard Gale diagram of a simple d-polytope with d + 3 facets consists of labeled
vertices v1, . . . , vm of a regular m-gon (m is odd) in R2 centered at the origin such that:

1) each label is a natural number and the sum of the labels equals d + 3;
2) the sum of the labels of the vertices lying in a half-plane bounded by a line

passing through the origin is at least 2.
It is not difficult to check that each two-dimensional Gale diagram is isomorphic to

some standard diagram (see, for example, [12]). Two d-polytopes with d + 3 facets are
combinatorially equivalent if and only if their standard Gale diagrams are congruent (i.e.,
coincide up to a motion of the plane).

When k > 3, there is no definition of a standard Gale diagram. To describe the
combinatorics of simple polytopes we shall use another kind of diagrams.

A diagram of missing faces is a finite set D with a specified collection MD of subsets
of D such that M ′ �⊂ M for any M, M ′ ∈ MD. The order |M | of M is defined as the
cardinality of M . The elements of MD are called the missing faces of D.

A diagram D1 ⊂ D of missing faces is a subdiagram of D if for any M ⊂ D1 we have
that M ∈ MD1 if and only if M ∈ MD.

It is convenient to visualize diagrams of missing faces as follows: for each element of D
mark a point (vertex) on the plane, and then encircle the set of points corresponding to
a subset M (i.e., draw a closed curve about the points) if and only if M ∈ MD.

3. With a simple polytope P we associate a diagram of missing faces D(P ) as follows:
the elements of D(P ) correspond to the facets of P ; a set of elements is a missing face
of D(P ) if and only if the corresponding facets form a missing face of P .

The combinatorial structure of P can be recovered from D(P ): a collection of facets
has a non-empty intersection if and only if the corresponding subset of D(P ) contains
no missing faces.

Lemma 1.2. Let P be a simple polytope and D(P ) its diagram of missing faces. For
any missing face M ∈ MD(P ) there is a missing face M ′ ∈ MD(P ) such that M ∩M ′ = ∅.

Proof. The Gale diagram G(P ) of P consists of several points on the d-sphere Sd. Let
M be the points of G(P ) corresponding to the elements of M. Since M is a missing face,
conv(G(P ) \ M) does not contain the origin. In other words, there is a hyperplane H
passing through the origin with a half-space H+ containing G(P ) \ M. Let H− be the
other half-space relative to H. By Lemma 1.1, H− contains the points corresponding to
some missing face. Since those points belong to M and a missing face cannot contain
another missing face, we have that H separates the points of M from the other points of
G(P ), i.e., H−∩G(P ) = M. By Lemma 1.1, H+ contains a subset of points corresponding
to a missing face of M ′. Clearly, M does not intersect M ′, which proves the lemma. �

We also need the following two results.
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Proposition 1.8 ([8, Lemma 1.6]). Let P be a simple polytope and f a facet of P . Let
{f1, . . . , fk} be the set of the facets of P different from f and such that fi ∩ f �= 0.
Set f ′

i = fi ∩ f for each i = 1, . . . , k, and for any subset G ⊆ {f1, . . . , fk}, set G′ =
{f ′

i | fi ∈ G}.
Then G′ is a missing face of the facet f if and only if

1) either {f} ∪ G is a missing face of P , or
2) G is a missing face of P and G contains no proper subsets G0 such that {f}∪G0

is a missing face of P .

Proposition 1.9 ([8, Lemma 1.9]). For any facet f of a simple polytope P there is a
missing face of P containing f .

1.3. Lannér diagrams and missing faces. Let P be a compact Coxeter polytope
in Hn, Σ(P ) its Coxeter diagram, and L a Lannér subdiagram of Σ(P ). By the definition
of Lannér subdiagrams, the facets corresponding to L form a missing face of P (and any
missing face of P corresponds to some Lannér subdiagram of Σ(P )). Thus, the diagram
of missing faces D(P ) can easily be recovered from Σ(P ): in Σ(P ), encircle all Lannér
subdiagrams and remove all edges.

In the same way we construct a diagram of missing faces D(Σ) for any admissible
Coxeter diagram Σ.

The correspondence “Lannér diagram ←→ missing face” shows in particular that a
compact hyperbolic Coxeter polytope has no missing faces of order greater than 5.

1.4. Faces of Coxeter polytopes. Let P be a compact hyperbolic Coxeter d-polytope,
Σ its Coxeter diagram, and S0 an elliptic subdiagram of Σ. As was shown in [19, Th. 3.1],
S0 corresponds to a face of P of dimension d − |S0|. Denote that face P (S0). It is an
acute-angled polytope [2], but it need not be a Coxeter polytope. R. Borcherds obtained
the following sufficient condition for P (S0) to be a Coxeter polytope.

Proposition 1.10 ([4, Example 5.6]). Let P be a compact hyperbolic Coxeter polytope
with Coxeter diagram Σ, and S0 an elliptic subdiagram of Σ having no connected com-
ponents of types An and D5. Then P (S0) is a Coxeter polytope.

The facets of P (S0) correspond to those nodes of Σ that form elliptic subdiagrams
with S0. The dihedral angles of P (S0) can be determined using the following result of
D. Allcock.

Let a and b be the facets of P (S0) determined by facets A and B of P , i.e., a =
A∩P (S0) and b = B ∩P (S0). Let vA and vB be the nodes of Σ corresponding to A and
B. The angles of P (S0) can now be found as follows.

Proposition 1.11 ([1, Th. 2.2]). Under the assumptions of Proposition 1.10,

(1) If neither vA nor vB is joined with S0, then ∠ab = ∠AB.
(2) If exactly one of the nodes vA and vB is joined with S0, say, via the connected

component Si
0, then

(a) if A ⊥ B, then a ⊥ b;
(b) if vA and vB are joined by a simple edge and adjoining vA and vB to Si

0

yields a diagram of type Bk (resp., Dk, E8, or H4), then ∠ab = π/4 (resp.,
π/4, π/6 or π/10);

(c) otherwise, a and b do not intersect.
(3) If vA and vB are joined with different components of S0, then

(a) if A ⊥ B, then a ⊥ b;
(b) otherwise, a and b do not intersect.
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(4) If vA and vB are joined with the same connected component of S0, say Si
0, then

(a) if A ⊥ B and Si
0 ∪ {A, B} is of type E6 (resp., E8 or F4), then ∠ab = π/3

(resp., π/4 or π/4);
(b) otherwise, a and b do not intersect.

We shall say that w ∈ Σ is a neighbor of S0 if w is joined with S0 by an edge. A
neighbor w is said to be good if 〈S0, w〉 is an elliptic diagram, and bad otherwise. Let S̄0 be
the subdiagram of Σ consisting of the nodes corresponding to the facets of P (S0). Then
S̄0 is spanned by the good neighbors of S0 and by the nodes which are not neighbors
of S0. If P (S0) is a Coxeter polytope, denote its diagram ΣS0 . By a simple edge we
understand a 1-fold edge. By an empty edge we understand two nodes which are not
joined. By an ordinary edge we understand non-dashed edges, including empty ones.

For each node v ∈ Σ which is not a bad neighbor of S0 (i.e., it belongs to S̄0) the
corresponding node of ΣS0 will be denoted ṽ.

In the case when ΣS0 does not differ from S̄0 we shall view ΣS0 as a subdiagram of Σ,
and, accordingly, identify v and ṽ.

Corollary 1.1. Under the assumptions of Proposition 1.10,

(a) If S0 is of type H4, F4, G
(m)
2 for m ≥ 6, or any other diagram with no good

neighbors, then S̄0 = ΣS0 .
(b) If S0 is of type H3, then S̄0 can be obtained from ΣS0 by replacing some dashed

edges by ordinary ones.
(c) If S0 is of type G

(5)
2 , then S̄0 can be obtained from ΣS0 by replacing some edges

labeled by 10 with simple edges, and some dashed edges with ordinary ones.
(d) If S0 is of type Bn, n ≥ 3, then S̄0 can be obtained from ΣS0 by replacing some

double edges by simple ones, and some dashed edges by ordinary ones.
(e) If S0 is of type B2 = G

(4)
2 , then S̄0 can be obtained from ΣS0 by replacing some

double edges by simple ones, and some dashed edges by ordinary or empty edges.

The corollary follows directly from Proposition 1.11. We just remark that all neighbors
of the diagrams mentioned in (a) are bad.

Here is another direct consequence of Proposition 1.11.

Corollary 1.2. Under the assumptions of Proposition 1.10, let S1 ⊂ ΣS0 be a subdiagram
of type G

(m)
2 , where m �= 4, 10, and let S′

1 be the corresponding subdiagram S̄0. Then no
node of S′

1 ⊂ Σ is a good neighbor of S0.
In particular, any subdiagram S2 ⊂ ΣS0 of type F4, H4, H3 or G

(m)
2 , where m �= 4, 10,

corresponds to a subdiagram of S̄0 of the same type.
Any Lannér subdiagram L ⊂ ΣS0 of order 5 corresponds to a Lannér subdiagram of

S̄0.

Lemma 1.3. Suppose that S0 is an elliptic subdiagram and |S0| < d. Then S0 has at
most |Σ| − d − 1 bad neighbors. In particular, if P has d + 4 facets, then any elliptic
subdiagram of Σ of order less than d has at most three bad neighbors.

Proof. The lemma follows from the fact that a k-polytope has at least k + 1 facets. �

Lemma 1.4. Let S ⊂ Σ be an elliptic subdiagram containing no components of types An

and D5, and let a be a bad neighbor of S. Then a is joined with each Lannér subdiagram
of S̄.

This is a direct consequence of Proposition 1.6.
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2. Admissible Coxeter diagrams without small Lannér subdiagrams

A Lannér diagram (or a missing face) L is said to be small if |L| < 5. A missing
face M is said to be large if |M | > 5.

Lemma 2.1. Let Σ be a connected admissible Coxeter diagram without small Lannér
subdiagrams. Suppose that each node of Σ belongs to some Lannér subdiagram of Σ.
Then |Σ| ≤ 10. If |Σ| = 10, then Σ is one of the three diagrams shown in Figure 1.

If, in addition, det(Σ) = 0, then Σ = Θ1 (see Figure 1).

Figure 1. Diagrams without small Lannér subdiagrams

Proof. Since Σ is connected and does not contain small Lannér subdiagrams, any edge
of Σ is either simple, or double, or triple. Consider two cases: either Σ contains L5

5 or it
does not (for notation, see Table 2).

Case 1. Suppose that Σ contains L5
5. It is clear that only the open node of L5

5 can
be joined with some other nodes of Σ; otherwise Σ would contain either a parabolic
subdiagram of type B̃4 or B̃5, or a small Lannér subdiagram. For the same reason,
Σ \ L5

5 is linear and contains no double edges. Since each node of Σ belongs to some
Lannér subdiagram, Σ \ L5

5 contains a triple edge, and for |Σ| > 9 such a diagram either
contains a small Lannér subdiagram or is superhyperbolic.

Case 2. Suppose that Σ does not contain L5
5.

• For any triple edge of Σ, one of its nodes is a leaf of Σ and the valency of the
other node is two.

Proof. This follows immediately from the absence of small Lannér subdiagrams. �

• Σ has no double edges.
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Proof. Let v1v2 be a double edge of Σ. Suppose that v1 is a leaf of Σ. By assumption, v1

belongs to some Lannér diagram L. It is clear that L contains v2 and is a linear Lannér
diagram. Let v be a node of Σ \L joined with L. Then 〈L, v〉 contains either a parabolic
or a small Lannér subdiagram.

Thus, neither v1 nor v2 is a leaf of Σ. Hence Σ contains edges of the form v0v1 and
v2v3 (where v0 �= v3, since otherwise 〈v0, v1, v2〉 would contain a Lannér or a parabolic
diagram). These edges are simple; otherwise Σ would contain a parabolic or a small
Lannér subdiagram. Therefore, 〈v0, v1, v2, v3〉 is of type F4. If v4 is an arbitrary node
of Σ joined with 〈v0, v1, v2, v3〉, then either 〈v0, v1, v2, v3, v4〉 is of type L5

5 or it contains
a parabolic or a small Lannér subdiagram, contrary to the assumption. �

• Σ is a tree.

Proof. The two preceding results imply that any minimal cycle of Σ is a parabolic sub-
diagram of type Ãn. �

Now we remove from Σ all leaves that belong to triple edges and denote the obtained
diagram Σ′. As was shown above, Σ′ is a tree with simple edges. All such trees without
parabolic subdiagrams are elliptic diagrams of type An, Dn, E6, E7, or E8.

Next we attach triple edges to some leaves of Σ′. If Σ′ = An or Dn+1 for n ≥ 9, then
Σ has a node that does not belong to any Lannér subdiagram. In the remaining cases
either |Σ| < 10, or Σ is superhyperbolic, or Σ is one of the diagrams in Figure 1.

A direct calculation shows that detΣ = 0 only when Σ = Θ1. �

Corollary 2.1. The Coxeter diagram Σ(P ) of any compact Coxeter polytope P contains
a small Lannér subdiagram.

Proof. Suppose that Σ(P ) does not contain small Lannér diagrams. By Lemma 1.2,
Σ(P ) contains two disjoint Lannér subdiagrams L1 and L2 of order 5, and therefore,
|Σ(P )| ≥ 10. The subdiagram 〈L1, L2〉 is connected because otherwise it would be
superhyperbolic. It follows from Lemma 2.1 that Σ(P ) is one of the diagrams from
Figure 1. None of those diagrams is the Coxeter diagram of a compact polytope: in each
of the three cases, Σ(P ) contains a Lannér subdiagram that intersects any other Lannér
subdiagram of Σ(P ), which is impossible by Lemma 1.2. �

3. Liftings

Let D be a diagram of missing faces, and Σ an admissible Coxeter diagram. The
diagram Σ is called a 0-lifting of D if there is a bijection φ : D → Σ such that M ∈ MD

if and only if φ(M) is a Lannér subdiagram; φ is called a lifting bijection.
Σ is called a k-lifting of D (k ∈ N) if Σ contains a subset A of “additional nodes” such

that:
1) |A| = k;
2) there is an injection φ : D → Σ sending D bijectively to Σ\A; φ is called a lifting

injection;
3) for any Lannér diagram L ⊂ Σ the set φ−1(L \ A) contains a missing face of D;
4) for any missing face M ∈ MD there is a Lannér subdiagram L ⊂ 〈φ(M), A〉

containing φ(M);
5) for any set {a1, . . . , ar} ⊂ A the subdiagram Σ\{a1, . . . , ar} is not a (k−r)-lifting

of D.
We remark that in [8] a 0-lifting of D was called a “hyperbolic realization” of D.

Also, a 0-lifting satisfies the general definition of a k-lifting. When the value of k is not
important, we write “lifting” instead of “k-lifting”.
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Let Σ be a lifting of D, and L ⊂ Σ a Lannér subdiagram such that for any missing
face M ∈ MD we have L � 〈φ(M), A〉. We then say that L is an additional Lannér
subdiagram of the lifting Σ.

Let D be an abstract diagram of missing faces, Σ an abstract Coxeter diagram, and
φ : D → Σ an injection. Let Σ′ ⊂ Σ be a non-elliptic subdiagram not containing φ(M)
for any M ∈ MD. We then say that Σ′ is a conflicting subdiagram; in that case Σ (with
the given injection φ) is not a lifting of D.

Notice that φ(M) is a subset of the set of nodes of Σ. When we mean the Coxeter
diagram spanned by the nodes of φ(M), we write 〈φ(M)〉, in accordance with the notation
introduced in 1.1.

Lemma 3.1. Let D be a diagram of missing faces, and D1 ⊂ D a subdiagram of it. If Σ
is a k-lifting of D, then Σ contains a subdiagram Σ1 which is a k1-lifting of D1 for some
k1 ≤ k.

Proof. Let A be the set of additional nodes of Σ. Consider φ
∣∣
D1

as a lifting injection of D1.
By the definition of lifting, 〈φ(D1), A〉 contains some k1-lifting of D1 with k1 ≤ k. �

The proof of the following lemma is based on a repeated application of Proposition 1.8.

Lemma 3.2. Let P ⊂ Hd be a simple hyperbolic Coxeter polytope, and f an m-face of
it. Let D(f) be the diagram of missing faces of f . Then Σ(P ) contains a subdiagram Σ0

which is a k-lifting of D(f) for some k ≤ d − m.

Proof. Let f1, . . . , fd−m be the facets of P containing f . Set F1 = f1 and define induc-
tively Fi = Fi−1 ∩ fi. It is clear that Fi is a facet of Fi−1 and Fd−m = f .

When m = d, the lemma is trivial. Assuming that the assertion holds for any face of
dimension greater than m we shall prove it for the m-face f . By the induction assumption,
Σ(P ) contains a subdiagram Σr−1 which is a k-lifting of D(Fd−m−1), where k ≤ d −
(m + 1). The following claim then completes the proof.

Claim. Either Σr−1 contains a k-lifting of f or 〈Σr−1, vd−m〉 contains a (k + 1)-lifting
of f , where vd−m is the node of Σ(P ) corresponding to the facet fd−m.

Proof of the claim. Let Π1, . . . , Πs be the facets of Fd−m−1. Denote by J the set of
indices i such that Πi ∩ fd−m �= ∅ and set πi = Πi ∩ fd−m, i ∈ J . Then {πi} is the set of
facets of f = Fd−m.

Let φ1 be a lifting injection for Fd−m−1; in particular, φ1 sends {Πi} to Σr−1 \ A,
where A is the set of additional nodes. Denote by ψ the map πi → Πi and consider
φ = φ1 ◦ψ. Then φ is an injection from {πi} to Σ \A. Let {Πi | i ∈ I} be a missing face
of D(Fd−m) (where I ⊂ J is some indexing set). By Proposition 1.8, either {πi | i ∈ I}
or {fd−m} ∪ {πi | i ∈ I} is a missing face of D(Fd−m−1) for some i. This establishes
condition 4) in the definition of lifting for either Σr−1 or 〈Σr−1, vd−m〉. By the same
proposition, if {Πi | i ∈ K} is not a missing face of D(Fd−m), then neither {πi | i ∈ K}
nor {fd−m} ∪ {πi | i ∈ K} is a missing face of D(Fd−m−1), whence condition 3).

Thus, either A or A ∪ {fd−m} contains a set of additional nodes for some k-lifting of
D(Fd−m−1). Hence k ≤ d − (m + 1) + 1 = d − m, and the lemma is proved. �
Corollary 3.1. Let P ⊂ Hd be a compact Coxeter polytope, and let f be a face of P .
Then D(f) does not contain large missing faces. In particular, if dim f > 4, then f is
not a simplex.

Proof. By the definition of lifting, for any missing face M of D there is a Lannér subdia-
gram L of Σ such that |L| ≥ |M |. Now the assertion follows from the fact that a Lannér
diagram contains at most five nodes. �
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Lemma 3.3. Let D be a diagram of missing faces such that |M | = 5 for any M ∈ MD.
Then any lifting of D is a 0-lifting.

Proof. Suppose that D is a k-lifting, where k > 0, and φ is a lifting injection. Remove
from D all additional nodes and denote the obtained diagram D1. We shall show that D1

is a 0-lifting and φ is the lifting bijection. Indeed, conditions 2), 3), and 5) in the definition
of k-lifting clearly hold.

For condition 4), consider an arbitrary missing face M of D. By definition, φ(M)
belongs to some Lannér subdiagram of Σ. Notice that the order of 〈φ(M)〉 equals 5.
Since the order of a Lannér diagram is at most 5, 〈φ(M)〉 is a Lannér diagram. �

Next we want to establish several properties of liftings which will be needed later.

Notation.
• Let D be a diagram of missing faces and N1, . . . , Nr ⊂ D. We write D =

⋃r
i=1 Ni

if for any node of D there is a set Ni, i ∈ {1, . . . , r}, containing that node.
• Let D =

⋃r
i=1 Ni be a diagram of missing faces such that Ni ∩ Nj = ∅ for

every i �= j. Suppose that there is a k ∈ {1, . . . , r} such that M ∈ MD if and
only if M =

⋃i+k−1
t=i Nt for some i ∈ {1, . . . , r − k + 1}. In this case we write

D = �N1, N2, . . . , Nr�k.
• When we are interested only in the combinatorial type of D rather than the actual

subdiagrams Ni, we write �|N1|, . . . , |Nr|�k. For example, �1, 4, 1, 3�2 indicates
the diagram

• If there is a k ∈ {1, . . . , r} such that M ∈ MD if and only if M =
⋃i+k−1

t=i Nt for
some i ∈ 1, . . . , r, where t is taken modulo r, we write D = (N1, N2, . . . , Nr)k or
(|N1|, . . . , |Nr|)k.

• We write Σ ≈ �N1, N2, . . . , Nr�k if Σ contains no parabolic subdiagrams and the
structure of Lannér subdiagrams of Σ corresponds to the diagram of missing faces
�N1, N2, . . . , Nr�k; i.e., Σ consists of disjoint subdiagrams L1, . . . , Lr, |Li| = |Ni|,
and L ⊂ Σ is a Lannér subdiagram if and only if L = 〈Li, Li+1, . . . , Li+k−1〉 for
some i ∈ {1, . . . , r − k + 1}.

Similarly, we use the notation

Σ ≈ �|N1|, . . . , |Nr|�k , Σ ≈ (N1, N2, . . . , Nr)k, and Σ ≈ (|N1|, . . . , |Nr|)k.

Proposition 3.1 ([8, Lemma 4.7]). Let D = �M, N�1 be a diagram of missing faces
with |M | ≥ 3 and |N | ≥ 4. Then D has no 0-liftings.

Lemma 3.4. The diagram Θ1 of Figure 1 is the only lifting of D = �4, 5�1. The
additional node of this lifting is the leaf of Θ1 which does not belong to a triple edge.

Proof. Let Σ be a lifting of D = �M4, M5�1 with |M5| = 5 and |M4| = 4, and let φ be a
lifting injection. Suppose that 〈φ(M4)〉 is a Lannér subdiagram of Σ. By Proposition 3.1,
Σ ≈ �φ(M4), φ(M5)�1 is superhyperbolic. Hence 〈φ(M4)〉 is elliptic and, by condition 4),
Σ contains an additional node a such that 〈φ(M4), a〉 is Lannér. Then 〈a, φ(M4), φ(M5)〉
satisfies conditions 1)–4) in the definition of lifting, and, by condition 5), a is the only
additional node and Σ is a 1-lifting. By condition 3), the order of any Lannér subdiagram
of Σ is 5. Since |Σ| =

∣∣〈a, φ(M4), φ(M5)〉
∣∣ = 10, it follows from Lemma 2.1 that Σ is

one of the diagrams Θ1, Θ2, and Θ3 of Figure 1. By Lemma 1.2, Σ contains two disjoint
Lannér diagrams 〈φ(M4), a〉 and 〈φ(M5)〉, and therefore Σ is either Θ1 or Θ2.
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It is not difficult to find the only lifting injection for Θ1: a is the only leaf of Σ which
does not belong to a triple edge, and φ(M4) consists of the remaining nodes in the bottom
row (see Figure 1).

For Θ2 there are no lifting injections, since 〈φ(M4)〉 belongs to each Lannér subdiagram
different from 〈φ(M5)〉, whereas Θ2 has no such quadruples of nodes. �

Lemma 3.5. Let D = N ∪ {x1, x2, x3} be a diagram of missing faces with |N | = 4. If
MD = {N ∪ x1, N ∪ x2, N ∪ x3}, then D has no liftings.

Proof. Suppose that Σ is a lifting of D and φ is a lifting injection. By Lemma 3.3, Σ is
a 0-lifting. Consider Σij =

〈
φ(N ∪ {xi, xj})

〉
, i �= j. It is clear that Σij ≈ �1, 4, 1�2. By

[8, Lemma 5.3], �1, 4, 1�2 is one of the following diagrams:

Viewing each of these subdiagrams as Σ12 and trying to add x3 to form Σ13, we obtain
in each case a conflicting subdiagram, which proves the lemma. �

Lemma 3.6. The diagram D = �4, 4�1 has no 0-liftings. Any 1-lifting of D is one of
the diagrams of Figure 2.

Proof. By Proposition 3.1, D has no 0-liftings. Let Σ be a 1-lifting of D, φ a lifting
injection, and a the additional node.

Figure 2. 1-liftings of �4, 4�1

Let M1 and M2 be the missing faces of D. We may assume that the diagram 〈φ(M1)〉
is elliptic and the diagram 〈φ(M1), a〉 is Lannér. We consider two cases.

Case 1. Suppose that 〈φ(M2)〉 is a Lannér diagram. By Proposition 3.1, Σ contains an
additional Lannér subdiagram L = 〈φ(M1), x〉, where x ∈ φ(M2). By Lemma 3.5, that
additional subdiagram is unique. Thus,

Σ ≈ �a, φ(M1), x, φ(M2) \ x�2 = �1, 4, 1, 3�2 ,

contrary to [8, Cor. 5.10].
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Case 2. Suppose that both 〈φ(M1)〉 and 〈φ(M2)〉 are elliptic. Then 〈φ(M1), a〉 and
〈φ(M2), a〉 are Lannér. Notice that a is an open node of 〈φ(M1), a〉, since otherwise Σ
would contain a conflicting Lannér subdiagram. Similarly, a is an open node of 〈φ(M2), a〉.
Hence each of the diagrams 〈φ(M1), a〉 and 〈φ(M2), a〉 coincides with L5

1 or L5
5.

If Σ has an edge joining 〈φ(M1)〉 with 〈φ(M2)〉, then Σ has a conflicting subdiagram.
Thus, the subdiagrams 〈φ(M1)〉 and 〈φ(M2)〉 are not joined in Σ, and Σ is one of the
two diagrams of Figure 2 (if 〈φ(M1), a〉 = 〈φ(M2), a〉 = L5

5, then Σ contains a parabolic
subdiagram). �

Let P8 denote the only compact hyperbolic Coxeter 8-polytope with eleven facets
(see [5, 8]), and let Σ(P8) be its Coxeter diagram (see Figure 3).

Figure 3. The only compact hyperbolic Coxeter 8-polytope with 11 facets

Lemma 3.7. Let D = (4, 4, 2)1, and let Σ be a 0- or 1-lifting of D that does not contain
Lannér subdiagrams of order 3. If the positive inertia index of Σ is at most 8, then
Σ = Σ(P8).

Proof. By Lemmas 3.1 and 3.6, D has no 0-liftings. Let Σ be a 1-lifting of D, φ a lifting
injection, and a the additional node. Let M1, M2, and M3 be the missing faces of D, where
|M1| = |M2| = 4 and |M3| = 2. Let M3 = 〈u1, u2〉. By Lemma 3.6, 〈φ(M1), φ(M2), a〉
is one of the two diagrams of Figure 2. Since Σ contains only one additional node, the
non-existence of Lannér subdiagrams of order 3 implies that 〈φ(M3)〉 is Lannér. Hence
the order of any Lannér subdiagram of Σ different from 〈φ(M3)〉 is 5.

Suppose that u1 does not belong to any additional Lannér subdiagram of Σ. Then
〈φ(M1), φ(M2), u1〉 is elliptic of order 9, contrary to the assumption.

Thus u1 and u2 belong to some additional Lannér subdiagrams. The subdiagram X1 =〈
u1, φ(M1), φ(M2), a

〉
is of order 10 and does not contain small Lannér subdiagrams.

Moreover, each node of X1 belongs to some Lannér diagram. By Lemma 2.1, X1 is one
of the diagrams Θ1, Θ2, and Θ3 of Figure 1. Since the positive inertia index of Σ is at most
8, we have det(X1) = 0 and X1 = Θ1 (Lemma 2.1). By Lemma 3.6,

〈
φ(M1), φ(M2), a

〉
is a linear subdiagram of Θ1. Hence u1 is the only leaf of Θ1 not incident to a triple
edge. Similarly, X2 =

〈
u2, φ(M1), φ(M2), a

〉
also coincides with Θ1. Moreover, u1 and

u2 are joined with different nodes of
〈
φ(M1), φ(M2), a

〉
, since otherwise the diagram〈

φ(Mi), a, u1, u2

〉
would be superhyperbolic. Thus Σ = Σ(P8) and the lemma is proved.

�
Lemma 3.8. Let D = (1, 4, 1, 3, 1)2, and let Σ be a 0- or 1-lifting of D that does not
contain Lannér subdiagrams of order 3. If the positive inertia index of Σ is at most 8,
then Σ = Σ(P8).

Proof. Let φ be a lifting injection. We use the following notation for the subdiagrams
of D: (1, 4, 1, 3, 1)2 = (v, N4, u, N3, w)2.

Suppose that 〈φ(N3), φ(u)〉 is a Lannér diagram. Then〈
φ(v), φ(N4), φ(u), φ(N3)

〉
≈ �1, 4, 1, 3�2 ,

which is impossible by [8, Cor. 5.10]. Hence 〈φ(N3), φ(u)〉 is elliptic and Σ cannot be a
0-lifting of D.
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Now assume that Σ is a 1-lifting and a is the only additional node of Σ. Then
X = 〈a, φ(D \ {w})〉 satisfies the assumptions of Lemma 2.1. Since |X| = 10, X is one
of the diagrams Θ1, Θ2, and Θ3 of Figure 1. By assumption, the positive inertia index
of Σ is at most 8 and therefore det(X) = 0 and X = Θ1:

Consider the diagram 〈X, φ(w)〉. Since 〈φ(N4), φ(w)〉 is elliptic, φ(w) is not joined
with 〈x6, x7, x8, x9〉 = 〈φ(N4)〉. Furthermore, φ(w) is not joined with 〈x1, x2〉, otherwise
〈x1, x2, x3, φ(w)〉 would be conflicting. Hence, besides φ(v), φ(w) may be joined only
with x3, x4, or x5. Any edge joining w with x3, x4, x5 is simple, since otherwise one
of the diagrams 〈x2, x3, x4, φ(w)〉, 〈x3, x4, x5, φ(w)〉, and 〈x4, x5, x6, φ(w)〉 would be con-
flicting. To avoid parabolic subdiagrams, φ(w) must be joined with at most one of the
nodes x3, x4, x5 (except φ(v)).

If φ(w) is joined with x3, then the subdiagram 〈Σ \ φ(v)〉 is superhyperbolic. If φ(w)
is joined with x5, then φ(N3∪{w}) does not belong to any Lannér subdiagram, contrary
to the definition of lifting. Hence φ(w) is joined with x4. By assumption, Σ does not
contain Lannér subdiagrams of order 3, therefore the diagram 〈φ(v), φ(w)〉 is Lannér,
and Σ = Σ(P8). �

Lemma 3.9. The diagram D = �1, 3, 2, 3�2 has no 0-liftings.

Proof. Suppose that Σ is a 0-lifting of �1, 3, 2, 3�2. Comparing the 0-liftings of �3, 2, 3�2
(see [8, Lemma 5.12]) with the 0-liftings of �2, 3, 1�2 (see [17, Table 4.8]), we conclude
that Σ is one of the following diagrams:

These diagrams are superhyperbolic, which proves the lemma. �

Lemma 3.10. Let D = (3, 2, 3, 1, 1)2. Then there are no 0- or 1-liftings of D of positive
inertia index smaller than or equal to 8 and not containing Lannér subdiagrams of order 3.

Proof. Suppose there is such a lifting Σ and let φ be a lifting injection. Denote the subsets
of D as follows: (3, 2, 3, 1, 1)2 = (N1, N2, N3, v, u). Set X = 〈φ(N1), φ(N2), φ(N3)〉.
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The subdiagram X of 〈φ(D)〉 does not contain small Lannér subdiagrams. Hence X ≈
�3, 2, 3�2, and by [8, Lemma 5.12], we have

By the definition of lifting, the diagram 〈φ(N1), φ(u)〉 belongs to some Lannér subdi-
agram of Σ. If 〈φ(N1), φ(u)〉 is Lannér, then

〈X, φ(u)〉 ≈ �φ(u), φ(N1), φ(N2), φ(N3)�2 = �1, 3, 2, 3�2 ,

which is impossible by Lemma 3.9.
Hence 〈φ(N1), φ(u)〉 is elliptic and Σ contains exactly one additional node a. Sim-

ilarly, 〈φ(N3), φ(v)〉 is also elliptic. Since Σ does not contain Lannér subdiagrams
of order 3, 〈φ(u), φ(v)〉 is a Lannér diagram. The remaining small missing faces are
〈φ(N1), φ(u)〉 and 〈φ(N3), φ(v)〉. Hence each additional subdiagram of Σ contains either
〈φ(N1), φ(u)〉 or 〈φ(N3), φ(v)〉, and the diagram Y = 〈X, a, φ(u)〉 satisfies the assump-
tions of Lemma 2.1. Since |Y | = 10, |Y | is one of the diagrams Θ1, Θ2, and Θ3 of
Figure 1. The diagram Θ1 does not contain Σ0 ≈ �3, 2, 3�2. The diagrams Θ2 and Θ3

have positive inertia index 9, contrary to the assumption. �

Lemma 3.11. The diagrams �5, 3�1 and �5, 3, 2�1 have neither 0- nor 1-liftings.

Proof. We shall prove the lemma for D = �5, 3�1; the assertion for �5, 3, 2�1 will then
immediately follow.

By Proposition 3.1, D has no 0-liftings. Suppose that Σ is a 1-lifting of D, φ is a lifting
injection, and a is the additional node. Let M5 and M3 be the missing faces of D of order
5 and 3, respectively. Then 〈φ(M3), a〉 is a Lannér diagram. By Proposition 3.1, Σ has
at least one additional Lannér subdiagram. By the definition of lifting, any additional
Lannér subdiagram of Σ contains φ(M3).

Suppose that L = 〈φ(M3), x〉 is an additional Lannér subdiagram of Σ of order 4,
x ∈ φ(M5). Then x is an open node of L, since otherwise Σ would contain a conflicting
subdiagram. It is not difficult to see that x is a doubly open node of L, whence L = L4

5.
On the other hand, 〈L, a〉 ≈ �x, M3, a�2 = �1, 3, 1�2. By [17, Table 4.8], no diagram
Σ0 ≈ �1, 3, 1�2 contains subdiagrams L4

5. It follows that Σ has no additional Lannér
subdiagrams of order 4.

Thus Σ has at least one additional Lannér subdiagram L of order 5, L = 〈φ(M3),
x1, x2〉, x1, x2 ∈ φ(M5). Since L is connected, we may assume that x1 is joined with
some node y ∈ φ(M3) (up to a transposition of x1 and x2). Then x1 is an open node of
〈φ(M5)〉 and y is an open node of 〈φ(M3), a〉. Since no Lannér diagram of order 5 has
more than one open node, x2 cannot be joined with 〈φ(M3)〉. Hence x2 is joined with x1.
For the same reason, any additional Lannér subdiagram L′ contains x1; moreover, if
xk ∈ L′ and xk �= x1, then xk is joined with x1 and is not joined with 〈φ(M3)〉.

If L is the only additional Lannér subdiagram of Σ, then

Σ ≈
⌊〈

φ(M5) \ {x1, x2}
〉
, 〈x1, x2〉, 〈φ(M3)〉, a

⌋
2

= �3, 2, 3, 1�2 ,

which is impossible by Lemma 3.9. Therefore, Σ contains at least one more additional
Lannér subdiagram L′. Suppose that L′ = 〈φ(M3), x1, x3〉, x3 ∈ φ(M5), x3 �= x2. As
was shown above, the open node x1 of 〈φ(M5)〉 is joined with two other nodes, x2 and
x3, which implies that 〈φ(M5)〉 = L5

5. In particular, the edges x1x2 and x1x3 are simple.
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Keeping in mind that

〈L, a〉 ≈ �a, 〈φ(M3)〉, 〈x1, x2〉�2 = �1, 3, 2�2
and

〈L′, a〉 ≈ �a, 〈φ(M3)〉, 〈x1, x3〉�2 = �1, 3, 2�2 ,

we check all possibilities for �1, 3, 2�2 such that x1x2 and x1x3 are simple edges (see [17,
Table 4.8]). We then have that either Σ contains a conflicting subdiagram or Σ is one of
the following diagrams:

All these diagrams are superhyperbolic, which proves the lemma. �

4. Non-existence of polytopes in dimensions ≥ 9

Suppose that there is a compact hyperbolic Coxeter d-polytope P with d + 4 facets.
Let Σ be the Coxeter diagram of P .

For the study of polytopes with d + 4 facets we shall refer to the classification of
compact Coxeter d-polytopes with d + 1, d + 2, and d + 3 facets (see [14, 9, 13, 17]). In
particular, recall that P8 is the only 8-polytope with 11 facets, and Σ(P8) stands for its
Coxeter diagram (see Figure 3).

Henceforth, by a polytope we understand a compact hyperbolic Coxeter polytope, and
by the diagram of a polytope, the Coxeter diagram of it.

Lemma 4.1. Suppose that d ≥ 9. Then:
(1) any node v of Σ is incident to at most one non-simple edge;
(2) Σ has no Lannér subdiagrams of order 3;
(3) Σ has no edges of multiplicity ≥ 4.

Proof. If the lemma is not true, then Σ has either a node incident to two dashed edges
or a subdiagram S0 ⊂ Σ of type G

(m)
2 , m ≥ 4, with a bad neighbor.
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Suppose that Σ has a node v incident to two dashed edges. Then the facet f = P (v)
is a simple (possibly non-Coxeter) (d − 1)-polytope with at most d + 1 = (d − 1) + 2
facets, i.e., either a simplex or a product of two simplices. If f is a simplex, then P has
a large missing face, contrary to Corollary 3.1. If f is a product of two simplices and has
no large missing faces, then it is a product of two 4-simplices (since d ≥ 9), and therefore
D(f) = �5, 5�1. By Lemma 3.3 and Proposition 3.1, the diagram �5, 5�1 has no liftings,
contrary to Lemma 3.2.

Suppose that Σ has a subdiagram S0 ⊂ Σ of type G
(m)
2 with m ≥ 4 and a bad

neighbor. Then P (S0) is a Coxeter (d − 2)-polytope with at most (d − 2) + 3 facets
(see Proposition 1.11), therefore either d − 2 = 8 or d − 2 ≤ 6 (see [17]). If d − 2 ≤ 6,
then d ≤ 8, contrary to the assumption. If d − 2 = 8, then d = 10 and P (S0) is the only
Coxeter 8-polytope with 11 facets (see Figure 3). Notice that ΣS0 has a subdiagram of
type H4 with two neighbors joined with it by simple edges. In view of Corollary 1.2,
the corresponding diagram S1 ⊂ Σ is also of type H4 with at least two neighbors.
Hence P (S1) is a Coxeter 6-polytope with at most eight facets, which is impossible
(see [9, 13]). �

Figure 4. The 5-prisms that have property (1) in Lemma 4.1

Lemma 4.2. Suppose d ≥ 9. Then Σ does not contain Lannér subdiagrams of order 5.

Proof. Suppose that there is a Lannér subdiagram L0 ⊂ Σ of order 5. The classification
of Lannér diagrams shows that there is a subdiagram S0 ⊂ L0 of type H4 or F4. Then
P (S0) is a Coxeter (d−4)-polytope and ΣS0 = S̄0 is a subdiagram of Σ (see Corollary 1.1).
Since S0 has at least one neighbor (the node L0 \ S0) and a neighbor of a diagram of
type H4 or F4 cannot be good, the order of ΣS0 is either d − 3, or d − 2, or d − 1.
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Case 1. P (S0) has d − 3 facets. Then P (S0) is a Coxeter simplex and d − 4 ≤ 4, i.e.,
d ≤ 8, contrary to the assumption.

Case 2. P (S0) has d− 2 facets, i.e., P (S0) is a Coxeter (d− 4)-polytope with (d− 4) + 2
facets, and therefore (see [8, 13]) d − 4 ≤ 5, i.e., d ≤ 9. Hence d = 9 and P (S0) is a
5-prism. Since ΣS0 = S̄0, Lemma 4.1(1) together with [13] implies that S̄0 is one of the
four diagrams of Figure 4.

Let L1 be the only Lannér subdiagram of S̄0, S1 ⊂ L1 the only subdiagram of type H4

or F4, and u = L1 \ S1. The diagram Σ consists of the following parts:

where a1 and a2 are neighbors of S0, and S0 is not joined with S̄0. Since any two indefinite
subdiagrams must be joined in Σ, each of the nodes a1 and a2 is joined with L1. If each
of these nodes is joined with S1, then S1 has three neighbors, which is impossible (see
Case 1). Hence one of these nodes, say a1, is joined with u = L1 \ S1 (see Figure 4) and
is not joined with S1.

Consider diagrams a) and b) in Figure 4, with the nodes indexed as is shown there.
Let S2 = ΣS0 \ 〈u2, u4〉. Then S2 is of type B5 with at least three bad neighbors (u4,
u2, and a1). By Lemma 1.3, a2 cannot be a neighbor of S2. Similarly, examining
S3 = ΣS0 \〈u2, u3〉 we have that a2 is not joined with u4. Hence a2 is not joined with L1,
i.e., the indefinite subdiagram 〈S0, a2〉 is not joined with the Lannér diagram L1, which
is impossible.

Suppose now that ΣS0 is one of the diagrams c) and d) in Figure 4. There are two
possibilities: either a2 is joined with S1 or not. Suppose a2 is not joined with S1. Then
P (S1) is a Coxeter 5-polytope with eight facets. By Corollary 1.1, ΣS1 = S̄1 ⊂ Σ. But
property (1) in Lemma 4.1 is not shared by any Coxeter 5-polytope with eight facets
(see [17]). Hence a2 is joined with S1, and S1 has exactly two neighbors, u and a2 (it
cannot have more neighbors by Case 1). Thus, P (S1) is a Coxeter 5-prism. We may
assume that the diagram ΣS1 of P (S1) is of type c) or d) in Figure 4 (in the case of
prisms a) and b) use the arguments from the previous paragraph). Notice that ΣS1 = S̄1

contains S0; hence S0 is a diagram of type H4.
Furthermore, ΣS1 contains u1, u2, and a1. Since P (S1) is a 5-prism, ΣS1 contains a

Lannér subdiagram of order 5. On the other hand, ΣS1 = 〈S0, u1, u2, a1〉, where u1 and
u2 are not joined with S0, and therefore 〈S0, a1〉 is a Lannér diagram. Hence 〈S0, a1〉 is
joined with the Lannér diagram L1, i.e., a1 is joined with u. By Lemma 1.4, a1 is joined
with u by a dashed edge. Thus, 〈S0, a1, u, S1〉 is of the form
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Recall that u1 and u2 are joined by a dashed edge. Since u1, u2 ∈ S̄0, each of these
nodes is joined in Σ \ a2 with u and a1 only. For Σ \ a2 we have four possibilities:

By assumption, a2 is joined with S1 = 〈v5, v6, v7, v8〉. Since a2 /∈ ΣS0 , a2 is joined
with S0 = 〈v1, v2, v3, v4〉. Furthermore, a2 is joined with 〈u1, u2〉, since otherwise the
indefinite diagram 〈S0, a2〉 would not be joined with the Lannér diagram 〈u1, u2〉. Since
each of the diagrams 〈v2, v3, v4, a1, u1〉, 〈v7, v6, v5, u, u1〉, and 〈v7, v6, v5, u, u2〉 has three
bad neighbors, no dashed edge ends in a2(see Lemma 4.1(1)). Examining the possible
multiplicities of the edges (i.e., simple, double, triple, and empty), we see that there is
always either a Lannér subdiagram of order 3, or a parabolic subdiagram, or a subdiagram
of type H4 with at least three neighbors (the latter is in fact impossible; see Case 1).

Case 3. P (S0) has d−1 facets. Then P (S0) is a Coxeter (d−4)-polytope with (d−4)+3
facets. Since d ≥ 9, we have d − 4 ≥ 5. By [17], the Coxeter diagrams of such polytopes
either do not have properties (1)–(3) of Lemma 4.1 or have a subdiagram of type H4

with at least two neighbors, which is impossible by the previous cases. �

Lemma 4.3. Suppose that one of the following holds:

1) d ≥ 9;
2) d = 8, Σ has properties (1)–(3) of Lemma 4.1, and Σ does not contain Lannér

subdiagrams of order 5.

Then Σ has no Lannér subdiagrams of order 4.

Proof. Suppose that L0 is a Lannér subdiagram of Σ of order 4. Let S0 ⊂ L0 be a
subdiagram of type H3 (if any) or B3 (otherwise). Then P (S0) is a Coxeter (d − 3)-
polytope with at most (d − 3) + 3 facets. By Lemmas 4.2 and 3.2, ΣS0 has no Lannér
subdiagrams of order 5. If P (S0) is a simplex or a product of two simplices, then d−3 ≤ 3
or d − 3 ≤ 4, respectively; hence d ≤ 7, contrary to the assumption.

Suppose that P (S0) is a polytope with (d − 3) + 3 facets. When d ≥ 8, the Coxeter
diagram of almost all (d − 3)-polytopes with d facets contains a Lannér subdiagram of
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order 5 (see [17]). The only exception is a 5-polytope with eight facets and Coxeter
diagram ΣS0 of the form

By Corollary 1.2, no node of S̄0 \ 〈b1, b2〉 is a good neighbor of S0. The node b1 is a
good neighbor; otherwise Σ would contain the Lannér subdiagram 〈b1, c1, d1〉 of order 3,
contrary to the assumption. Thus, 〈b1, c1〉 is a simple edge of Σ and 〈d1, c1, b1, x1, x2〉 is
a Lannér diagram of order 5 (here x1 and x2 are the ends of the simple edge of S0). This
contradicts the assumption. �

Theorem 1. There are no compact hyperbolic Coxeter d-polytopes with d+4 facets with
d ≥ 9.

Proof. It follows from Lemmas 4.1, 4.2, and 4.3 that the order of any Lannér subdiagram
of Σ is 2. It was shown in [8, Prop. 6.9] that such a polytope with d + 4 facets may only
exist when d ≤ 4. �

5. Non-existence of polytopes in dimension 8

In this section we show that there are no compact Coxeter 8-polytopes with 12 facets.
Assuming that P is such a polytope and Σ is its Coxeter diagram, we show that the
properties of Σ are similar to those proved for polytopes in large dimensions, which
eventually leads to a contradiction. However, the proofs in the 8-dimensional case are
much more complicated than in larger dimensions.

Lemma 5.1 ([11, Lemma 1]). Let Σ(P ) be the Coxeter diagram of a Coxeter d-polytope
P . Then no proper subdiagram of Σ(P ) is the diagram of a Coxeter d-polytope of finite
volume.

In particular, Σ does not contain Σ(P8) as a proper subdiagram.

Lemma 5.2. Suppose 〈v1, v2〉 ⊂ Σ is a subdiagram of type G
(k)
2 , k ≥ 4. Then:

(1) 〈v1, v2〉 has at most one bad neighbor;
(2) k ≤ 5;
(3) if 〈v1, v2〉 has a bad neighbor, then it also has a good neighbor.

Proof. Let S0 = 〈v1, v2〉. If S0 has two bad neighbors, then P (S0) is a Coxeter 6-polytope
with at most eight facets, which is impossible by [13, 8].

Suppose that either k ≥ 6 or S0 has a bad neighbor and no good ones. In particular,
all neighbors of S0 are bad and, by Corollary 1.1, S̄0 = ΣS0 . In addition, P (S0) is a
Coxeter 6-polytope with at most nine facets. By [17], the diagram of such a polytope is
one of the three diagrams of Figure 5. The Coxeter diagram of each of those polytopes
contains a multiple edge with two bad neighbors. This is impossible, as we have shown
before. �
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Lemma 5.3. (1) Σ does not contain Lannér subdiagrams of order 3.
(2) No node incident to a dashed edge is incident to a triple edge.
(3) If Σ has exactly one dashed edge, then neither of its ends is incident to a double

edge.

Proof. Suppose that the lemma is not true. Let L0 be a Lannér subdiagram of order
3 or a subdiagram with three nodes that contains a dashed edge and a multiple edge.
Consider two cases.

Case 1. L0 contains a triple edge.
Let S0 be the subdiagram consisting of that edge and its ends. Then P (S0) is a

Coxeter 6-polytope with at most nine facets (since L0 contains a bad neighbor of S0).
Then ΣS0 is one of the three diagrams of Figure 5. By Corollary 1.1, S̄0 ⊂ Σ can be
obtained from ΣS0 by replacing (if necessary) some dashed edges with ordinary edges
and some edges labeled by 10, with simple edges. Applying this procedure to P 1

6 and P 3
6

(Figure 5), we see that the resulting diagrams contain either a parabolic subdiagram or
a multiple edge with two bad neighbors.

Figure 5. Compact hyperbolic Coxeter 6-polytopes with nine facets

Suppose that P (S0) = P 2
6 . Let u be the bad neighbor of S0 (it is unique by Lemma 5.2).

In view of Corollary 1.1, S̄0 can be obtained from ΣS0 by replacing some edges labeled
by 10 with simple edges and some dashed edges with ordinary ones. By Corollary 1.2,
the dashed edge of ΣS0 remains dashed in S̄0. By Lemma 5.2, the edge of ΣS0 labeled
by 10 is a simple edge in S̄0. Hence the leaf of ΣS0 incident to the edge labeled by 10 is
a good neighbor of S0 in Σ. The remaining nodes of ΣS0 cannot be good neighbors of
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S0 by Corollary 1.2. Thus, Σ \ u is the Coxeter diagram Σ(P8), which is impossible by
Lemma 5.1.

Case 2. L0 has no triple edges.
Let S0 be the subdiagram of L0 consisting of a double edge and its ends. As before,

P (S0) is a 6-polytope with nine facets. By Corollary 1.2, S̄0 ⊂ Σ can be obtained
from ΣS0 by replacing (if necessary) some dashed edges with ordinary ones and some
double edges, with simple or empty ones. Applying this procedure to the diagrams of the
polytopes P 3

6 and P 2
6 , we conclude that the resulting diagrams contain multiple edges

with at least two bad neighbors, which is impossible by Lemma 5.2.
Suppose that P (S0) = P 1

6 . Then both double edges of ΣS0 become simple or empty in
S̄0; otherwise Σ would have a Lannér subdiagram with a triple edge, which is impossible
by Case 1. Moreover, by Corollary 1.2, only one end of each double edge can be a good
neighbor of S0. Therefore, by Proposition 1.11, each double edge of ΣS0 is simple in S̄0.
Moreover, the only dashed edge remains dashed, since otherwise S̄0 would be superhy-
perbolic. Hence in this case we may assume that L0 has no dashed edges (otherwise all
assertions of the lemma are obviously true). By Proposition 1.11, the ends of the dashed
edge of S̄0 are good neighbors of S0, whereas the remaining nodes of S̄0 are not. Consider
the subdiagram S1 ⊂ S̄0 of type H4 consisting of a triple edge, a simple edge adjacent to
it and obtained from a double edge, and a simple edge joining S0 with its good neighbor.
The diagram S1 has two neighbors in S̄0 and two neighbors in S0 (since L0 is a Lannér
diagram with no edges of multiplicity greater than 2). This means that S1 has at least
four bad neighbors, contrary to Lemma 1.3. �

The next lemma is the main result of [11].

Lemma 5.4 ([11, Th. A]). Let P be a compact Coxeter polytope in the d-dimensional
hyperbolic space, and Σ(P ) its Coxeter diagram. If d > 4, then Σ(P ) contains a dashed
edge.

Lemma 5.5. Let S ⊂ Σ be an elliptic subdiagram of order 3 having no components of
type An. Then S has at most two bad neighbors.

Proof. Suppose that S has three or more bad neighbors. Then ΣS is a 5-polytope with
at most six facets, which is impossible. �

Lemma 5.6. Suppose that Σ contains a Lannér subdiagram L0 of order 5 and a unique
dashed edge. Then Σ contains a subdiagram S of type F4 or H4 such that P (S) is not a
simplex.

Proof. Suppose that the lemma is not true, i.e., for any diagram S′ ⊂ Σ of type H4 or F4

the face P (S′) is a simplex.
Let S0 ⊂ L0 be a diagram of type H4 or F4. Then P (S0) is a Coxeter 4-simplex. The

diagram ΣS0 is a Lannér diagram of order 5, we denote it L1. Let S1 be a subdiagram
of L1 of type H4 or F4. By assumption, P (S1) is a Coxeter simplex, and S̄1 = ΣS1 is a
Lannér diagram of order 5, we denote it L2. Notice that S0 ⊂ L2 and let S2 = S0. Let
vi = Li \ Si, i = 0, 1, 2.

Since S2 = S0 is not joined with L1, v2 is joined with L1. On the other hand, L2 is
not joined with S1. Hence 〈L1, L2〉 consists of two Lannér subdiagrams L1 and L2 joined
by a single edge v1v2 such that Li \ vi is of type H4 or F4. By Lemma 1.4, v1v2 is a
dashed edge.

Let a and b be nodes not contained in 〈L1, L2〉. Notice that if v2 �= v0, then either a
or b coincides with v0. Both a and b are joined with S1 and S2. The diagram Σ consists
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of the following parts:

where the wavy line indicates that the node is joined with the subdiagram by a non-
dashed edge; the subdiagram 〈a, b, v1, v2〉 may contain some other (non-dashed) edges.

By Lemma 5.3, v1 and v2 are joined with S1 and S2 only by simple edges. Hence L1

(as well as L2) is one of the diagrams L5
1, L5

4, or L5
5 from Table 2.

Suppose that L1 = L5
5. Let w1 ∈ S1 be a node joined with a. If w1a is a triple

edge, then Σ has either a Lannér subdiagram of order 3 or a diagram of type H3 with
at least three bad neighbors, which is impossible by Corollary 3.1. If w1a is a double or
a simple edge, then we have either a parabolic subdiagram or a Lannér subdiagram of
order 3. Thus the multiplicity of w1a should be greater than three, which is impossible
by Lemma 5.2.

Hence both S1 and S2 are of type H4. For each of the four possible pairs of diagrams L1

and L2, there is a unique label for the dashed edge v1v2 such that the determinant of
Σ \ 〈a, b〉 vanishes. Those labels are: (1 +

√
5)/2 for L1 = L2 = L5

1, 4 + 2
√

5 for
L1 = L2 = L5

4, and (3 +
√

5)/
√

2 for L1 = L5
1, L2 = L5

4 (or L2 = L5
1, L1 = L5

4).
Let u1 ∈ S1 and u2 ∈ S2 be the leaves of Σ\〈a, b〉 incident to the triple edges. Suppose

that both a and b are joined with S1 \u1 and S2 \u2, all edges joining a and b with Si \ui

are simple, and a is not joined with b. Then Σ \ 〈v1, v2〉 contains a parabolic subdiagram
of type Ãm for some m, 2 ≤ m ≤ 7. If in addition there is a multiple edge joining a or b
with S1 \ u1 and S2 \ u2, or a and b are joined, then Σ \ v1 or Σ \ v2 contains either a
diagram of type H3 with at least three neighbors, or a Lannér diagram of order 3, or a
parabolic diagram of type B3. Hence at least one of the nodes a and b, say a, is joined
with one of the diagrams Si\ui, say S1\u1, by multiple edges only. Thus, by Lemma 5.3,
there are two possibilities: either a is joined with S1 \ u1 by a single multiple edge or it
is not joined with S1 \ u1 (in the latter case a is joined with u1).

Case 1. The node a is joined with S1 \u1 by a single multiple edge au. It is not difficult
to see that if L1 = L5

4, then u is a leaf of L1 different from v1, and a is not joined with v1

(otherwise we would have either a diagram of type H3 with at least three bad neighbors,
or a Lannér subdiagram of order 3, or a parabolic subdiagram). If au is a double edge,
then 〈a, L1 \ u1〉 is a parabolic subdiagram of type B̃4. Suppose that au is a triple edge.
The node a is not joined with u1; otherwise 〈u, a, u1〉 would be of type H3 with at least
three bad neighbors, which is impossible by Corollary 3.1. Consider now the diagram
Σ1 = 〈L1, a, v2〉. The node a can be joined only with v2 (and only by a simple edge,
according to Lemma 5.3). A computation shows that Σ1 is superhyperbolic, whether or
not the nodes a and v2 are joined.

Case 2. The node a is not joined with L1 \ u1. Then a is joined with u1 by a simple
edge. As before, consider the diagram Σ1 = 〈L1, a, v2〉. The node a can be joined only
with v1 and v2 and only by simple edges. For each of the four pairs of diagrams L1 and
L2, the diagram Σ1 is superhyperbolic whether or not a is joined with v1 and v2. �
Lemma 5.7. Any node of Σ is incident to at most one dashed edge.
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Proof. Suppose that u ∈ Σ is a node incident to two or more dashed edges. By
Lemma 1.3, if u is incident to more than two dashed edges, then P (u) is a 7-face of a
Coxeter polytope with at most eight facets, which is impossible by Corollary 3.1. Thus,
u is incident to exactly two dashed edges, and P (u) is a 7-polytope with nine facets, i.e.,
a product of two simplices whose diagram of missing faces is �k, 9 − k�1 (k < 9). Since
the diagram of missing faces of this polytope cannot have large missing faces, it is of the
form �4, 5�1. By Lemma 3.4, this diagram has only one lifting, Θ1 in Figure 1. Denote
the nodes of Θ1 as shown in Figure 6, and let v and w be the remaining nodes of Σ. Each
of them is joined with u by a dashed edge and they are also joined with the subdiagram
〈v5, . . . , v9〉 ⊂ Σ.

Figure 6. Unique lifting of �4, 5�1

Case 1. The nodes v and w are not joined with the subdiagram Σ\〈v, w, u〉 = 〈v1, . . . , v9〉
by dashed edges.

Let S0 = 〈v2, . . . , v8〉. Then P (S0) is a 1-face, and therefore S0 belongs to exactly two
elliptic diagrams of order 8. This means that one of the nodes v and w, say v, either is
not joined with S0 or is a good neighbor of S0. In particular, any double edge joining v
with S0 may end in v2 or v8 only. By Lemma 5.3, no double edge joins v and Σ\〈v, w, u〉.
Hence v can be joined only with v1, v9, and one of the nodes of S0 and only by simple
edges. A straightforward calculation shows that the positive inertia index of any diagram
Σ \ 〈w, u〉 thus obtained is different from 8, contrary to the assumption that Σ is the
diagram of an 8-polytope.

Case 2. At least one of the nodes v and w, say v, is joined by a dashed edge with some
node vx ∈ Σ \ 〈v, w, u〉.

In this case, P (v) is a 7-face of P bounded by nine facets, i.e., a face with diagram
of missing faces of type �5, 4�1. The only lifting of this diagram is the diagram Θ1

(Lemma 3.4). In other words, Σ \ 〈u, vx〉 looks like the diagram of Figure 6, where v
takes the place of u, w takes the place of vx, and, possibly, the node v is not joined with
v4 but is joined with v6 (when vx �= v6) or with w (when vx = v6).

If vx and w are not joined by a dashed edge, we obtain a parabolic diagram 〈vx−1, vx,
vx+1, w〉 (when vx �= v1 or v9) or a Lannér diagram of order 3 (when vx = v1 or v9). If vx

and w are joined by a dashed edge, consider the face P (vx). It is again a 7-polytope with
nine facets, but in the lifting of its diagram of missing faces, the node vx is joined with
at least two nodes, contrary to Lemma 3.2. �
Lemma 5.8. Σ contains at least two dashed edges.

Proof. By Lemma 5.4, Σ has a dashed edge. Suppose it is unique. Then by Lemmas 5.2
and 5.3, Σ satisfies assertions (1)–(3) of Lemma 4.1. We shall show that this implies
that Σ does not contain Lannér subdiagrams of order 5. By Lemmas 4.3, 5.3, and 1.2
this would prove the lemma.

Suppose that there is a Lannér diagram L0 ⊂ Σ of order 5. Let S0 ⊂ L0 be a
subdiagram of type H4 or F4. Then P (S0) is a 4-polytope with at most seven facets
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and ΣS0 = S̄0 (Corollary 1.1). The Coxeter diagram of any 4-polytope with seven
facets contains either a Lannér subdiagram of order 3 or at least two dashed edges. The
Coxeter diagram of any 4-polytope with six facets which is not a prism contains a Lannér
subdiagram of order 3. Hence P (S0) is a either a Coxeter 4-prism or a Coxeter 4-simplex.

By Lemma 5.6, we may assume that P (S0) is a prism. Consider two cases.

Case 1. P (S0) is a prism with Coxeter diagram ΣS0 , different from

where the label “2, 3” indicates that the corresponding nodes are either joined by a simple
edge or are not joined.

Examining the list of Coxeter diagrams of 4-prisms [13], we see that ΣS0 = S̄0 contains
a subdiagram S1 of type H4 or F4 with an adjoined dashed edge. Since there is only one
dashed edge in Σ, the diagram ΣS1 = S̄1 of P (S1) contains no dashed edges, so P (S1) is
a simplex. Notice that S0 ⊂ S̄1. Let u and v be the neighbors of S0, a the end of the
dashed edge contained in S1, and b the remaining node of Σ not contained in 〈S0, S1〉.
Thus, Σ consists of the following parts:

where u and v are neighbors of S0, and S0 is disjoint from S̄0. Since P (S1) is a simplex,
b and one of the nodes u and v, say v, are joined with S1, and 〈S0, u〉 = S̄1 is a Lannér
diagram.

Consider the diagram Σ \ 〈v, a〉 consisting of the Lannér subdiagram 〈S0, u〉 = S̄1 and
the indefinite subdiagram 〈S1, b〉. These subdiagrams can be joined only by the edge
〈u, b〉, which cannot be dashed. It is not difficult to see that Σ\ 〈v, a〉 is superhyperbolic.

Case 2. P (S0) is a prism with Coxeter diagram ΣS0 of the form
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Let S1 ⊂ ΣS0 be a subdiagram of type B4, for example, S1 = 〈v1, v2, v3, v5〉. Then Σ
consists of the following parts:

where u and v are neighbors of S0, and S0 is disjoint from S̄0. Notice that S1 has at least
two neighbors, namely, v4 and v6, and therefore P (S1) is either a prism, or an Esselmann
polytope, or a simplex. Consider these three cases.
Case 2.1: P (S1) is an Esselmann polytope.

Then ΣS1 contains two disjoint Lannér subdiagrams of order 3, whereas S̄1 contains
no such diagrams. Hence ΣS1 contains two nodes, which are good neighbors, in Σ, of the
subdiagram S1 of type B4. By Corollary 1.2, this is impossible (see the list of Esselmann
diagrams in [9]).
Case 2.2: P (S1) is a prism.

As before, u and v are neighbors of S0. By assumption, there is only one dashed edge
in Σ, and therefore one of the nodes u and v, say v, is a good neighbor of S1, i.e., the
diagram 〈S1, v〉 is of type B5. If u is also a good neighbor of S1, we obtain either a
parabolic subdiagram of Σ or a Lannér subdiagram of order 3. Thus, v is the only good
neighbor of S1.

Consider the diagram S̄1 = 〈S0, u, v〉. Since v is the only node of S̄1 joined with S1,
the diagram S̄1 differs from ΣS1 only by the multiplicities of the edges incident to v.
By Proposition 1.11, any simple edge of S̄1 incident to v becomes a double edge in ΣS1 ,
and any other edge of S̄1 incident to v becomes a dashed edge. Since P (S1) is a prism,
ΣS1 contains only one dashed edge. At the same time, no Coxeter diagram of a compact
Coxeter 4-prism contains nodes incident to both a multiple edge and a dashed edge.
Hence v is joined with exactly one node of the diagram S̄1 \ v = 〈S0, u〉 (call it w), and
S̄1 can be obtained from ΣS1 by replacing the dashed edge by a double or a triple edge.

Recall that v is the only neighbor of S1 contained in S̄1, and that it is joined with v5

by a simple edge. Thus, we have either the parabolic diagram 〈v1, v2, v3, v5, v, w〉 or the
subdiagram 〈v3, v5, v, w〉 of type H4 with at least four neighbors.
Case 2.3: P (S1) is a simplex.

We use the same notation as in Case 1. The difference is that now one of the nodes u
and v, say v, is a bad neighbor of S1. There is only one way to attach a bad neighbor
to S1 such that no parabolic subdiagrams or Lannér subdiagrams of order 3 would be
formed: join v with v5 by a triple edge. But in that case we would have the subdiagram
〈v2, v3, v5, v〉 of type H4 with at least four neighbors.

This exhausts all the cases and proves the lemma. �
Theorem 2. There are no compact hyperbolic Coxeter 8-polytopes with 12 facets.

Proof. Suppose P is a compact hyperbolic Coxeter 8-polytope with 12 facets and Σ is its
Coxeter diagram. By Lemma 5.4, Σ has a dashed edge 〈v, w〉. It follows from Lemma 5.7
that P (v) is a 7-polytope with ten facets. By Lemma 5.8, P (v) has a pair of disjoint
facets.
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The combinatorial structure of P (v) is encoded by a 2-dimensional Gale diagram on
ten nodes with a missing face of order 2 and without large missing faces. It is not difficult
to check that it must be one of the following diagrams:

By Lemma 3.2, Σ contains either a 0- or a 1-lifting of one of these diagrams. By
Lemma 5.3, Σ has no Lannér subdiagrams of order 3. Since P is an 8-polytope, the
positive inertia index of Σ is 8. Thus Lemmas 3.7, 3.8, 3.10, and 3.11 apply, and we
have that Σ contains Σ(P8). This contradicts Lemma 5.1 and completes the proof of the
theorem. �

6. Polytopes in dimension 7

In this section we assume that Σ is the Coxeter diagram of a compact Coxeter 7-
polytope with 11 facets, and prove that Σ coincides with ΣP7 , where ΣP7 is the diagram
found by Bugaenko [5] and shown in Figure 7.

Figure 7. The only compact Coxeter 7-polytope with 11 facets

Theorem 3. If Σ is the Coxeter diagram of a compact Coxeter 7-polytope with 11 facets,
then Σ = ΣP7 .

The proof in general is similar to the proofs in larger dimensions but it is rather
long and involved, with many cases to examine. We show that Σ contains at least one
subdiagram of type F4 or H4, and finish the proof by presenting Lemmas 6.6–6.9, which
deal with subdiagrams of type F4 and H4 and take up most of the proof.
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We say that a Coxeter diagram satisfies the signature condition if it is admissible and
its positive inertia index is at most 7.

Recall that if u, v ∈ Σ, then 〈u, v〉 = m (∞ or 2) means that u and v are joined by an
edge of multiplicity m − 2 (respectively, dashed or empty edge).

6.1. Existence of subdiagrams of type F4 or H4. Here we establish the following
properties of Σ:

• any node of Σ is incident to at most one dashed edge (Lemma 6.2);
• Σ contains no subdiagrams of type G

(k)
2 with k > 5 (Lemma 6.4);

• Σ contains at least one subdiagram of type F4 or H4 (Lemma 6.5), and any such
subdiagram has at least two bad neighbors (Lemma 6.3).

Recall that an elliptic subdiagram of Σ has at most three bad neighbors (Lemma 1.3).

Lemma 6.1. A subdiagram of type G
(k)
2 with k > 3 has at most two bad neighbors.

Proof. Suppose that S0 ⊂ Σ is a subdiagram of type G
(k)
2 , k > 3, with three bad

neighbors. Then P (S0) is a 5-simplex, which is impossible. �

Lemma 6.2. Any node of Σ is incident to at most one dashed edge.

Proof. Suppose that a node v is incident to two or more dashed edges. Let f be the facet
of P corresponding to v. Then f is a (possibly non-Coxeter) 6-polytope with at most
6 + 2 facets. By Corollary 3.1, f cannot be a simplex. Therefore, by Proposition 1.7,
f is a product of two simplices, i.e., ∆5 × ∆1, or ∆4 × ∆2, or ∆3 × ∆3. The first case
is impossible, since Σ has no large missing faces. The remaining cases are impossible,
since the diagrams �5, 3�1 and �4, 4�1 have no 0- and 1-liftings with positive inertia index
smaller than 8 (see Lemma 3.6 and 3.11). �

Lemma 6.3. Any subdiagram of Σ of type H4 or F4 has at least two neighbors.

Proof. Suppose S0 ⊂ Σ is of type H4 or F4. Since Σ is connected, S0 has at least one
neighbor. Suppose that S0 has exactly one neighbor, and call it a. Then P (S0) is a
Coxeter 3-polytope with 3 + 3 facets. A simple Coxeter 3-polytope with six facets can
be either a cube or a frustum of a tetrahedron, i.e., a polytope with two triangular, two
quadrilateral, and two pentagonal faces. The latter case is impossible for P (S0), since a
triangular facet does not intersect the two other facets, which is impossible by Lemma 6.2
(we use the fact that ΣS0 = S̄0 ⊂ Σ, since S0 is of type H4 or F4). Thus, P (S0) is a
cube. Let b1 and b2, c1 and c2, d1 and d2 be the ends of the dashed edges in S̄0 = ΣS0 .
By Lemma 1.4, a is joined with each of the dashed edges b1b2, c1c2, and d1d2. Assume
that a is joined with b1, c1, and d1.

Suppose that [b1, c1] ≥ 4. Then the subdiagram 〈b1, c1〉 has at least three bad neigh-
bors (b2, c2 and a), which is impossible by Lemma 6.1. Furthermore, [b1, c1] �= ∞, since
P (S0) is a cube. Hence [b1, c1] = 2 or 3. Similarly, [b1, d1] ≤ 3 and [c1, d1] ≤ 3.

Now suppose that [a, b1] ≥ 4. Let S1 = 〈a, b1〉. If [a, b1] ≥ 6, then S1 has at least
three bad neighbors (b2, c1, and d1), contrary to Lemma 6.1. Hence [a, b1] = 4 or 5. By
Lemma 6.1, S1 has at most two bad neighbors, and therefore one of the nodes c1 and
d1 is a good neighbor of S1 (recall that both c1 and d1 are joined with a). Assuming
now that c1 is a good neighbor of S1, consider the diagram S2 = 〈S1, c1〉 of type H3

or B3. The diagram S2 has at least four bad neighbors, namely b2, c2, d1 and one of
the nodes of S0 (since a is a neighbor of S0), which is impossible by Lemma 1.3. The
obtained contradiction shows that [a, b1] = 3 ([a, b1] �= ∞ by Lemma 6.2). Similarly,
[a, c1] = [a, d1] = 3.
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Since Σ contains no parabolic subdiagrams and [b1, c1] ≤ 3, we have [b1, c1] = 2.
Similarly, [b1, d1] = [c1, d1] = 2, and therefore 〈a, b1, c1, d1〉 is of type D4. This diagram
has at least four bad neighbors: b2, c2, d2 and one of the nodes xi, 1 ≤ i ≤ 4. The
obtained contradiction proves the lemma. �

Lemma 6.4. Σ contains no subdiagrams of type G
(k)
2 with k > 5.

Proof. Suppose that S0 ⊂ Σ is a subdiagram of type G
(k)
2 , k > 5. Without loss of gener-

ality, we may assume that the edge of the subdiagram S0 is of maximum multiplicity in Σ.
Since Σ is connected, S0 has at least one (obviously, bad) neighbor. By Corollary 1.3,
S0 has at most two neighbors. Consider two cases.

Figure 8. To the proofs of Lemmas 6.4 and 6.6

Case 1. Suppose that S0 = 〈x1, x2〉 has only one neighbor, and call it a. Then P (S0)
is a 5-polytope with 5 + 3 facets. By Corollary 1.1, ΣS0 = S̄0. Hence, it follows
from Lemma 6.2 that any node of ΣS0 is incident to at most one dashed edge. The
list of 5-polytopes with eight facets has only one diagram satisfying this condition. We
reproduce that diagram in Figure 8, a) together with the notation for its nodes. By
Lemma 1.4, a is joined with at least one of the nodes z1 and z2, say, z1. Let S1 = 〈x1, z1〉.
If a is a bad neighbor of S1, then S1 has three bad neighbors (y1, z2, a), which is impos-
sible by Lemma 6.1. Thus, a is a good neighbor of S1, which implies that [a, z1] = 3
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and that S2 = 〈a, S1〉 is of type B3. As a is a neighbor of S0, we may assume that x1

is joined with a. If x1 is a good neighbor of S2 = 〈a, S1〉, then 〈x1, S2〉 has at least four
bad neighbors (namely, x2, z2, y1 and some node of the Lannér diagram 〈b2, y4, y3, y2〉
joined with a. The last of the above neighbors is actually bad, since a is not a leaf
of 〈x1, S2〉). This is impossible by Lemma 1.3, so x1 is a bad neighbor of S2, and S2

has three bad neighbors (x1, y1, z2). Hence P (S2) is a 4-simplex and ΣS2 is a Lannér
diagram of order 5. By Corollary 1.2, S̄2 is also a Lannér diagram of order 5. At the same
time, S̄2 = 〈x2, b2, y4, y3, y2〉 cannot be a Lannér diagram, since it contains the Lannér
subdiagram 〈b2, y4, y3, y2〉. The obtained contradiction shows that S0 has exactly two
bad neighbors.

Case 2. Suppose that S0 = 〈x1, x2〉 has two bad neighbors, a1 and a2. Then P (S0) is a
5-prism. Such a prism can be one of the two types shown in Figure 8, b), c). We denote
the nodes of S̄0 as is shown in that figure. Let S1 denote the subdiagram 〈y1, y2, y3, y4〉
of type F4 or H4. Since S̄1 = ΣS1 contains the subdiagram S0 of type G

(k)
2 , k > 5, the

diagram S̄1 cannot be a Lannér diagram of order 4. Therefore, the face P (S1) cannot be
a 3-simplex. Hence S1 has at most two neighbors, i.e., at least one of the nodes a1 and
a2 is not joined with S1. We may assume that a1 is not joined with S1. By Lemma 1.4,
we then conclude that a1 is joined with y5 (since y5 belongs to the Lannér diagram
〈y1, y2, y3, y4, y5〉 ⊂ S̄0). Now we consider the cases S1 = F4 and S1 = H4 separately.

In the case S1 = F4, consider the subdiagrams 〈y2, y3, y4, y5, z1〉 and 〈y3, y2, y1, y5, z1〉
of type B5. Each of these subdiagrams has three bad neighbors (a1, y1, z2 and a1, y4, z2,
respectively), and therefore a2 is not a bad neighbor of either of these diagrams. Hence
a2 cannot be joined with the Lannér diagram 〈S1, y5〉, contrary to Lemma 1.4.

Consider now the case S1 = H4. Since a1 is not a neighbor of S1, a2 is a neighbor
of S1; otherwise S1 would have just one neighbor, which is impossible by Lemma 6.3.
Thus, S1 has two bad neighbors, y5 and a2, and P (S1) is a 3-prism. This means that the
diagram S̄1 = ΣS1 consists of the dashed edge 〈z1, z2〉 and the Lannér diagram 〈S0, a1〉
of order 3. Hence the diagram X = Σ \ 〈z1, z2〉 = 〈S0, a1, S1, y5〉 consists of the Lannér
diagrams 〈S0, a1〉 and 〈S1, y5〉 joined only by the edge a1y5. If this edge is not dashed and
[a1, y5] �= 5, then X is superhyperbolic. Consider the cases [a1, y5] = 5 and [a1, y5] = ∞.

Case 2.1. Suppose that [a1, y5] = 5. Then 〈a1, y5, y4, y3〉 is of type H4 and has three
bad neighbors, namely z1, y2 and one of the nodes x1 and x2, say, x1. Hence z2 is not a
neighbor of 〈a1, y5, y4, y3〉. In particular, [z2, a1] = 2, whence (Lemma 1.4) [a1, z1] �= 2.
Hence z1 is a bad neighbor of S2 = 〈a1, y5〉, and therefore ΣS2 is the diagram of a 5-
polytope with at most eight facets. Consider ΣS2 . By Proposition 1.11, the subdiagram
S1 = 〈y1, y2, y3, y4〉 of Σ becomes, in ΣS2 , a linear diagram of order 4 with a triple edge
ỹ1ỹ2, simple edge ỹ2ỹ3 and an edge ỹ3ỹ4 labeled by 10. But no diagram of a compact
5-polytope with eight facets contains such a subdiagram. Thus, the case [a1, y5] = 5 is
impossible.

Case 2.2. Now suppose that [a1, y5] = ∞. Consider the subdiagram S2 = 〈y1, y2, y3〉
of type H3. If a2 is a bad neighbor of S2, then P (S2) is a 4-polytope with 4 + 3 = 7
facets; moreover, ΣS2 contains a subdiagram 〈x̃1, x̃2〉 of type G

(k)
2 with k > 5 and at

least two dashed edges (z̃1z̃2 and ỹ4ỹ5). But no 4-polytope with seven facets has these
properties. Therefore, a2 is not a bad neighbor of S2. If a2 is a good neighbor of S2,
then the diagram 〈y1, y2, y3, a2〉 of type H4 has at least four bad neighbors (namely, y4,
at least one of the nodes x1 and x2, at least one of the nodes z1 and z2, and at least
one of the nodes a1 and y5). Hence a2 is not a neighbor of S2, and, by Lemma 6.3, a2

is joined with y4. Consider the subdiagram S3 = 〈y2, y3, y4, y5, z1〉 of type A5 or B5.
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It has three bad neighbors (y1, a1, z2), and therefore a2 is a good neighbor of S3. Thus
〈a2, S3〉 is of type E6. But then 〈a2, S3〉 has at least four bad neighbors (y1, z2, a1, and
one of the nodes x1 and x2). This contradicts Lemma 1.3 and completes the proof of the
lemma. �

Lemma 6.5. Σ contains at least one subdiagram of type F4 or H4.

Proof. Suppose that Σ contains no subdiagrams of type F4 or H4.
Suppose that Σ has a subdiagram S0 = 〈x1, x2〉 of type G

(4)
2 or G

(5)
2 with a bad

neighbor. Then P (S0) is a 5-polytope with at most eight facets. Hence ΣS0 contains a
subdiagram of type F4 or H4. Corollary 1.2 implies that S̄0 also contains a subdiagram
of that type, which is impossible by assumption.

It now follows (in view of Lemma 6.4) that Σ has no Lannér diagrams of order 3.
Since any Lannér diagram of order 5 contains a subdiagram of type F4 or H4, Σ does
not contain Lannér subdiagrams of order 5. By [8, Prop. 6.9], any simple polytope of
dimension d > 4 with d + 4 facets has at least one missing face of order greater than
two. Thus, Σ contains a Lannér subdiagram L of order 4. Let S0 ⊂ L be a subdiagram
of type H3 or B3. Set a1 = L \ S0 and S0 = 〈x1, x2, x3〉.

Suppose that S0 has three bad neighbors. Then P (S0) is a 4-simplex, and ΣS0 (and
therefore S̄0) contains a subdiagram of type F4 or H4, which is impossible by assumption.

Now suppose that S0 has only one bad neighbor, a1. Then P (S0) is a 4-polytope
with 4 + 3 facets. Corollary 1.2 implies that its diagram contains no subdiagrams of
type F4 and H4. Any diagram of a 4-polytope with 4 + 3 facets that does not contain
subdiagrams of type F4, H4, and G

(k)
2 (k > 5) contains a subdiagram 〈ỹ1, ỹ2〉 of type

G
(4)
2 or G

(5)
2 with a bad neighbor. If S0 is of type H3, then it has no good neighbors

(since Σ has no subdiagrams of type H4), and therefore S̄0 = ΣS0 contains a subdiagram
S1 = 〈y1, y2〉 of type G

(4)
2 or G

(5)
2 with a bad neighbor. As we have seen before, this is

impossible. Therefore, S0 is of type B3. Using Corollary 1.1, we have that either S1 ⊂ S̄0

is a multiple edge with a bad neighbor (which is impossible) or ΣS0 is one of the following
diagrams:

In this case the double edge 〈ỹ1, ỹ2〉 may become a simple edge of S̄0, which would
yield a subdiagram 〈y1, y2, y3, y4〉 of type H4 in S̄0 ⊂ Σ, which is also impossible. Hence
the multiple edge 〈ỹ1, ỹ2〉 becomes the multiple edge 〈y1, y2〉 ⊂ S̄0, and Corollary 1.1
implies that the bad neighbor of that edge remains bad in S̄0, which is also impossible.
Hence S0 cannot have three bad neighbors.

Thus, S0 has exactly two bad neighbors, a1 and a2, and P (S0) is an Esselmann
polytope or a 4-prism. Since Σ contains no subdiagrams of type F4 and H4, we see,
using Corollary 1.2, that ΣS0 coincides with the following diagram:
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By Corollary 1.2, the nodes of ΣS0 (with a possible exception of ỹ6 in the case [ỹ4, ỹ6] = 2)
cannot be good neighbors of S0. In particular, S̄0 contains a cyclic Lannér diagram of
order 4 with exactly one double edge and without subdiagrams of type H3. Furthermore,
it is not difficult to check that the dashed edge 〈ỹ5, ỹ6〉 of ΣS0 becomes the dashed edge
〈y5, y6〉 in S̄0 (since otherwise [y4, y6] = 2 and if y5y6 is a triple edge, then [y4, y6] = 2
and 〈y3, y4, y5, y6〉 ⊂ S̄0 is a subdiagram of type H4, which is impossible by assumption;
if y5y6 is a double edge, then 〈y2, y3, y4, y5, y6〉 ⊂ Σ is a parabolic subdiagram of type
C̃4, which is also impossible; if y5y6 is a simple edge, then 〈y5, y6, S0〉 is of type B5 and,
by Proposition 1.11, ỹ5ỹ6 must be a double edge, not dashed, in ΣS0). Thus, S̄0 consists
of a dashed edge and a cyclic Lannér subdiagram of order 4, and S̄0 = ΣS0 .

Consider the diagram S1 = 〈y1, y2, y3〉, which is a subdiagram of type B3 in the
Lannér diagram 〈y1, y2, y3, y4〉 of order 4. Arguing as for S̄0, we have that S1 has exactly
two bad neighbors (y4 and one of the nodes a1 and a2) and that S̄1 consists of a dashed
edge y5y6 and a cyclic Lannér diagram (〈S0, a2〉 or 〈S0, a1〉, respectively). Without loss of
generality, we may assume that a2 is a bad neighbor of S1 (and 〈a1, S0〉 is a cyclic Lannér
diagram). By Corollary 1.2, a1 cannot be a good neighbor of S1 and, by Lemma 1.4,
a1 is joined with y4. If [a1, y4] = 3 or 4, then 〈x1, x2, a1, y2, y3, y4〉 contains a parabolic
subdiagram of type B̃5 or B̃3. If [a1, y4] = 5, then 〈x2, x3, a1, y4〉 is of type H4. Therefore,
[a1, y4] = ∞.

Consider the diagram S2 = 〈y2, y3, y4〉. Since it has two bad neighbors (a1 and y1),
the node a2 cannot be a bad neighbor of S2 (we are applying the results proved for the
diagram S0 to the diagram S2). Hence a2 is joined with y1, and, repeating the foregoing
arguments, we have [a2, y1] = ∞. But then the diagram 〈y1, y3, y4, y5〉 of type D4 has
four bad neighbors, namely a1, a2, y2, y6, which is impossible. �

6.2. Subdiagrams of type F4 and H4. Thus, Σ contains at least one subdiagram of
type F4 or H4. In Lemmas 6.6 and 6.7 we shall prove that such subdiagrams always have
three neighbors. Next, in Lemma 6.8 we shall show that Σ contains no subdiagrams of
type F4. Thus Σ contains a subdiagram of type H4, and we shall finish the proof of
Theorem 3 by Lemma 6.9, which shows that Σ = ΣP7 . We remark that the proofs of
Lemmas 6.7 and 6.9, dealing with subdiagrams of type H4, are much longer than the
proofs of the similar Lemmas 6.6 and 6.8 dealing with subdiagrams of type F4. A possible
reason for that is the fact that H4 is contained in many more diagrams of d-polytopes
with at most d + 3 facets than F4.

Lemma 6.6. Any subdiagram of type F4 has exactly three neighbors.

Proof. Assume the contrary. By Lemma 6.3, this means that Σ contains a subdiagram S0

of type F4 with two neighbors. Then P (S0) is a 3-prism, and ΣS0 = S̄0 consists of
a dashed edge (denote it z1z2) and a Lannér subdiagrams of order 3 (denote it L =
〈x1, x2, x3〉) containing a multiple edge. Assuming that an edge x1x2 is of maximal
multiplicity in L, let S1 = 〈x1, x2〉. This diagram has at least one bad neighbor, x3. By
Lemma 6.1, S1 has either one or two bad neighbors.

Suppose that S1 has only one bad neighbor x3. Then P (S1) is a 5-polytope with 5+3 =
8 facets. The diagram S0 is of type F4 and is not joined with S1. Therefore, ΣS1 contains
a subdiagram of type F4, and ΣS1 is the diagram shown in Figure 8, a). Let y1, y2, y3, y4

be the nodes of S0 ⊂ S̄1, and b1, b2 the neighbors of S0. By Corollary 1.2, the nodes b1

and b2 cannot be good neighbors of S1. Since the Lannér diagram 〈S1, x3〉 must be
joined with the Lannér diagram 〈b1, y1, y2, y3〉, the node x3 is joined with b1. Similarly,
x3 is joined with b2. Consider the diagram S2 = 〈b1, y1, y2〉 of type H3. It has three
bad neighbors (y3, x3, and z1) and no good ones. Therefore, P (S2) is a 4-simplex and
S̄2 = ΣS2 = 〈y4, b2, z2, x1, x2〉 is a Lannér diagram of order 5. Since y4b2 and x1x2 are
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disjoint multiple edges, S̄2 is a linear Lannér diagram (with edges labeled by 5, 3, 3,
4 or 5, 3, 3, 5). Since [y4, b2] = 5, the subdiagram 〈y4, b2, z2, x1〉 (or 〈y4, b2, z2, x2〉) is
of type H4. Thus, the simple edge b2z2 of Σ becomes a double edge b̃2z̃2 in ΣS1 . By
Corollary 1.1, this means that [x1, x2] = 4. Since x1x2 is of maximum multiplicity in
the Lannér diagram 〈x1, x2, x3〉, we see that x3 is joined with both x1 and x2. Hence
the diagram 〈y4, b2, z2, x1〉 (or 〈y4, b2, z2, x2〉) is of type H4 with at least four neighbors:
y3, x2 (or x1), x3, and z1, which is impossible.

The obtained contradiction shows that S1 has two bad neighbors, namely x3 and some
other node a1, i.e., P (S1) is a 5-prism, containing a subdiagram of type F4 (see Figure
8, c) for the notation). Recall that a1 /∈ S̄1, and therefore a1 is a bad neighbor of S0 =
〈y1, y2, y3, y4〉. Consider the diagrams 〈y2, y3, y4, y5, z1〉 and 〈y3, y2, y1, y5, z1〉 of type B5.
The node a1 is a bad neighbor of at least one of these diagrams, say 〈y2, y3, y4, y5, z1〉. Fur-
thermore, by Lemma 1.4, the node y5 is joined with the Lannér subdiagram 〈x1, x2, x3〉 ⊂
S̄0. This means that 〈y2, y3, y4, y5, z1〉 has at least four bad neighbors (y1, a1, z2, and
one of the nodes x1, x2, x3). The obtained contradiction completes the proof of the
lemma. �

Lemma 6.7. Any subdiagram of type H4 has exactly three neighbors.

Proof. Assume the contrary. By Lemma 6.3, this means that Σ has a subdiagram S0

of type H4 with two neighbors. Then P (S0) is a 3-prism, and ΣS0 = S̄0 consists of a
dashed edge (call it z1z2) and a Lannér subdiagram of order 3 (denote it L = 〈y1, y2, y3〉)
containing a multiple edge. Assuming that the edge y1y2 is of maximum multiplicity
in L, let S1 = 〈y1, y2〉. By Lemma 6.1, S1 can have one or two neighbors.

Case 1. Suppose that S1 has only one bad neighbor, y3. Then P (S1) is a 5-polytope
with 5 + 3 = 8 facets. Since ΣS1 contains a subdiagram S0 of type H4, the diagram ΣS1

has one of the three types a), b), and c) shown in Figure 9. Let x1, x2, x3, x4 be the
nodes of S0 ⊂ S̄1, and a1, a2 the neighbors of S0 (see Figure 9). We now examine the
types a), b), and c) of ΣS1 separately.

Case 1.1. Suppose that ΣS1 is the diagram shown in Figure 9, a). Recall that z1z2 is
a dashed edge of Σ, and therefore Lemma 6.2 implies that a1 is a good neighbor of S1.
Without loss of generality, we may assume that [a1, y1] = 3 and [a1, y2] = 2. On the other
hand, a2 is not a good neighbor of S1 = 〈y1, y2〉, since [a2, z2] = 5 (see Corollary 1.2).
Therefore, a2 is joined with y3 (otherwise the Lannér diagrams 〈x1, x2, x3, x4, a2〉 and
L = 〈S1, y3〉 would not be joined). Notice that the diagram S2 = 〈z2, a2, x4, x3〉 of
type H4 has three neighbors (x2, z1, y3), and therefore P (S2) is a 3-simplex and S̄2 =
〈x1, a1, y1, y2〉 is a Lannér diagram. Furthermore, S̄2 is a linear Lannér diagram, since x1

is not joined with 〈y1, y2〉, and a1 is not joined with y2 and is joined with y1 by a simple
edge. Hence [x1, a1] = 4 or 5. Consider the diagram S3 = 〈x1, a1, y1〉 of type H3 or B3.
It has three bad neighbors (x2, z1, y2), and therefore P (S3) is a 4-simplex and ΣS3 is
a Lannér diagram of order 5. Thus, by Corollary 1.2, S̄0 is also a Lannér diagram.
However, in S̄3 = 〈x3, x4, a2, z2, y3〉 the valency of the end a2 of the triple edge z2a2

cannot be less than 3, which is impossible in a Lannér diagram of order 5.

Case 1.2. Suppose that ΣS1 is one of the diagrams shown in Figure 9, b) or c). Then
neither a1 nor a2 can be a good neighbor of S1 (Corollary 1.2). Hence, by Lemma 6.2,
both z1 and z2 are good neighbors of S1 (recall that z1z2 is a dashed edge of Σ). By
Lemma 6.4, [ai, zi] = 3, 4, or 5 (i = 1, 2). If [a1, z1] = 5, then the diagram 〈z1, a1, x4, x3〉
is of type H4 and has at least four neighbors (x2, z2, a2, and at least one of the nodes y1

and y2). If [a1, z1] = 4, then the diagram 〈z1, a1, x4, x3, x2〉 is of type B5 and has at
least four bad neighbors (x1, z2, a2, and at least one of the nodes y1 and y2). Finally, if
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Figure 9. Possibilities for ΣS1 (Case 1)

[a1, z1] = 3, then the edge ã1z̃1 of ΣS1 should be either a double edge or an edge labeled
by 10, but not a dashed edge.

Case 2. Suppose that S1 has exactly two bad neighbors: y3 and one of the nodes a1

and a2, say a1. Therefore, P (S1) is a 5-prism, whose diagram contains a subdiagram of
type H4, i.e., ΣS1 is of the form

By Corollary 1.2, a2 cannot be a good neighbor of S1, and therefore (Lemma 1.4) a2

is joined with y3. If [a2, y3] �= ∞, then the diagram 〈S0, a2, y3, S1〉 is superhyperbolic
(since Σ contains no subdiagrams of type G

(k)
2 with k > 5 and y1y2 has maximum

multiplicity in L = 〈y1, y2, y3〉). Hence [a2, y3] = ∞. Set S4 = 〈x1, x2, x3〉 and consider
three cases: either the node a1 is a bad neighbor of S4, or a1 is a good neighbor of S4,
or a1 is not joined with S4.
Case 2.1. If a1 is a bad neighbor of S4, then P (S4) is a 4-polytope with 4+3 facets, and
ΣS4 contains at least three dashed edges, namely z̃1z̃2, ã2ỹ3, and x̃4ã2. But no diagram
of a 4-polytope with 4 + 3 facets has more than three dashed edges; moreover, in any
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diagram with exactly three dashed edges, each dashed edge has a node incident to some
other dashed edge. However, the edge z̃1z̃2 has no nodes incident to ã2ỹ3 and x̃4ã2, a
contradiction.
Case 2.2. Let a1 be a good neighbor of S4. Consider the diagram S5 = 〈x1, x2, x3, a2〉
of type H4. It has three bad neighbors: x4, one of y1 and y2 (say, y1), and one of z1 and
z2. Hence y2 cannot be a neighbor of S5 and, in particular, [a1, y2] = 2 and [a1, x1] = 2.
On the other hand, a1 is a bad neighbor of y1y2, and therefore [a1, y1] ∈ {4, 5,∞}.

Consider the diagram S6 = 〈x2, x3, x4, a2, z1〉 of type A5 or B5. Since a1 is a neighbor
of S0 = 〈x1, x2, x3, x4〉 and, as we have shown before, [a1, x1] = 2, we see that a1 is a
neighbor of S6. Since S6 already has three bad neighbors (x1, z2, y3), the node a1 is a
good neighbor of S6. Hence 〈a1, S6〉 is a diagram of type D6 with three bad neighbors
x1, z2, y3. However, [a1, y1] = 4, 5, or ∞, and therefore y1 is also a bad neighbor of
〈a1, S6〉, which is impossible.
Case 2.3. If a1 is not a neighbor of S4 = 〈x1, x2, x3〉, then a1 is joined with x4 (as
a neighbor of S0 = 〈x1, x2, x3, x4〉). Consider the diagram S7 = 〈x2, x3, x4, a2, z1〉 of
type A5 or B5. It has three bad neighbors, x1, z2, y3. Hence a1 is a good neighbor of S7,
and 〈S7, a1〉 is of type E6. However, 〈S7, a1〉 has four bad neighbors: x1, z2, y3, and one
of y1 and y2 (since, by assumption, a1 is a bad neighbor of S1).

Thus S1 cannot have two bad neighbors, and the lemma is proved. �
Lemma 6.8. Σ has no subdiagrams of type F4.

Proof. Let S0 = 〈x1, x2, x3, x4〉 ⊂ Σ be a subdiagram of type F4. By Lemma 6.6, S0

has exactly three neighbors; call them a1, a2, and a3. Then P (S0) is a 3-simplex, and
S̄0 = ΣS0 = 〈y1, y2, y3, y4〉 is a Lannér diagram of order 4. Let S1 = 〈y1, y2, y3〉 ⊂ S̄0

be a subdiagram of type H3 or B3, and 〈S2, S̄0〉 another such subdiagram (it exists by
Lemma 1.5); we may assume that S2 = 〈y2, y3, y4〉.

The diagram S1 has at least one bad neighbor, y4. Consider the three cases when S1

has one, two, or three bad neighbors, respectively.

Case 1. Suppose that S1 has only one bad neighbor y4. Then P (S1) is a 4-polytope
with 4 + 3 facets.

Assume in addition that each of the diagrams 〈ai, S0, S̄0〉, i ∈ {1, 2, 3}, contains a
dashed edge. Then each ai (i = 1, 2, 3) is incident to a dashed edge. Consider the
other ends of those dashed edges. If S0 contains three ends of dashed edges, then ΣS1

contains three dashed edges with pairwise distinct ends (since S0 ⊂ ΣS1 and ai ∈ ΣS1

for all i = 1, 2, 3). However, there are no such diagrams of 4-polytopes with seven facets.
Therefore, at least one of the ends of the dashed edges belongs to S̄0. Since ai ∈ ΣS1

(i = 1, 2, 3), the diagram S1 contains no end of a dashed edge. Hence y4 is the only end
of a dashed edge in S̄0. Then S2 = 〈y2, y3, y4〉 has at least two bad neighbors (namely, y1

and some node aj such that [aj , y4] = ∞). If S2 has exactly two bad neighbors, then ΣS2

is either the diagram of a 4-prism or the diagram of an Esselmann polytope. However,
ΣS2 contains two dashed edges, which is impossible. If S2 has three bad neighbors, then
ΣS2 is the diagram of a 4-simplex, but ΣS2 contains at least one dashed edge.

Thus, we may assume that the diagram 〈a1, S0, S̄0〉 contains no dashed edges. By
Lemma 6.4, we have only finitely many possibilities for the diagram 〈a1, S0, S̄0〉. The
only two diagrams satisfying the signature condition and the assumption that S1 has
only one bad neighbor are shown in Figure 10.

For the diagram shown in Figure 10, a), consider the subdiagram S3 = 〈a1, y4〉 with
two bad neighbors. Then ΣS3 is the diagram of a 5-prism. However, ΣS3 contains the
subdiagram 〈x̃1, x̃2, x̃3, ỹ1, ỹ2〉 of type B3 +B2, which is not a subdiagram of the diagram
of any 5-prism.
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Consider now the diagram shown in Figure 10, b). The subdiagram S4 = 〈x4, a1, y3, y2〉
is of type H4 and has three bad neighbors, x3, y4, and y1. Hence a2 and a3 are not neigh-
bors of S4.

Suppose that [a2, y4] �= 0. Then S5 = 〈a1, y3, y4〉 is of type H3 and has three bad
neighbors (x4, y2, and a2). Therefore [a3, y4] = 2 and [a3, y1] �= 0 (apply Lemma 1.4 to
the Lannér diagram L = 〈y1, y2, y3, y4〉). Furthermore, P (S5) is a simplex and ΣS5 is a
Lannér diagram of order 5. By Corollary 1.2, the diagram S̄5 is also Lannér. Since S̄5

contains a subdiagram S0 of type F4, we have that S̄0 is a cyclic Lannér subdiagram and
[a3, x1] = [a3, x4] = 3. However, in this case the diagram 〈x1, a3, x4, a1〉 is of type H4

and has at least four neighbors (x2, x3, y3, and y1, which is joined with a3). The obtained
contradiction shows that [a2, y4] = 0. Similarly, [a3, y4] = 0.

By Lemma 1.4, the nodes a2 and a3 are joined with the Lannér diagram 〈y1, y2, y3, y4〉,
and therefore a2 and a3 are joined with y1. However, 〈a1, y3, y2, y1〉 is a diagram of
type B4 and has four bad neighbors, (a2, a3, x4 and y4), which is impossible.

Figure 10. Case 1: two possibilities for 〈a1, S0, S̄0〉

Case 2. Suppose that S1 has two bad neighbors, y4 and a1. Then P (S1) is a either an
Esselmann polytope or a 4-prism. Notice that ΣS1 contains a subdiagram S0 of type F4

and contains no subdiagrams of type G
(k)
2 with k > 5 (see Corollary 1.1). There are only

two prisms and one Esselmann polytope (see Figure 11) satisfying these conditions. We
consider these polytopes separately.
Case 2.1. Let ΣS1 be the diagram shown in Figure 11, a). Then, by Corollary 1.2,
ΣS1 = S̄1. The node a1 is a neighbor of S0 = 〈x1, x2, x3, x4〉. Without loss of generality,
we may assume that a1 is a neighbor of 〈x1, x2, x3〉. Then the subdiagram 〈x1, x2, x3, a3〉
is of type F4 and has four bad neighbors (x4, a1, a2, and some node of S̄0 joined with
a3), which is impossible.
Case 2.2. Let ΣS1 be the subdiagram shown in Figure 11, b). By Corollary 1.2, we have
ΣS1 = S̄1. In particular, the nodes a2 and a3 cannot be neighbors of S1, and therefore
(by Corollary 1.2) they are joined with y4. Furthermore, the diagram 〈x1, x2, x3, a3〉 is
of type F4 and has three neighbors, x4, a2, and y4. Hence a1 is not a neighbor of this
diagram, and therefore [a1, x4] �= 2 (since a1 is a neighbor of S0 = 〈x1, x2, x3, x4〉). Con-
sider the diagram S6 = 〈a2, x1, x2〉 of type H3. It has no good neighbors and S̄6 = ΣS6 .
Furthermore, S̄6 contains the dashed edge a3x4, so S6 has at most two bad neighbors.
Then S6 has exactly two neighbors, x3 and y4. Hence, 〈a3, x4, a1〉 ⊂ ΣS6 , and ΣS6 is
the diagram of a 4-prism. Thus, in the diagram of the 4-prism, the edge x̃4, ã1 has a
common node with a dashed edge, hence [x4, a1] = 3. It follows that 〈x1, x2, x3, x4, a1〉
is a parabolic diagram of type F̃4, which is impossible.
Case 2.3. Let ΣS1 be the diagram shown in Figure 11, c). Consider two cases: either
[a3, x4] = ∞ or [a3, x4] �= ∞ in Σ.
Case 2.3.1. Suppose that [a3, x4] = ∞. Since a2 is not a good neighbor of S1, y4 is the
only node of S̄0 joined with a2.
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Figure 11. Diagrams of 4-polytopes with six facets containing F4 and
containing no G

(k)
2 with k > 5

Consider the diagram S7 = 〈a2, x1〉 of type G
(5)
2 . If S7 has a bad neighbor, then

P (S7) is a 5-polytope with at most 5 + 3 facets. Then ΣS7 contains the subdiagram
〈x̃2, x̃3, x̃4, ã3〉, and x̃2x̃3 is a dashed edge in ΣS7 . However, no diagram of a 5-polytope
with at most 5 + 3 facets contains two dashed edges (x̃2x̃3 and x̃4ã3), joined by a simple
edge (x̃3x̃4). Hence S7 has no bad neighbors. In particular, [a2, y4] = 3.

Consider the diagram 〈a2, S0, S̄0〉. It contains no dashed edges, and we know the
multiplicities of all edges in this diagram except for the edges in the Lannér subdiagram
S̄0. Since the number of Lannér diagrams of order 4 is finite, for 〈a2, S0, S̄0〉 there are
only finitely many possibilities. None of these satisfies the signature condition. Therefore
the case [a3, x4] = ∞ is impossible.
Case 2.3.2. Suppose that [a3, x4] �= ∞. Then a3 is a good neighbor of S1 and therefore
[a3, x4] = 5 (otherwise either [a3, x4] = 3 and 〈a3, S0〉 is a parabolic diagram of type F̃4

or [a3, x4] = 4 and 〈a3, x4, x3, x2〉 is a parabolic diagram of type C̃4).
Consider the subdiagram X = 〈S0, S̄0, a3〉, which we know completely with the excep-

tion of finitely many possibilities for S̄0 (S0 is of type F4, S̄0 is a Lannér diagram of order
4, S1 ⊂ S̄0 is of type H3 or B3, a3 is a good neighbor of S1, and a3 is joined with S0 as
shown in Figure 11, c)). The only diagram satisfying these conditions and the signature
condition is

It is clear that a2 is not a good neighbor of S1, and therefore a2 is not a neighbor
of S1 = 〈y1, y2, y3〉 and [a2, y4] �= 2 (Lemma 1.4). Hence S2 = 〈y2, y3, y4〉 has three bad
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neighbors: a2, a3, and y1. Therefore ΣS2 is a Lannér diagram of order 5 containing a
subdiagram of type F4. It follows that a1 is joined with x1 and x4, but then the diagram
〈x4, a3, y3, y2〉 of type H4 has four bad neighbors a1, x3, y1, y4.

Thus, we have examined two prisms and an Esselmann polytope and in each case
obtained a contradiction.

Case 3. Suppose that S1 has three bad neighbors, y4, a1, and a2. Then S̄1 is a cyclic
Lannér diagram of order 5 (i.e., S̄1 = L5

5), [a3, x1] = [a3, x4] = 3, and [a3, x2] = [a3, x3] =
2. By Corollary 1.2, a3 is not a good neighbor of S1, and therefore, y4 is the only node
joined with a3.

Recall that S2 ⊂ S̄0 is a subdiagram of type B3 or H3, S2 = 〈y2, y3, y4〉. As was shown
in Cases 1 and 2, we may assume that S2 also has three bad neighbors. Arguing as before
(with S2 in place of S1), we have that the nodes ai, i = 1, 2, 3, cannot be good neighbors
of S2, and exactly one of these three nodes is not joined with ai. Hence a3 and one of the
nodes a1 and a2 (say, a1) are bad neighbors of S2, and a2 is not joined with this diagram.
Moreover, 〈a1, S0〉 is a cyclic Lannér diagram and y1 is the only node of S̄0 joined with a1.
Without loss of generality, we may assume that a2 is joined with 〈x1, x2, x3〉. Then
the diagram 〈a1, x1, x2, x3〉 is of type B4 and has three bad neighbors, x1, a2, and a3.
Therefore y1 is a good neighbor of 〈a1, x1, x2, x3〉, i.e., [y1, a1] = 3. Recall that a1 is a
bad neighbor of S1. This means that either [y1, y2] = 4, 5 or [y1, y3] = 4, 5. Hence one
of the nodes y2 and y3 is a bad neighbor of 〈y1, a1, x1, x2, x3〉, which is impossible (since
there are three other bad neighbors, x1, a2, and a3). �

Lemma 6.9. If Σ contains a subdiagram of type H4, then Σ = ΣP7 .

Proof. Suppose that S0 = 〈x1, x2, x3, x4〉 is a subdiagram of Σ of type H4. By Lem-
mas 6.3 and 6.7, S0 has exactly three neighbors; call them a1, a2, and a3. Hence P (S0)
is a 3-simplex, and S̄0 = ΣS0 = 〈y1, y2, y3, y4〉 is a Lannér diagram of order 4. Let
S1 = 〈y1, y2, y3〉 ⊂ S̄0 be a subdiagram of type H3 or B3. Then S1 has at least one bad
neighbor, y4. Consider the three cases where S1 has one, two, or three bad neighbors,
respectively.

Case 1. Suppose S1 has only one bad neighbor, y4. Then P (S1) is a 4-polytope with 4+3
facets. Arguing as in Case 1 of Lemma 6.8, we see that for some i ∈ {1, 2, 3} the diagram
〈ai, S0, S̄0〉, say 〈a1, S0, S̄0〉, has no dashed edges. By Lemma 6.4, there are finitely many
possibilities for the diagram 〈a1, S0, S̄0〉. Recall that S1 ⊂ S̄0 is a subdiagram of type H3

or B3 with only one bad neighbor. There are only three possibilities for the diagram
〈a1, S0, S̄0〉 satisfying this condition and the signature condition. We list those diagrams
in Figure 12 and consider them separately.

Consider the diagrams shown in Figure 12, a) and b). It is clear that S1 = 〈y2, y3, y4〉.
Suppose that a2 is joined with y3 or y4. Since a2 is not a bad neighbor of S1, the diagram
〈a2, S1〉 is of type F4, contrary to Lemma 6.8. Hence both a2 and a3 are joined with
either y1 or y2 (Lemma 1.4), and therefore the subdiagram 〈y1, y2, y3〉 is of type H3 and
has four bad neighbors (y4, a1, a2, a3), which is impossible.

Consider the diagram shown in Figure 12, c). Without loss of generality, we may
assume that S1 = 〈y1, y2, y3〉. Each of the diagrams S2 = 〈a1, y1, y2, y3〉 and S3 =
〈a1, y4, y3, y2〉 is of type H4 and has two bad neighbors, x4 and y1 (y4 in the latter case).
Hence each of these diagrams has at most one extra neighbor (Lemma 6.7). On the other
hand, by Lemma 1.4, each of the nodes a2 and a3 is joined with 〈a1, y1, y2, y3, y4〉. Hence
we may assume that a2 is not joined with S2 and is joined with y4, and a3 is not joined
with S3 and is joined with y1. Since S1 has no other bad neighbors besides y4, we have
[a4, y1] = 3. Furthermore, [a3, a1] = 2 (otherwise the diagram 〈S1, a3〉 is of type H4 with
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Figure 12. Three possibilities for 〈a1, S0, S̄0〉

four bad neighbors, y4, a2, a1, and some xi, i ∈ {1, 2, 3, 4}, joined with a3). If [a1, x4] = 2,
then 〈x4, a1, y4, y1, y2, a3〉 is a parabolic diagram of type D̃5, and therefore, [a3, x4] �= 2.
Moreover, [a1, x4] �= 3 (otherwise 〈x4, a1, y1, a3〉 is a parabolic diagram of type Ã3). Hence
S4 = 〈x2, x3, x4, a1, y4, y3〉 is of type A6 and has three bad neighbors, x1, y2, and a3. Thus,
a2 is a good neighbor of S4, [a2, y4] = 3, and [a2, x4] = [a2, x3] = [a2, x2] = 2. It follows
that 〈x3, x4, a1, y4, a2, y1, y2〉 is a parabolic diagram of type Ẽ6, which is impossible.

Case 2. Suppose that S1 has two bad neighbors, y4 and a1. Then P (S1) is either an
Esselmann polytope or a 4-prism, and

ΣS1 = 〈x̃1, x̃2, x̃3, x̃4, ã2, ã3〉.

The Coxeter diagram of an Esselmann polytope not containing subdiagrams of type F4

and G
(k)
2 , k ≥ 6, is one of the two diagrams shown in Figure 13. The Coxeter diagram of

a 4-prism not containing subdiagrams of type F4 or G
(k)
2 , k ≥ 6, is one of the diagrams

shown in Figure 14. Diagram a) is shown three times, since there are three different
ways of embedding S0 in this diagram (in any other diagram containing more than
one subdiagram of type H4, those subdiagrams are permuted by automorphisms of the
diagram).

We may assume that 〈x̃1, x̃2, x̃3〉 is a subdiagram of ΣS1 of type H3. In any possible
case for S̄1, that subdiagram has exactly one bad neighbor (in ΣS1). Assume that this
is ã2.

We first consider the Esselmann polytopes and then the prisms.
Case 2.1. Suppose that ΣS1 is the diagram of an Esselmann polytope (see Figure 13).
The subdiagram S5 = 〈x1, x2, x3, a3〉 of type H4 has three bad neighbors in Σ (a2, x4, and
some node of S̄0 joined with a3). Therefore, a1 is not a neighbor of S5 = 〈x1, x2, x3, a3〉,
and a1 is joined with x4 (since a1 is a neighbor of S0). Furthermore, the diagram
〈S0, a3, S̄0〉 consists of the subdiagrams 〈S0, a3〉 and S̄0 joined by the edge a3y4 only
(notice that this edge is not empty by Lemma 1.4). Moreover, this is a dashed edge;
otherwise the diagram 〈S0, a3, S̄0〉 would be superhyperbolic. It follows that the three bad
neighbors of S5 = 〈x1, x2, x3, a3〉 are a2, x4, y4, and we conclude that 〈S1, a1〉 = S̄5 = ΣS5

is a Lannér diagram of order 4.
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Figure 13. Diagrams of Esselmann polytopes containing H4 and con-
taining no G

(k)
2 with k > 5

Consider the diagram S6 = 〈a3, x4〉 of type G
(5)
2 . It has at least two bad neighbors,

y4 and x4, and therefore P (S6) is a 5-polytope with at most 5 + 2 facets. Hence P (S6)
is a 5-prism. Notice that the diagram X = 〈x1, x2, a2, y1, y2, y3〉 is not joined with S6

in Σ, so it does not differ from the subdiagram 〈x̃1, x̃2, ã2, ỹ1, ỹ2, ỹ3〉 in ΣS6 . It is clear
that X contains no dashed edges (a2 cannot be joined with S1 by a dashed edge, since a2

is not a bad neighbor of S1). Since the diagram of a 5-prism does not contain Lannér
subdiagrams of order 3, we have that a2 is a good neighbor of S1, ΣS1 is the diagram
shown in Figure 13, b), [a2, x2] = 3, and S1 is a diagram of type B3 (if S1 was of
type H3, then ã2x̃2 would be a dashed edge of ΣS6 , and so it could not have a common
node with the triple edge x̃1x̃2 in the diagram of a 5-prism). Without loss of generality,
we may assume that [y1, y2] = 3 and [y2, y3] = 4. Thus, we have a linear diagram
〈x1, x2, a2, y1, y2, y3〉 with edges labeled by 5, 3, 3, 3, 4. It follows that [ã1, ỹ3] = ∞
in ΣS6 , and therefore [a1, y3] �= 2, 3 in Σ (if [a1, y3] = 3, then the edge ã1ỹ3 of ΣS6 would
be labeled by 10, but it should be a dashed edge). However, in the Lannér diagram
〈S1, a1〉 of order 4, the multiple edge a1y3 cannot have a common node with the multiple
edge y3y2.

The obtained contradiction shows that ΣS1 cannot be the diagram of an Esselmann
polytope.

Case 2.2. Now suppose that ΣS1 is a 4-prism. Notice that in all diagrams of 4-prisms
all edges incident to a2 are simple, and by Corollary 1.2, a2 cannot be a good neighbor
of S1. Hence a2 is joined with y4 (Lemma 1.4).

Furthermore, suppose that [a2, y4] �= ∞. Then the diagram 〈S0, a2, S̄0〉 satisfies the
following conditions: it has no dashed edges, y4 is the only node of S̄0 joined with a2,
a2 is a bad neighbor of H3 ⊂ S0, and a2 is joined with S0 by simple edges only. None
of the diagrams satisfies these conditions together with the signature condition, whence
[a2, y4] = ∞.

We now examine the diagrams of 4-prisms case by case.

Case 2.2.1. Consider the diagram shown in Figure 14, a1). If a1 is joined with 〈x1, x2, x4〉,
then 〈x2, x1, a2, x4〉 is of type H4 with four neighbors, x3, a3, a1, y4 (recall that [a2, y4] =
∞). If a1 is not a neighbor of 〈x1, x2, x4〉, then [a1, x3] �= 2 (as a1 is a neighbor of
S0 = 〈x1, x2, x3, x4〉) and 〈x1, x2, x3, a3〉 is of type H4 with four neighbors (x3, a2, a1,
and some node yi, i ∈ {1, 2, 3, 4}, joined with a3; see Lemma 1.4).
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Figure 14. Diagrams of 4-prisms containing H4

Case 2.2.2. Consider the diagrams shown in Figure 14, a2)–c). Since 〈x2, x1, a2, a3〉 is
of type H4 and has three bad neighbors, x3, x4, and y4 (as [a2, y4] = ∞), 〈S1, a1〉 is a
Lannér diagram. It is clear that the nodes x1, x2, a2 are not joined with that Lannér
diagram (otherwise 〈x2, x1, a2, a3〉 would have four bad neighbors, x3, x4, y4, and some
node of 〈S1, a1〉). Since the Lannér diagrams 〈a1, S1〉 and 〈x1, x2, x3, a2〉 must be joined,
we have [x3, a1] �= 2. The signature condition, applied to the diagram 〈S0, a1, a2, S1〉,
implies that [x3, a1] = ∞. This means that 〈x2, x3, x4, a2〉 is of type A4 (in the case of
a2)), or A3 + A1 (in the cases of a3) and c)), or D4 (in the case of b)) and has four bad
neighbors, x1, a3, y4, a1 (here we again use the fact that [a2, y4] = ∞).
Case 2.2.3. Consider the diagram shown in Figure 14 (d). Since the subdiagram 〈x2, x1,
a2, x4〉 is of type H4 and has three bad neighbors (x3, a3 and y4), a1 cannot be a neighbor
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of 〈x2, x1, a2, x4〉 and 〈a1, S1〉 is a Lannér diagram. Hence [a1, x3] �= 2 (a1 is a neighbor of
S0 = 〈x1, x2, x3, x4〉, but not a neighbor of 〈x1, x2, x4〉). The signature condition, applied
to the diagram 〈S0, a1, a2, S1〉, implies that [x3, a1] = ∞.

Suppose a3 is not a good neighbor of S1. Then the dashed edge x̃4ã3 of ΣS1 corresponds
to the dashed edge x4a3 of S̄1, and the diagram 〈x2, x3, x4, a2〉 of type A4 has four bad
neighbors, x1, a1, a3, y4 (we used the facts that [x3, a1] = ∞ and [a2, y4] = ∞), which is
impossible.

Suppose that a3 is a good neighbor of S1. If the edge 〈x4, a3〉 ⊂ S̄1 is dashed (as is
〈x̃4, ã3〉 ⊂ ΣS1) or multiple, then a3 is a bad neighbor of 〈x2, x3, x4, a2〉, and this diagram
still has four bad neighbors. Hence we may assume that the edge x4a3 becomes simple
in S̄1. This can only happen when S1 is of type H3 (otherwise, 〈a2, x3, x4, a3, S1〉 is a
parabolic diagram of type B̃6). Thus, we have the following diagram:

By Lemma 6.2, [y4, a3] �= ∞. If [y4, a3] = 5, then the diagram 〈y4, a3, x4, x3〉 is
of type H4 and has four bad neighbors, a1, a2, y1, x2. If [y4, a3] = 4, then the diagram
〈y4, a3, x4, x3, x2〉 is of type B5 and has four bad neighbors, a1, a2, y1, x1. Hence [y4, a3] =
2 or 3. Similarly, [a1, a3] = 2 or 3.

Consider now the diagram 〈S0, a3, S1〉. The node y4 is not joined with S0. Since
〈x2, x3, x4, a3, y1, y2〉 has three bad neighbors (x1, a1, y3), y4 can be joined with a3 by a
simple edge only. Recall that 〈S1, y4〉 = S̄0 is a Lannér diagram, so Lemma 1.4 implies
that [y4, a3] �= 2. Therefore, [y4, a3] = 3. Examining the Lannér subdiagrams 〈y4, S1〉
(where S1 is of type H3), we find that the diagram 〈S0, a3, y4, S1〉 satisfies the signature
condition only when [y4, y3] = 3 and [y4, y1] = [y4, y2] = 2. Similarly, examining the
diagram 〈x2, x1, a2, x4, a3, a1, S1〉, we have [a1, a3] = [a1, y3] = 3 and [a1, y1] = [a1, y2] =
2. However, in this case the diagram 〈a3, y4, y3, y2〉 is of type H4 and has four neighbors
(a2, x4, y1, a1).

Case 2.2.4. Consider the diagrams shown in Figure 14, e)–g). As before, a2 cannot be
a good neighbor of S1, i.e., a2 is not joined with S1, and, as has been shown above,
[a2, y4] = ∞. However, if [x3, a3] = 2, then a3 can be a good neighbor of S1 and it may
happen that [x4, a3] �= ∞ in Σ.

Suppose that [x4, a3] �= ∞ in Σ and therefore [x3, a3] = 2. Consider the diagram
Y = 〈S0, a2, a3, S1〉. If [x4, a3] = 3 or 5, then the diagram Y does not satisfy the
signature condition (more precisely, at least one of its subdiagrams Y \ a2 and Y \ y4

does not satisfy the signature condition). If [x4, a3] = 4, then Y contains the parabolic
diagram 〈x2, x3, x4, a3, y1〉 of type F̃4 (here we assumed that the nodes of S1 are numbered
in such a way that [y1, y2] = 3 and [y2, y3] = 4 or 5).

Thus, [x4, a3] = ∞. Consider the subdiagram S7 = 〈x2, x1, a2〉 of type H3. It has at
least two bad neighbors, x3 and y4. Furthermore, the edge x4a3 is not joined with S7,
so 〈x4, a3〉 ⊂ S̄7, and therefore S7 has no bad neighbors besides x3 and y4. In particular,
a1 cannot be a bad neighbor of S7. Suppose that a1 is a good neighbor of S7. Then
S8 = 〈a1, S7〉 is of type H4 with three bad neighbors (x3, y4, and the node of S1 joined



148 PAVEL TUMARKIN AND ANNA FELIKSON

with a1). On the other hand, the diagram S̄8 = ΣS8 contains the dashed edge x4a3,
contrary to being a Lannér diagram of order 4. The obtained contradiction shows that a1

is not joined with S7. Thus, S̄7 = ΣS7 = 〈x4, a3, a1, S1〉 is the diagram of a 4-prism, which
implies that 〈a1, S1〉 is a Lannér diagram. It must be joined with the Lannér diagram
〈a2, x1, x2, x3〉. Therefore [a1, x3] �= 2, since a1 is not joined with S7. Consider now
the diagram S9 = 〈a2, x2, x3, x4〉 (of type A1 + A3, A4 or D4 in the cases e), f ), and
g), respectively). The diagram S9 has three bad neighbors, x1, a3, y4, so a1 is a good
neighbor of S9, [a1, x3] = 3, and [a1, x4] = 2.

Finally, consider the diagram Z = 〈S0, a2, a1, S1〉. Since this diagram has no dashed
edges, we have only finitely many possibilities for it. Moreover, Z satisfies the following
conditions: 〈S0, S1〉 is of type H4 +H3 or H4 +B3, a2 is not joined with S1 and is joined
with S0 in one of the ways shown in Figure 14, e)–g), [a1, x3] = 3, and a1x3 is the only
edge joining a1 with 〈a2, S0〉; 〈a1, S1〉 is a Lannér diagram. However, no diagram satisfies
all these conditions and the signature condition.

Case 3. Suppose that S1 has three bad neighbors. Let S′
1 ⊂ S̄0 be a subdiagram of

type H3 or B3, S′
1 �= S1 (see Lemma 1.5). Set 〈y1, y2, y3〉 = S1 and 〈y2, y3, y4〉 = S′

1. By
Cases 1 and 2, we may assume that both S1 and S′

1 have three bad neighbors. There are
two possibilities (up to a permutation of the nodes a1, a2, and a3): either a1 and a2 are
bad neighbors of both S1 and S′

1 (in addition to the bad neighbors y4 and y1 of S1 and
S′

1, respectively) or y4, a1, a2 are bad neighbors of S1, and y1, a2, a3 are bad neighbors
of S′

1.
Suppose that a1 and a2 are bad neighbors of each of S1 and S′

1. Then the node a3

is not a bad neighbor of S1 and S′
1. Moreover, ΣS1 is a Lannér diagram of order 5.

By Corollary 1.2, S̄1 = 〈S0, a3〉 is also a Lannér diagram. Thus, the diagram 〈S0, S̄0〉
consists of the Lannér diagram 〈S0, a3〉 (where S0 is a diagram of type H4) and the
Lannér diagram S̄0, the node a3 being a bad neighbor of both S1 and S′

1. The only such
diagram satisfying the signature condition is shown in Figure 12, b). But in this case,
Proposition 1.11 implies that x̃4ã3 is a dashed edge of ΣS1 , contrary to the assumption
that ΣS1 is a Lannér diagram of order 5.

Thus we may assume that y4, a1, a2 are bad neighbors of S1, and y1, a2, a3 are bad
neighbors of S′

1. Examining S̄1 and S̄′
1, we conclude that 〈S0, a1〉 and 〈S0, a3〉 are Lannér

diagrams.
Consider now two cases: either both a1 and a3 are joined with S̄0 by dashed edges or

at least one of the nodes a1 and a3 (say, a1) is joined with S̄0 by ordinary edges only.

Case 3.1. Suppose that a1 and a3 are joined with S̄0 by dashed edges. Since a1 is a
bad neighbor of S1 but not a bad neighbor of S′

1, the dashed edge joining a1 with S̄0

can only be a1y1. Similarly, [a3, y4] = ∞. Lemma 6.2 implies that 〈a1, a3〉 �= ∞.
Hence we have only finitely many possibilities for the diagram 〈S0, a1, a3〉 (there are four
possibilities for each of the Lannér diagrams 〈S0, a1〉 and 〈S0, a3〉 and three possibilities
for [a1, a3] ∈ {3, 4, 5}).

Consider the diagram S10 = 〈x2, x3, x4, a1〉 of type D4, A4, B4, or H4. If a3 is a bad
neighbor of S10, then S10 has three bad neighbors, x1, y1, and a3, and therefore a2 cannot
be a bad neighbor of it. If a3 is not a bad neighbor of S10, then 〈S10, a3〉 has three bad
neighbors x1, y1, y4, and a2 cannot be a bad neighbor of 〈S10, a3〉. In any case, a2 cannot
be a bad neighbor of S10. Similarly, a2 cannot be a bad neighbor of S11 = 〈x2, x3, x4, a3〉.

Suppose that a2 is a bad neighbor of the diagram S12 = 〈x1, x2, x3〉 of type H3. Then
P (S12) is a 4-polytope with at most 4+3 facets. However, ΣS12 �= S̄12 and ΣS12 contains
four dashed edges ỹ4ã3, ã3x̃4, x̃4ã1, ã1ỹ1, which is impossible for a 4-polytope with at
most seven facets. Hence a2 cannot be a bad neighbor of S12, which implies that a2 is
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not a neighbor of x1x2. Therefore, a2 is a neighbor of x3x4 and each of the diagrams S10

and S11 is of type D4 or A4.
Suppose that S10 and S11 are of the same type. Then [a1, a3] = 2 (otherwise either

[a1, a3] = ∞, contrary to Lemma 6.2, or the edge a1a3 has three bad neighbors, contrary
to Lemma 6.1, or one of the diagrams 〈x3, a1, a3〉 and 〈x4, a1, a3〉 is parabolic of type
Ã2). In this case 〈S10, a3, a2〉 contains a parabolic subdiagram. Hence S10 and S11 are of
different types. If [a1, a3] = 2 or 3, then 〈S10, a3, a2〉 still contains a parabolic subdiagram.
If [a1, a3] = 4 or 5, then S13 = 〈a1, a3〉 has two bad neighbors, so ΣS13 is the diagram of
a 5-prism. However, in ΣS13 the subdiagram 〈x̃1, x̃2, x̃3, x̃4〉 is a linear diagram in which
a triple edge and a simple edge are joined by the dashed edge x̃2x̃3. No diagram of a
5-prism contains such a subdiagram, which shows that Case 3.1 is impossible.

Case 3.2. Suppose that a1 is joined with S0 by ordinary (i.e., non-dashed) edges. Then
the subdiagram T = 〈S0, a1, S0〉 contains no dashed edges, and we have finitely many
possibilities for the diagram T . Notice that T satisfies the following conditions:

S0 is of type H4, and 〈S0, a1〉 is a Lannér diagram;
S̄0 is a Lannér diagram of order 4, and S̄0 is not joined with S0;
S1 and S′

1 are subdiagrams of S̄0 of type H3 or B3;
a1 is a bad neighbor of S1 not joined with S′

1.

However, only two subdiagrams satisfy these conditions together with the signature con-
dition; they are shown in Figure 15, a) and b).

Consider the diagram shown in Figure 15 (a). The subdiagram 〈x2, x3, x4, a1, y1〉 ⊂ Σ
is of type B5 and has three bad neighbors, x1, y2, and a3. Hence a2 cannot be a bad
neighbor of 〈x2, x3, x4, a1, y4〉, and so a2 is joined with x1x2. Therefore a2 is a bad
neighbor of S14 = 〈x̃1, x̃2, x̃3〉, and P (S14) is a 4-polytope with 4 + 3 facets (it is not
difficult to check that S14 has no other bad neighbors). However, ΣS14 contains the
subdiagram 〈ã1, ỹ1, ỹ2〉 consisting of the double edge ã1ỹ1 adjacent to the triple edge
ỹ1ỹ2. But no diagram of a 4-polytope with 4 + 3 facets has such a subdiagram, so the
case shown in Figure 15, a) is impossible.

In particular, we conclude that for any diagram S ⊂ Σ of type H4, the diagram
Q = 〈S, S̄, a1〉 is the diagram shown in Figure 15, b), and S̄ is a linear Lannér diagram
with one double, one simple, and one triple edge.

Consider the diagram 〈Q, a3〉. By Lemma 6.2, 〈Q, a3〉 contains at most one dashed
edge (since any such edge must be incident to a3 and cannot have endpoints in ei-
ther S0 (since 〈S0, a3〉 is a Lannér diagram) or S1 (since a3 is not a bad neighbor of S1).
Hence, either 〈S0, a3, y4, S1〉 or 〈S0, a3, a1, S1〉 contains no dashed edges. The former
diagram does not satisfy the signature condition, whereas the latter satisfies it only in
the case of the diagram shown in Figure 15, c). Moreover, [a3, y4] = ∞, since otherwise
det(〈S0, a1, a3, S̄0〉) �= 0.

It remains to determine in how many ways the remaining node a2 can be adjoined
to the diagram 〈S0, a1, a3, S̄0〉. Consider the diagram S15 = 〈ỹ1, ỹ2, ã1, x̃4〉 of type H4

with bad neighbors x3, a3, y2. As has been shown before, S̄15 = 〈x1, x2, a2, y4〉 is a linear
Lannér diagram with one double, one simple, and one triple edge, i.e., either [a2, x2] =
2, [a2, x1] = 3, [a2, y4] = 4 or [a2, x2] = 3, [a2, x1] = 2, [a2, y4] = 4. Furthermore, a2 is
not joined with 〈x3, x4, a3, a1〉 since the diagram 〈x2, x3, x4, a3, a1, y2〉 of type E6 already
has three bad neighbors, x1, y1, and y4. Also, a2 is not joined with the edge y1y2,
since the diagram 〈y1, y2, a1, x4〉 of type H4 already has three bad neighbors, x3, a3,
and y3. Since a2 is a bad neighbor of S1, we have [a2, y3] �= 2. If [a2, y3] = 3, then
S16 = 〈x2, x1, a2, y3〉 is a diagram of type H4 such that S̄16 = 〈y1, a1, x4, a3〉 is a non-
connected diagram, which is impossible. If [a2, y3] = 5 (or 4), then 〈a2, y3, y2, a1〉 (or
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Figure 15. To the proof of Lemma 6.9

〈a2, y3, y2, a1, x4, a3〉, respectively) is a diagram of type H4 (or B6, respectively) with
four bad neighbors, y4, y1, x4, and one of the nodes x1 and x2. Hence [a2, y3] = ∞.

Thus, a2 is incident to three edges: the dashed edge a2y3, the double edge a2y4, and
the simple edge a2x1 or a2x2. If [a2, x1] = 3, then the diagram 〈S0, a1, a2, a3, y1, y2〉 does
not satisfy the signature condition. Then [a2, x1] = 2, [a2, x2] = 3, and we have the
diagram ΣP7 .

Thus, having exhausted all the cases, we found only the polytope P7, as claimed. �
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