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CONWAY'S FIELD OF SURREAL NUMBERS

BY

NORMAN L. ALLING

Abstract. Conway introduced the Field No of numbers, which Knuth has called the

surreal numbers. No is a proper class and a real-closed field, with a very high level of

density, which can be described by extending Hausdorff s r¡( condition. In this paper

the author applies a century of research on ordered sets, groups, and fields to the

study of No. In the process, a tower of sub fields, £No, is defined, each of which is a

real-closed subfield of No that is an T/£-set. These fields all have Conway partitions.

This structure allows the author to prove that every pseudo-convergent sequence in

No has a unique limit in No.

0. Introduction.

0.0. In the zeroth part of J. H. Conway's book, On numbers and games [6], a

proper class of numbers, No, is defined and investigated. D. E. Knuth wrote an

elementary didactic novella, Surreal numbers [15], on this subject. Combining the

notation of the first author with the terminology of the second, we will call No the

Field of surreal numbers. Following Conway [6, p. 4], a proper class that is a field,

group,... will be called a Field, Group,_We investigate this Field using some of

the methods developed in the study of ordered sets, groups, and fields over the last

100 years or so. (A short, partial bibliography on this subject will be found at the

end of the paper.)1

0.1. Let Tbe a partially-ordered class. It will be called totally-ordered (= linearly-

ordered = simply-ordered) if for all x and y in T then x < y or y < x. Assume T is a

totally-ordered class and an additive group. It will be called a totally-ordered group if

x < y in T implies x + z < y + z for all z g T. Assume that T is a totally-ordered

group and, in addition, that T is a field. It will be called a totally-ordered field if

x > 0 and y ^ 0 in T imply xy > 0. T will be called Dedekind complete if, given any

bounded subset B of T, it has a l.u.b. in T. It is well known that, up to isomorphism,

, . the only Dedekind complete totally-ordered field is the field

R of all real numbers.

A totally-ordered group G is called Archimedean if given any g, « g G with

g, h > 0 there exists « g TV (the set of all natural numbers) such that ng > « and

nh > g. Let K be a non-Archimedean totally-ordered field.

-
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From (1) we see that

(2) K is not Dedekind complete.

Using the open intervals of K as a basis of the open classes in K gives K a

topology called the order topology. One can easily see that, under this topology,

, , K is not connected, not compact, not locally connected, and,

not locally compact.

Let L and R be subclasses of a totally-ordered class T. We write L</?ifxLGL

and xR G R implies xh < xR. Note that 0 < R and L < 0 for all L and R.

Conway constructs the elements of No as follows [6, p. 4]:

If L and R are two subsets of No with L < R, then there

(4) exists a number {L \ R} = x g No. All elements of No are

constructed in this way.

In general, if x = {L\R}, then xL will denote a typical element of L, and xR a

typical element of R. Conway defines

(5) x > v   iff   jcr > y and x > yL       for all xR andyL.

It is well to note that equality between these numbers is an equivalence relation,

namely,

(6) x = y   iff   x > y andy > x,

and not the following: {L | R] = {L'\ R'} iff L = L' and R = R', or some such

expression. Conway shows that No is a proper class (i.e., a Class), defines an

addition and multiplication in No, and shows that it is a real-closed Field. Note that

if x = {L | R), then L < {x} < R; thus, whenever a gap exists in the numbers

defined thus far, an element is created to fill that gap. This process of creation stops

only when L or R is a proper class of numbers.

There is a large body of literature on totally-ordered sets, groups, and fields that

goes back to work of Cantor, Hahn, and Hausdorff. It is the purpose of this paper to

apply some of these now classical results to the Field No. For the convenience of the

reader, the author will make a few introductory remarks on these topics as each is

introduced. References to the literature will also be given.

0.2. It has proved convenient to the author, and he hopes it will also be useful to

the reader, to use one principal reference to a set theory which is embedded in a

theory of classes. Although there are several variants of such a theory (see, e.g.,

Gödel [10]), the author has chosen to use Introduction to set theory by J. Donald

Monk [19], a text which presents set theory from axioms that go back to Skolem and

A. P. Morse, as given by Kelley [14]. (See also [6, pp. 64-67].) In general, we follow

the notation of Monk with one notable exception: we use c to denote containment,

not proper containment; thus N <z N. As usual, we let Z denote the ring of all

integers and Q the field of all rational numbers. We also assume that all ordinal

numbers we use are sets.

0.3. Let T be a totally-ordered class and 7" a subclass of T. T is said to be cofinal

(resp. coinitial) in Til for all / g T there exists t' g 7" such that / ^ t' (resp. t' < r).
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Thus Z is both cofinal and coinitial in R, whereas N is only cofinal in U.

. v T is called an 17-Class if, given any subsets L and R of T with

^ L< R, there exists í g T such that L < {t} < iL

Assume that T is an r/-Class. Since L and i? may be taken to be the empty set

(0.1), we see that T # 0. Next note that one can construct an isomorphic copy of

the Class Ord, of all ordinal numbers, in T; thus T is a propler class. It follows

almost immediately from Conway's definitions (0.1: 4, 5, and 6) (i.e. from (4), (5),

and (6) in §0.1) that

(2) No is an -q-Class.

0.4. The author is very grateful to Norman Stein for bringing the work of Conway

to his attention. Thanks are also due A. H. Stone for suggesting the book by Monk.

1. The Hahn-Krull theory of valuations on ordered algebras.

1.0. Let G be a totally-ordered additive Group (i.e., G is a group that may be a

proper class). Given g g G, let \g\ = max g, —g; thus g = |g| iff g > 0, and

|g + «| < |g| + \h\ for all g, « G G. A subclass C of G will be called convex if, for

each c0, c, g C and g g G, with c0 < g < cx, g is in C. A convex sub-Group H oí G

will be called principal if there exists g g H such that H = (g) = {h ^ G: there

exists « G 7Y such that |«| < n\g\). Such an element g will be called a generator of H.

g and g' in G will be called commensurate to one another, written g ~ g', if

(g) = (g'). Thus g ~ g' iff there exists n g N such that |g| < «|g'| and \g'\ < «|g|.

We write g «: g'if, for all« g N, n\g\ < |g'|. Forg* 01et(g)"= {« g G: h «: g}.

1.1. Let G be an Abelian totally-ordered group. Let 2 be the set of all nonzero

convex subgroups of G. It is easily seen that 2 is totally-ordered under inclusion. Let

S be the set of all nonzero principal convex subgroups of G; then it is easily seen

that each element in 2 is a union of elements in S. Given g g G* ( = G — {0}) let

(1) V(g)m(g);

then V maps G* onto S. In this context it is natural to order S by inclusion;

however, it is more convenient, when referring to the main body of literature on the

valuation theory of fields, to define

(2) V(g)> V(g')    iff    V(g)cz V(g').

It is also convenient to define V(0) to be 00, an ideal element greater than each

element of S. For g and g' in G, then

(3) V(g±g')> minV(g),V(g'),

and

(4) ifV(g)* V(g'), equality holds in (3).

Proof. Since V(-g') = V(g') we need prove (3) and (4) only for the case in

which the plus sign appears. Without loss of generality, we may assume V(g') <

V(g), i.e., (g) c (g'). Clearly, g + g' g (g'), and thus (g + g') c (g'), which im-

plies V(g') < V(g -Y g'), establishing (3). Assume now that V(g') < V(g), i.e.,

(g) c (g'). Since V(-g') = V(g'), we may assume, without loss of generality, that
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g' > 0. If g > 0, then 0<g<<g'<g + g'< 2g', showing that (g') = (g + g')

and, hence, that V(g -Y g') = V(g'). Now assume that g < 0 < g'. Since g < < g',

2g > -g'; thus g' = -g' + 2g' < 2g + 2g' = 2(g + g') < 2g', showing that

V(g -Y g') = V(g'), establishing (3) and (4).

V is called the order-valuation on the totally-ordered group G, and S is called its

value set. For g G G*, let V~(g) = {« g G: «<< g}; then V~(g) is the largest

proper convex subgroup of V(g), and

(5) V(g)/V~(g) = F(g)

is defined to be the. factor group of K(g), or merely a factor of G. It is well known

that

any Archimedean totally-ordered group (i.e., one whose value

(6) set is a single point) is isomorphic to a subgroup of (R, +),

the additive subgroup of R ;

thus

(7) each factor of G is isomorphic to a subgroup of (R, + ).

The value set 5 together with its associated factors is sometimes referred to as the

Hahn skeleton of G.

1.2. Assume now that G is a totally-ordered Group which is not a set. How much

of the Hahn-Krull theory given in §1.1 can be carried over for G? Given g g G*, (g)

is a convex sub-Group of G, but it may well be a proper class and, thus, not an

element of any other class [19, p. 14]; thus we may not be able to form 5 as we did in

§1.1. We certainly can define (g)" to be {« g G: « < < g} and show that (g)~ is

the largest proper convex sub-Group of (g). (g)~ may very well be a proper class. If

it is, how can we go about constructing (g)/(g)~? Since each of the cosets of

(g) mod (g)~ is a proper class, they are elements of no class. Can we use the axiom

of choice to choose coset representatives? The version of the axiom of choice at our

disposal [19, Axiom 1.36] is not strong enough to do this, just as Gödel's very strong

version of choice [10, Axiom E] is not.

That there problems can easily be avoided will be seen in what follows.

1.3. Let G be a totally-ordered Group, S a totally-ordered Class, oo an element

greater than each s & S, and V a mapping of G onto S U {oo} such that V(0) = oo

and Vmaps G* onto S. The pair (V, S) will be called a valuation of G if (1.1: 3 and

4) hold. If (V, S) is a valuation of G then S is called its value class. A pair (V, S) will

be called an order-valuation of G if, for all g, g' g G*,

m (0      F(g)=F(g')iffg~g',and

U (ü)     F(g')<F(g)iffg«g'.

Clearly (V, S) defined in §1.1 is a valuation as well as an order-valuation. Clearly,

we wish to show that

(2) every order-valuation (V, S) is a valuation.
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In order to facilitate this, note that g < < g' iff (g) c (g'). Next note that,

assuming (V, S) is an order-valuation, the following hold:

(i)       K(g)=F(g')iff(g) = (g'),

f3v (Ü)    v(g')<v(g)m(g)ci(g'),

U (hi)     F(g')<F(g)iff(g)c(g'),and

(iv)     V(g)= F(-g)forallgGG.

Using (3), together with the proof of (1.1: 3 and 4), one can prove (2). Let g > 0 be

in G. For« g (g) let

L ( « ) = { m/n : mg < «A, with m g Z and « g A/},

R(h) = { m/n : mg > nh, with w g Z and « g A/}.

Clearly, L(A) U R(h) = Q, L(«) * 0 # Ä(A), and L(A) < i?(A). Let Ddmg(«)

= supL(«)(= infÄ(«))G R and let« g (g) -> Ddmg(«) g R be called the Dede-

kind divisor map with base g. Clearly Ddmg(g) = 1.

- v Peinig is a homomorphism of (g) into R having kernel (g)~.

^  ' Further, « ^ «' in (g) implies Ddmg« < Ddmg«'.

Proof. Let A, «' g (g), m/n g ¿(A), and m'/n' g L(A'); then mg < n« and

«i'g < «'«'. Hence, m«'g < ««'«, w'ng < ««'«', and, thus,

(«i«' + «j'«)g < ««'(« + «'),

showing that L(h) + L(h') c L(« + «'). Similarly Ä(«) + R(h') c Ä(« + «'), pro-

ving that the Dedekind divisor map is a homomorphism. Let «G(g)~, «g/V, and

m G Z. »ig < «/i implies m < 0. «ig > nh implies m > 0; thus Ddmg(«) = 0. Con-

versely, let « be a positive element in kerDdmg; then for all « g ./V, «« < g, proving

that « g (g)", and hence that kerDdmg = (g)~. Now let m/n g L(«) with « > 0,

and let h < A' be in (g); then «ig < «A < «A', showing that m/« g L(A'), and thus

proving that Ddmg A < Ddmg A', establishing (5).

1.4. Assume that F is a totally-ordered Field and V is an order-valuation of the

additive Group (F, + ) of F. Let G be the value Class of V. Let us define an addition

+ on G as follows:

(1) V(x) + V(y) = V(xy)    for all*, y g F*.

It is easy to check that the operation of + on G is well defined. F is a homomor-

phism of F* onto the additive Group G which we call the value Group of V. Let us

also introduce the convention that g+oo = oo+g=oo + oo = oo, forallgGG;

then the formula in (1) holds for all x, y g F.

(2) G is a totally-ordered Group.

Proof. Let x, y, z g F*. The following statements are equivalent: V(x) < V(y),

y < < x, n\y\ < \x\ for all « g TV, n|_pz| < \xz\ for all n g N, yz < < xz, V(xz) <

V(yz), and V(x) + V(z) < V(y) + V(z), proving (2).

Thus we have proved that

(3) V is a valuation of the Field F and has G as its value group.
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Let O = (1) and M = (1)". It is very easy to see that O = {/g F: V(f) > 0} and

M = {/g F: F(/) > 0); thus

, . O is a valuation sub-Ring of F (i.e., a proper sub-Ring such that

f g F — O implies 1/f G O), and M is its maximal ideal.

Then O — M = U, the Group of units of O, is {/ g F: f ~ 1}. As usual in valuation

theory, U is the kernel of the homomorphism V of (F*, X) onto G.

See, e.g., [27, 24, 7 or 5] for details on valuation theory.

1.5. Let F be a field with valuation V. Let O = {/ g F: V(f) > 0} and M = {f

g F: V(f) > 0}; then O is the valuation ring of V and M is the maximal ideal of O.

The canonical homomorphism p of O onto O/M = K is called the place of V and K

is called the residue class field of V.

Now let F be a totally-ordered Field, O = (1), and M = (1)" §1; then, as we have

seen, each is a convex sub-Group of ( F, + ) and M is the largest proper convex

sub-Group of O. Of course, F is Archimedean if and only if O = F. Assume that F

is non-Archimedean. For each/g O let /?(/) = Ddmx(f); then by (1.3: 5) p is a

homomorphism of (O, + ) into (R> + ) having M as kernel. Since F is a totally-ordered

Field, its characteristic is zero; thus it has a copy of Q in it, which we will identify

with Q. Let A g O and g = 1; then

L(A)={ m/n : m/n < h, with m G Z and « g N },

R(h) = {m/n: m/n > h, with m g Z and « g N).

p is a homomorphism of the ring O into R having kernel M;

(2) thus M is a prime ideal of O. Further, M is the maximal ideal

ofO.

Proof. Let A, A' be positive elements in O, m/n g L(A), and m'/n' g L(h'),

with m, m' > 0. Thus m < «A, m' < «'A', mm' < nm'h < nn'hh', showing that

mm'/nn' G L(hh'). Similarly, m/n g R(h) and m'/n' g R(h') imply mm'/nn' g

R(hh'); thus p(hh') = p(h)p(h'). Sincep is a homomorphism of (O, +)into(R, +),

/?( —A) = —p(h), establishing the first sentence in (2). An element is in O - M iff it

is bounded by nonzero rational numbers of the same sign. Given such an element, its

inverse has the same property, proving that M is the maximal ideal of O.

(3) O is a valuation sub-Ring of F.

Proof. Let / g F - O; then, by definition, 1 «: /. Hence « < |/| for all « g N.

Without loss of generality, let / > 0; thus 1/f < 1/« for all « G N, showing that

1/f g M c O, establishing (3).

From these observations, we see that

(4) p is a place for the valuation ring O.

1.6. Application of the Hahn-Krull theory to No. Given a totally-ordered Field F, let

F+= {x G F: x > 0}: then (F+, X) is a subgroup of (F*, X) of index 2. Conway

defines a map x g No >-> ux g No+ such that

(1) each^ g No+ is commensurate to ux, for some x g No,

and

(2) o>x+y = o>x ■ uy   for all xjeNo [6, pp. 31-32].
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(3) x g No+   implies   ux » 1.

Proof. The simplest element in No+ (i.e., the element in No+ with the earliest

birthday) is 1 and, by definition, w1 = w » 1. Proceeding by induction on the

simplicity of x in No+, recall that

ux = Í0, ruxL\suxR),   wherer, s g R + withx = {xL\xR}
(4) l '

andO < jcl[6, pp. 31-32].

Thus, by induction, (3) is proved.

(5) Let x < y in No; then ux <r icy.

Proof. Let z = y — x. Then y = x + z and z > 0. Hence u>y = «* • co2 » ux,

using (2) and (3), establishing (5).

(6) Given y G No+ there exists a unique x G No such that y - ux.

Proof. By (1) there exists such an x. By (5) it is unique, establishing (6).

Let E= {ux: r £ No}; then F is a multiplicative sub-Group of No+ and

x g No >-* 03x is an order-preserving isomorphism of (No, + ) onto E. Given z g E,

let logw z be the element x g No such that z = ux. Clearly z g E >-» logw z g No is

an order-preserving isomorphism of E onto (No, + ).

For y g No* (= No — {0}) let V(y) be the element x g No such that \y\ — w x

(6). Further, let V(0) = oo, an element greater than each x g No.

(7) V is an order-valuation for (No, + ) with value-Class No.

Proof. The following are easily seen to be equivalent: y ~ y', \y\ ~ \y'\, V(y) =

V(y'), verifying condition (1.3: l(i)). Let x = V(y) and x' = V(y'); then, by

definition, |jv| ~ w~x and \y'\ — u~x. The following statements are equivalent:

y << y\ \y\ < < l/l. «"* "« "~* ', -x < -x', x' < x, and V(y') < V(y); verify-
ing condition (1.3: 1(h)) and thus proving (7).

For ally, y' g No*, V(yy') = V(y) + V(y'); thus Visa

valuation of No whose value-Group is (No, + ).

Proof. Let x = V(y) and x' = V(y'). It is easy to see that each statement implies

the next:

\y\ - o)~x and \y'\ - u~x';

there exist « and m in N such that u~x/n < \y\ < nu~x and u~x'/m < \y'\ <

mu~x';

there exist « and minN such that u~ix+x)/nm < \yy'\ < nmo3~(x+x">;

V(yy') = x + x'= V(y) + V(y'),

proving (8).

1.7. Let O be (1) in No. As we saw in §1.4, O is a valuation Ring in No whose

maximal ideal M = (1)". The Dedekind divisor map p = Ddi^ of O into R is a

place of O (1.5: 4). Since R is a subfield of No [6, pp. 24-25], we see that

(1) />(0) = R;

thus p is an R-valued place. Given x e O, Conway has shown [6, pp. 32-33] that

there exists a unique reR such that x = r -Y xx, with xx g M. Of course, r = p(x);
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thus

(2) x = p(x)-Y xx   with xx in M.

Note. Given this result, one could define p by (2) and show very easily that it

defines a place map of O onto R.

1.8. Let us now consider the Group (No, +). We have seen (1.6: 7) that V is an

order-valuation for (No, +) with value Class No. Let x g No+. By (1.3: 5), the

Dedekind divisor map Ddmg is a homomorphism of (g) into R with kernel (g)~

such that A < A' in (g) implies DdmgA < DdmgA'. Let G s imDdmg. Since R is a

subfield of No, (g) and (g)~ are vector spaces over R as well as over Q; thus G is a

nonzero subgroup of (R, +) that is divisible. Since No is an r/-Class (0.3: 2),

(1) imDdmg=R    (cf. [2, p. 712]).

Further, one easily sees that

(2) Ddirig is an U-linear map of (g) onto R.

Since the topology on No is the order topology (0.1), and since Ddmg preserves < ,

we see that

(3) Ddmg« a continuous U-linear functional on (g).

2. The valuation theory of Krull, Ostrowski and Kaplansky.

2.0. In the category of fields with valuation, an extension is called an immediate

extension if neither the residue class field nor the value group is enlarged by the

extension. A field with valuation is called maximal if it has no proper immediate

extensions. This idea, due apparently to F. K. Schmidt, first seems to have appeared

in Krull's celebrated paper of 1931 [16]. In Kaplansky's Harvard Dissertation of

1941 [13] such extensions were considered at length. Kaplansky used Ostrowski's

idea of pseudo-convergent sequences [23] (c. 1935) to great effect in [13]. We will

recall this theory very briefly and then apply it to No in this section.

2.1. Let K be a Field with valuation V and value Group G. Let X be a (nonzero)

limit ordinal. A sequence ^4=(aa)a<xof elements in K will be called a pseudo-con-

vergent sequence of length X if

(1) V(aa - aß) < V(aß - ay)    for all a < ß < y < X.

(See, e.g., Kaplansky [13, p. 303 ff.] for details.) Assume that A is pseudo-convergent.

Using the triangle inequality (1.1: 3 and 4), one can easily see that either

(i)      V(aa)<V(aß)foralla< ß < X; or
(2)

(iï)     there exists a < X such that, for all ß with a < ß < X, V(aß) = V(aa).

It is also easily seen that

(3) V(a„ - aa) = V(aa+X - aa)    for all a < ß < X.

Let ga = V(aa + X - aa) G G for all a < X. By definition (1) (ga)a<x is a strictly

increasing sequence of points in G, which may or may not be cofinal in G. Let B, the

breadth of A, be {y g K:  V(y) > ga for all a < X). The breadth is clearly a
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subgroup of (K, +), which may or may not be zero, x g K will be called a

pseudo-limit of A if

(4) V(x-aa) = ga   foralla<X.

(Note. Kaplansky uses "limit" for the term we here define as "pseudo-limit" [13,

p. 304].) If a pseudo-limit to A exists, it is uniquely determined modulo B. The

following holds:

Assume that K is a set. K is maximal if and only if every

(5) pseudo-convergent sequence in K has a pseudo-limit in

K [13, £.309].

Whether or not K is a set, it will be called pseudo-complete if every pseudo-conver-

gent sequence in K has a pseudo-limit in K.

Note that the notions of pseudo-convergent sequences, breadth, and pseudo-limits

do not depend on the multiplication structure of K or the additive structure of G;

thus all these notions can be defined for a totally-ordered additive group G. Let £ be

an ordinal with £ > 0. G will be called ^-pseudo-complete if every pseudo-convergent

sequence (aa)a<\Of length X < w^ has a pseudo-limit in G. (The term ¿-maximal was

used in [2, 3] for this idea.)

2.2. Application of this theory to No.

(1) No is pseudo-complete.

Proof. Let X be a (nonzero) limit ordinal and let A = (aa)a<x be a pseudo-con-

vergent sequence in No. Let ga = V(aa+X — aa) for all a < X. As noted in §2.1,

(ga)a<x is a strictly increasing sequence in the value group of V, namely in (No, +)

(1.6: 8). For each a < X let ba g No+ such that V(ba) = ga. The following inequality

holds:

(2) aa + x - ba < aß+x - bß < aß+x -Y bß < aa + x -Y ba   for ail a < ß < X.

To establish (2) note that the first quantity is less than the last, and the second

inequality holds simply because ba and bß are positive. Let us establish the last

inequality in (2). Note first that it is equivalent to

(3) aß + x - aa+x <ba- bß.

Since ga < gß, bß •« ba, and hence ba — bß> 0; thus (3) is implied by

(4) \aß+1 - aa + 1\ <ba- bß.

To establish (4) note that by (2.1: 3), V(aß+X - aa + l) = V(aa + 2 - aa+x) = ga + l.

Using the triangle equality (1.1: 4), we see that V(ba - bß) = min V(ba), V(bß) = ga.

Since ga + l > ga (2.1), we see that

(5) v(\aß+x-aa+x\)>V(ba-bß);

which proves (4), (3) and, hence, the last inequality of (2). The first inequality of (2)

also follows from (4), proving (2). Let

L= {aa+x- ba: for alia <X),

U R= {aa + 1 + ba:ioralla < X}.
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By(2)L < R. Letx = {L\R)\ then L < {x} < R. Thus aa + 2 - ba + x < x < aa+2

-Y ba + x for ail a < X; i.e., —ba + 1 < x - aa + 2 < ba + x. As a consequence, \x - aa + 2\

< ba + x and, thus, V(x - aa + 2) > V(ba + X) = ga+x for ail a < X. Using the triangle

equality (1.1: 4) again, we see that

v(x - aa) = V(x - aa + 2 + aa + 2 - aa) = min V(x - aa + 2), V(aa+2 - aa)

= minF(x - aa + 2),ga = ga,

proving (1).

2.3. Let (L, R) denote the class of all y in No for which L < {y} < R. The

argument above shows that

, n Any y in (L, R) is a pseudo-limit of A. Further, x is the

simplest such element.

It is well known [13, p. 304] that

(1) z is a pseudo-limit of A iff z is in B + ( x}.

Let L' = {x - ba : a < X} and R' = {x + ba : a < X). Then

(2) B+{x} = (L',R').

Indeed, let z be in B + {x). Then V(x — z) > ga for all a < X; i.e., \x — z\ < ba

for all a < X, showing that z is in (L', R'). Now let z be in (L', R'). Then

x — ba < z < x + ba for all a < X; i.e., \x — z\ < ba for all a < X. Hence, V(x — z)

> ga for all a < X. Since (ga)a<x is strictly-increasing (2.1), and since X is a nonzero

limit ordinal, x — z is in B, and thus z is in B + {x ), establishing (2).

Combining (0), (1) and (2) we see that (L, R) is a subclass of (U, R'). The

following also holds:

(3) (L,R) = (L',R').

Indeed, let z be in (L', R'). By (2) z is a pseudo-limit of A, hence V(z - aa+x) =

ga + i IOT all a < X (2.1: 4). As a consequence, \z - aa+x\ < ba. Hence —ba<z-

aa + l < ba and, thus, aa + x — ba< z < aa + x + ba. As a result we see that z is in

(L, R) establishing (3). Thus

(4) x is the simplest pseudo-limit of A.

Let such a pseudo-limit of A be called the limit of A. Clearly it is unique. As a

consequence, we see that

, v every pseudo-convergent sequence in No has a unique limit in

'  ' No.

3. Hahn groups and formal power series fields.

3.0. Both of these topics are treated in Hahn's paper of 1907 [11]. Many variations

have subsequently been written on these two classic themes.

3.1. Let Fbe a nonempty totally-ordered set and (G,)ieTa family of totally-ordered

additive groups. Let P be the full Cartesian product Ti,eTGr Under pointwise

operations P is an additive group. Given x g P let the support of x, supp(x), be

defined to be {t g T: x(t) is a nonzero element in G,}; let

(1) H = ( x g P: supp(x) is a well-ordered subset of T }.
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It is very easy to see that H is a subgroup of P which contais the direct sum of the

G/s. For x G H* let W(x) denote the least element in supp(x). Let W(0) = oo, an

element ordered so that t < oo for all / g T. One easily sees that, for all x, y g H,

(2) W(x±y)> minW(x),W(y),

and

(3) ifW(x)± W(y) then equality holds in (2).

(Cf. (1.1: 3 and 4).) H can be made into a totally-ordered group by declaring x g H*

to be positive if x(W(x)) > 0. (This is the so called lexicographic order on H.) Under

this order, H is called the Hahn group of (G,),er.

Assume now, in addition, that each G, is a nonzero Archimedean group. When the

results of §1.1 are applied to H, one finds that the value set of H is naturally

isomorphic to T and the factors of H are naturally isomorphic to the G/s.

The Hahn Imbedding Theorem tells us that given any totally-ordered group G

with value set T and factors (G,)ier, then G can be isomorphically imbedded in H,

its corresponding Hahn group.

3.2. Formal power series fields are constructed in much the same way. Let K be a

field, G a totally-ordered additive group, and P = KG; then under pointwise

operations P is a vector space over K. For / g P let supp(/) ={gGG:/(g)#0}

andletF = {/g P: supp(/) is a well-ordered subset of G}. Then Fis a sub-iT-space

of P. For u, v g F and z g G let

(1) »('i)-    E   u(x)v(y).
x+y = z

A priori the sum on the right-hand side of (1) may involve an infinite number of

nonzero terms. Fix z in G. First we may confine our attention to x g supp(w). Next

we need only be concerned about v G supp(r?) D {z - x : x G supp(w)}; but this set

is both well-ordered and anti-well-ordered; i.e., it is finite. As a consequence, the

sum on the right side of (1) has only a finite number of nonzero terms in it and thus

lit? is in P. It can be shown that uv g F and F is a commutative ring with identity. It

is deeper to see that

(2) F is a field.

Hahn proved this directly by letting u g F* and constructing v g F*, such that

mi? = 1, by transfinite induction. Other proofs of (2) have been given; one of the

most general and revealing was given by B. H. Neumann [20].

Given/ g F* let V(f) be the least element in supp(/); then

( 3 ) V is a valuation of the field F whose value group is G.

Let K be a totally-ordered Archimedean field and let F be given the lexicographic

order; then

, s F is a totally-ordered field and V is equivalent to the order-val-

uation on F.

We will refer to F as the field of formal power series with coefficients in K and

exponents in G.
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Finally it should be noted that

(5) the field F is maximal [ 13].

A subfield F' of F having the same residue class field and value group as F will be

called a field of formal power series with coefficients in K and exponents in G. Note F

is an immediate extension of such a field F .

3.3. Conway remarks [6, p. 33] that his theorem on the normal form for x G No [6,

Theorem 21, p. 33] ".. .can be interpreted as showing that the structure of No as a

Field can be obtained from its structure as an additive Group by means of the

Malcev-Neumann transfinite power-series construction."

One of the goals of the research we are now reporting on was to construct

something very much like a Field F of formal power series with coefficients in R and

exponents in a totally-ordered additive Group G, constructed using some elementary

process other than that used to construct No, such that F and No are isomorphic.

There are two kinds of possible obstructions to this program: set theoretic and

algebraic. We saw in §1.6 that G must be a proper class. Were we to try to proceed

as we did in §3.2, the first object constructed would be P = Rc, but, since G is a

proper class, P = 0 [19, p. 55]. Thus some variation on this method must be sought.

Fortunately, much of the ordered algebra required is known. It will be recalled and

synthesized for the reader in the next section.

4. rj ¿-structures of Cantor, Hausdorff, Sierpihski et al.

4.0. In the first part of Cantor's great 1895 monograph [4], he gives the following

characterization of the order type 17 of the set R = {x g Q: 0 < x < 1): (i) R is

countably infinite; (ii) R has no least and no greatest element; and (hi) R is

everywhere dense [4, pp. 504-508].

In 1914, Hausdorff [12, pp. 180-185], generalized Cantor's order type r/ as

follows. Let £ be an ordinal number. A totally-ordered set E is called an r/^-set if,

given any two subclasses H and K of E such that if

(1) H < K

(0.1), and

(2) \H\ + \K\<Kt,

there exists e g E such that H < {e) < K. (Cf. Conway's condition (0.1:4).) Clearly

a countable Tj0-set is one that satisfies Cantor's conditions (i)-(iii) above, and

conversely. Clearly our definition (0.3: 1) of an 17-Class is a variant of Hausdorff s in

which (2) is replaced with the condition that H and K be sets. Hausdorff proved the

following [12, pp. 180-185]:

, , Given any totally-ordered set  T with \T\ < X¿,  it may be

mapped into an risset E by means of an order-preserving map.

(4) Any two r\g-sets of power X¿ are order-isomorphic.

(5) Ifttç is singular, any rig-set is an f]i+x-set.

Assume, henceforth, that £ > 0.
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The simplest and most elegant construction of an r/£-set which the author knows of

is the following, due to Sierpiñski [25]:

, . Let Sj = {/ G (0,1}"«: there exists a < <o£ such that f(a) = 1,

^ ' and for all ß, with a < ß < <o£, then f(ß) = 0).

(Note. Since the ordinals in Conway [6] and Mark [19, p. 68] are von Neumann

ordinals [21], any ordinal is ( ß: ß < a} for some ordinal a. ío£ denotes, as usual, the

least ordinal of power N£. These are sometimes called initial ordinals. Thus, for

example, w0 is the set of all finite ordinals, ux is the set of all countable ordinals,

etc.)

(7) If X £ is regular, then S£ is an rig-set.

(See, e.g., [17, pp. 336-338] for a proof.)

It is weh known that

(8) an -qg-set of power X£ exists

if and only if

(9) H(is regular   and     E 2*a < N£.

Note that if £ = a + 1 then N£ is regular; thus in this case (9) is equivalent to

(10) 2». = Ka+1,

which is part of the Generalized Continuum Hypothesis. Note also that

(11) //K£ is strongly inaccessible, then (9) holds.

(12) If an f\a + x-set exists, it must be of power at least 2K°.

(See, e.g., [17, p. 338].)

For/ g S£, let supp(/) = {ß g w£: f(ß) # 0}; then this set is a nonempty subset

of «£ which has a greatest element.

4.1. Let T be a divisible totally-ordered additive group which is an Tj£-set. Then:

Given any totally-ordered additive group H, with \H\ < S£,

(1) there exists an order-preserving (group) isomorphism of H into

nil
. . Any two divisible totally-ordered additive groups that are riç-sets

of power S£ are (order and group theoretically) isomorphic [1].

(Cf. (4.0: 3 and 4).) Let G be a divisible totally-ordered group and 5 its value set

(1.1).

, , G is an 7j£-itT if and only if (i) S is an r¡(-set, (ii) its factors are

isomorphic to R, and (in) it is ^-pseudo-complete (2.1) [2, 3].

Let F be an T/£-set. For all e g E let Ge = R and let H be the Hahn group of

(Ge)eef. Let G = {x g H: |supp(x)| < S£}; then using (3) we see that

(4) G is a divisible totally-ordered additive group which is an risset,

showing that such groups exist. Further,

(5) if\E\=K(then\G\=Xt.
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Concerning (5) the reader should note that in (4.0) we assumed £ > 0. Hausdorff

noted [12, pp. 180-185] (see also [9, p. 177]) that an Tj1-set must have power at least

the continuum; thus E and G have the same power.

4.2. Let G be a divisible totally-ordered additive group which is an r/£-set and let

(1) F = |/gRg: supp( f) is a well-ordered subset of G of power less than N £ J.

F is then a formal power series field with coefficients in R and exponents in G.

Under the lexicographic order, F is a totally-ordered field.

(2) F is a real-closed field which is an t\ç-set [2, 3].

Further, theorems similar to (4.1: 1 and 2), but for the category of ordered fields,

hold. See [8, or 9, pp. 180-183,193] for details.

4.3. With this in hand, we can synthesize these three constructions as follows: Let

5£ be Sierpihski's set of (4.0: 6); then it is an Tj£-set (4.0: 7). Let G£ be the group

defined in 4.1 with E = 5£; then it is a divisible totally-ordered additive group which

is an T/£-set (4.1: 4). Let F£ be given by (4.2: 1) with G = G£; then it is a real-closed

field which is an Tj£-set. Further, if |5£| = K£ then |F£| = K£ (4.1: 5).

It is these fields F£ that will be our basic building blocks used to construct a field

isomorphic to No. The first of these construction occupies the next section.

5. A construction of Conway's numbers within a universe within set theory.

5.0. Recall that a cardinal number M is called strongly inaccessible if M > K0, M

is regular, and if N < M implies 2N < M. It is not possible to prove the existence of

strongly inaccessible cardinals within set theory. Nevertheless, it has seemed both

natural and useful to many mathematicians to assume that such numbers exist. For

example, using Tarski's Axiom (see, e.g., [17, p. 326]), given any cardinal N there

e?dsts a strongly inaccessible cardinal M with N < M.

(1) Assume there exists a strongly inaccessible number S £.

One of the greatest uses of (1) is that it allows one to construct a set A of power

N£, called a universe [19, p. 160], such that within A are enough sets to do all of the

standard constructions of set theory for sets of power less than W£. (See, e.g., [19, pp.

112-114,159-163] for details.) Note that each x G A is a set of power less than N£.

Let £No be the class of all numbers constructed using Conway's construction (0.1:

4) subject only to the constraint that each L and R must be elements of the universe

A. Since A is a universe for set theory within set theory, Conway's proofs shows that

(2) £No is a real-closed Field.

Our theorem (0.3: 2), which holds for £No, within the universe A now takes the

following form:

(3) £No is an -q^set of power K^.

Proof. Let L and R be subsets of £No such that L < R and |L| + |Ä| < S£; then

L and R are in A [19, 23.12(v), p. 160]. Hence { L | Ä} = x g £No and L < {x} < Ä,

proving that £No is an T/£-class. Since A is a set and £No c A, £No is a set. Since

1^1 = N£, |£No| < S£. Since £No is an i)£-set, its power is at least K£, proving (3).
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5.1. Consider the field F£ constructed in §4.3. It is a real-closed field which is an

ij£-set. Since S£ is strongly inaccessible (5.0: 1), (4.0: 9) holds; thus |F£| = N£. Hence

(1) £No and F£ are isomorphic fields [8].

5.2. Monk notes that all universes within set theory are associated with a strongly

inaccessible cardinal number as A is [19, p. 161]. We have exploited the usual

advantage of working within a universe. The construction of £No, along the lines

Conway gives, is done within A; however, £No is a set, even though it is not in the

universe A. Thus we can use set theory to construct F£, which is isomorphic to £No.

On the other hand, Conway's Field No is a proper class, and the calculus of proper

classes is by necessity much more restricted than that of sets.

We will try to use what insight we may have obtained in this section in what

follows, even though we will

(1) drop assumption (5.0: l).

6. A construction of a Field isomorphic to No.

6.0. We make our construction by taking direct limits in various categories over

the index Class Ord, the Class of all ordinal numbers. Since Ord is a proper Class,

care will be taken to show that the procedures we use are permissible within the set

theory we have chosen to work in [19].

6.1. It is well known that for all a g Ord, Na + 1 is regular. (See, e.g., [17, p. 309].)

By (4.0: 7)

(1) for each a G Ord, Sa+X is an r\a + x-set.

Recall that elements of Sa+X are maps from coa+1 to {0,1} (4.0: 6). Let ß be an

ordinal such that ß > a.

(2) Let iß be the inclusion map of ua+, into uß+x.

Note that iß is order-preserving, /'" is the identity map of wa+1, and, if y > ß, then
iß,"   =   7a

iyiß - ir

For/ g Sa + 1 let mß(f) be the map g of o>ß+x into {0,1} such

(3) that for all 8 g aß+1 - /£(supp(/)), g(8) = 0, and for all

5G/-(supp(/)),g(5)=/(á).

Then g is in Sß+X and mß is order-preserving.

Since the wa+1's are distinct sets, the .S^/s are disjoint sets. Let 2 = Uae0ld Sa + l.

(Note. This is a well-defined proper Class [19, p. 51].) Let /, g G 2. There exist

unique a, ß g Ord such that/ g Sa + X and g g Sß+X. Without loss of generality we

may assume ß > a. We say that

(4) /and g are equivalent, f - g, if mß(f) = g.

Clearly, this is an equivalence relation on 2. Given g g 2 let a be the least ordinal

such that there exists /0 g 2 such that mß(f0) = g; then /0 is unique and « =

index(g). /0 will be called the representative of the equivalence Class to which g

belongs.

, , Let S be the Class of all representatives of all equivalence

classes of 2 mod ~ .
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For /g Sa+X let «ia(/) be the representative of the equivalence class to which /

belongs. ma is a monomorphism of Sa+X into S and the following holds:

(6) mßmaß = ma.

Let/0 and g0 be in 5 with/0 g Sa+X, g0 g Sß+X and ß > a. We define

(7) /o<go   iff   mt(fo)<g0-

Since each Sa + 1 is a totally-ordered set, S is a totally ordered Class. Thus S is the

direct limit, Lim_ Sa+V The reason for considering S is that

(8) S is an ij-Class.

Proof. Let L0 and R0 be subsets of S such that L0 < R0. Let U0 = L0 U Ä0.

Since £/0 is a set, there exists a g Ord such that

(9) {index(/0):/0G £/„} c ua+1,   and    |l/„|<Ka+1.

For each/0 G [/0 there exists a unique/ G 5a+1 such that/ ~ /0. Let IE{/eSa+1:

/ -/0 for some /0 g L0}, and let R be similarly defined. Clearly L < R and

|L| + |jR| < Ka + 1. Since S'a+1 is an r/tt + 1-set (1), there exists A g Sa+X such that

L < {h} < R. ClearlyL0 < (A) < R0, establishing(8).

Let TOC denote the category whose objects are totally-ordered Classes and whose

morphisms are maps from one such object to another that preserve < . We have

then shown that the direct limit of the Sa+1's, taken together with the mß's, exists in

this category.

6.2. For a g Ord, let Ga+1 be the totally-ordered divisible group that was defined

in §4.3. We saw there that it is an r/a+1-set. Let TOG denote the category whose

objects are all totally-ordered additive Groups and whose morphisms are all homo-

morphisms between those objects that preserve < ; then the Ga+1's are objects in

TOG.

Let ß > a and/ g G0+1./is then a map of Sa+l into R.

Let hß(f) be the map g of Sß+X into R such that, for all

(1) x g Sß+1 - mß(supp(f)),   g(x) = 0,   and   for   all   x g

w|(supp(/)), g(x) = f(x).

Since mß is order-preserving and ß > a, hß is an order-preserving homomorphism of

Ga + 1 into Gß+X; thus it is a monomorphism in TOG. Clearly, if y > ß then

Afhß = h^. We want to show that Lim_ Ga+1 exists in TOG.

Since the Sa+fs are disjoint, so are the Ga+1's. Let T = Uae0rd^a+i- Let

equivalence, - , be defined in T as it was in (6.1: 4), and the representative of some

g g r as it was in §6.1. Let G be defined as S was (6.1: 5). For/ g Ga+1 let ha(f) be

the representative of the equivalence class to which / belongs; then A" maps Ga+1

into G and h" — hßhß for all ß > a. Let the order and group structure of the Ga+1's

induce the structure of an object in TOG on G; then

(2) G = Lim_ Ga+1    and   G is divisible and an r\-Class,

by (6.1: 6).
6.3. For a g Ord let Fa+1 be the totally-ordered field defined in §4.3. We noted in

§4.3 that it is an r)a+1-set that is a real-closed field. Let TOF denote the category
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whose objects are all totally-ordered Fields and whose morphisms are all field

monomorphisms between those objects that are order-preserving. Then each Fa+1 is

an object in TOF. We can proceed as we did in §6.2 to show that Lim^ Fa+1 = F

exists, in our set theory, and is an object in TOF.

(1) F is a real-closed Field which is an y-Class.

6.4.

(1 ) F and No are isomorphic Fields.

Let K be a totally-ordered Field. Conway [6, p. 42] defines K as having the

universal embedding property if, given any sub field k (which we require to be a set) of

K and any extension g of A: in TOF (g being a set), there exists a subfield g of K that

contains k and a /c-isomorphism of g onto g. Conway proves that No has this

property [6, Theorem 28, p. 42]. The same proof shows that

. . any real-closed totally-ordered Field that is an r\-Class has the

universal embedding property.

Conway then states and proves Theorem 29 [6, p. 43]: any object K in TOF that

has the universal embedding property is isomorphic to No. This result leads us to:

(3) F is isomorphic to No.

Since the set theory we are using is a variant on that used by Conway, we will add

a little to his discussion. Conway defines Na to be the set of all numbers born on day

a, where a g Ord [6, p. 29], and shows that

(4) (JVjaeM isapartition o/No [6,p. 30];

thus No can be given a well-ordering (xa)aeOTi. Having constructed F as a direct

limit of the Fa + 1's we can identify each Fa+1 with its image in F and thus regard F as

the union of (Fa + 1)ae0ni. Since each Fa+X is a set, we can also give F a well-ordering

(ya)aeoró- We then can follow Conway's proof of Theorem 29 [6, p. 43], which

combines elements of the Artin-Schreier Theory [18], with Cantor's proof of the

characterization of the set R (4.0) [4, pp. 504-508], establishing (3), the main result

of this section.

7. Some distinguished subfields of No.

7.0. The construction of F£ in §4.3 suggests that No may have some analogous

subfields. That this is indeed the case will be seen in this section.

, v Let £ be in Ord such that £ > 0 and with i<?£ (or, equivalently,

N£) regular.

Such ordinals are very plentiful. For example, if £ = a + 1 for some a g Ord,

then £ satisfies (1).

Let £No be the class of all x g No such that there exist

(2) subsets L and R of £No for which L < R, \L\ + \R\ < «£,

andx = {L\R}.

Note that if S £ is strongly inaccessible, then £No, defined in (2), is the same as

£No defined in §5.0; thus £No as defined in (2) is a generalization of the Field

considered in §5.
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7.1.

(1) £No is a sub-Field of No.

Proof. Certainly 0 c £No; thus 0 (= { \ }) and 1 (= {0| }) are in £No. On

referring to the definitions of addition and multiplication in No [6, p. 5], one sees

that £No is a sub-Ring of No. Let x > 0 be in £No, with x = {L \ R }, for L and R

as in (7.0: 2). The construction of 1/x by Conway [6, pp. 21-22] involves not only

the usual induction but also an induction over w. Since £ > 0,1/x g £No, establish-

ing (1).

A little further reflection yields the following:

(2) R is a subfield t?/£No. Each ordinal a < w£ is in £No.

From the discussion of ux [6, pp. 31-32] and the fact that £ > 0 (7.0: 1), one easily

sees that

, , for each y G £No, o¡y is in £No; for each x > 0 in £No there

exists y g £No such that x is commensurate with u¡y.

On the other hand, since <o£ is regular, it has no cofinal set L of power less than

N£; thus

(4) co£ is in No but not in £No.

From (4) we see that £No is a proper sub-Field of No. The following is much

stronger:

(5) £No c 0U(.

(See [6, p. 29] for definition.)

Proof. Let x be in £ No with x = {L\R),(i)\L\ + \R\ < 8£,and(ii)L U R c Ou .

Each y g L U R = U is in Oa, for some a < w£. Since w£ is regular, we may use (i)

and (ii) to show that there e?dsts ß < <o£ such that U c Oß. Hence, x g Mß = Oß+x

[6, p. 29], which is a subset of Oa , establishing (5).

One corollary of (5) is that

(6) £No is a set.

Once we know this it is natural to try to compute the cardinal number of £No.

Using Conway's notion of the sign-expansion of an element in Na [6, p. 30], we see

that

(7) Kl=2'a|   for all a g Ord.

From (7) and the definition of Oa and Ma [6, p. 29], we see that

(8) \Oa\ = E 2i'i   and    \Ma\ = E 2«.
ß<a ß<a

From this we can see that, for any y g Ord,

(9) KI=«o+E2"-
a <y

and, hence,

(10) KJ=2«v.
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Proof. To prove (9) note that as ß runs through u, \ß\ runs through the

nonnegative integers. The resulting contribution to the cardinal on the left side of (9)

is thus X0. For <o</?<fa?1, |/?| = K0, and thus the contribution to the cardinal

number on the left side of (9) is Sx • 2N°. Continuing in this way, we see that (8)

implies (9). (10) follows from (9), establishing these results.

Combining (2), (5), (9) and (10), we see that

(11) «£<|£No|< £2K-,

and

(12) Ka+1<|£No|<2*«   if£ = a + l.

7.2. Virtually by definition (7.0: 2), we see that

(1) £No is an r\ç-set.

Using this, (4.0: 12) and (7.1: 12), we see that

(2) \(a + l)No| = 2**   for all a G Ord.

We have seen (1.6: 7 and 8) that V is an order-valuation for the Field No whose

value-Group is (No, +). Using (7.1: 3), we see that V restricted to £No, which we

denote by

, . £F, is a valuation of the ordered field £No whose value group

() is(£No,+).

Utilizing the main theorem of [2, p. 712], we know that

(4) £No is ^-pseudo-complete (2.1).

Applying the methods in §2.3, we obtain a stronger version of (4), namely:

, , Every pseudo-convergent sequence in £No of length X < co£ has

^ a unique limit in £No.

Since R is a subfield of £No (7.1: 2) and £ > 0 (7.0: 1), we may apply the

argument in Conway [6, pp. 40-42] and thus conclude that

(6) £No is a real-closed field.

, , If (i) 2S° = Ha+1, then (ii) (a + l)No and Fa + 1 are isomor-

'  ' phic.

Proof. Assume that (i) holds; then (a + l)No and Fa+1 are each real-closed fields

that are Tja + 1-sets of power Na + 1. It is well known that any two such fields are

isomorphic (see [8, or 9, p. 193]).

In any event we know that

(8) No =    U   (« + l)No.
aeOrd

Since No is real-closed,

(9) £No is relatively algebraically closed in No.

Using (2) we know that

,    v the transcendence degree of (a + 2)No over (a + l)No is
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7.3. The results in this section show how close the structure of the very naturally

defined subfields £No are to the fields Fa used to define F in §6. This similarity can

be made even closer under additional set-theoretic hypotheses.

, , Assume the Generalized Continuum Hypotheses: then, for all

a g Ord, (a + l)No and Fa are isomorphic.

Proof. Since each field is an r/a+1-field of power Na+1 that is real-closed, they are

isomorphic. (See [8 or 9].)

Another hypothesis that simplifies matters is Tarski's Axiom [17, p. 326], which

implies that

, , given any cardinal number N there exists a strongly inaccessible

cardinal M such that M > N.

Assume that (2) holds and let Ord0 = {£ g Ord: S£ is strongly inaccessible}. We

can then modify the construction in §6 to employ only £ g Ord0, since Ord0 is

cofinal in Ord; thus we would define F to be Lim_,£e0rd F£ and then note that

(3) £ G Ord0 implies that F£ and £No are isomorphic.

Of course, (2) is equivalent to the statement that Ord0 is cofinal in Ord. Without

some assumption we cannot even prove that Ord0 =*= 0. For this reason, in §6 we

chose to take limits along the class of all nonlimit ordinal numbers.

8. Conway partitions.

8.0. Conway made the following observation [6, p. 43]: "As an abstract Field, No

is the unique universally embedding totally ordered Field.

" We repeat that No has plenty of additional strucrture which would not emerge

from this 'definition'."

The purpose of this section is to describe a way of defining this additional

structure on No as an abstract Field.

8.1. Recall [6, pp. 29-30] that Conway defines Na as the set of all numbers "born

first on day a". Further, he showed that

(1) (Na)a&0ldis a partition of No   and    No={0}.

One can define Ma to be öß^aNa and Oa = \Jß<aNß. Clearly, a < ß implies

Ma c Mß and Oa c Oß. Let L and R be subsets of No with L < R and let

x= {L\R}.

(2) //IUÄC Oa, then x g Ma [6, p. 29].

Further, as we have noted before,

(3) L<{x]<R.

Indeed, since L < R, each xL is less than each xR. Since x = x, x > x; thus no

xR < x and x < no xL [6, p. 4]. As a consequence, xL < x < xR, establishing (3).

Assume now that x G Na; i.e., that a is the birthday of x, or in symbols, a = b(x).

(4) Given y g Ma such that L < {y} < R, then y = x [6, p. 23].
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8.2. Let T be a totally-ordered rj-Class. Let P = (N(a))ae0ld be a partition of T

for which N(0) = {t(0)}.

For each x g T there e?dsts a unique a g Ord, called the birthday of x and

denoted by ¿?(x), such that x g N(a). It is convenient to define M(a) to be

(Jß<aN(ß) and 0(a) to be öß<aN(ß). Clearly, a < ß implies M(«)cM(j8) and

O(a) c O(ß). Let L and R be subsets of F such that L < R. Since F is an r/-Class,

S={xgF: L<{x}</?} is a nonempty Class. Let a be the least element in

b(S)(= {b(x): x g S}), and let x g 5 have birthday a.

The partition P will be called a Conway partition of T if the following hold:

(1) given y G S with birthday a, then y = x,

and

(2) if LU R c 0(a) then x G M(a).

Example. (Na)ae0ri is a Conway partition of No (§8.1).

Assume that F is a Conway partition of T.

There exists a unique order-preserving map t of No onto T such

(3) that for all x G No, b(t(x)) = ¿?(x), i.e., such that t preserves

birth order.

Proof. Let / take 0 in M0 to /(O) in M(0). For some a g Ord, with a > 0, assume

that t, as defined above on M0, admits a unique order-preserving extension to Oa

that maps Oa onto 0(a) and preserves birth order. Let x g Na. x = {L \ R] for

some subsets L and R of Oa [6, p. 29]. By assumption, t(L) U t(R) c O(a) and

t(L) < t(R). Since F is an r/-Class, 5 = {u g T: t(L) < {u} < t(R)] is a non-

empty Class. Let t(x) be an element in S such that b(t(x)) is the least element ß in

A(5). By (1), r(x) is unique. By (2), ß < a. Assume, for a moment, that ß < a; then

r(x) g O(a). Since t is an order-preserving map of Oa onto O(a) which preserves

birth order, there exists y g Oa such that t(y) = t(x). Hence L < {y} < R.By (8.1:

4) x = y; thus a = A(x) = b(y) = b(t(y)) = b(t(x)) = /6, which is absurd, proving

that ß = a. Thus (3) is proved by induction.

Using the Conway partition P on T, we can define addition and multiplication on

T as Conway did; then the map t (3) of No onto T preserves these operations: thus T

is a Field and

(4) / is an isomorphism of the Field No onto the Field T.

8.3. A glance at the proof of Conway's Theorem 29 [6, p. 43] suggests that No has

a vast number of automorphisms. A little further reflection will suggest that, given

any subfield k of No, No also has a vast number of ^-automorphisms. Next note that

an automorphism of a real-closed field must be order-preserving, since it must

preserve squares and the squares are exactly the nonnegative elements of the field.

From (8.2: 3) we see that

, . the only automorphism of No which preserves birth order is the

identity map.
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