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While his incredibly inventive mind enriched 
many fields, Claude Shannon’s enduring fame will
surely rest on his 1948 work “A mathematical 
theory of communication” [7] and the ongoing rev-
olution in information technology it engendered.

Shannon, born April 30, 1916, in Petoskey, Michi-
gan, obtained bachelor’s degrees in both mathe-
matics and electrical engineering at the University
of Michigan in 1936. He then went to M.I.T., and
after spending the summer of 1937 at Bell Tele-
phone Laboratories, he wrote one of the greatest
master’s theses ever, published in 1938 as “A sym-
bolic analysis of relay and switching circuits” [8],
in which he showed that the symbolic logic of
George Boole’s nineteenth century Laws of Thought
provided the perfect mathematical model for
switching theory (and indeed for the subsequent
“logic design” of digital circuits and computers).
This work was awarded the prestigious Alfred
Noble Prize of the combined engineering societies
of the United States in 1940.

Spending the summer of 1938 at Woods Hole,
Shannon decided to put the Mendelian laws of 
inheritance on a proper mathematical footing. 
His Ph.D. thesis in mathematics (M.I.T., 1940), “An
algebra for theoretical genetics”, was the result.

Done in complete isolation from the community of
population geneticists, this work went unpublished
until it appeared in 1993 in Shannon’s Collected 
Papers [5], by which time its results were known
independently and genetics had become a very 
different subject. After his Ph.D. thesis Shannon
wrote nothing further about genetics, and he 
expressed skepticism about attempts to expand 
the domain of information theory beyond the 
communications area for which he created it.

Starting in 1938 Shannon worked at M.I.T. with
Vannevar Bush’s “differential analyzer”, the an-
cestral analog computer. After another summer
(1940) at Bell Labs, he spent the academic year
1940–41 working under the famous mathemati-
cian Hermann Weyl at the Institute for Advanced
Study in Princeton, where he also began thinking
about recasting communications on a proper 
mathematical foundation. In 1941 he returned to
Bell Labs for the next fifteen years, initially work-
ing on projects related to the war effort.

In 1945 Shannon wrote a classified report, “A
mathematical theory of cryptography”, which was
finally declassified and published in 1949 in the Bell
System Technical Journal (BSTJ) as the “Commu-
nication theory of secrecy systems” [6]. Perhaps it
was from thinking about cryptography in terms of
the set of all possible keys that might be used in
the encryption of messages that Shannon was led
to his breakthrough in “A mathematical theory of
communication”, published in two installments in
the BSTJ in 1948.

At the start of this epic paper, he acknowledged
the work at Bell Labs in the 1920s of Harry Nyquist
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(who contributed the “sampling theorem” and
“Nyquist diagrams” to communication and con-
trol theory) and R. V. L. Hartley, who recommended
a logarithmic measure of “information”; but 
Shannon, like Newton, “standing on the shoulders
of giants”, was able to see much farther than any
of his predecessors. Early in the paper, he wrote
“[The] semantic aspects of communication are 
irrelevant to the engineering problem. The signif-
icant aspect is that the actual message is one 
selected from a set of possible messages” [Shannon’s
emphasis].

Shannon’s great insight was to think in terms of
statistical ensembles: the source as the set of all
messages that might possibly be sent; and the
channel contributing the set of possible distur-
bances or corruptions (“noise”) to the message.

Shannon liberated the “entropy” of thermody-
namics from physics and redefined it as a measure
of uncertainty on probability distributions. While
crediting the term “bit” (for “binary digit”) to J. W.
Tukey, Shannon defined his bit as the amount of
information gained (or entropy removed) upon
learning the answer to a question whose two pos-
sible answers were equally likely a priori. (When 
one possible answer is more likely than the other,
learning the answer conveys less than one bit of
information.) He derived formulas for the infor-
mation rate of a source and for the capacity of a
channel (in both the noiseless and noisy cases), each
measured in bits per second, and he proved that 
for any information rate R less than the channel
capacity C , it is possible (by suitable encoding) to
send information at rate R, with an error rate less
than any preassigned positive ε, over that channel.
His ingenious proof considers the set of all possi-
ble encodings of source messages into streams of
binary digits and shows that an encoding chosen
“at random” from this set will have the desired
property with extremely high probability.

When Shannon’s paper appeared, some com-
munications engineers found it to be too mathe-
matical (there are twenty-three theorems!) and too
theoretical, while some mathematicians criticized
it as being insufficiently rigorous. In reality 
Shannon had almost unfailing instinct for what
was actually true and gave outlines of proofs that
other mathematicians (such as Khinchin and 
Wolfowitz) would make fully rigorous.

Since 1948 generations of coding theorists have
struggled to find actual codes that perform as well
as Shannon’s “random” ones. Today there are com-
munication systems operating over noisy channels
within 0.005dB of the Shannon limit, and stored
information (in computers, on CDs and DVDs) is
protected with the same types of “error-correcting
codes” used for transmitted information.

Shannon also pioneered the study of “source
coding” (or “data compression”) to remove all

“useless” redundancy from source messages, which,
if they are then to be sent over noisy channels, can
have “useful” redundancy (extra symbols for error
detection and correction) added back.

Shannon was grateful to Bell Labs for tolerating
(though certainly not encouraging) his work on “A
mathematical theory…”, which seemed (at that
time!) to have no practical benefit for AT&T. The
name “Bell Labs” is now used by Lucent, while
“AT&T Research Labs” has been renamed “Shannon
Labs”.

At the end of “A mathematical theory…”, 
Shannon acknowledged the contributions of 
several colleagues at Bell Labs, with a special 
mention of the influence that Norbert Wiener’s
work at M.I.T. had on his own thinking.

The Shannon bit, as the basic unit of informa-
tion, though not a particle of physics, clearly has
a reality of its own. There has been a serious pro-
posal to rename this unit the shannon. If a message
consists of N shannons, then the theoretically best
“source encoding” could express it in N binary
digits.

After 1948 Shannon wrote many more seminal
papers in information theory. Also, in “Reliable
circuits using less reliable relays” (BSTJ, 1956, in
two installments coauthored with Edward F. Moore),
he showed that arbitrarily reliable circuits could be
built with unreliable parts, again using redundancy,
akin to achieving arbitrarily reliable communication
over unreliable (i.e., noisy) channels.

In 1956 Shannon left Bell Labs for M.I.T., where
he was Donner Professor of Science from 1958
until his retirement in 1978. For decades, M.I.T. was
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the leading university for information and com-
munication theory.

The Information Theory Group of the Institute
of Radio Engineers (IRE), founded in the early 1950s
(later the “Information Theory Society” of the In-
stitute of Electrical and Electronics Engineers (IEEE)),

established the Shannon Award (origi-
nally called the “Shannon Lecture”) as its
highest honor. In 1973 Shannon himself
delivered the first Shannon Lecture, at
the International Symposium on Infor-
mation Theory, in Ashkelon, Israel. When
I spent most of fall 1959 visiting at M.I.T.,
I had gotten to know Shannon quite well,
but it was an unexpected honor when
Shannon attended my Shannon Lecture in
1985 in Brighton, England—the only one
he attended after his own.

Shannon was a talented gadgeteer who
built some of the earliest robotic au-
tomata, game-playing devices, and puz-
zle-solving machines. He could juggle
while riding a unicycle and designed ma-
chines to juggle and to ride unicycle-like
vehicles. Not working in any Nobel Prize
field, but in the new science he had in-
vented, he received innumerable honors
and awards, including the U.S. National
Medal of Science (1966), Israel’s Harvey
Prize (1972), and Japan’s Kyoto Prize
(1985). His research efforts bore bounti-
ful fruit during his lifetime. His Collected
Papers [5] include 127 publications from
1938 to 1982. The last few years of his life,
Shannon was tragically afflicted with
Alzheimer’s disease. He died February
24, 2001, in Medford, Massachusetts, in
his 85th year. Shannon is survived by his
wife of more than fifty years, Mary Eliz-
abeth (Betty), née Moore, a son Andrew,
and a daughter Margarita. Another son,
Robert, died in 1998.

Digital Communications, the title of a
book I edited and coauthored with mem-
bers of my JPL group, was still considered
an oxymoron when the book appeared in
1964. (Dozens of similarly titled books
have appeared since.) To most commu-
nications engineers, signals were quite
obviously analog. But at Bell Labs in the
late 1940s, the transistor was invented.
With Shannon’s remarkable theorems
telling communications engineers what ul-
timate goals to strive for, and integrated

circuits providing ever-improving hardware to re-
alize these goals, the incredible digital communi-
cations revolution has occurred. (The theory of er-
ror-correcting codes also began in the late 1940s,
largely independent of Shannon’s work, with Richard

W. Hamming at Bell Labs and Marcel Golay at IBM
Research Labs.) It is no exaggeration to refer to
Claude Shannon as the “father of the information
age”, and his intellectual achievement as one of
the greatest of the twentieth century.

The following five contributions, all by winners
of the Shannon Award, describe Shannon’s influ-
ence and some subsequent developments in 
specific areas in which he pioneered. This presen-
tation is a representative, but by no means 
exhaustive, indication of the many disciplines 
that Shannon’s work profoundly enriched.

Elwyn Berlekamp

Shannon’s Impact on Portfolio Theory
Shannon was quite interested in portfolio man-
agement. He personally gave several talks on the
subject now called “financial mathematics” in the
late 1960s and 1970s. He studied published data
on large pension funds and other institutions to 
determine the net flows of cash into and out of 
the U.S. stock market, and he designed analog 
electric circuits intended to simulate the market.
This work attracted little enthusiasm from finan-
cial professionals and was never published. But it
did attract the interest of some within Shannon’s
circle, including Fano, whose unpublished work
extended some of Shannon’s.

John L. Kelly Jr. was a colleague of Shannon’s at
Bell Labs (although in a different department) who
did publish. Kelly became interested in what is
now called the “asset allocation problem”, which
is the question of how best to diversify one’s total
portfolio among different possible investments.
Stated in the colorful terminology of horse racing,
an investment opportunity may be attractive when-
ever the “true odds” known to the investor differ
from the “betting odds” on which the payoffs are
based. Kelly proved that given a long sequence of
such opportunities, the maximum exponential
growth rate that can be achieved with probability
approaching 1 can be viewed as the capacity of the
communication channel over which the investor 
receives his noisy tips!

The impact of this work emerged slowly but
steadily over the subsequent decades. Here is an
excerpt from a 1998 interview with Ed Thorpe, a
very successful investor:

A June 1998 New York Times Science
Times article attributed the degrees of
separation idea to a sociologist in 1967.
Yet it was well known to Shannon
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before 1960. For bet sizing in favorable
games, Shannon suggested I look at a
1956 paper by Kelly [4]. I did and
adapted it as our guide for blackjack
and roulette, and used it later in other
favorable games, sports betting, and
the stock market. The principle was to
bet to maximize the expected value of
the logarithm of wealth. This has de-
sirable properties that are discussed 
in detail by Cover and Ordentlich [2].

The IEEE Transactions on Information Theory began
publishing papers on portfolio theory around 1980.
The topic received considerable attention in the IEEE
Shannon lectures of 1990 and 1993, both later
published in the Information Theory Newsletter. Yet
all this work still attracted only skeptical attention
from financial scholars in the leading business
schools. Applying the Kelly criteria to their favorite
model of stock price series (Brownian motion or
white Gaussian noise) led to substantially more
aggressive investments than portfolio managers
had historically deemed prudent. So they tended
to reject the Kelly criteria as unsound. However, real
price movements have big swings considerably
more often than predicted by the normal distrib-
ution. When the calculations are done correctly,
most of the alleged overaggressiveness disappears.

Perhaps the impact Shannon and Kelly have 
had on finance can now best be measured by 
the number and quality of Wall Street firms that
are actively recruiting mathematicians and 
information theorists, an outstanding example 
of which is documented in the cover story of the
November 2000 issue of Institutional Investor.

Thomas M. Cover

Shannon’s Contributions to Shannon Theory
Shannon’s landmark 1948 contribution [7] 
initiating information theory presented a capacity
theorem for the transmission of information, an 
entropy theorem for data compression, and an 
asymptotic equipartition theorem for the proba-
bility of sequences from an ergodic process. When
the Transactions on Information Theory was formed
in the mid-1950s, some areas closely related to
Shannon’s original work were naturally included 
in the purview of the journal. These other areas 
included prediction, estimation, filtering, modula-
tion, and detection. Also came the quickly growing
body of work in algebraic coding theory, an area that
comprises roughly a third of the contributions in

the journal each year. Other areas, like the math-
ematical theory of learning and algorithmic com-
plexity, were soon to follow. Because of this pro-
liferation, Aaron Wyner used the term “Shannon
theory” in the early 1970s to designate those the-
orems growing directly out of the study of 
Shannon’s work. Roughly speaking, Shannon 
theory involves problems in which mutual infor-
mation and entropy play a prominent role.

Some of the initial reactions to Shannon’s work
were interesting. For example, the publisher in-
sisted that Warren Weaver write an expository
chapter for the book [9], presumably to make it
more accessible. Since Shannon wrote as simply as
possible, Weaver’s task was impossible.

J. L. Doob [3] wrote in Mathematical Reviews in
1949, “The discussion is suggestive throughout,
rather than mathematical, and it is not always clear
that the author’s mathematical intentions are 
honorable.” I hasten to add that Doob has recanted
this remark many times, saying that it and his
naming of super martingales (processes that go
down instead of up) are his two big regrets.

On the question of mathematical rigor, how-
ever, we should say that after fifty years, it is clear
that Shannon was correct in each of his assertions
and that his proofs, some of which might be 
considered outlines, could eventually be filled out
along the lines of his arguments. It also must be
said, given the breadth and scope of his theorems,
that Shannon’s intuition must have been anchored
in a deep and natural theoretical understanding.

In the Soviet Union, Shannon’s paper was 
considered to be in the field of cybernetics, which 
had been deemed [10] “a false science of obscu-
rantists” (izhenauka mrakobesov). Even to publish
its translation required special efforts. The great 
mathematician A. N. Kolmogorov became excited
by Shannon’s work and organized an informal 
seminar around these ideas in 1954. Those in-
volved included I. M. Gelfand, A. M. Yaglom, M. S.
Pinsker, R. L. Dobrushin, and Y. G. Sinai. Kolmogorov
was eventually led to the definition of algorithmic
complexity, the minimum length binary program
needed for a Turing machine to print out a given
sequence x . It turns out that the algorithmic com-
plexity (pretty much simultaneously and indepen-
dently put forth by Solomonoff, Chaitin, and
Kolmogorov) is a very close counterpart to Shannon
entropy.

Kolmogorov’s attitude [1] expressed in 1983
was that “information theory must precede prob-
ability theory, and not be based on it.”

Shannon’s two most dominant theorems are 
on data compression and data expansion. In the
data compression theorem, Shannon shows that
there are 2nH roughly equally probable sequences
of length n from an ergodic stochastic process
(H denotes entropy). The set of these so-called 
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typical sequences has probability nearly 1. Thus 
nH bits suffice to describe a sequence from such
a process with a probability of description error 
arbitrarily small. Of course the general proof of 
this result for ergodic processes took more than
thirty years. It was proved for independent iden-
tically distributed random variables by Shannon,
who argued that it held for ergodic processes, 
but the rigorous proof was done in stages, first 
by McMillan for Markov processes, by Breiman for
finite alphabet ergodic processes, extended to
countably infinite alphabet processes by Chung, 
and proved in generality for arbitrary real-valued
random variables forming an ergodic process by
Barron and Orey.

The general asymptotic equipartition theorem,
also known as the Shannon-McMillan-Breiman the-
orem, is that if {Xi} is a stationary ergodic random
process with probability mass function p(·), then

−(1/n) logp(X1, . . . , Xn)

converges with probability 1 to H, where

H = lim
n→∞H(Xn|Xn−1, . . . , X1)

is the entropy rate of the process.
The other primary theorem of Shannon is the

channel capacity theorem. Suppose one has a com-
munication channel p(y|x) with the understanding
that the output Y is drawn according to p(y|x)
when x is the input. The question is how many dis-
tinguishable inputs are there? The capacity C is the
logarithm of the number of distinguishable 
inputs. Shannon argued that if this situation is
presented n times, so that p(yn|xn) =

∏n
i=1 p(yi|xi),

then this communication channel takes on a nice
structure. Let (X,Y ) ∼ p(x, y), and define

H(X) = E log( 1
p(X) ) ,

H(X|Y ) = E log( 1
p(X|Y ) ) ,

I(X;Y ) = H(X)−H(X|Y ) .

Fixing for a moment the type p(x) of the input 
sequence, we can see that there are 2nH(X) typical
inputs, and for each input there are 2nH(Y |X)

roughly conditionally equally probable outputs Yn.
So we must merely count the number of distin-
guishable inputs in the sense that their output
fans do not overlap. A simple sphere-packing 
argument shows that there can be no more than
2nH(Y )/2nH(Y |X) such distinguishable inputs. In 
fact, there are exactly that many, at least to first
order in the exponent, as Shannon showed by 
introducing a random coding argument. He merely
picked the 2nC input sequences Xn at random,
where C = maxp(x) I(X;Y ).

Now I would like to comment on the research
that these inquiries engendered. The first ideas in

data compression were how to actually minimize
the expected description length of a random vari-
able X drawn according to a known probability
mass function p(x) . Shannon suggested assigning
a binary sequence of length 
log( 1

p(x) )� to x . This
achieves an expected description length within one
bit of the entropy H =

∑−p logp . Then Huffman
found an algorithm for achieving the minimum. In
practice today, one does not use Huffman coding
but instead uses either arithmetic coding (map-
ping the source sequence x1, x2, . . . into the unit
interval via the distribution function F (.x1x2 . . . ) ,
thereby giving a uniform distribution) or Lempel-
Ziv data compression in which one keeps track of
each new phrase in the data sequence as it evolves
and describes the next phrase by reference to the
past ones. Since the phrases one is likely to see are
the so-called typical ones, one has a very efficient
reference library with respect to which one can 
describe the next phrase.

In 1961 Shannon wrote an important paper on
the communication capacity of the two-way chan-
nel in which two senders interfere with each other
as they try to talk over a common communication
line. The simplest example of this is the binary 
multiplier channel in which the senders send 
either a 0 or a 1 and receive the product of what
they send. Thus if both senders receive a 1, they
know of course that they sent a 1 and that a 1 was
transmitted by the other. On the other hand, if
one sends a 1 and the other a 0, the first sender
will know that a 0 was sent, but the second sender
will not. To this day the capacity region of this 
channel is not known. This is one of many un-
solved problems in network information theory.

I first met Shannon in 1972 in Ashkelon, Israel,
a few years after he had retired from research. 
He had been asked to give the first Shannon 
Lecture and was delighted by the prospect, mostly
because of the recursive aspect. The lecture 
was on feedback, which he illustrated with Camp-
bell soup cans on which were pictures of Campbell
soup cans, sounds built up of sounds of sounds,
and lecturers receiving their own awards.

As for his place in history, Shannon blasted
three fields into existence. First, switching theory,
a subject that benefits from a mathematical foun-
dation, but turns out not to be intrinsically deep.
Then cryptography, where he illuminated an 
already existent highly mathematical subject. And
finally, out of the blue, information theory, with its
deep penetration of the mathematics of stochas-
tic processes, the definition of intrinsic random-
ness, and the capacity relation between cause and
effect—a whole beautiful field based on the inef-
fable idea of information. This ability to create
new fields and develop their form and depth surely
places Shannon in the top handful of creative minds
of the century.
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Robert G. Gallager

Shannon at M.I.T.
Claude Shannon spent both his graduate years and
the latter half of his professional career at the
Massachusetts Institute of Technology. He joined
the M.I.T. electrical engineering department as a re-
search assistant in 1936 to work on Vannevar
Bush’s differential analyzer, an early analog com-
puter. While working on the analog gear mecha-
nisms, he also became interested in the switching
circuits that controlled the analyzer. He combined
this experience, and a summer assignment at Bell
Labs, with an undergraduate course in Boolean 
algebra to see that Boolean algebra was the right
mathematical approach to the analysis of switch-
ing circuits. After fleshing this idea out, he wrote
it up for his master’s thesis.

This thesis, and the published version [8], won
him both fame and the prestigious Alfred Noble
Prize for the best engineering paper of the year 
by an author under thirty. This paper is now 
recognized as the foundation of modern switching
theory and was crucial for the growth of both the
computer industry and the telephone industry.

Partly under Vannevar Bush’s advice, Shannon
began to study genetics. He switched to the math-
ematics department to do his Ph.D. work on a
mathematical foundation for genetics. He contin-
ued his interests in switching and his burgeoning
interest in communication theory while doing the
thesis, and quickly left the genetics field after com-
pleting his thesis in 1940. The thesis work was un-
published and remained unknown until recently.
His results would have been very important if
known earlier, but most of the results have since
been rediscovered independently.

After a very fruitful fifteen years at Bell Labs,
Claude Shannon returned to M.I.T. in 1956, first as
a visiting professor, and then, in 1958, as Donner
Professor of Science, with a joint appointment in
electrical engineering and in mathematics. There
was a very active group in information theory at
M.I.T. at that time, and students and younger 
faculty viewed Shannon as an idol. Many of these
students are now leaders in the digital communi-
cation field, some in academic careers, some in 
industrial laboratories, and some as entrepreneurs
of large successful corporations.

Shannon was somewhat inner directed and shy,
but very easy to talk to after the initial connection 
had been made. It was relatively rare for him to be 
the actual supervisor of a thesis, but in many cases,
when he talked to a student, he would find an 

interesting and novel new di-
rection for the student’s work.
Although these interactions
were not frequent, they were
extremely important, since stu-
dents learned to focus on the
formulation and approach to a
problem rather than getting
immediately involved in tech-
nical details.

Shannon did not teach or-
dinary courses, but would
give relatively frequent sem-
inars, and once gave an en-
tire seminar course with new
results at each lecture. He did
not like to replow old ground, and was so creative
that, if he started to think of something old, he
would look at it in a different way and create some-
thing entirely novel. He also disliked writing papers,
although he recognized the need for doing this. For-
tunately, he could work out all the needed details
for a paper in his head, and then dictate the paper
in virtually finished form.

While at M.I.T., he fleshed out quite a few results
from his masterwork, The Mathematical Theory of
Communication. Several of these papers developed
bounds on achievable error probability for coding
on noisy channels. These bounds were important,
both to give an indication of whether noisy chan-
nel coding could be practical, and also to provide
guidance on what types of schemes would work.
Essentially he showed that almost any code would
work very well and that the problem was in find-
ing implementable decoders. It was during this 
period also that he looked at problems of feedback,
side information, and interference from other 
channels.

Shannon always tended to work (or play) with
many different types of problems at the same time.
Along with writing his information theory papers
at M.I.T., he was developing optimal portfolio the-
ories for the stock market, continuing his interest
in chess-playing machines, and investigating many
other topics. Increasingly in his later years at M.I.T.,
he worked at home, and eventually retired in 1978.

James L. Massey

Shannon and the Development of Cryptography
Shannon’s published work on cryptography is lim-
ited to the single paper “Communication theory of
secrecy systems” [6], which appeared in October
1949. The first footnote in this paper indicates

Robert G. Gallager is professor emeritus of electrical en-
gineering and computer science at M.I.T. His e-mail address
is gallager@lids.mit.edu.

James L. Massey is professor emeritus at Eidgenössische
Technische Hochschule, Zürich. His e-mail address is
JamesMassey@compuserve.com.

Claude Shannon, early years
at MIT.
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that its contents had appeared as a September
1945 confidential Bell Laboratories memorandum
that was now declassified. There has been specu-
lation that Shannon’s work on cryptography dur-
ing the war (he wrote another Bell Laboratories
memorandum on the subject in May 1943) led him
to his formulation of information theory, but this
seems not to be true. His October 1949 paper be-
gins: “The problems of cryptography and secrecy
systems furnish an interesting application of com-
munication theory”, and he later confirmed that this
was indeed the motivation for his interest in cryp-
tography. Whatever its source, there is no doubt
that this paper is one of Shannon’s “blockbusters”
and that it has had an enormous influence on the
subsequent development of cryptography. It is also
vintage Shannon: insightful definitions, elegant
proofs, and grand scope.

The title of Shannon’s October 1949 paper is 
itself significant. It is now generally understood 
that cryptographic techniques have two quite 
independent goals, secrecy and authenticity. 
Shannon makes it clear that he is dealing only with
secrecy. It would take another thirty-five years 
before a theory of authenticity, roughly on a par
with that for secrecy provided by Shannon, was 
published by G. J. Simmons.

Shannon makes it very clear that there are two
basic types of secrecy systems: those designed to
protect against an attacker with unlimited com-
putational resources and those designed to protect
against an attacker with a given finite computa-
tional capability. Shannon called the kind of secrecy
achieved by the former “theoretical secrecy” and
that furnished by the latter “practical secrecy”—
these terms have been replaced by “unconditional

security” (or sometimes “information-theoretic 
security”) and “computational security” in modern
usage, but their meaning is unchanged.

Shannon’s treatment of theoretical secrecy is
conceptually rich. He gave the first precise defin-
ition of the “unbreakability” of a cipher, restrict-
ing himself to a ciphertext-only attack, as meaning
that the cryptogram and the message it represents
are statistically independent. He showed that the
cipher proposed by G. S. Vernam in 1926, now
often called the “one-time pad”, achieves “perfect
secrecy”—which was Shannon’s term for such 
unbreakability. [Vernam had claimed that the “un-
breakability” of his cipher was confirmed by field
trials with the U.S. Army Signal Corps.] More sig-
nificantly, Shannon showed that perfect secrecy re-
quires a secret key whose length in binary digits is
at least as great as the number of bits of informa-
tion in the message encrypted. This made clear
that practical secrecy is the best that one can hope
to achieve in most realistic situations where the se-
cret key is relatively short, and it led Shannon to
define the “unicity distance” of a cipher as the
amount of plaintext that essentially determines
the secret key. His formula for estimating unicity
distance is still widely used today.

Perhaps the most important aspect of Shannon’s
October 1949 paper is its thoroughly scientific 
nature. The second section of his paper begins:
“As a first step in the mathematical analysis of
cryptography, it is necessary to idealize the situa-
tion suitably, and to define in a mathematically 
acceptable way what we shall mean by a secrecy sys-
tem.” This was a radical departure from previous
papers in cryptography where conjecture and 
imprecision reigned. It is no exaggeration to say 
that Shannon’s paper marked the transition of
cryptography from art to science.

Even where Shannon argues on intuitive grounds,
he was apparently right on the mark. His principles
of “confusion” and “diffusion” for practical cipher
design, for which he provided broad semimathe-
matical definitions, were cited in the design of 
the enciphering algorithm of the 1977 U.S. Data 
Encryption Standard and are the principles 
most widely used today in the design of secret-key
ciphers.

It must be said that Shannon appears to have
missed the most important development of the
past fifty years in cryptography, namely that a 
secret key shared between the communicating 
parties is not necessary for secrecy. M. E. Hellman,
who together with W. Diffie announced this 
startling development in the 1976 paper that
founded “public-key cryptography”, has nonethe-
less credited these words from Shannon’s 1949
paper as the inspiration for this discovery: “The
problem of good cipher design is essentially one
of finding difficult problems … We may construct

At the blackboard, M.I.T.
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our cipher in such a way that breaking it is equiv-
alent to … the solution of some problem known to
be laborious.” Whether Shannon truly missed some-
thing is not yet certain. After twenty-five years of
public-key cryptography, there is still no proof
that trapdoor one-way functions, which are the
fundament of the theory, exist.

Andrew J. Viterbi

Attaining Maximum Achievable Channel
Transmission Rates: Fulfilling Claude Shannon’s
Prophesy
In his uniquely remarkable 1948 papers [7], Claude
Shannon established all the key parameters and lim-
its for the optimal compression and transmission
of digital information. The most unexpected was
the hard limit on the maximum rate of reliable
transmission over noisy, or error-prone, channels.
Its comprehension by the communication engi-
neering community was severely limited, partly
because of the unconventional nature of the result,
whose proof was based on statistical averaging
over ensembles of codes rather than on the con-
struction of specific good codes.

Over the next two decades there emerged two 
disparate approaches to attaining the promise of
Shannon’s limit. The first involved the construction
of code classes and their respective decoding al-
gorithms based on algebraic theory. Though pro-
ducing elegant results and some very useful encoder
and decoder implementations, this fell far short of
fulfilling the original purpose. The second more
profitable approach built on Shannon’s ensemble
concept to establish reasonably tight upper and
lower bounds on the achievable error probabilities
for important code classes as a function of code
length and channel parameters. Out of this came
the first tangible progress, yielding results which
promised the attainment of reliable transmission
at rates above one-half of channel capacity.

The codes were drawn from an ensemble of very
long convolutional codes, originally proposed by
Elias. But the major contribution was that of an 
implementable decoding algorithm which per-
formed a sequential search for the most likely 
path along the tree structure generated by the
code. Progressively more refined decoding algo-
rithms were developed by Wozencraft, Reiffen, 
and Fano. Sequential decoding suffered, however,
from a drawback which limited its achievable rate
to lie below a so-called computational cutoff rate,

always less than capacity
and approaching half ca-
pacity for very noisy chan-
nels. This was due to the
fact that the computational
load of sequential decoding
is a random variable with a
Pareto distribution whose
exponent is less than nega-
tive unity (and hence has
bounded mean) only below
the cutoff rate.

Partly as an exercise to better understand the po-
tential of convolutional codes, Viterbi in the late
1960s proposed a maximum-likelihood algorithm
that recognized the reconvergence of tree paths to
reduce the search to the best path traversed within
a stationary Markov graph,1 whose complexity is
proportional to its number of states, which in turn
is exponential in the length of the convolutional 
encoder. Good performance was demonstrated
even for short codes, guaranteeing a manageable
number of states, and this led to their overwhelming
acceptance as the codes of choice for most digital
wireless transmission, whether over satellites or Andrew J. Viterbi is professor emeritus at the University

of California at San Diego and retired vice chairman of
Qualcomm Incorporated. He is currently president of the
Viterbi Group, LLC. His e-mail address is
andrew.viterbi@viterbigroup.com.

1This model subsequently gave rise to numerous applica-
tions of the algorithm unrelated to channel coding, rang-
ing from voice recognition to DNA sequence alignment.
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the IEEE Information
Theory Society and
located in Gaylord,
Michigan, Shannon’s
hometown.
(Photograph courtesy
of ITS website.)
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terrestrial base stations, as well as for many wire-
line data channels.

To achieve very low error rates and to approach
closer to capacity, the effective code length was
greatly enlarged in the 1970s by employing con-
catenation, a technique first proposed by Forney,
which involves passing the digital message through
two encoders serially, with an interleaver in be-
tween, and at the receiver decoding the two codes
in the inverse order to that in which they were 
encoded. This approach, however, still failed to 
attain capacity, largely because information was 
lost in the process of passing (hard decision) in-
formation between decoders.

In the 1980s, Hagenauer proposed means for
preserving information by passing soft decisions
(essentially likelihood ratios) between decoders,
but it was not until the 1990s that Berrou and
Glavieux recognized the need to iteratively refine
these soft decisions by repeating the decoding
process by each decoder with ever improved chan-
nel symbol estimates provided to and from the
other decoder. The resulting overall performance
of this so-called “turbo decoding” algorithm was
so close to Shannon’s capacity as to launch an in-
tensified worldwide effort to scale the final peak.

Work of dozens of researchers validated and re-
fined the turbo decoding concept and related it to
Bayesian statistical concepts. The final and most
promising word, however, came not from the con-
volutional and turbo decoding results but from 
a much earlier concept initially developed by 
Gallager in 1963, known as low-density parity 
check (LDPC) block codes, whose decoding em-
ployed both soft decisions and the iterative process,
alternating between rows and columns of the 
parity check matrix. Modern refinements of Gal-
lager’s technique by numerous authors at the turn
of the century have led to implementable codes 
for reliable transmission within epsilon of channel
capacity.

So ends successfully the half-century saga, 
leaving though the question of why it took so 
long when we were so close almost forty years ago.
I propose a dual answer. First, the enabling tech-
nology for implementation of the (then) seemingly
complex algorithms was nonexistent, Moore’s Law
not yet even having been pronounced. Secondly, 
the research style of the time was first to prove 
theorems and then to attempt applications. Today,
with practically unlimited computing power, we 
can simulate and computationally validate algo-
rithms without first needing rigorous proofs of
their performance.
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