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1234 NOTICES OF THE AMS VOLUME 50, NUMBER 10

Erich W. Ellers

Harold Scott MacDonald Coxeter died on March 31,
2003, after sixty-seven years as professor at the 
Department of Mathematics of the University of
Toronto. Always known as Donald, he was a man
with a vision. His whole life was devoted to the 
discovery and the description of the symmetries 
that exist in Euclidean spaces of any dimension. He
was particularly fascinated by objects in four 
dimensions as extensions of those in three dimen-
sions, and also by the projections of objects in 
dimensions even greater than four. The focus on 
the fourth dimension started for him at a very early
age, when he was still a boy in school, and it stayed
with him till his death.

Donald was firmly rooted in the tradition of
geometry that goes back in history to Euclid and
earlier. He made major and fundamental contri-
butions to this subject which have influenced many
other branches of mathematics. University of 
Alberta mathematician Robert Moody wrote:

Modern science is often driven by fads
and fashion, and mathematics is no 
exception. Coxeter’s style, I would say,
is singularly unfashionable. He is
guided, I think, almost completely by a
profound sense of what is beautiful.

Symmetries occur frequently in nature, mani-
fested by the beautiful regular structure of crystals.

Symmetries are also abundant in the arts, for in-
stance in frieze patterns. Coxeter was intrigued by
these phenomena. All his life long he emphasized
the art in science and the artist in the mathemati-
cian. Some of his research work is on frieze patterns;
some is relevant for the theory of the structure of
crystals.

Certain groups of symmetries with particularly
nice properties that have been investigated by
Donald are now known as Coxeter groups. These
are omnipresent in various modern branches of
mathematics. Some examples of Coxeter groups
can serve as a basic introduction to group theory
for high school students. This has indeed been
done successfully in 1997 in a University of Toronto
summer school under the title “Coxeter’s Geometry”.

Two pieces of geometric art at The Fields Institute
in Toronto were clearly initiated and encouraged 
by Donald Coxeter. A symmetrical combination 
of interlocking triangles adorns the front lawn of
the institute, and an intricate mobile, a three-
dimensional projection of a four-dimensional 
polytope, hangs from the ceiling in the atrium.

It is not surprising that Donald was a friend 
of the Dutch graphic artist M. C. Escher. In 1997
Donald published a paper in which he proved that
Escher, despite knowing no mathematics, had
achieved mathematical perfection in the etching
Circle Limit III. “Escher did it by instinct,” Coxeter
explained; “I did it by trigonometry.”

Donald donated a portion of his collection of
geometric models to the University of Toronto.
These models are kept in a display case in the hall
of the fourth floor of Sydney Smith Hall.

Erich W. Ellers is professor emeritus in the Department of
Mathematics at the University of Toronto. His email 
address is ellers@math.utoronto.ca.
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Biography
Donald Coxeter was born on February 9, 1907, in
London, England. He got his Ph.D. in 1931 at the
University of Cambridge. He was a research fellow
at Trinity College, Cambridge, from 1931 to 1936,
a Rockefeller Foundation Fellow at Princeton
1932–1933, and a J. E. Procter Fellow 1934–1935,
also at Princeton. In 1936 he joined the faculty of
the Department of Mathematics at the University
of Toronto. He stayed there all his life.

Coxeter was welcomed as a visiting professor at
prestigious universities in Britain, the Netherlands,
Italy, Australia, and the USA. He was an inspiring
and popular lecturer at many conferences and uni-
versities all over the globe. He pursued this activity
throughout his life. In July 2002 he gave an invited
address at the conference on hyperbolic geometry  
in honour of János Bolyai in Budapest, Hungary. 
Donald had a number of honorary doctorates from
universities in Canada (Alberta, Waterloo, Acadia,
Trent, Toronto, Carleton, McMaster) and the Uni-
versity of Gießen in Germany.

He was a Fellow of the Royal Society of Canada;
a Fellow of the Royal Society (London); a Foreign
Member of the Koninklijke Nederlandse Akademie
van Wetenschappen; a Foreign Member of the Amer-
ican Academy of Arts and Sciences; and an Hon-
orary Member of the Mathematische Gesellschaft
in Hamburg, the Wiskundig Genootschap, and the
London Mathematical Society.

He served the mathematical community by being
editor in chief of the Canadian Journal of Mathe-
matics for nine years, president (Section III) of the
Royal Society of Canada, president of the Canadian
Mathematical Congress, vice president of the Amer-
ican Mathematical Society, and president of the
International Congress of Mathematicians.

In 1995 he received the CRM/Fields Institute
Prize, and in 1997 the Distinguished Service Award
of the Canadian Mathematical Society and the
Sylvester Medal of the Royal Society of London. In
the same year, H. S. M. Coxeter was named a Com-
panion of the Order of Canada. The citation says:

Through his research, he has made a
monumental contribution to the study
of geometry by furthering its applica-
tions in mathematics, science, art,
music, architecture, and crystallogra-
phy. … [He] has influenced generations
of teachers and students for more than
half a century.

Mathematical Influence
Coxeter contributed greatly to our mathematical
knowledge. He had over two hundred scientific
publications to his credit. In 1970 Coxeter wrote
an article on “Solids, geometric” for the Ency-
clopaedia Britannica. He also contributed sections

to many books and proceedings. Donald is widely
quoted; MathSciNet shows five hundred items with
“Coxeter” in the title.

His book Regular Complex Polytopes contains
advanced mathematical theories of geometric 
objects, yet it does not fit into any bookcase. It
displays many beautiful and sometimes intricate
figures. It is meant to be a coffee table book. Coxeter
writes in the preface:

I have made an attempt to construct it
like a Bruckner symphony, with crescen-
dos and climaxes, little foretastes of
pleasure to come, and abundant cross-
references.

Donald was an accomplished musician. He liked to
point out relations between music and mathematics.

The book Geometry Revisited has been translated
into French, Hungarian, and German. Some of the
material in this book may be accessible already to
a bright high school student. We quote from the
introduction:

… let us revisit Euclid. Let us discover
for ourselves a few of the newer results.
Perhaps we may be able to recapture
some of the wonder and awe that our
first contact with geometry aroused.

Coxeter’s books have been well received, and
several have gone through multiple editions.
Introduction to Geometry is a textbook for a 
university course in geometry. It is unique in style,
perhaps best described by a remark of Bertrand
Russell that Coxeter quotes on a page preceding the
body of the text:

Mathematics possesses not only truth,
but supreme beauty—a beauty cold and

Books by H. S. M. Coxeter
Generators and Relations for Discrete Groups

(with W. O. J. Moser)
Geometry Revisited (with S. L. Greitzer)
Kaleidoscopes (selected writings)
Introduction to Geometry
Non-Euclidean Geometry
Projective Geometry
The Real Projective Plane
Regular Complex Polytopes
Regular Polytopes
The Fifty-Nine Icosahedra (with P. Du Val, H. T.

Flather, and J. F. Petrie)
Twelve Geometric Essays (reprinted as The Beauty 

of Geometry)
Twisted Honeycombs (with Asia Ivíc Weiss)
Zero-Symmetric Graphs (with Roberto Frucht and 

David L. Powers)
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austere, like that of sculpture, without
appeal to any part of our weaker 
nature…sublimely pure, and capable 
of a stern perfection such as only the
greatest art can show.

This book has been translated into German, Japan-
ese, Russian, Polish, Spanish, and Hungarian. 
Projective Geometry has been translated into 
Croatian. The titles of the German translations of
Introduction to Geometry and Geometry Revisited,
namely, Unvergängliche Geometrie (Everlasting
Geometry) and Zeitlose Geometrie (Timeless Geom-
etry), are very attractive and revealing. They 
beautifully reflect Coxeter’s scientific endeavours
and his life’s philosophy.

Reminiscences
Donald was the most ardent, the most important,
and the most revered member of the Geometry
Seminar at the University of Toronto. It used to meet
every Tuesday. Donald never missed a seminar
and never missed an opportunity to deliver a talk
on his ongoing research. He had a wealth of knowl-
edge and liked to bring up tantalizing geometrical
questions that seemed new to most people but to
which he usually knew the answers.

Coxeter was a vegetarian, he was active in saving
the environment, and he promoted peace. His 
wife, Rien, died three years ago. Since then his 
daughter, Susan Thomas, has looked after him. He
also has a son, Edgar, and several grandchildren 
and great-grandchildren.

The popularity of a person can perhaps be
gauged by the number of anecdotes about him. The
press is full of anecdotes on Donald. Here is a typ-
ical and very charming one: When his graduate
student Asia Ivić Weiss, who is now teaching at York
University, told him that she would not be able to

come to their regular weekly meetings because she
was about to give birth, he gave her a 50-page
preprint of a paper. “He said that it was something
for me to look through if I had nothing else to do
in the labour room.”

Entering Donald Coxeter’s house in Toronto,
you notice an old clock with a motto that Coxeter
adhered to: Do not delay, time flies.

Coxeter’s Varied
Contributions
Branko Grünbaum

Although Coxeter’s work on regular polytopes and
groups of reflections will probably be viewed as his
most important contribution, two other aspects
should not be forgotten. One is his unceasing 
activity on behalf of geometry in general. His 
many books kept mathematicians aware of the 
various branches of geometry during much of the
twentieth century, at a time when these kinds of
geometry were in general decline and in danger of
disappearing. In particular, his Regular Polytopes
in its several editions is possibly one of the most
quoted geometry texts of the century. Moreover, 
the countless reviews he wrote for Mathematical
Reviews and other publications helped illuminate
and place authoritatively in historical context works
of many authors.

On the other hand, Coxeter contributed many
ideas and methods in studying specific geometric
questions. He seems to have been the first to note
(in [1]) the equivalence of zonotopes and arrange-
ments of hyperplanes, which nowadays is taken as
completely natural. The survey [2] led to increased
interest in sphere packings, and [3] introduced
new ideas in the treatment of color symmetries.
However, one of his most interesting papers is [6],
written jointly with M. S. Longuet-Higgins and 
J. C. P. Miller, and based on results obtained in 
the early 1930s by Coxeter and Miller, and inde-
pendently by Longuet-Higgins and his brother in
the 1940s; an excerpt was published in [4].1

The paper [6] contains a detailed exposition 
and construction for all uniform polyhedra, that 
is, polyhedra in which all vertices form one transi-
tivity class under symmetries of the polyhedron 
and all faces are regular polygons. The convex 
ones among them are said to have been known 
to Archimedes; they were (re)discovered by Kepler
four centuries ago. There was a trickle of nonconvex

Ph.D. Students of H. S. M. Coxeter
John Maurice Kingston (1939)
George P. Henderson (1948)
Gerald Berman (1950)
Lloyd Dulmage (1952)
Seymour Schuster (1953)
William O. J. Moser (1957)
F. Arthur Sherk (1957)
Donald W. Crowe (1959)
Bruce L. Chilton (1962)
William G. Brown (1963)
Cyril W. L. Garner (1964)
Norman W. Johnson (1966)
John B. Wilker (1968)
J. Chris Fisher (1971)
Joseph G. Sunday (1973)
Barry Ross Monson (1978)
Asia Ivić Weiss (1981)

Branko Grünbaum is professor emeritus in the Department
of Mathematics at the University of Washington. His email
address is grunbaum@math.washington.edu.
1B. G. is indebted to M. S. Longuet-Higgins for many de-
tails concerning the genesis of [6].
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uniform polyhedra found by various authors start-
ing in the second half of the nineteenth 
century. However, there was no overall guiding
principle in these discoveries. After surveying the
then-existing literature and combining the results,
the authors of [6] presented a unified method of
construction that produced all the previously
known ones together with twelve additional poly-
hedra. The authors of [6] did not claim complete-
ness for their enumeration but expressed hope
that it is, indeed, complete. This was shown to be
the case some years later, in [10] and [11].

One aspect of the material presented in [6] broke
with the entrenched tradition in the study of non-
convex polyhedra and lends importance to the
paper that goes far beyond the enumeration itself.
Unfortunately, the referees in both Mathematical
Reviews and Zentralblatt did not recognize this. 
Earlier writers on nonconvex polyhedra (such as 
A. Badoureau, E. Hess, and M. Brückner) either 
gave no definition of the class of polyhedra they
were considering or gave vague explanations which
they themselves ignored. Hence it is obvious that
one could not even contemplate any proofs of com-
pleteness for any of their enumerations. In contrast,
Coxeter et al. gave a precise and reasonable defi-
nition, which served well in their work and in later
studies of the topic.

The definition in [6] is very simple. “A polyhedron
is a finite set of polygons such that every side of
each belongs to just one other, with the restriction
that no subset has the same property.…The faces
are not restricted to be convex, and may surround
their centres more than once.… Similarly, the faces
at a vertex…may surround the vertex more than
once. A polyhedron is…uniform if its faces are 
regular while its vertices are all alike.” This 
definition is perfectly suitable for the study of 
uniform polyhedra; it made possible the proof of
completeness of the enumeration. Unfortunately,
it is not useful for investigations of more general
polyhedra. In later years Coxeter was aware of the
problems, which are of two kinds.

On the one hand, if the conditions are weakened,
compounds of polyhedra are included as well as
various other possibilities which are generally not
acceptable (such as several circuits of faces around
some vertices). On the other hand, the definition
used in [6] admits coplanar faces, and in fact 
several of the uniform polyhedra have coplanar 
sets of distinct faces. But following the tradition
established by Poinsot and Cauchy in the early
nineteenth century (and in contrast to the earlier
approach by Meister, which was forgotten for more
than two centuries), the polar of this possibility 
is not admitted. In other words, having two distinct
vertices represented by the same point is not 
permitted under the definitions in [6]. Clearly, this
situation makes it impossible to consider the 

polars of the uniform polyhedra. In the attempts
to do so, various authors [12], [8] reverted to 
the earlier custom of disregarding their own defi-
nitions. When appropriate and more usable general
definitions were developed (in [9] and [7]), Coxeter
realized their applicability and encouraged their
publication. The possibility of such generalizations
is also mentioned in [5]; this exemplifies the adapt-
ability and willingness to consider novel approaches
that characterized Coxeter’s attitude throughout 
his life.

In assessing Coxeter’s influence, one should not
forget his readiness to answer questions and pro-
vide advice and references. Many of us are forever
indebted to him for helping us in our own research.
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Donald Coxeter and
Regular Polytopes
Peter McMullen

The classical description of regular polygons and
polyhedra is well known, but the modern theory of
regular polytopes begins with Ludwig Schläfli in 
the middle of the nineteenth century. Schläfli 
discovered all but six of the regular polytopes in
four or more dimensions (he would not recognize
the others because—mistakenly—he excluded 
regular polyhedra of genus other than zero). The
regular polytopes were rediscovered by Stringer and 
others from the 1880s onward; van Oss actually
completed their classification.

However, the whole subject of regular polytopes
could well have become a mathematical backwater
were it not for the work of Donald Coxeter and a
circle of like-minded geometers from the 1920s
onward. It was Coxeter who introduced the vital 
connexion with group theory. A Coxeter group G
is generated by involutions R0 , R1 , …, Rn−1 (for
some n), satisfying relations solely of the form
(RjRk)pjk = E , the identity. The symmetry group 
of a regular convex polytope is a string Coxeter
group, in that pjk = 2 whenever j ≤ k− 2; the Rj
themselves are reflexions in hyperplanes. The 
polytope is then denoted by the Schläfli symbol
{p1, . . . , pn−1} , and its group by [p1, . . . , pn−1] ,
where pj := p(j−1)j for j = 1, …, n− 1. Each such
polytope has a dual, whose Schläfli symbol is
{pn−1, . . . , p1}, and thus obtained by reversal.

In En we always have three regular polytopes: the
simplex {3n−1}, the cross-polytope {3n−2,4} , and
the cube {4,3n−2} , as well as the cubic tiling
{4,3n−2,4}, where the notation pk means a string
p, …, p of length k. When n ≥ 5, these are the only
examples. For n ≤ 4, we have other cases as well.
Apart from infinitely many regular polygons (the
star-polygons included), in E3 there are the icosa-
hedron {3,5} and dodecahedron {5,3} and the
four related star-polyhedra, while in E4 there are
the 24-cell {3,4,3}, the 600-cell {3,3,5}, and the
120-cell {5,3,3}, together with ten star-polytopes
related to the latter two.

The polytopes just listed we may refer to as
classical ; they are the main subjects of Coxeter’s
seminal book Regular Polytopes, which went into
four editions. This masterly work gives a lucid 
exposition of the whole theory, not just the poly-
topes themselves and (where appropriate) how to
construct them, but also the related geometry and
group theory. I cannot be the only mathematician
whose career was deeply influenced by this book.

Coxeter himself provided a main impetus for the
development of the theory of regular polytopes in
a more abstract direction. As he himself told us,
his friend John Petrie discovered two new regular
apeirohedra (infinite polyhedra) in E3: one, {4,6|4} ,
with six squares fitting round each vertex in a
zigzag fashion, and the other, {6,4|4} , with four
hexagons around each vertex; the last entry “4” 
indicates a hole, formed by a circuit of edges 
leaving each vertex by the second edge from that
by which it entered. Coxeter immediately found a
third example in E3, namely, {6,6|3} , and then
other polyhedra whose structure is specified by a
Schläfli symbol augmented by a hole. The group of
{p, q |h} is the quotient of [p, q] under the impo-
sition of the extra relation (R0R1R2R1)h = E ; thus
the dual of {p, q |h} is {q,p |h}. For instance, the
regular star polyhedra { 5

2 ,5} and {5, 5
2} are, 

abstractly, {5,5|3} .
In a similar way, some regular polyhedra are

specified by the lengths of their Petrie polygons,
which are such that two successive edges, but not
three, belong to faces of the polyhedra. Such a
polyhedron, with p-gonal faces, with q through
each vertex, and with Petrie polygons of length r ,
is denoted {p, q}r ; the corresponding group 
is [p, q] , with the imposition of the relation
(R0R1R2)r = E . In all but a handful of cases, the
Petrie polygons of {p, q}r themselves form the
faces of another regular polyhedron, which is
{r , q}p . The dual of {p, q}r is {q,p}r , and so, with
duality, one obtains a family with (in general) six
members. As examples, if we identify opposite
faces of the icosahedron and dodecahedron, then
we obtain the hemi-icosahedron {3,5}5 and hemi-
dodecahedron {5,3}5 .

Peter McMullen is professor of mathematics at University
College London. His email address is p.mcmullen@
ucl.ac.uk.
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The symmetry of this latter family suggests that
the corresponding abstract groups might also be of
considerable importance; this is indeed so, but we
shall not go into this aspect here (see the section
by Asia Weiss). But we should mention the central
role played by these groups, and those of the pre-
ceding family defined by holes, in the delightful
book by Coxeter and Willy Moser, Generators and
Relations for Discrete Groups.

Coxeter, with others, also contributed to the
generalization to abstract regular polytopes of
higher rank (the number n of involutions which
generate the automorphism group). With Geoffrey
Shephard, he found a pretty 3-complex in the 
4-sphere composed of 20 solid tori; this actually 
corresponds to a regular 4-polytope. Further, he 
discovered abstract regular 4-polytopes whose 11
facets are hemi-icosahedra fitting around its 11
vertices in the manner of hemi-dodecahedra (this
was independently found by Branko Grünbaum),
and another formed by 57 hemi-dodecahedra 
fitting around its 57 vertices in the manner of 
hemi-icosahedra.

In another direction, Shephard defined and enu-
merated the regular complex polytopes. These are
close analogues of the real regular polytopes; the
generators Rj of their symmetry groups are now
unitary transformations of finite period having 
a (complex) hyperplane of fixed points. This pro-
vided Coxeter with the opportunity to produce 
another famous book, Regular Complex Polytopes.
Once again, Coxeter displayed his mastery of the
subject, resulting in a beautiful exposition; his 
love of music was also cleverly interwoven into
the presentation. (I hope that a personal note is not
inappropriate here. The curious format of the book
arose from Coxeter’s wish to incorporate many of
my own drawings of projections of regular poly-
topes; Coxeter also drew on unpublished results
from my qualifying M.Sc. thesis.)

In such a brief survey, I have had, of necessity,
to skate over Coxeter’s many other contributions
to regular polytope theory (I have tried to pluck out
a few pearls). What needs to be emphasized is that
Coxeter not only consolidated the classical theory
but also pointed out several directions in which the
abstract theory subsequently developed. His torch
is carried on by an enthusiastic group of followers,
and his efforts have ensured that the topic of reg-
ular polytopes still has plenty of life in it.

Coxeter Groups
Asia Ivić Weiss

A Coxeter group is defined as an abstract group
generated by elements ρj (j = 0, . . . , n− 1) subject
to relations

(ρjρk)pjk = E (the identity),

where pjj = 1 and pjk = pkj > 1 (possibly ∞) for all
j, k ∈ {0, . . . , n− 1}. These groups play important
roles in several branches of mathematics, such as
group theory, the theory of polytopes, crystallog-
raphy, graph theory, Lie groups, and the theory of
buildings. J. Tits, who initiated the systematic study
of such abstract groups, coined the name based on
the pioneering work of Donald Coxeter.

An interest in understanding symmetries of reg-
ular and uniform polytopes led Coxeter very early
in his life to investigate properties of reflection
groups. His approach, combining geometry and 
algebra, yielded the first comprehensive treatment
of reflection groups.

Spherical and Euclidean reflection groups were
first studied systematically by Coxeter in [4] and
completely classified by him in 1933 [5]. The cor-
responding classification for the hyperbolic groups
is as yet unsolved. For the general theory and 
the current state of the classification, we refer to
papers by Vinberg, for example [11]. F. Lannér com-
pleted the classification of hyperbolic reflection
groups having a simplex as fundamental domain
in his dissertation [9]. In addition, in a natural way
the notion of a reflection can be extended to that
of a unitary reflection, that is, of a transformation
of finite order of a complex Euclidean space with
all but one of its eigenvalues equal to 1. The 
finite unitary reflection groups were classified 
by Geoffrey Shephard and J. A. Todd in 1954 [10].

Circa 1930, inspired by the work of Todd, Coxeter
began to investigate the properties of a group 
generated by reflections in the facets R0, . . . , Rn−1

of a polytope P whose dihedral angle between 
the jth and kth facets is π/pjk, where the pjk are
integers ≥ 2, or 0 when the facets are parallel. First
accounts of this can be seen in [2] and also in [1].
(For his work in the two-part paper [1], [3] he 
received the prestigious Smith Prize, given to the
undergraduate student with the best essay on a
mathematical topic.)

The polytope P, whose closure forms the funda-
mental region for the group, can conveniently 
be denoted by a Coxeter graph: the facets of P are
represented by dots and connected by branches,
which are labeled by integers pjk so that the mutual

Asia Ivić Weiss is professor of mathematics at York Uni-
versity. Her email address is weiss@yorku.ca.
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inclination of facets can be read from the graph. A
Coxeter graph thus encodes information about the
group in a useful manner. More importantly, this
representation aids in the classification of reflec-
tion groups (see, for example, [7] or [8]). It was 
during his year at Princeton in 1932–1933 that 
Coxeter first thought of representing reflection
groups by a graph of dots and branches. Indepen-
dently, but considerably later, the same graphical
notation was rediscovered by Dynkin, circa 1940,
when he was nineteen years old, in his discussions
of simple Lie algebras. A Dynkin diagram is 
essentially a Coxeter graph with the restriction that
pjk = 3, 4, or 6 and multiple branches are used 
in place of labels.

When the fundamental region of a reflection
group is an orthoscheme, that is, a simplex whose
facets may be ordered so that any two that are not
consecutive are orthogonal, the Coxeter graph for
the group is a string diagram:

When each pj > 2, the group is the symmetry group
of a regular tessellation of spherical, 
Euclidean, or hyperbolic (n− 1)-space or an iso-
morphic n-polytope (see the section by Peter 
McMullen). In the 1954 paper [6] presented at the
International Congress of Mathematicians in 
Amsterdam, Coxeter gave a complete classifica-
tion of the hyperbolic tessellations.

Donald Coxeter had a remarkable record of ac-
complishments. His mathematical contributions
spanned over eighty years. At the age of sixteen he
won a prize for an essay on the analogues of reg-
ular solids in higher dimensions; his last paper
was finished the day before his death. I had the priv-
ilege of submitting this paper on his behalf to the 
proceedings of the conference celebrating the 200th
anniversary of the birth of the famous Hungarian
geometer János Bolyai.

After sending a short notice of Coxeter’s death,
I received numerous responses from hundreds of
mathematicians, some of whom I did not know.
Many offered warm reminiscences, but many talked
about the inspiration and influence that Donald 
had on their mathematics. I consider it a privilege
to have been his student. I owe him a lot for his
guidance and support, but mostly I am grateful 
for the contagious love of mathematics that he 
imprinted upon me.
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